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ABSTRACT

Multi-task representation learning is an emerging machine learning paradigm that
integrates data from multiple sources, harnessing task similarities to enhance overall
model performance. The application of multi-task learning to real-world settings
is hindered due to data scarcity, along with challenges related to scalability and
computational resources. To address this challenge, we develop a fast and sample-
efficient approach for multi-task active learning when the amount of data from
source tasks and target tasks is limited. By leveraging the techniques from active
learning, we propose an adaptive sampling-based alternating projected gradient
descent (GD) and minimization algorithm that iteratively estimates the relevance of
each source task to the target task and samples from each source task based on the
estimated relevance. We present the convergence guarantee of our algorithm and
the sample and time complexities of our approach. We evaluated the effectiveness
of our algorithm using numerical experiments and compared it empirically against
four benchmark algorithms using synthetic and real MNIST-C datasets.

1 INTRODUCTION

Multi-task representation learning has emerged as a promising machine learning (ML) approach
for simultaneously learning multiple related models by integrating data from various sources. The
approach leverages shared structures between tasks to improve the performance of each individual
task through collaboratively training similar yet different tasks to overcome a scarcity of data for any
one task. This paradigm has been used with great success in natural language processing domains
GPT-2 Radford et al.| (2019), GPT-3 [Brown et al.|(2020), Bert[Devlin et al.| (2018)), as well as vision
domains CLIP (Radford et al.,|2021). As noted in Radford et al.|(2019)), despite notable advances,
existing learning systems require hundreds to thousands of examples to effectively induce functions
that generalize well. With current approaches, this implies that multi-task training may need just
as many effective training pairs to realize its potential. Most of the existing work on multi-task
representation learning often assumes an unlimited number of samples for source tasks and a limited
number of samples for the target task (Du et al.||2020;|Chen et al.|[2022])). In practical applications such
as medical imaging, drug discovery, fraud detection, and natural language processing in low-resource
languages, data availability is limited, which restricts the application of existing ML approaches due
to poor sample efficiency. It may be challenging to continue scaling the creation of datasets to the
extent that might be necessary using current techniques. This motivates exploring new approaches
for multi-task learning, specifically to develop provable methods that are fast and sample-efficient.

Additionally, as noted in|Chen et al.|(2022), not all tasks equally contribute to learning a representation.
For instance, modern datasets like CIFAR-10, ImageNet, and the CLIP dataset were created using
a list of search terms and a variety of different sources like search engines, news websites, and
Wikipedia (Krizhevsky et al.| [2009; Deng et al.l [2009; Radford et al., 2021). Further, it is often
unclear which tasks will best maximize performance on the target task.

In this paper, we aim to address these challenges by developing a federated active learning framework.
Our goal is to learn a multi-task representation while prioritizing the relevance of the source tasks to
generalize to a specific target task. Our approach involves using alternating gradient descent (GD)
and minimization estimator to estimate the unknown parameters. Additionally, we utilize adaptive
sampling to incorporate data samples from more relevant tasks into the learning process, which
benefits the generalization of the target task and sample efficiency.
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Our Contributions. We introduce a novel active (adaptive) multi-task learning framework and an
associated algorithm with guarantees. Next, we present our main contributions.

(i) Active Low-Rank Representation Learning (A-LRRL) algorithm. We adapt the alternating
gradient descent (GD) and minimization approach of |Lin et al|(2024)); Nayer & Vaswani| (2023));
Collins et al.|(2021)) to provide a provable solution to the active multi-task representation learning
problem. Our proposed A-LRRL algorithm presents an alternating GD and minimization estimator,
which is fast, federated, and sample-efficient for learning the common low-dimensional representation.
Our algorithm iteratively learns the unknown feature matrix. Using the learned representation, we
further estimate the unknown relevance parameter and develop an adaptive sampling approach that
samples the source task data based on the relevance estimate. Both the time and sample complexity
of our solution depend only logarithmically on 1/e.

(ii) Convergence guarantees. We present convergence guarantees for the proposed approach along
with sample and time complexities. Our results show that the number of target samples only scales
with the dimension/rank of the low-dimensional feature space and not on the input dimension to
achieve e—accuracy in the excess risk for generalizing to the target task. Additionally, the number of
source task samples in each epoch scales with max(log d, log M, k) log(1/¢€). Here d, M, k denote
the input dimension, number of tasks, and low-dimensional feature dimension. Our main contribution
is the convergence guarantee of the excess risk for two settings: (i) when the relevance parameter v*
is unknown and (ii) when the relevance parameter * is known. For both cases, we show that the
sample complexity for the source tasks scales according to the sparsity of the relevance parameter.
Hence the sample complexity of the proposed approach improves by a factor of the number of tasks
compared to the naive uniform sampling approach. Our result is in agreement with that in (Chen
et al.| 2022). Further, we provide guarantees for the non-convex estimator. For the unknown setting,
our result shows that the convergence guarantee is at least as good as that of the uniform sampling
approach, and additionally, the sample complexity is as good as that of the known setting.

(iii) Numerical performance. We compared our framework with four benchmark approaches via
simulations. We performed three experiments by varying the number of tasks, problem dimension,
and rank of the feature matrix. We performed experiments on synthetic and real-world MNIST-C
datasets in|Mu & Gilmer| (2019). The proposed approach consistently outperformed the benchmark
algorithms in all cases. Thus, our experimental results validate the effectiveness of our approach.

2 PROBLEM FORMULATION AND NOTATIONS

Problem Formulation. Consider M source tasks and one target task, referred to as the (M + 1)-th
task. Every task m € [M + 1] is associated with a distinct joint distribution p.,, over X x ), where
X € R9 represents the input space and ) € R represents the output space. For each source task
m € [M], we are given n,,, data samples (.1, Ym.1), > (Tm,nm» Ym.n., )» Which are i.i.d. and
sampled from the distribution p.,,,. The goal of multitask learning is to simultaneously produce
predictive models for all M source tasks, with the aim of finding common property among these
tasks. We consider the existence of an underlying representation function ¢* := X — Z, which
transforms inputs into a feature space Z € R¥ with k < d, within a specified set of functions ® such
as linear functions. Furthermore, we consider a linear transformation from the feature space to the
output space, represented by the vector w?, € R¥. Specifically, we assume that a sample (z, ) from

I, for any task m € [M + 1] can be represented as y = gb*(x)Tw,*n + Zm, wWhere 2, is a noise.

We consider a data-scarce regime, both for the source and the target task, ie., N, <
d. We consider a fixed amount of data for both source and target tasks, denoted as

{@m,1,Um 1) 5 (Tomngn» YUmona ) Yme[ar+1) Which is drawn i.i.d. from the task distributions zi,,
for m € [M + 1]. We note that, typically, the number of data samples for the target task is even
fewer than that of the source task, i.e., npr41 < {n1,...,nar}. This setting aligns with our main

objective of active representation learning under scarce data, in which we have a limited amount of
data available for the source task but have even less access to the target task data.

Define Las41(¢, w) := Bz y)mpnrss [((¢(2),w) — y)?]. The main objective is to use as few total
samples from the source task as possible to learn a representation and linear predictor ¢, wjs1 that
effectively minimizes the excess risk on the target task, defined as

ERn41(0,w) = Lary1(d,w) — Larp1(d™, whyyq)- ey
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We focus on the linear representation function class, studied in (Chen et al., [2022; Du et al., |2020;
Tripuraneni et al., 2021} (Cella & Pontil, 2021)). We make the following low-dimensional assumption.

Assumption 2.1 (Low-dimension linear representation). ® = {z — B z|B € R¥*}. We denote
the true underlying representation function as B*.

The low-dimensional assumption captures the relatedness between the tasks and is used in many
works on representation learning, including (Chen et al., 2022} |Du et al., [2020; [Tripuraneni et al.,
2021} Yang et al., | 2020; Hu et al.| 2021} |Cella et al.|[2023; [Kumar et al.;,2022). Under Assumption@]
©* is a rank-k matrix. Let ©* := [07,...,0%/] SYP Brsy* = B*W*, denote the reduced (rank

k) SVD, i.e., B* and V* ' are matrices with orthonormal columns, B* is d x k, V* is k x M, and

> is an k x k diagonal matrix with singular values. We let W* := XV*. We use o, ,, and o};;, to
denote the maximum and minimum singular values of ¥, and condition number « := o}, /o . .

Inspired by |Chen et al.|(2022)), in our model, task relevance is a crucial factor. That is, we consider
a setting where the goal is to learn a specific target task, rather than a generic target task as in (Du
et al., 2020; Tripuraneni et al., 2021)). Since opmin (W*) > 0, the coefficient Wiy 41 can be considered
a linear combination of the coefficients {wy, },ne[nr). Therefore, we make the assumption that
v* € RM, such that W*v* = w},, ;, where a larger value of [v*(m)] indicates a stronger relevance
for source task m for the target task. Based on the information provided by v*, we prioritize samples
from source tasks with the highest relevance. In this paper, we aim to learn the low-dimensional
representation and the relevance parameter v* to expedite collaborative learning among the source
tasks and facilitate generalization to a target task.

