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ABSTRACT

The social graphs synthesized by the generative models are increasingly in de-
mand due to data scarcity and concerns over user privacy. One of the key per-
formance criteria for generating social networks is the fidelity to specified con-
ditionals, such as users with certain membership and financial status. While re-
cent diffusion models have shown remarkable performance in generating images,
their effectiveness in synthesizing graphs has not yet been explored in the con-
text of conditional social graphs. In this paper, we propose the first kind of con-
ditional diffusion model for social networks, CDGraph, which trains and syn-
thesizes graphs based on two specified conditions. We propose the co-evolution
dependency in the denoising process of CDGraph to capture the mutual depen-
dencies between the dual conditions and further incorporate social homophily and
social contagion to preserve the connectivity between nodes while satisfying the
specified conditions. Moreover, we introduce a novel classifier loss, which guides
the training of the diffusion process through the mutual dependency of dual condi-
tions. We evaluate CDGraph against four existing graph generative methods, i.e.,
SPECTRE, GSM, EDGE, and DiGress, on four datasets. Our results show that the
generated graphs from CDGraph achieve much higher dual-conditional validity
and lower discrepancy in various social network metrics than the baselines, thus
demonstrating its proficiency in generating dual-conditional social graphs.

1 INTRODUCTION

Social networks offer a wide range of applications, such as viral marketing, friend recommendations,
fake news detection, and more. However, achieving effective results often requires a substantial
amount of personal data. Nevertheless, with the rise of privacy awareness, most individuals are
reluctant to publicly disclose their personal information, including their profile and social interaction
records, leading to a scarcity of data. The need of generating a social graph similar to the original
one arises. It is critical for synthetic graphs to not only have similar structures as the original ones,
e.g., centrality, but also satisfy exogenous conditions, such as specific user profiles.

Statistical sampling approaches (Shuai et al., 2018; Schweimer et al., 2022) have been used to pro-
duce graphs with certain social network properties, such as skewed degree distribution, a small
diameter, and a large connected component, but they struggle to ensure the structure similarity to
the original social graphs. Moreover, these methods cannot control the generation process to sat-
isfy specified conditions (e.g., profiles of a social network user) (Bonifati et al., 2020). Recently,
deep generative models are shown effective for synthesizing molecular graphs (Samanta et al., 2020;
Chenthamarakshan et al., 2020), via extracting latent features from input graphs. The deep molecu-
lar graphs (Huang et al., 2022; Vignac et al., 2023) can well preserve the network structure and deal
with a single exogenous condition only (e.g., chemical properties such as toxicity, acidity, etc.) but
not more. They fail to capture the dependency between two specified conditions, and thus cannot
generate graphs satisfying both conditions.

However, the generation of dual conditional social graphs is highly valuable for social applications,
as these applications often require the consideration of users’ diverse social contexts and connec-
tions, which typically satisfy more than one condition in real-world applications. Moreover, they
should also retain the unique characteristics of social graphs, i.e., social homophily and social con-
tagion, to ensure that the phenomena inherent in social applications can be captured. Social ho-
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(a) Unconditional. (b) Single-conditional. (c) Dual-conditional.

Figure 1: Illustrative examples of synthetic social graphs generated by unconditional, single-
conditional, and dual-conditional approaches. The colors of the node represent the condition sat-
isfaction: none (red), one (green and yellow), and both (blue).

mophily (Bisgin et al., 2012), which involves the tendency to form social connections with people
who share similar profiles, plays a significant role as a primary factor in link formation (Lee et al.,
2019). On the other hand, social contagion (Papachristou et al., 2023; Jiang et al., 2023), where
behavior spontaneously spreads through a social graph, is largely influenced by network topol-
ogy (Horsevad et al., 2022). Since homophily and contagion are generally intertwined [3], many
studies often simultaneously consider both to facilitate social applications. For instance, Li et al. (Li
et al., 2022) explore the effects of social homophily and contagion on users’ behavior for social
recommendation. Sankar et al. (Sankar et al., 2020) leverage social homophily and contagion to ac-
curately predict the spread of information. For example, in social applications like social marketing,
it is common to select individuals with strong influence within their social circles for word-of-mouth
promotion. These social circles are parts of users’ ego social graphs, preserving the essential charac-
teristics of social homophily and social contagion to accurately capture social influence propagation.
Specifically, for luxury golf club brands targeting golf enthusiasts and high-income individuals, an-
alyzing users’ influence within social circles that include friends sharing a passion for golf and
possessing high incomes can help identify individuals well-suited for promoting the brands.