Notations. We denote the set containing the first n positive integers as [r], which is defined as
{1,2,...,n}. The ¢3 norm of a vector z is represented by ||z||, while the spectral norm and the
Frobenius norm of a matrix A are denoted by ||A|| and ||A| 5, respectively. The max-norm is
expressed as ||A||,,... = max; ;|A; ;|. The transpose operation for matrices and vectors is indicated
by T, and |z| refers to the element-wise absolute value of the vector 2. The identity matrix of size
n X n is symbolized by I,,, often abbreviated as I, and ej, denotes the k-th canonical basis vector, i.e.,
the k-th column of I,,. We define the n,, i.i.d. samples from the m-th source task as an input matrix
X,, € R"*4 with the corresponding output vector Y, € R™" and a noise vector Z,, € R"m.
Furthermore, the collection of vectors {w, }me[as], is assembled into the matrix W € RFXM

Assumption 2.2. (Gaussian design & noise) We assume ., ,, follows an i.i.d. standard Gaussian
distribution and noise variables z,, follow i.i.d. Gaussian distribution with zero mean and o2 variance.

We work in the random design linear regression setting, and in this context, Assumption is
standard (Chen et al., 2022; Du et al., [2020; |Cella & Pontil, 2021} [Tripuraneni et al., [2021)).

Assumption 2.3 (Incoherence). We assume that |Jw, [|? < ;ﬂ%or*naﬁ for a constant p > 1.

Recovering the feature matrix is impossible without any structural assumption. Notice that y,,s are
not global functions of ©*, i.e., no y,, , is a function of the entire matrix ©*. We thus need an
assumption that enables correct interpolation across the different columns. The incoherence (w.r.t. the
canonical basis) assumption on the right singular vectors suffices for this purpose. Such an assumption
on both left and right singular vectors was first introduced in|Candes & Recht (2012} and used recently
in representation learning (Iripuraneni et al., 2021; Collins et al.| [2021}; [Thekumparampil et al., 2021)).

3 RELATED WORK

Multi-task representation learning has been extensively explored, with roots traced back to seminal
works such as (Caruana, [1997; Thrun & Pratt, |1998; Baxter, [2000). Many recent works studied
provable non-adaptive multi-task representation learning under various assumptions. Du et al.| (2020);
Tripuraneni et al.| (2021)); |Thekumparampil et al.|(2021); |Collins et al.| (2021); | Xu & Tewari (2021))
focus on learning a representation function for any potential target task under the assumption of the
existence of a shared low-dimensional linear representation across all tasks. Recently, Wang et al.
(2023); |Chen et al.| (2022) developed an adaptive representation learning for a specific target task
under a similar setting as in (Du et al., 2020). [Wang et al.|(2023)) improved the sample complexity on
Chen et al.[(2022)) under a high dimension input assumption. There also exists works on empirical
multi-task representation learning/transfer learning (Yao et al., 2022} Zamir et al., 2018).
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While representation learning has achieved tremendous success, there remain challenges in providing
theoretical guarantees. Most of the existing theoretical studies adopt a convex relaxation of the
original non-convex problem and rely on the assumption that an optimal solution to the non-convex
problem is known for their theoretical analysis (Du et al., 2020; [Tripuraneni et al., 2021} [Knight
& Duan, [2024)). The primary focus of these works is to demonstrate the dimensionality-reducing
benefits of representation learning by showing that the number of target samples exceeds only O(k),
where k is assumed to be small. Our work complements these results by showing how to provably
and efficiently learn the representation in the linear case. The most closely related work to ours is
(Chen et al.| 2022). Our work extends and complements Chen et al. to tackle two key challenges:
(1) The estimation approach in [Chen et al.| (2022)) utilizes Du et al.| (2020), which assumes an
optimal solution to the non-convex estimation problem is available. In this work, we present a novel
adaptive sampling-based alternating gradient descent and minimization-based estimator to solve the
non-convex representation problem with generalization guarantees to a target task. (2) (Chen et al.
(2022)); Du et al.| (2020) considered that the number of source task samples must exceed the problem
dimension d. We relax this assumption in our approach, and our guarantees hold for setting where
the number of data samples is fewer than the problem size. Hence, our approach is viable for many
practical applications with large problem sizes, however, with fewer data samples. This is specifically
true in many image-related learning problems as validated through our simulations. In this work, we
also consider the findings of |[Lin & Moothedath| (2024), where the relevance parameter v* is known,
simplifying the problem to learning ©*. In the unknown setting, which is the main focus of this paper,
the error in estimating v* affects the estimation of ©* in the next epoch, leading to a temporal error
propagation. This requires new techniques to derive guarantees and ensure convergence.

Matrix learning is another related line of work in the low-rank matrix learning literature (Collins
et al.;2021; Nayer & Vaswanil [2023)). [Collins et al.|(2021)); Nayer & Vaswani|(2023) proposed an
alternating GD minimization algorithm for recovering a low-rank matrix from compressed signals.
The focus of these works is to learn the low-dimensional linear representation. |Collins et al.|(2021)
provided guarantees on linear convergence relative to the initialization error. However, it does not
offer guarantees for the initialization error itself. Further, the matrix learning analysis in |Collins
et al.[(2021)); [Nayer & Vaswanil (2023)); Vaswani| (2024)) considered a non-noisy setting where the
observed signals are not affected by noise. Additionally, these works focus on learning a low-
dimensional representation using a non-adaptive data sampling of the source samples and not on the
generalization of the target task and quantifying the excess risk for the target task. Our work focuses
on active representation learning and generalizability to target tasks. Through theoretical analysis and
numerical simulations, we showcase how the adaptive sampling approach enhances generalizability
over uniform sampling. Further, our algorithm utilizes a spectral initialization approach Candes &
Recht (2012); |[Nayer & Vaswani|(2023)); Vaswani| (2024) with a truncation that carefully initializes
our non-convex problem which is very crucial in obtaining the convergence guarantees for the optimal
solution. Our guarantees thus enhance the results in |Collins et al.| (2021} by providing a convergent
solution with initialization guarantee and sample and time complexities.

Multi-task learning for sequential decision-making has been studied in the context of bandit
learning and reinforcement learning (RL). Multi-task learning in RL domains is studied in many
works, including (Taylor & Stone, 2009; [Parisotto et al.l 2015; [D’Eramo et al. |2024} |Arora et al.,
2020). |D’Eramo et al.|(2024) demonstrated that representation learning has the potential to enhance
the rate of the approximate value iteration algorithm. |Arora et al.| (2020) proved that representation
learning can reduce the sample complexity of imitation learning. Multi-task bandit learning is studied
in many works, including (Lin et al., 2024} |[Hu et al., 2021} [Yang et al., 2020; Cella et al., [2023]).
Yang et al.| (2020); |(Cella et al.|(2023)) considered a convex relaxation-based approach to estimate the
unknown parameter matrix, while [Hu et al.| (2021) proposed an optimism in the face of uncertainty
approach. These works focus on the regret analysis of the sequential decision-making problem.

4 PROPOSED ALGORITHM: ACTIVE LOW-RANK REPRESENTATION LEARNING
(A-LRRL)) ViIA ALTERNATING GD AND MINIMIZATION

Our objective is to acquire a low-dimensional linear representation and task relevance estimation from
the training samples (source tasks) through an adaptive sampling approach, allowing the utilization of
more data from source tasks that are more relevant to the target task rather than a uniform sampling
approach. The rationale is that by incorporating more samples from pertinent tasks, we can accelerate
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Algorithm 1: Active Low-Rank Representation Learning (A-LRRL) Algorithm

1: Input: Representation function class ®, multiplier for « in init step, C,GD step size, 77, Number
of iterations, 7', number of epochs I"

2: Initialize oy = 47, -+, ;] and ¢ = 27°

3 fori=1,2,...,I"do

4: Set n!, = Bi(m)?e;?

5. For each task m, draw n’  i.i.d samples from the corresponding dataset { X} , Y 1M _,

6: Sample-split: Partition the measurements and measure matrices into 27" + 1 equal-sized
disjoint sets: one for initialization and 27" sets each for the iterations in each epoch. Denote these
by {X}, ., Vi }M_,, 7 =00 (only for epoch 1), 01, - - - 27"

7: if = 1 then

8: Spectral initialization:

= 1

9: Use Y)\) = Yr(ri?()o’ Xo = X;;l@),oo’ seta = Z%Sl nt, 2221 yrzn,n

o gim’”““(i‘[) =Y Of{wf,m«a}

1: 60 = YN X0 Y srunc(a)e),

12: Set B + top-k-singular-vectors of Oy

13: end if

14: AltGDmin iterations:

15: Set By < BtV
16: for { =1to T do

17: Let B+ By_1
18: Update ﬁjmvg, Gmlz Form € [M}, ’L/l}mj — (X%,TB)TY#L),T and em’g — Bﬁ}ml

. i B: Wi = YO = xO B, —
19: Gradient w.r.t B: With V) = Y, '.. , X0 = X/ 1, ., compute V5f(B,W,) =

M DO R D)5
SM L XY (X0 B - YT,
20: GD step: Set BT < B —nVzf(B,Wy)
oo ~. QR

21: Projection step: Compute B L ptpt
22: Set B, + Bt
23: end for DU
24: Set BY « Br and set WO «— Wy R
25: Compute @y, = argmin,, | X}y, "B — Yy |2 N
26: Estimate the relevance parameter as 0; 41 = argmin,, [[v]|3 st WOr=af,
27: end for

the learning process. To this end, our algorithm starts by drawing oc (v*(m))? i.i.d. samples from
the corresponding offline data for each source task m € [M]. We partition the learning horizon into
T" epochs. Using the source task samples in each epoch ¢ € [T'], we minimize the cost function
M,
ni i/ T DO~ (|12
FiBOWE) =3 0> ymn — v o BU0G 1, @
m=1n=1
where B € R4k and WO € RF*M | Subsequently, we use the estimated parameter B along with
the sample for the target task to further optimize the cost function
s : i T pd i 2
w]\)4+1 = argmin || X}/, ' Bpw — a4 3
w

Equation [3| via a least-squares solution yields the estimated parameter @Y, , for the target task.
q q y p M1 g
(i)

Finally using the estimates W%, @}, _1» we now solve the constrained least-squares problem to get
the minimum-norm (unique) solution

Diy1 = argmin |[v||3 such that W®v = @Y, ;. )
1%

Using the relevance estimate 7, 1, in the next epoch, we sample the source task data such that we
utilize more samples from tasks that are more relevant to the specific target task. This observation is
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motivated from Chen et al.|(2022) that demonstrated the benefit of adaptive relevance-based sampling
over uniform sampling. In our theoretical analysis, we show that the estimate of the relevance
parameter obtained at the end of each epoch |;(m)]| is ce; /M -close to the true parameter |v*(m)].

Now, we will elaborate on our approach for solving equation Recall that n,,, < d and k < {n,, d}.
The cost function in equation [2|is non-convex due to the rank constraint. Hence, it requires careful
initialization. Thus, in the first epoch, we perform a spectral initialization (Chen & Candes, 2015}
Nayer & Vaswanil 2023)). The initialization process starts by extracting the top k singular vector from

fay 1 DTy () 1 M) Ty )
Oo, full = (nTX(l Yi'), - ,(@XM Yi))| = Z zjll’m nYmnComs
n

mlm

where X is the feature matrix obtained by concatenating the feature vectors of task m. The expected
value of the m—th task represents B*w;, with E[é07'full] = B*W™*. However, the large magnitude
of the sum of independent sub-exponential random variables restricts the ability to determine a bound
for the ||(:)07 fult — B*W™|| within the desired sample complexity. To tackle this, we use the truncation
method introduced in|Chen & Candes|(2015), starting with the top k& singular vectors of

1

M
B T
0= TmnYmnCm{y2 <o}

m=1n=1

where o = Zf‘,{ T Zm 1 Vs C = 96212, and Yp, prunc() ==YV o 1{‘Y$)|<\/&}. Using

Singular Value Decomposition (SVD), we obtain the top k singular vectors from © to obtain our

initial estimate By. This method effectively filters out large values while maintaining the remaining
values and serves as a reliable initial step in accurately estimating parameters.

After the initialization phase we perform an alternating Gradient Descent (GD) and minimization

step to estimate Band W by minimizing the cost function in[2{ Each iteration consists of two stages:
independently optimizing w,, for each task via a least square minimization step, followed by a GD

step to update B, utilizing the QR decomposition to obtain the updated matrix B, represented as

B+ % B+ R*. Then, the estimate of B* for the i*" epoch is set as the orthonormal B obtained
using the QR decomposition (step [22]in Algorithm [I). We now compute the estimated parameter
Wpr+1 by minimizing the cost function in equation [3|using the least squares estimator. Finally, we
solve the minimum-norm least squares problem in equation [4{to estimate the relevance parameter.
The estimate of the relevance parameter serves as the sampling parameter in the next epoch. We
sample the source task data for the next epoch oc (2;(m))?, giving more weightage to the more
relevant task.

Below, we present the excess risk bound for our proposed A-LRRL algorithm (Algorithm [T)).

5 THEORETICAL RESULTS AND GUARANTEES

In this section, we present the guarantees for the excess risk and the sample complexities for both
the source tasks and the target task. Additionally, we provide guarantees for the scenario when
v* is known. While we may not know v* for most applications, there are certain cases where the
relevance of different tasks to a target task is known. For example, in a scenario where the goal is to
predict various weather parameters (e.g., temperature, humidity, precipitation) at different locations,
task (M + 1) involves forecasting air quality. Experts might know the relevance of M tasks to task
(M + 1) based on domain knowledge and past studies |Lin & Moothedath|(2024). Providing results
for this setting also allows for comparing the two scenarios.

5.1 GUARANTEES FOR ALGORITHM[I] (UNKNOWN v*) AND ALGORITHM [2] (KNOWN v/*)

Theorem 5.1. Consider Assumptions and hold. For any ¢ > 0, success probabilities
* 2 * |2
5,0 €[0,1], C > 1, let 02 mln{%,M},n:ﬂ%,andT:CmQIOg%.lf

22

1
> C'max(logd,log M, k) log —,
€
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M
1

g nt > Or®p?(d + M)k(k*k* 4+ log ~), and
€

i (1+9) o 1 1
=1 m=1
_ 5/2"ZW+1t )
then with probability at least O(1 — § — d~10 — de *l*m+1.017 — M exp(k — ce3nl,) — exp(k —
cna+1)), Algorithmguarantees that
ER(B, ®p41) < €

if the target task sample complexity nys41 is at least

o?(k +log §)e!
o(FH):

We present the proof of Theorem [5.1]in Appendix

for~y €10,1].

where st = (1= 7)|lv* |5,

Proof sketch. The guarantees for the excess risk and sample complexities for the active learning
problem studied in this paper are based on the estimation guarantee of the proposed estimator. The
alternating GD and minimization estimator is guaranteed to achieve e—guarantee for estimating the
unknown rank-% feature matrix ©* with high probability, for any € > 0, if for each epoch i, the total
source task samples Zn]\f (nh, = CkPu?(d 4+ M)k(k%k* + log(1/€)) and the number of samples
from each source task n!, > C max(log d,log M, k)log(1/¢). Utilizing the convergence guarantee
for B and W we then provided a guarantee for estimating the relevance parameter. We note that
solvmg for v is a minimum-norm least squares problem. In Lemma [B.2] we show that under the
(B W) guarantee the estimate of the relevance parameter |;(m)| is ce; /M close to the true value
|v*(m)]. Utilizing this and some linear algebra results and adopting some of the proof techniques
from |Chen et al.[(2022) for our proposed alternating GD and minimization algorithm, we provide the
convergence guarantee for excess risk. We present the details in the Appendix.

Theorem 5.2. Consider Assumptions and [2.3] hold.  For any € > 0, success probabilities
* 2 * (12
5,0 € [0,1], C > 1, let 0* < min He'g” ,%}, n =224 and T = Cr*logt. If

. 5%
Ny = C max(logd,log M, k) log %, then with probability O(1 — § — d='0 — de *l1=m+1.017) the
output of Algorithm[2] guarantees that

ER(Br, a41) < €
whenever the total sampling budget from all sources N is at least
! 1
%) (min{(( ) v 25 elog X <, (d+ Mk( +logf)}>
€

§')?
. 02(k+log 1) 1 *
and the number of target samples n ;11 is at least O ((1_75,)56 ) , where s* = (1—~)||v

= |{ms pl > A ERE

We present the proof of Theorem[5.2]in Appendix [C.3]

for~y €10,1].