Generating social graphs satisfying dual conditions is no mean feat and faces several challenges.
(i) Intricate dependencies across conditions: Those exogenous conditions are often mutually de-
pendent, and modeling conditions independently may lead to sub-optimal synthetic graphs. For
instance, there is a high correlation between being golf enthusiasts and income brackets. (ii) Fulfill-
ing graph structure similarity and exogenous conditions: When synthesizing social graphs, one has
to not only maintain the network structure but also adhere to the conditions. Compared to chem-
ical graphs, where the structure is dictated primarily by physical and chemical constraints, social
homophily and social contagion are prevalent phenomena in social graphs. That is, users’ profiles
subtly drive their social interactions and vice versa. Hence, it is crucial to follow the original struc-
ture to generate and link users based on their profiles while ensuring that dual conditions are met
(i.e., avoiding generating an excessive number of users who do not meet the specified conditions).
Figure 1 illustrates the generated graphs obtained by unconditional, single-conditional, and dual-
conditional generative models. It can be observed that both unconditional and single-conditional
methods fall short in generating graphs that satisfy dual conditions, all the while maintaining a
network structure influenced by social homophily and social contagion.

In this paper, we propose a novel conditional diffusion model, Dual Conditional Diffusion Graph
(CDGraph), for synthesizing social graphs based on two exogenous conditions jointly. We first
propose a novel notion of co-evolution dependency to capture the mutual dependencies between two
exogenous conditions. In the conditional denoising process, we introduce the co-evolution depen-
dency to bind the diffusion processes to the specified node conditions. Moreover, the co-evolution
dependency is designed to account for social homophily and social contagion, which explore the de-
pendencies between the nodes’ associated conditions and connections. The Social homophily-based
co-evolution ensures nodes with similar profiles are connected, while the social contagion-based
co-evolution facilitates nodes connected with edges to share similar profiles. Equipped with the
co-evolution dependency, CDGraph can preserve the connectivity between nodes that satisfy the
specified conditions. Then, we design a novel loss function to train CDGraph with the guidance
of the specified conditions, aiming to optimize the discrepancy in the co-evolution diffusion pro-
cess. Furthermore, we introduce the notion of the dual-condition classifier that jointly steers the
co-evolution diffusion process toward the estimated distributions of condition fulfillment. We evalu-
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ate the performance of CDGraph on real social networks by measuring the dual-conditional validity
and the discrepancy in various social network metrics. The contributions include:

• We justify the need to generate dual conditional social graphs exhibiting fundamental char-
acteristics such as social homophily and social contagion. To address this requirement, we
develop a novel dual conditional graph diffusion model, CDGraph.

• We propose co-evolution dependency not only to capture the interdependence between
specified conditions but also to denoise edge and node embeddings based on social ho-
mophily and social contagion, respectively. Meanwhile, we introduce a dual-condition
classifier to guide the denoising process, ensuring that the discrepancy in the diffusion
process and condition fulfillment can be jointly optimized.

• Experiments conducted on four real-world social graphs demonstrate that CDGraph out-
performs graph generation approaches based on traditional, diffusion-based, and deep gen-
erative models in various social metrics.

2 RELATED WORK

Graph Generation. The current research on graph generation techniques can be divided into
statistic-based and deep generative model based ones. The existing statistic-based graph genera-
tion is mainly based on structural information such as network statistics (Schweimer et al., 2022),
correlation (Erling et al., 2015), community structure (Luo et al., 2020), and node degree (Wang
et al., 2021), etc. There are several social graph generators for various purposes, e.g., frequent pat-
terns (Shuai et al., 2013) and similarity across social network providers (Shuai et al., 2018). For
deep generative model-based ones, they are based on auto-regression (Liao et al., 2019; Shi et al.,
2020), variational autoencoder (Guo et al., 2021; Samanta et al., 2020), and GAN (Martinkus et al.,
2022), etc. Especially, SPECTRE (Martinkus et al., 2022) is a GAN-based conditional generative
model conditioning on graph Laplacian eigenvectors. However, both statistical and deep generative
methods do not consider dual conditions, since they mainly simply focus on structural conditions or
dependencies between consecutive steps, instead of the connectivity between users satisfying spec-
ified conditions (i.e., linking them according to the original structure), while avoiding to generate
excessive irrelevant users for meaningful downstream analysis such as estimating social influence
of a user to a specified population.

Diffusion Models. The current research direction on diffusion models mainly focuses on the appli-
cation to multimedia, such as computer vision, text-image processing, and audio processing (Saharia
et al., 2022; Gu et al., 2022; Hoogeboom et al., 2021; Savinov et al., 2022). Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020; Dhariwal & Nichol, 2021) has performed signifi-
cantly better than generative adversarial networks in image synthesis. Recently, diffusion models
have been also applied to generate graph data (e.g., molecular graph generation) (Niu et al., 2020;
Huang et al., 2022; Vignac et al., 2023; Chen et al., 2023) thanks to the flexible modeling archi-
tecture and tractable probabilistic distribution compared with the aforementioned deep generative
model architectures. In particular, DiGress (Vignac et al., 2023) synthesizes molecular graphs with
the discrete denoising probabilistic model building on a discrete space. It exploits regression guid-
ance to lead the denoising process to generate graphs that meet the condition property. EDGE (Chen
et al., 2023) is a discrete diffusion model exploiting graph sparsity to generate graphs conditioning
on the change of node degree. However, the above existing studies only deal with a single condition
on nodes or edges in graphs, failing to capture the dependencies of conditions on graphs.

3 CDGRAPH

In this section, we begin by introducing the dual conditional graph generation problem. Subse-
quently, we revisit the concepts of the discrete diffusion model with a single condition of Di-
Gress (Vignac et al., 2023) as a preliminary to our approach. Finally, we propose CDGraph, fea-
turing on the novel loss, the co-evolution dependency incorporating social contagion and social
homophily, and the dual-condition classifier guidance.

We first provide the technical intuition behind CDGraph. To guide the diffusion process with dual
conditions, an intuitive approach is to extend the conditional DiGress (Vignac et al., 2023) by adding
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the guidance of the second condition. However, the dependencies across conditions are not explicitly
captured and fall short in guiding the graph generation. Hence, we introduce the aforementioned
dependencies to jointly optimize the structural similarity and condition satisfaction.

3.1 FORMAL PROBLEM DEFINITION

Here, we formulate the problem of Dual Conditional Graph. To perform the graph generation
with the guidance of two conditions, we first define the Condition Indication Graph as follows.
Figures 1(b) and 1(c) illustrate the two examples of conditional indication graphs.
Definition 1 (Condition Indication Graph). Let C denote the condition set. We define the condition
indication graph of C by GC = ({Xc}c∈C ,E), where Xc ∈ RN×2 indicate nodes’ satisfaction
of condition c, and E ∈ RN×N×2 indicates the existence of edges between nodes vn and vm with
en,m = [0, 1] and en,m = [1, 0] otherwise. Specifically, xn,c ∈ {0, 1}2 in Xc is a one-hot encoding
vector representing whether a node vn in GC satisfies condition c; en,m = (vn, vm) in E is a
one-hot encoding vector representing whether an edge between vn and vm in GC satisfies condition
c.

Definition 2 (Dual Conditional Graph Generation). Given the condition set C = {c1, c2} and the
condition indication graph GC = ({Xc1 ,Xc2},E), the problem is to generate social graphs, such
that i) the structural information of the generated graphs is similar to GC , and ii) the majority of
nodes in the generated graphs meet the conditions c1 and c2.