5.2 DISCUSSION AND COMPLEXITIES

Discussion on Theorem [5.1]and Theorem 5.2} The sample complexity of the source tasks depends
only logarithmically on 1 / €. Compared to the known case, in the unknown v* settmg, Algorlthml
requires only an additional low-order term. The probability of our guarantees increases as the
number of target samples n 711 increases, and the number of target samples scales only with k& < d.
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Theorems [5.1]and [5.2] show that the number of source samples required depends on the task relevance

denoted by s*. Since 4/ UML”%W is of the order of ¢, for v = 1/M, we have ER(ET, Wpr4+1) < €by
m=1""m
using only those source tasks with relevance |[v*(m)| 2 €. Let us consider two boundary cases: (i) v*
is a 1-sparse vector, i.e., the target task only depends on one source task, and (ii) ~* is a scaled vector
1 where 1 is a vector of all ones, i.e., all source tasks are equally relevant (uniform sampling). For
v =0, (i) gives s* = 1 and (ii) gives s* = M. Thus, uniform sampling requires M times more source
data samples than (i), validating the effectiveness of the adaptive sampling approach. The result in
Chen et al.|(2022) for the v* known setting requires that the total sampling budget from all sources

N is at least O ((kd + kM + log(3))o?s*|[v]|3¢2) and the number of target samples 75741 is at

least O (02(k + log(3))e~?2) . For the unknown setting they need an additional O(M k?doe™"v/s*)
source task samples. Further, the guarantees in |Chen et al.|(2022) are under the assumption that an
optimal solution to the non-convex cost function is known. We present Theorem [5.2] which provides
guarantees on the excess risk using the proposed alternating GD and minimization estimator.

Time and Communication Complexity. To analyze the time complexity of a given epoch ¢, we first
calculate the computation time needed for the initialization step. To calculate ©¢, we need a time

of order 2%:1 nl d. The time complexity of the k-SVD step d M k times the number of iterations
required. We notice that to obtain an initial estimate of the span of B* that is §p-accurate, where
do = n%/% it is sufficient to use an order log(xk) number of iterations. Thus, since n}n > k, the total

complexity of the initialization phase is O(d(>>M_, nl + Mk)log(kk)) = O(XM_ nl dlog rk).

m=1"m m=1"m
The time required for each gradient computation is an\le ni,dk. The QR decomposition process
requires a time complexity of order dk?. Additionally, the time required to update the columns of
matrix W using the least squares method is O(Zf\:{:l nt,dk). The number of iterations of these

steps for each epoch can be expressed as T = O(x?log %) Upon finishing the alternating GD

minimization iterations, in every epoch, we solve the least squared estimator to calculate @E‘\Z 11

and 7; 1, with a complexity of O(nys1dk + k?>M). Thus, the overall time complexity for the
process can be determined as O(>.Y_ nl dlog(kk) +max(SM_ ni, dk, dk?, SN _ ni dk)-T-

m=1 N
T + (ny41dk + k*2M) -T) = O(k?T Z%:l nt,dklog(1)log(k) + (nar41dk + kM) - T).
The communication complexity for each task in each iteration is of the order of dk. Hence, the total
is O(dk - klog 1).

6 SIMULATIONS

In this section, we present the numerical experiments that validate the effectiveness of our proposed
algorithm on both synthetic and real-world MNIST-C datasets. We performed a comparative analysis
of our algorithm with four benchmark approaches: (i) the Method-of-Moments (MoM) estimator
presented in|Yang et al.|(2020); Tripuraneni et al.[(2021)), (ii) the approach in Chen et al. |Chen et al.
(2022), (iii) our proposed estimator via a uniform sampling approach, (iv) the approach in Collins et
al. (Collins et al., |2021). We performed experiments on synthetic and MNIST-C datasets, varying the
number of tasks M and the rank k. Furthermore, in experiments on synthetic data, we also varied
the dimension d in addition to the number of tasks M and the rank k. We noticed that the proposed
algorithm consistently outperforms all four benchmark approaches, validating the benefit of our
proposed approach. We present some additional experiments and discussion in Appendix

6.1 DATASETS

Synthetic data: In our experimental setup for the synthetic data, we defined the default setting
parameters as ni, = 50,d = 100, k = 2, M = 80. Notice that n!, < d, which captures the
data-scarce setting. In the experiments, we varied one of the parameters by keeping others fixed to
the default setting. The entries of matrix B* were randomly generated by orthonormalizing an i.i.d.
standard Gaussian matrix. Similarly, the entries of matrix W™* for the source tasks were randomly
generated according to an i.i.d. Gaussian distribution. The task relevance parameter »* was generated
by assigning 20% of tasks a weight of 2, 60% of tasks set to 6, and the remaining 20% tasks to 10.

Using the generated v* and W*, we construct wy,, ; := W*v* for the target task. The matrices X,
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Figure 1: Estimation error vs. GD iteration for d = 100, M = 80, k = 2, noise variance = 10~°.

were randomly generated using an i.i.d. standard Gaussian distribution. In addition, we utilized a
noise model with a mean of zero and a variance of 1075, It is important to note that in our experiments
when we change the rank, number of source tasks, or dimensions, the matrices B* and W*, as well
as the data, are generated based on the specific dimensional setting of the problem. In this section,
we present the simulation plots for the setting where the relevance parameter v* is unknown. The
plots for the known case of v* are presented in Appendix [D] The experimental results were derived
by calculating the average of 100 independent Monte-Carlo trials.

MNIST-C data: In our experiment setup for the MNIST-C data, we evaluated our proposed algo-
rithms on the corrupted MNIST dataset (MNIST-C) used in Mu & Gilmer (2019), which consists of
16 unique types of corruption. To generate source and target tasks, each corrupted sub-dataset was
partitioned into 10 tasks through the application of one-hot encoding to labels O through 9, resulting
in 160 tasks, each identified as “corruption type + label.” For each task, we converted the label into
a binary format of 1/0 based on the correspondence between the image and the label. Each task
contained 28 x 28 dimensional 6000 images, which were normalized before processing. Experimental
results are presented for two specific target tasks: brightness_0 and glass_blur_2. In our experiments,
we defined the default parameter settings as n!, = 100, d = 282 = 784, M = 50, and k = 40. We
varied the rank and the number of source tasks to evaluate the performance of our proposed approach.

6.2 RESULTS AND DISCUSSIONS

Estimation error plot. In Figure[I] we present the plot for estimation error vs. GD iterations for
the first epoch. The MoM estimator is a noniterative method; hence, the estimation error is a single
line. (Chen et al.| (2022) considered a convex relaxed solution of the original non-convex problem
via the projected gradient descent method to obtain the estimation. (Collins et al.| (2021), on the
other hand, does not provide an initialization guarantee, which affects the estimation again due to
the non-convexity of the problem. It is difficult to obtain guarantees for the non-convex problem if
the initialization error is not sufficiently small. The estimation error for the parameter matrix for the
M tasks ©* is very low in our proposed estimator and it outperforms all the benchmark approaches.
We note that the estimation error cannot be less than the noise variance, which is set to 1076, This
validates the benefit of adaptive sampling for generalizing to a target task.

Excess risk plots. Figure [2] presents the plots for the excess risk. The plots in Figures and
respectively, show the plots of the excess risk for the five algorithms by varying the number of source
tasks M, the rank %, and the dimension d for the synthetic data. The plots in Figures
and [2¢g] respectively, show the plots of the excess risk for the five algorithms by varying the number
of source tasks M and the rank k for two target tasks of the MNIST-C dataset. We notice that our
proposed approach outperforms the MoM estimator-based approach and the approach in Chen et
al. by a significant margin. This is because, as also noted in|Chen et al.|(2022), during the iterative
estimation process, the estimation error propagates from round to round due to unknown v*. Since the
MoM estimator and the convex-relaxation approach in|Chen et al.|(2022) have considerable errors in
the estimation of ©*, it negatively affects the estimation of v*. Our proposed approach using adaptive
sampling slightly outperforms the uniform sampling method. We note that the benefit of adaptive
sampling is majorly in the sample complexity while ensuring no worse convergence error guarantee
compared to uniform sampling. Our proposed approach also outperforms the approach presented by
Collins et al. This is expected since the guarantees in Collin et al. depend on the initialization error;
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Figure 2: m proposed algorithm (adaptive sampling), m proposed algorithm (uniform sampling), s MoM (adaptive
sampling), m Chen et al. (adaptive sampling), m Collins et al. (adaptive sampling). Synthetic data: We considered
50 data samples for each source task and 30 data samples for the target task. We varied the number of tasks
as M = 40, 60, 80, varied the rank of the ©* as k = 2,4, 6, and varied the dimension as d = 100, 150, 200.
As shown in the plots (Figures [2a] [2b] and[2c)), our proposed approach with adaptive sampling outperforms
the existing approaches. MNIST-C data: We considered 100 data samples for each source task and 50 data
samples for the target task. We varied the number of tasks as M = 50, 60, 70, varied the rank of the ©* as
k = 20, 30,40. The plot for MNIST-C data are presented in Figures 2d} [2¢] [21] and 2g]

however, there is no initialization guarantee. Thus, the numerical experiments validate our theoretical
findings and the effectiveness of the proposed approach.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced a novel active-representation learning algorithm using an adaptive
sampling-based alternating GD and minimization approach. Our proposed algorithm is specifically
designed for active multi-task representation learning by considering the unknown task relevance
to enable adaptive sampling. Our proposed approach can handle data-scarce settings where the
number of source data samples is fewer than the problem dimension. We have demonstrated the
algorithm’s convergence guarantee in estimating the unknown feature matrix and the unknown
relevance parameter. Additionally, we have evaluated the effectiveness of our approach in comparison
with benchmark algorithms. The results clearly show that our proposed algorithm outperforms the
benchmark approaches, thus validating its advantage over existing methods. As part of future work,
we plan to extend our estimator to study different notions of the relevance parameters.