3.2 PRELIMINARY: DISCRETE DIFFUSION MODELS FOR GRAPH GENERATION

We revisit DiGress (Vignac et al., 2023), which is a discrete diffusion model with a single condition,
i.e., C = {c} and GC = ({Xc},E). Typically, DiGress consists of two components: forward
noising process and reverse denoising process. For t ≥ 1, the forward noising process of DiGress is
defined by q(G(t)|G(t−1)) and q(G(T )|G(0)) =

∏T
t=1 q(G

(t)|G(t−1)).

For the reverse denoising process, given G(t), DiGress predicts the clean graph G(0) by a denoising
neural network ϕθ (parameterized by θ) and obtains the reverse denoising process pθ as follows:

pθ(G
(t−1)|G(t)) = q(G(t−1)|G(t), G(0))pθ(G

(0)|G(t));

q(G(t−1)|G(t)) ∝ q(G(t)|G(t−1))q(G(t−1)|G(0)), (1)

in which q(G(t−1)|G(t)) can be approximated by the noising process. To enable single conditional
graph generation, DiGress guides the reverse denoising process by a machine learning model f
(i.e., a regression model) to push the predicted distribution toward graphs fulfilling the condition
c. f is trained to predict the condition c of the input graph G from the noised version G(t) such
that c ≈ ĉ = f(G(t)). The reverse denoising process guided by a single condition is presented as
follows:

q(G(t−1)|G(t), c) ∝ q(c|G(t−1))q(G(t−1)|G(t)), (2)

where the first term is approximated by the learned distribution of the regression model, and the
second term is approximated by the unconditional diffusion model.

3.3 DUAL CONDITIONAL GRAPH SYNTHESIZING

Here, we present the overall learning framework of CDGraph and its novel features for integrat-
ing dual conditions. Specifically, to capture the dependency between two exogenous conditions,
CDGraph introduces co-evolution dependency to model the co-evolving diffusion process of dual
conditions in the reverse denoising process with the notions of social homophily and social conta-
gion so that the dependencies between node conditions and edge connections can be captured in the
diffusion process. Then, to further fulfill dual conditions, we design a dual condition classifier to
guide the co-evolution diffusion process, modulating the estimated distribution to align with graphs
satisfying specified conditions by the classifier loss.

Specifically, CDGraph comprises the forward noising process and the reverse denoising pro-
cess, which are illustrated in Figure 2. Given C = {c1, c2} and the condition indication graph
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(a) Forward process. (b) Reverse process.

Figure 2: Workflow of CDGraph, where E denotes the edge embedding, and Xc1 , and Xc2 are
embeddings of nodes indicating the satisfaction of conditions c1 and c2.

GC = ({Xc1 ,Xc2},E), we model the forward noising processes for each of the specified condi-
tions ci,∀i ∈ {1, 2} as follows:

q(X(t)
ci |X

(t−1)
ci ) = X(t−1)

ci Q
(t)
Xci

; q(E(t)|E(t−1)) = E(t−1)Q
(t)
E ,

where Q(t)
Xci
∈ R2×2 and Q

(t)
E ∈ R2×2 are transition matrices for Xci and E, respectively. Then we

can show that q(X(t)
ci |X

(t−1)
ci ) and q(E(t)|E(t−1)) obey Bernoulli distributions as follows:

q(X(t)
ci |X

(t−1)
ci ) = B(X(t)

ci ; (1− βt)X
(t−1)
ci + βt1/2); (3)

q(E(t)|E(t−1)) = B(E(t); (1− βt)E
(t−1) + βt1/2). (4)

The detailed derivations regarding Q
(t)
Xci

and Q
(t)
E are provided in Appendix A (Anonymous, 2023).

By considering nodes with two conditions and the dependency between nodes and edges, the overall
forward processes of Xci and E are formulated as follows:

q(X(0:T )
ci ) =

T∏
t=1

q(X(t)
ci |X

(t−1)
ci ,E(t−1))q(E(t−1)|X(t−1)

ci ),

q(E(0:T )) =

T∏
t=1

q(E(t)|E(t−1),X(t−1)
ci )q(X(t−1)

ci |E(t−1)). (5)

The overall forward noising processes of X(t)
c1 , E(t), and X

(t)
c2 are illustrated in Fig. 2(a) from above

to below, and each X
(t)
ci (i = 1, 2) has dependency with E(t). The red bending arrow represents the

conditional probability distribution q(X(t)|E(t)) of X(t) given E(t), and the black bending arrow
represents the conditional probability distribution q(E(t)|X(t)) of E(t) given X(t). The detailed
forward transition distribution with dependency in the above processes is defined and analyzed in
Appendix A (Anonymous, 2023).

3.3.1 CO-EVOLUTION DEPENDENCY

Different from DiGress, CDGraph exploits co-evolution dependency to model the intricate depen-
dency across conditions of the nodes and connections between them in the denoising process, which
is detailed in Appendix A (Anonymous, 2023). This emphasis on capturing the relationship between
X

(t)
ci , i ∈ {1, 2} and E(t) are crucial for the precise reconstruction of the input graphs. To capture

the dependencies between the connection between nodes and condition satisfaction of the nodes in
a social graph, we build a denoising model incorporating two phenomena in social networks: social
homophily and social contagion. The concept of the above denoising process is illustrated in the
lower half of Figure 2(b). The reverse denoising processes of X(t)

c1 , E(t), and X
(t)
c2 are illustrated

in Fig. 2(b) from above to below, and the blue arrow represents the co-evolution based on social
contagion; the red arrow represents the co-evolution based on social homophily.

5



Under review as a conference paper at ICLR 2024

(a) Social Homophily-based Co-evolution. (b) Social Contagion-based Co-evolution.

Figure 3: Co-evolution dependency incorporating social homophily and social contagion.

The notions of social homophily and social contagion in the diffusion process in CDGraph are
illustrated in Figure 3. In Fig. 3(a), as denoising from G

(t)
C to G

(t−1)
C , the nodes with similar at-

tributes (v1, v3, v4) in G
(t−1)
C tend to have links between them. In Fig. 3(b), as denoising from G

(t)
C

to G
(t−1)
C , the edges incident to nodes with similar attributes (v3, v4) tend to cause the other node

(v1) have the same attribute.

Assuming that X(t−1)
ci , X(t−1)

cj and E(t−1) are conditionally independent given X
(t)
ci , X(t)

cj and E(t),
the reverse denoising process can be further decomposed as follows:

pθ(X
(t−1)
ci ,X(t−1)

cj ,E(t−1)|X(t)
ci ,X

(t)
cj ,E

(t))

= pθ(X
(t−1)
ci |X(t)

ci ,E
(t))pθ(X

(t−1)
cj |X(t)

cj ,E
(t))pθ(E

(t−1)|X(t)
ci ,E

(t),X(t)
cj ), (6)

in which the first two terms represent social contagion that can be used to denoise node conditions
from given edges, and the third term represents social homophily that can be exploited to denoise
connections between nodes from given conditions of nodes. Note that X(t−1)

ci is independent on
X

(t)
cj (and X

(t−1)
cj is independent on X

(t)
ci ) for distinct ci and cj .

Social Homophily-based Co-evolution. In this paragraph, we discuss how to guide the diffusion
process with social homophily, which states that nodes with similar conditions tend to have edges
between them. The social homophily-based co-evolution aims to denoise edge embeddings from
given node embeddings of each condition (as stated in Eq. 7). Accordingly, we consider the follow-
ing denoising process:

pθ(E
(0:T )) = pθ(X

(T )
ci )

T∏
t=1

pθ(E
(t−1)|E(t),X(t)

ci );

pθ(E
(t−1)|E(t),X(t)

ci ) = B(p
(homo)
θ ), (7)

where

p
(homo)
θ =

∑
Ê(0)∈{0,1}

q(E(t−1)|E(t), Ê(0))p̂e(Ê
(0)|E(t),X(t)

ci ),

and p̂e is the distribution learned to predict E(0) from E(t) conditioned on X
(t)
ci ,X

(t)
ci by denoising

network ϕθ.