10
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APPENDIX

A PRELIMINARIES

Proposition A.1 (Theorem 2.8.1, (Vershynin, 2018)). Let X1, --- , X be independent, mean zero,
sub-exponential random variables. Then, for every g > 0, we have

N 2
. g g
P{|2Xi>g\}< 2exp —cmln( = 5 5 )],
i=1 Dim1 ||Xi||w1 max; HXinpl

Proposition A.2 ((Kovanic,|1979)). If V is an n x n symmetrical matrix and if X is an arbitrary
n X q real matrix, then

V4+xxOH =vi —vixa+x"vix)txTvi 4 (x)TxT,

where ¢ > 0 is an absolute constant.

where X| = (I - VVT)X.

B THEORETICAL ANALYSIS OF ALGORITHM [I] (v* UNKNOWN SETTING)

In this section, we present the details for the * unknown setting. Our goal is to provide guarantees
for the excess risk and sample complexities for the source and target tasks, and time complexity.

B.1 SUPPORTING RESULTS AND PROOFS
Lemma B.1. For any given value of i and m, the following inequality holds:
(Brw) T ((BWH(B W) = (BYW)BOW) 1)) Brwiy|
< hog ll2llwhs e 2l (WO W) D el Al 2 (II(W”)(W”’)T)TIIFIIAiIIF + 2II(W“’)TIIF) :
Proof. Let us define A; = B*W* — BOW®. First, we perform an analysis of the term
(BW*)(B*W*) ")t — (BYW®)(BOYW®)T)T. We have
(BW)(BWHT) — (BOW)(BW)T)f
o o T P L T
— ((B(I)W(l) + Ai)(B(l)W(l) + Ai)T) _ ((B(')W('))(B(')W“))T)
P NP, s s T P L, T
_ ((B(”W(‘))(B(”W(‘))T + (AiAZT +ABOWNT 4 (B(‘)W('))AZT)) _ ((B(OW(]))(BU)W(]))T) )
Assume that V = (BOWO)(BOYW T, and proceed with decomposing
(AiA;r + A (BOWOT 4 (B\(”W(i))A;) = XXT. Let us assume that BOW® is decom-
posed using singular value decomposition, represented as UXV ". We have
vvi=ux2uT (v =uvu’T.
Therefore,

XIBY = (1 -vvhx)IBY = (1 —-UuUT)X)1B®

= (UL U X)'BY )
= xtw.ul)tBY ©6)
= xtw, u)~'BY (7)
= xty,u B® ®)
=0 9
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where equation can be derived from UU T + U, U] = I for an orthonormal matrix U. equation |§|
can be derived from (AB)" = B AT, equation can be derived from AT = A~! for any positive
definite matrix A. equation[§can be derived from the fact that U is an orthonormal matrix. equation[9]

follows since U, BYTV® have the same column space and BYTW®, B® have the same column space,
we can conclude U, B? have the same column space. Thus U B = 0. By applying Proposition
and take into account the fact that (I + X "V X)~! < I, we can derive

(B wi) " ((BWH(BWHT) = (BOWOYBOWO) ) Brwiy, |
= BT (B W B W) = (BOWO)(BOW))) BOB) B iy

= |(Bru) T ((BOWO)BOWO) ) (AA] + A(BOWO)T + (BOWO)AT ) (BYWO)(BOW®) ")) Brwiy |
< NBwi) TIIBOWO)BOWO) ) (AAT + A(BOW)T 4+ (BOWO)AT) (BOWO) (BOWO) )| B wh
< [[(Brwp) Tl ((BYWONBOWO) AN (BOWO)(BOW) )| e ]| B*why s [z
+ 1B wi) T2l (BYWOYBOWO) ) A (BOW) T (BOW ) (BOWO) ) ||| B*wiy s 2
+ 1B wi) T2 (BYWO)BOWO) ) (BOW )AL (BYWO)(BYWO) )| ]| B*why 4|2
Given that
I(BOWO)T(BOWO)(BOWO) ) [l = [(BYW)(BOWO) ) (BOW) |

= [(BOWOWO)T(BO) ) (BYW)|x

= (B ) (WO W) B (BOW®)||

_ HE“’(W“’(W(”)T)TW‘“||F (10)
= [|((WOW) )W (1n
= [[(W) ) (W)W (12)
= (W)W T (W) (13)
= (W)W WO)T|| (14)
= (W) p (15)

where equation and equation|11 can be derived from the fact that B% is a unitary matrix. equa—
tion can be derived from (AB)T = BT AT. equation can be derived from || A|| F = ”rA || -
equation 14| can be derived from (ATA) = A" A. equation|15|can be derived from ATAA
Therefore, the final bound can be expressed as

(BT (B WHB W) = (BOWO)BOWO) ) ) B
< (B wp) T2l (BOWOYBYW ) 22131 B* whr s 12
+ (B wh) T2l (BOWOYBOWO) ) o | Al 2 | (W) ||| B*wig 41 12
+ 1B w) T2l (WO | Al £l ((BOW ) (BOWO) )| ol B* w14 l2
< N [l WOV O RN Al w4 ]2
+ 2w} [l [ (WO A 2 (W) | pllwhs a2
= w2l 2 IV Y Ll Aille (VOO T e Adlle + 20O )

Thus, we complete the proof. O
log =
2 k. (l) 0.4 2 V2
Lemma B.2. Assume 0° < 176" o}, Setn = e 95 < Cu rc4k3 and T > 2 gV If
M
Znin > Cn4u2dk and
i=1
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%
N

2 max(logd, log M, k),
then with probability at least O(1 — M exp(k — ce3nl,) — exp(k — cnari1)), it holds that

0. 02EZ 0.02¢;

v (m)| -

< [Pia(m)] < H(m)] +

and

Proof. Consider any epoch ¢ and its corresponding estimated representation B, Using the least
squared method, we obtain

@?\)4+1 arg min ||XX)4+1§“)w — Yaral?

= (X3 BO) (X5 BO) M (X B Y
((XX}HB“) (XX)4+1B(1)))_1(X® B(i)> (XN B wiser + 23 14)

i i BiOV—1 50T yvi i i’ i B —1 560 v i
= (B XY X0 B BT X0 X0 B + (BT X0 X0 BB X 2
By utilizing Lemma E.8 in|Chen et al.|(2022) and the aforementioned result, we derive

Pin(m)| = a5, (WOWO )i,
= (BY@G) T (BOW)(BYW) 1) BV, )| (16)
= [(BO@y,) T (BYW)(BOW) ) BB Xpy Xy, BY) B X34 X B wis
+(B(1)A(n)) ((B“’ﬁ/\“’)(é(“/ﬂ?(”) )TB(”(B(” XX)I+1XX/)I+1§(U) 13(1) XE\‘}HZXHH
= (B @) T (BT (BOW) Y BB Xy X BT B X X BOBY Bwis,
’\(l) (W(l)W(l) )TM 1B(1) XX)H—IZ?L)I—&-I‘ (17)
= \(B*w:nf((BWW“))(B““W“))T)*B*wMH +(BY@Y, — B*wy,) T (BYWO)(BYW®) ") B*wiyy,

~i)" TTOTTO VT r-1B0" vO 70
+ Wy, (W w )M B XM+1ZM+1‘

where equation can be derived from the fact that B? is an orthonormal matrix. equation|17|can
. ~ . =T a7 ; ~ .
be derived from the fact that B is an orthonormal matrix and M = B X }\)4 X Y 41 BY. Thus,

using the triangular inequality, we find
i1 (m)] < |(B*wy,) " (BOWO)(BW) ) B w)y 4|
+ ‘(gm o9 _ B )T((E(“W\“))(E(“W\“))T)TB*wj/IH
@y (T M BT XY 25|
D521 (m)| = (B wh,) T (BYWO)(BYWO) ) Brwy |
= (BV@, = Bui) T (BYWO)(BYW) ) Brwj,

— |a® ~Gi) " (W(“W(i) )TMfljg(oT XX)111Z§\Z+1|

Furthermore, according to Lemma E.8 in Chen et al {(2022), v*(m) = (W*W* ) twy, =
(B*wy,) T ((B*W*)(B*W*) ") (B*w},, ;) holds. By applying the Cauchy—SchwarZ inequality,
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Lemma BT} and considering the combination of these results, we can prove