The loss function of social homophily-based co-evolving diffusion can be derived as follows:

Lhomo =

T−1∑
t=2

DKL[q(E
(t−1)|E(t),E(0))∥pθ(E(t−1)|E(t),X(t)

ci ,X
(t)
cj )]

+DKL[q(E
(T )|E(0))∥p(E(T ))]− log pθ(E

(0)|E(1),X(1)
ci ,X(1)

cj ), (8)

where the first term is the loss for diffusion process; the second term is the loss for prior distribution;
the third term is the loss for reconstruction.

6



Under review as a conference paper at ICLR 2024

Social Contagion-based Co-evolution. In this paragraph, we discuss how to guide the diffusion
process with social contagion, which states that nodes connected with edges tend to have similar
conditions. The social contagion-based co-evolution aims to denoise node embeddings of each
condition from given edge embeddings (as stated in Eq. 9). Accordingly, we consider the following
denoising process:

pθ(X
(0:T )
ci ) = pθ(E

(T ))

T∏
t=1

pθ(X
(t−1)
ci |X(t)

ci ,E
(t));

pθ(X
(t−1)
ci |X(t)

ci ,E
(t)) = B(p(cont)

θ ), (9)

where

p
(cont)
θ =

∑
X̂ci

q(X(t−1)
ci |X(t)

ci , X̂
(0)
ci )p̂ci(X̂

(0)
ci |X

(t)
ci ,E

(t)),

and p̂ci is the distribution learned to predict X(0)
ci from X

(t)
ci conditioned on E(t) by denoising net-

work ϕθ.

And the loss function for social contagion-based co-evolution can be derived as follows:

Lcont =
∑
ci∈C

T−1∑
t=2

DKL[q(X
(t−1)
ci |X(t)

ci ,X
(0)
ci )∥pθ(X(t−1)

ci |X(t)
ci ,E

(t))]

+DKL[q(X
(T )
ci |X

(0)
ci )∥p(X(T )

ci )]− log pθ(X
(0)
ci |X

(1)
ci ,E(1)). (10)

The overall loss function of the co-evolution diffusion process is L = Lhomo +Lcont, which jointly
optimizes the discrepancy in diffusion process and graph reconstruction in order to synthesize graphs
with properties of social homophily and social contagion. The pseudocode of training and sampling
is depicted in Appendix B (Anonymous, 2023).

3.3.2 DUAL-CONDITION CLASSIFIER

Afterward, CDGraph leverages dual conditional classifier to enable joint guidance for
pθ(G

(t−1)
C |G(t)

C ) to fulfill dual conditions, instead of single conditional guidance in DiGress. To
guide the diffusion process with two specified conditions jointly, we exploit the concept of condi-
tional guidance and model the guidance distribution for the specified conditions ci and cj (i ̸= j)
with a classifier such that the generated graphs are classified according to whether a majority of
the nodes satisfy both of the specified conditions or not. Note that the diffusion process satisfies
the Markovian property: q(G(t−1)

C |G(t)
C , ci) = q(G

(t−1)
C |G(t)

C ),∀i. The conditional diffusion model
exploits a pre-trained classifier to guide the learning process, ensuring that the model learns the
specified conditions by classifying graphs according to whether the majority of nodes in a graph
satisfy both conditions. Specifically, a pre-trained classifier f learns the distribution p(ci|G(t)) for
a graph classification problem ci ≈ f(G(t)) in each step t of the denoising process (as shown by
the brown arrow in Fig. 2(b)) so that the denoised graphs can be predicted to have the specified
condition ci, which can be derived by Bayesian Theorem. As there is one additional condition cj
to be considered, we need to consider a conditional probability distribution p(cj |G(t), ci) to further
guide the denoising process to meet the second condition given that the first condition is satisfied.
Thus, from the results derived in the single-conditional denoising process, the co-evolution reverse
denoising process with dual-condition classifier can be derived as follows:

q(G
(t−1)
C |G(t)

C , ci, cj) =
q(ci|G(t−1)

C , G
(t)
C , cj)q(G

(t−1)
C , G

(t)
C , cj)

q(ci|G(t)
C , cj)q(cj |G(t)

C )q(G
(t)
C )

=
q(ci|G(t−1)

C , G
(t)
C , cj)q(G

(t−1)
C |G(t)

C , cj)

q(ci|G(t)
C , cj)

∝ q(ci|G(t−1)
C , cj)q(cj |G(t−1)

C )q(G
(t−1)
C |G(t)

C ),

where the first two terms enable the hierarchical guidance of the conditions to guide the denoised
graph G

(t−1)
C satisfying one condition cj (i.e., more than half of the nodes in G

(t−1)
C satisfy condition
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Table 1: Validity and discrepancy with the input graphs of different approaches on all datasets.
Dataset Facebook BlogCatalog
Metric Validity Node Edge Density Clust. coeff. Validity Node Edge Density Clust. coeff.
RW 0 5.170 8.225 0.698 0.242 - - - - -
SPECTRE 0.448 0.243 1.795 1.119 0.313 0.3 0.026 6.081 5.494 0.098
GSM 0.272 0.100 0.551 0.392 0.031 0.29 0.013 3.486 3.441 0.063
EDGE 0.262 0.736 1.983 0.815 0.028 0.292 0.414 0.510 0.256 0.014
DiGress 0.375 0.111 0.852 0.457 0.143 0.3125 0.164 0.413 0.699 0.266
CDGraph 1 0.149 0.186 0.002 0.022 1 0.020 0.259 0.219 0.031

Dataset Twitter Flickr
Metric Validity Node Edge Density Clust. coeff. Validity Node Edge Density Clust. coeff.
RW - - - - - - - - - -
SPECTRE 0.239 0.163 1.061 0.441 0.359 0.323 0.053 2.115 2.275 1.006
GSM 0.309 0.205 0.417 0.458 0.011 0.269 0.005 1.055 1.039 0.014
EDGE 0.291 0.101 0.034 0.053 0.002 0.286 0.439 0.809 0.695 0.014
DiGress 0.5 0.029 0.301 0.084 0.174 0.375 0.090 0.233 0.139 0.286
CDGraph 1 0.045 0.001 0.201 0.016 1 0.008 0.056 0.068 0.068

cj), and then satisfying the other condition ci (i.e., more than half of the nodes in G
(t−1)
C satisfy

condition ci) given that G(t−1)
C satisfies condition cj . The third term q(G

(t−1)
C |G(t)

C ) is approximated
by the aforementioned co-evolution denoising process with social homophily and social contagion.
Note that, compared to DiGress and other previous studies, the proposed guidance model has more
capability to guide the denoising process such that the denoised graphs meet both of the specified
conditions if the specified conditions have a negative correlation. The pseudocode of conditional
sampling is depicted in Appendix B (Anonymous, 2023).

4 EMPIRICAL EVALUATION

4.1 SETUP

The details of the experimental setup are presented in Appendix G (Anonymous, 2023).

Datasets. We conduct the experiments on four real-world social graphs: Facebook, Twitter, Flickr,
and BlogCatalog. We sample ego networks with at maximum 100 nodes for each dataset.

Baselines. We compare CDGraph with five baselines: RW (Nakajima & Shudo, 2022), SPEC-
TRE (Martinkus et al., 2022), GSM (Niu et al., 2020), EDGE (Chen et al., 2023), and DiGress (Vi-
gnac et al., 2023).

Metrics. Our evaluation considers three aspects: 1) Validity (the higher, the better); 2) discrepancy
with the input graphs (the lower, the better), including the relative error ratios of #nodes, #edges,
and density, as well as the maximum mean discrepancy (MMD) of clustering coefficients; 3) ho-
mophily discrepancy with the input graphs (the lower, the better), including the relative error ratios
of assortativity and EI homophily index.