D1 (m)] = |v*(m)| < |(Bwy,) T (BYW)(BOWO) ) B*wj, |
— (B wi) (B WH(B W) (B wiy,)]
BV, = Brw;) T (BOWO)(BOW) ) B wi |
+ @8 (WOWO Y MLBY X G 28|
<|Brun)T ((BWHB W)~ (BOWO)BW)T)) Bruj,|
BV, — Brw;) T (BOWO)(BYWO) ) B wi |
+ |a® (WmW(i)T)TM—lg(i)T X%11ZX)4+1|
< N ok WO T e Al ([T T e Adlle + 21 ()15 )
w2 (WO T | #1165, — 6,112
+ OO M@ 2 B Xy 2574l
v (m)] = 51 (m)| < (B wy,) T (BW*)(B W) ) (B wiyy,)]
—1(B* ) T(BOW ) (BOWO)T) B wi
+ (B, — Brwl) T (BOWO)(BOWO) ) B wi|
@ (WOWO ) M BT XY 20|
< |Brup) T (((BWHBWHT) = (BOWO)BWO) ) (B
+ (B, — Brwl) T (BOWO)(BOWO) ) Brwi|
+ [@, (WOWO )M B X 2|
< Ml i 2N T e AL (IFOW )Y el + 20T )
w2 (WO T | #1165, - 07,112
+ OO R MH @ 2B Xy 2574l

Given matrix W@ € RFXM ytilizing the SVD, we can derive WO(W®)T = UsVTVETUT =

USST)UT.  Consequently, we obtain |[[(WOWN |z = |UESHUT|p =
k T E .
SRR < ﬁ% and [|(W0)! [ = /S0, & < ﬁ*@()) According to Lemma B.1

in|Lin et al. (2024), assume SD(B®, B*) < 69, with probability at least O(1 — M exp(k; — cesnﬁn)),
IM~—1] < W According to Lemma B.2 in [Lin et al.|(2024), assume ¢ < & 5(‘>
SD(B®, B*) < 69, if 60 < ?}2, and if n!, > Cmax(log M,logd, k), then with probability at
least O(1 — exp(log M + k — ce3nt))),

i * i k
||0;V)L - amH <1 4/1’5() \l max’

109 — 0% r < 1.4pd0"VEo?:
Jmin(W ) 2 0. 9Jm1n7

—~ | k
|| (l)” 11/1“ Mo';;ax'

2 .
Based on Assumptlon we have |lwg,|? < p?Lof,.. In order to determine the upper

and

max’

max’

PR :
bound for B XX)4+1ZX)4+1’ let’s consider a fixed z € Sy. we analyze z' BY X{) 72y | =
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S (BY2) a2 e tesulting in E[(BY2) Tal o Z% ., ] =0and
Var(BO2) el ;) = EI(BY2) "ol ,° — (BI(BY2) "af,, ,])?
= E[(B(i) )Tx(zly)ul 1}2
= E[ZTg(i) x(Jl\)ﬂ-l ]xl\/f-i-l ]B(l) Z]

_ TR0 @m0 " O
=z B E[xM+1 GTM+1 ]]B

=1
. i . ~ . T .
Given Z}'V)[HJ- s (0,02), we have Var(ZE{ﬁ[H’j) = 02. Thus, ZTB(MXR}HZR}H is a sum of
npr4+1 subexponential random variables with parameter K; < C'o. We apply the sub-exponential
Bernstein inequality stated in Proposition [A-T|by setting g = C'nas410. In order to implement this,
we show that

¢ Ot
MM+1 172 © 12 2 = +1
Z] 1 KJ C Ny+10
g Cnpyy10
= =NpM+1

max; Kj - Co
Therefore, for a fixed z € S, with probability at least 1 — exp(—cnzy1), 27 BO Xﬁ}llZ%H <
Cnpr410. Using epsilon-net over all z adds a factor of exp(k). Thus, with probability at least

59
M m‘Lx
combining the aforementioned results and the union bound, we can determine with probablhty at
least O(1 — M exp(k — ce3nl,) — exp(k — cnars1))s

1 — exp(k — cnpre1), we have HE(DTXX}HZX}HH < Cnpr410 < Cnpryg

k3 BV kVE
D51 (m)| — [ (m)] < 3u4i<;4—5(‘)2 + 3.9u3n3i5<‘> + 1.8M2ﬁ2i5<0 + 1.5C K> fa@
vM
k3 0.02¢;
< Opltit 5(1) < 18
Cu'r i (18)
N . 2 BV WV VE
[v*(m)| — |Dir1(m)] < 3#454M5() + 3.9;13&375() + 1.8u252\/—ﬂ(§() + 1.50/1&2?5()
(19)
k3 0.02¢
< 4 47(5(1) < T
CWR 31 M
where equation |18|and equatioanan be derived by setting 6 < i T > lg(lfiofwcn) and

applying Theorem 5.2 in (Lin et al., 2024)). Following that, we can show with probablhty at least
O(1 — M exp(k — ce2nl,) — exp(k —cnpr41))s
0.02¢;

0.02¢;

<P (m)] < P (m)] + =~

" (m)| -

Hence, when considering |v*(m)| > %%4<  we can conclude

M 9
0.02¢; 3
Piva(m)] < o (m)] + =5 < Sl (m)

s (m)] > o (m)| — 2 > 2

- *
5 [v*(m)].
When we consider |v*(m)| < 294¢  we can conclude

M ’
0.02¢; _ 0.06¢;
~ < * 7 g 7
Pora(m)] < v (m)| + =1 < =

[Diy1(m)| =0

Therefore, we prove with probability at least O(1 — M exp(k — ce3ni)) — exp(k — cnari1)),
. _ Bl Sl (m)l), i v (m)| > >
|1/1+1 (m)| = {[07 O.E)\/G[ei], if |1/*(m)| < O.?\?Si

17
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* (12 2 * (12
Lemma B.3. For any € > 0, success probabilities 5,0’ € [0, 1], let 7> < min {%, %}
n=-2% and T = Cr?log L. If

max

M
) 1
E nt > COr®p?(d 4+ M)k(k*k* +log =)
€
m=1
and
. 1
n,, = Cmax(logd,log M, k) log —,
€

2
S nparaq

then after epoch i, with probability at least O(1 — § — d='0 — de *1=y+121%) it holds that

2(2k + 3log L !
o2k +3logd)  (14+9) o .

B. 0 <
ER(B,’U/MJrl) X 2(1 — (S/)TLM+1 2(1 — 5,)2 max

23<%Wd—@+3bg;)ﬁ*§

vt (m)

where U*(m) = ﬁ

Proof. From the definition of ER(E, War41), we have

~ 1 ~ 2
~ _ T ~ * %
ER(B, Wy 1) = 5Eonit (33M+1,n(BwM+1 - B wM+1>)

2

B %(§@M+1 — B*wigyr) (BB — Brwipyy) (20)

< Ty P Bt = B wie) 21

B mHXMHE((XM“E)T(XM“E))T(XMHE)TYMH — Xy Brwi |
(22)

- m”PXM+1§T (Xnr41B*wipsy + Zai1) = Xnra B why g |

- m”PXMHEZM“”Z " m”%M@TXMHB*w&HH2 (23)

= s P 5Bl + g P X B G

1 1 N

2 *TA/ %12 ||5% 112
< mllpxnf+1§ZM+l|| "l‘ml XM+1§XM+IB 1774 HF”V ||2

n

E [Zrp41,n%3741,,] = 1. equation 21fis derived from Lemma equation [22| is derived
from the least square estimator solution of the optimality of wysy1. equation is derived

where W* = W*\/diag([ni,na, -+ ,nr]) and 7*(m) = L\/ﬁ) equation [20| is derived from

1 T R
from PXM+1§ PXMHB

Znr+1 follows i.i.d. Gaussian distribution with a zero mean and variance o2, it follows that
L ||PXM+1 5Zm+1|% ~ x*(k). Applying the Chernoff bound for chi-square distribution, we have

= 0. equation is derived from wj,,; = W*r*. Given that

with probability atleast 1 -6, ||[Py  5Za+41]|* < 0%(2k+ 3log }). Following that, by combining

M1
the result obtained from Lemma @ along with applying the union bound, we derive that with
8% nprgq

probability at least O(1 — § — d=10 — de *l=a+1.a1%),

2(2k + 3log & 1446
U( og5) ( + ) Zko,*

ER(B, © <
(B, @rt1) 201 — 0 mars | 2(1 — ory2H FOmax

1N\~
22 <2N(d — k) + 3log 5) 7|2
O

18
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* (12 2 * (12
Theorem B.4. For any € > 0, success probabilities 6,6' € [0, 1], let 0® < min { CI,L%’Z(U , %}
01 and T = Cr?log L. If

max

7’]:

1
Z nt > Cr®p?(d + M)k(k*k* 4 log E)

and 1
> C'max(logd,log M, k) log —,
€
5’2"M+1

then after epoch i, with probability at least O(1 — 6 —d 10 —de  31=a+1.21% — M exp(k — cednl ) —
exp(k — enpry1)), it holds that

o2(2k +3log 1) 2(1 + &) 2 Mo 1
ko*: 2 ' (d—k log —
STy * Ao e |2 2 (=B Sl |

m=1

where |[U*[[4 ., = Hm v (m)| > 1/72%}‘ = |{m: [v*(m)| > 0.02/7% }| by setting

72 = Zami i i § = 2500M2, st = (1— )| |li., + M
Be; = = PRI with 3 = 1=l HO,ry""Y .

ER(E, Wary1) <

§'2%n

Proof. From Lemma & we can obtain that with probability at least O(1—6 —d 10 —de Ao ),

21— 0 narer | 2(1—0')2

m=1

. o?(2k +3logd) (140 - -
BR(B, 1) < G0t 0108 5) Q0D kgt e (23 mi(d — k) + 310 & | 1773,

m

where 7*(m) = L\/ﬁ) Furthermore, for any -y € [0, 1], with probability at least O(1 — M exp(k —

ce2 min{n? }) — exp(k — cnpry1)), we have

v*(m)? M v*(m)? . € € N €
PO (]l{|u (m)] < 0.02y7 77} + 1{0.02y/7 7 < | (m)] < o.ozﬂ})
= V*(m)2612 * €i
+ mz::l Wﬂﬂy (m)] > 0.027} (25)
M €
<0025y 5 (]l{|u (m)] < 0.02y/7<2} + 1{0.02y/F<% < [v*(m))| \002—})
m=1
€2 M 49 (m)? N €
+ EZZI )2 Ly (m)] > 0.0257 (26)
2 M ) ) ) )
< 4; S (YR ()] < 002700} + 1{0.02/35 < o (m)] < 0.02. 203 + 1 {Jv(m)| > 0025}
m=1 (27)
4€? M
=75 22 (v m)] <0027 77} + 1{ ()] > 0027 77))
m=1
42 .
<=5 (O = 7l + 107 )
4¢?

=3 (=l lb, + M)

where equation [25| can be derived from nf, = B(m)2%e; 2. equation 26| can be obtained from
Lemma equationcan be derived from 3 = 25000/ 2. By using the union bound, we conclude
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- 5’2"M+1 )
that with probability at least O(1 — 6 — d~'0 — de *l*m+1.n1® — M exp(k — ce3nl,) — exp(k —
cnar41)),

N 0?(2k +3log 2)  2(1 4 4')e? =, 1
ER(B, ® < LEANE kot 25 ni (d—k)+3log= | s
( M-‘rl) 2(1 75/)nM+1 5( 5/) Z ( ) g 5

m=1

* (12 2 * (12
By making the assumption that 02 < min {%, %}, and utilizing Theorem 5.1 and

Theorem 5.3 from Lin et al. (2024), we can guarantee that 52 < %, given that

) 1
Z nt, > Crp?(d + M)k(k*k* + log ~)
€

m=1
and )
> C'max(logd,log M, k) log —.
€
O
1 1
Lemma B.5. Assume 02 < 260" g% . Setn) = 05, 08 < i and T > mg(f%' If

> ny, > Ck*pdk and nj, 2 max(log d, log M, k),

then with probability at least O(1 — M exp(k — ceinl,) — exp(k — ce;nar11)), the total number of
source samples for any epoch i is determined by

0.062
=27, %112
O(B(e; "I llz2 + = 77))-
Proof. Considering any given epoch ¢, we can derive
M
Z ni, =y Bo(m)’e” (28)
m=1 m=1
- 0.02¢; 0.02¢;
= > po(m)’e 1| > 7T ZBV e 1{|v*| < l}
m=1
9 0.02¢ 0.062 002e
* 2 _—2 * : 4 * 4
< nglﬁv (m)*e 1w > =~} mZ:jl U< @)
M
9 m)2e? 4 0062
9 o« 0062
= 1 & 215 + 5
0.062

= O(B(e;||v*[13 +

M ))’
where equationis derived from nf, = B(m)%e; 2, equationis derived from Lemma O

B.2 PROOF OF THEOREM[5.1]

Proof. From Theorem @, under the given assumptions and conditions, with probability at least
s’ SYESY

O(1—6—d 10 —de *l=m+1al® — M exp(k — ce2ni ) —exp(k — cnasi1)), the excess risk at the

end of the last epoch I is determined by

. 0%(2k +3logl)  2(1+§)e2 Mo 1
-~ < s L 2kt i (g L
ER(B, Wpr4+1) < 5= 5y oa + 30 5/) ko€ |2 E n., (d — k) + 3log 5

m=1
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Based on Lemma B.5} under the given assumptions and conditions, with probability at least O(1 —
M exp(k — ce3nt,) — exp(k — cnar1)), we have

9 0.062
<466Z2ll VIB+ 5% )

o« 0062,
g 1+ B2 )

0. 0048)

Bl + Ber?

Deﬁl}e ti=6(1+0d)pu 2]mmax F(vr3 + %). For C’ > 1, setting source sample size N >
%te log % results in

3¢ 1
N > ——telog —
(102 %5

3logt 2
2a—1C ( <16/>2<d"“)“>

3 log % (1 5/)2 (d k)
3t log%
(1021 —2(d—k)t

where equation is derived from the fact that there exists a constant C’ > 1 satisfying the inequality
7% < C'w for 0 < z < 1. Consequently, we find that W (2(d — k) + 2 log %) te? < ce.
Using the bound N < (3||v*(|3 + 20%48) Ber-?, we derive

1 3. 1\,, 1 1\ te
1 ( 1 te?
> ——— [2N(d—k) 4+ 3log — ) —
(1—20")2 (3|l *||2+0.9848) =2

r
_ (1 + 6/)61“ 2 *2 - *
= 75( 5 koja€ | 2N(d— k) + 3log 5 ) st

2(1+0")et 2 2 Z i 1
> TP _ -
Z 30 (5’) ko€ | 2 g ne. (d k)—|—310g5 S

m=1

(30)

% 2o € (2 SM_ i (d— k) + 3log %) st < ce. By setting the

target sample size as

Thus, we conclude

o%(2k + 3log §)e !
21— o)(1-0)

NM+1 2

where for 0 < ¢ < 1, we derive
o%(2k + 3log 3)
2(1—)narer

Based on this analysis, we can conclude that with probability at least O(1 — ¢ — d~ 10 —
8%

< (1-c)e.

de *learr1nl® — M exp(k — ce3nl,) — exp(—cnars1)),

ER(éa'@M+1) Se

21



Under review as a conference paper at ICLR 2025

Algorithm 2: Active Low-Rank Representation Learning Algorithm for Known v* (A-LRRL-known)

1: Input: Confidence 9, representation function class ®, relevance parameter 1/~*, source-task
sampling budget N > M ( ((d k) +log(3)), multiplier for o in init step, C, GD step size
71, number of GD iterations T

2: Initialize the lower bound N = \/W ((d—k)+log(4)) and number of samples n,, = max{(N—
MN)CEE, N)

3. For each task m, draw n,, i.i.d samples from the corresponding offline dataset denoted as
{X"“Y;n}m 1

Mn,,

4 Seta = NIM Zm 1,n= lym n

5 ym,trunc(a): Y O]l{|Y,,L|<f}

6: @0 = Z%=1 %MX;ym,trunc(a)e;

7

8

: Set EO < top-k-singular-vectors of @0
: GDmin iterations:
9: for { =1to T do
10: Let B+ By_1
11: Update w,,, 0,,: For each m € [M] set (@m)¢ < (XmB)1Y;, and set (B,)¢ < B )
12 Gradient w.r.t B: Compute VBf(B Wg) S X (X B(@m)e — You) (@)

13: GD step: Set Bt + B — AT Bf(B W)

14: Projection step: Compute B+ L ptRt

15 Set B, « Bt

16: end for R

17: Compute @41 = argmin,, || X\, Brw — Yaz41]?
18: Return Br, 7:U\]\/[+1

C ADAPTIVE SAMPLING FOR LOW-RANK REPRESENTATION LEARNING FOR
v* KNOWN SETTING

C.1 ADAPTIVE SAMPLING ALGORITHM FOR LRRL (v* KNOWN SETTING)

In this section, we present the alternating GD and minimization estimator-based adaptive sampling
algorithm when the relevance parameter v* is known. The key difference with respect to Algorithm|T]
is that after estimating ©* and wy; 11 we can assign the number of samples for the next epoch using
the true values o< v*(m). The proof approach is simplified as compared to that of the unknown
setting since * is known. We present the pseudocode of the algorithm in Algorithm[2] We note that
Algorithm[2is an iterative algorithm with one epoch (i.e., I' = 1).