4.2 PERFORMANCE IN DUAL CONDITIONAL SOCIAL GRAPH GENERATION

Table 1 presents the validity and discrepancy with the input graphs of different approaches on all
datasets when the dual conditions are weakly positively correlated.1 Additional cases of dual condi-
tions and visualizations are presented in Appendix C (Anonymous, 2023) due to space constraints.

Validity. Compared with the baselines, CDGraph is demonstrated to be able to generate graphs with
the majority of nodes satisfying both of the specified conditions since it exploits the guidance of the
dual condition classifier. Among the baselines, DiGress usually achieves the highest validity since
it is aware of dual conditions, whereas the other baselines do not account for them. Nevertheless,
DiGress neglects the dependency between dual conditions and only achieves half of the validity
achieved by CDGraph.

Discrepancy with the input graphs. CDGraph has superior performance in the relative error
ratios of the edge number and density on Facebook and BlogCatalog. The relative error ratio of
density in EDGE and DiGress is lower than in CDGraph since EDGE focuses on guiding degree
changes, and DiGress attempts to preserve graph sparsity in the diffusion process. Nevertheless,

1The results of RW on BlogCatalog, Twitter, and Flickr are omitted due to the out-of-memory issue.
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Table 2: Homophily discrepancy with the input graphs of different approaches on Facebook.
Assortativity EI homophily index

RW 0.351 1.437
SPECTRE 0.042 0.172
GSM 0.043 0.175
EDGE 0.006 0.025
DiGress 0.067 0.275
CDGraph 0.013 0.052

(a) Input graph. (b) Generation of SPECTRE. (c) Generation of GSM.

(d) Generation of EDGE. (e) Generation of DiGress. (f) Generation of CDGraph
Figure 4: Visualization results of Twitter.

density refers to the ratio of the number of edges to the maximum possible number of edges (which
is related to the square of the number of nodes) in a graph. Hence, it is more comprehensive to
simultaneously examine the relative error ratios of nodes, edges, and density. In CDGraph, the
relative error ratios for both nodes and edges are less than 0.05. Overall, the structure of the graphs
generated by CDGraph remains very close to that of the input graphs. Regarding the MMD of
clustering coefficients, CDGraph demonstrates the best performance on Facebook and also ranks
second on Flickr and BlogCatalog. As the clustering coefficient is a fundamental property of social
graphs, the results highlight that CDGraph surpasses the baselines in generating social graphs.

Homophily discrepancy with the input graphs. Table 2 presents homophily discrepancy with the
input graphs on Facebook. For both assortativity and the EI homophily index, CDGraph obtains
the second-lowest relative error ratios, indicating the effectiveness of the design based on social
homophily and social contagion co-evolution. It is worth noting that EDGE achieves the lowest
relative error ratios, as its generation process is guided by nodes’ degrees, which may implicitly
learn associations with node attributes from the input graphs. Other baselines, lacking specific
consideration for the relationship between structure and attributes, exhibit higher relative error ratios.

Visualization. Figure 8 visualizes the input and generated graphs for Twitter. Nodes in blue indicate
that both specified conditions are met, while nodes in yellow and green represent those satisfying
only one condition. Conversely, nodes in red do not meet any of the conditions. Obviously, the
generation results of CDGraph are the closest to the input graph, thanks to the denoising process
based on social homophily and social contagion.

5 CONCLUSION

In this paper, we make the first attempt to develop a conditional diffusion model for social networks,
CDGraph, which aims to synthesize social graphs satisfying two specified conditions. CDGraph
introduces a novel feature of co-evolution dependency integrating social homophily and social conta-
gion, allowing CDGraph to capture the interdependencies between specified conditions. Moreover,
CDGraph exploits the dual-condition classifier to ensure that discrepancies in the diffusion process
and structure reconstruction are jointly optimized. The experimental results manifest that CDGraph
achieves lower discrepancies in various network statistics compared with the baselines.
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