C.2 SUPPORTING RESULTS AND PROOFS FOR THE v* KNOWN SETTING

We present initial lemmas and then prove our main theorem.
5/2

Lemma C.1. For any m € [M + 1], with probability at least 1 — 2de *I=m n”z, it holds that
(1= np,I = X, X, < (1+8)ny, I, where n,, denotes the number of rows in X,

Proof. Given that X,} X,y = Y0 T n ), o Where &, )

mon =0 and )\max(xm,nx;}n) <
|Zm.n||?. Since

MNom, Nm
)\min(z E [xm,nz;n]) = Amax(z E [xm,nzjrl,n]) = N,
n=1 n=1

2
5" % nm

by applying the Matrix Chernoff inequality, we have with probability at least 1 — de 2l=m.nl?

5/2
)\min(zn’"l TmnTp,) = (1 — 6')ny and with probability at least 1 — de 3= Femall? |
Amax (O xmﬂxT n) < (14 6)n,,. Applying union bound completes the proof. D

m,n
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Define Py := A(ATA)TAT and P =1 — I4.

Lemma C.2. Assume that Assumptions and hold and 02 < min {M M}

P

Set n = 09‘42 and T = Ck?log % If N > Cr®u?(d + M)k(k%k? + log ;) and N, >

max

’2
) SYESY

Cmax(logd, log M, k)log %, then with probability at least O(1 — § — d™10 — de *I=a1nl®),

1 1 * * (1 +§/) 2 2 * 1
N1 ||PXM+1BTXM+1B W ||F = (1 _ 5/) ko Omax 2N(d - k) + 310g 5 )

where W* = W* \/diag([nl, Nay -, Nar))-

Proof. Given two matrices A; and As with the same number of columns that satisfy AlTAl > AQT Ao,
for any two matrices B and B’ with compatible dimensions, from Lemma A.7 from |Du et al.[ (2020),
we have the following inequality

1PA, g ALB|[% > [|P4, A2 B ||

_ 5/2"'A4+1
Using the above result and Lemma with probability at least 1 — 2de 2I*m+1.n1% | the following
inequalities hold.

1 — (1+0) &
o 1P, . 5, Xare1 B WG < (1+ )| Py IB*W*|[% < a—9) Zl 1Py 5, XmB whll3.
o

3D

Using the definition of P;{- B XmB*w}),, where ET is the estimate in the 7-th GD iteration, we
mDT

have
M

Z HP)J(_mﬁT ’mB* . ||2 - Z ||X’mB* . (X’mET)((XTnET)T(XWLET))71(X’mET)TXmB* . ||2
m=1 m=1
M ~ A~ ~ ~
= Z || m(B* r*n - BT(@m)T) - (XmBT)((XmBT)T(XmBT))71
m=1
(X Br)" Xon(B*w}, = Br(@m)7)|l3 (32)
M

=S UIPE 5 Xu(Brwh, — Br(@n)r) 3

m=1

< (Z 1P 5, XW) (Z |B*w}, — Br(@m)r ||§> (33)
m=1

S

= |B*W* — BrWr |} Z 1Py 5, Xml- (34)
m=1
equation is derived from adding and subtracting and by using XmBT({u\m)T —
(X Br) (X Br) T (X Br)) ™ (X Br) T Xon Br (@)1 = X Br (W )7 — X Br ()7 = 0.
equation [33]is derived from Cauchy-Schwarz inequality. Given that X, follows i.i.d. standard Gaus-
sian distribution, it follows that 2%21 HP;{- By X% ~ XZ(Z%ﬂ nm(d — k)). Applying the
Chernoff bound for chi-square distribution, we have

ZHXBT X% < and k) +2 and k)log5+210g6

m=1
with probability at least 1 — . Using the inequality vab < a—“’, we can determine

2\/ Zm 1 (d — k) log + < Zm 1 i (d — k) + log %. Therefore, we conclude that with proba-
bility at least 1 — ¢, ZnL:l | P B X% <2 Zm L o (d — k) + 3log . From Theorem 5.3 in
mDT
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Lin et al.[(2024), under the given assumptions and conditions, with probability at least O(1 — d_lo),
0, — 05,1 < €]|02,]| for all m € [M]. Then we have with probability at least O(1 — d—10),

M
1BrWr — BWH|3 < Y E105,11° < Eukoa
m=1

The above inequality uses the fact that B* is a unitary matrix and Assumption [2.3] Hence, by
combining these results and using the union bound, we conclude that with probability at least

§%nar i
— T 3Nzar a2
O(1 -8 —d 10 —de 3lem+1.21") we have

Z 1 2 _ (1446 BTG 2 - 1 2
> 1Py g, XmB wy, |3 < i—9) |B*W* — BeWr||% > 1Py 5, XmllF
m=1 m=1

M
1
< Eplkot,” | 2 n(d—k)+3log = |.

m=1

Substituting in equation 31| completes the proof. O

C.3 PROOF OF THEOREM[3.2]
Proof. From the definition of ER(ET, Wpr4+1), wWe have

ER(Br, Wp41)

1 ~ 2
_ T ~~ *,x
- §E1M+1,W,NPM+1 (mM+1,n(BTwJVf+1 - B wJV]+1)>

1

= §(§T73M+1 - B*w]*WH)T(ETQMJrl — B*w};,q) (35)

S m”XM-H(ET’&)\M-H — B*wis)|? (36)

= m||XM+1§T((XMH§T)T(XMHET))T

(Xar41Br) Yares = Xar B'wiy | 37)
1

N mHPXM+1§T (X]VI+1B*1U?\/I+1 + ZMJrl)
~ X B

- 2
WHPXM+1§TZM+1H

" mHP;MHgTXMHB*wa (38)
= S P Dl

- m‘|P;M+I§TXM+1B*/W/*§*H2 (39)
< ST P Zaenl

* mHP;?MH@TXMHB*W*||%||ﬁ*||§

where W* = W*\/diag([ni,na, -+ ,n)) and 7*(m) = V\;%m) equation [35|is derived from

E [x M+1.T 1 11 n] = I. equation is derived from Lemma equation is derived
from the least square estimator solution of the optimality of @wjy/4;. equation is derived

24



Under review as a conference paper at ICLR 2025

T
from Pt P 5
° XA1+1BT XIVI+1BT

Z M1 follows i.i.d. Gaussian distribution with a zero mean and variance o2, it follows that
L|P N1 Brl m+1ll? ~ x%(k). Applying the Chernoff bound for chi-square dlstrlbutlon, we

= 0. equation |39 is derived from wj},;,, = W*D*. Given that

have with probability at least 1 — 4, || Py 5, Zn41 |2 < 0%(2k + 3log 3). Following that, by

combining the result obtained from Lemma|[C.2]along with applying the union bound, we derive that
8" %nprys

with probability at least O(1 — § — d 10 — de *l7m+1.nl%

o?(2k +3log§) (146 ko
2(1 - 6/)7’L]u+1 2(1 - (5’) Tmax

ER(Br, Wy41) <

1
2 <2N(d — k) + 3log 5) l7*]13.

Our objective in the remaining analysis is to determine the upper bound of ||7*||3. Define e =2 =

w13
Using a technique similar to Theorem 3.2 in|Chen et al.[(2022), for any v € [0, 1],
-~ 2[[v*13
74115 < =52 (= DIV llo.y + M)
By combining these results, we obtain the upper bound as
~ 022k +3log %) (149
ER(Br,w < 0 ko’
(Bro i) S 5= 6’)nM+1 (1 — o)/t "max
1
& (2a-0+ 3 iou ) I3
2 1
For 0 < ¢ < 1, setting target sample size ny;4; > %6_1 ensures that
2(2k + 3log %
o2k +3185) (1 e
2(1 — 5/)TLM+1
Define ¢ : ((11+56,))2u kot 2llv*]|3s*. For C' > 1, setting source sample size N > 3Ctelog 3
results in
3C 1 3log &
N> “telog = = ———9-C(Z(d - k)t
Stelog 5 = 5O (d— byt
3logt  2(d—k)t 3tlog &
0og 5 p( ) € _ 0g 5 (40)

2d—k)1— 2(d—k)te ce ' —2(d— k)t

where equation @]m derived from the fact that there exists a constant C' > 1 satlsfymg the inequality
(2(d—k)+ 2 log %)te? < ce. Thus, ER(BT, Wpry1) < €
and completes the proof. O

D ADDITIONAL EXPERIMENTS

This section presents additional numerical experiments that demonstrate the efficacy of our proposed
algorithm for both known and unknown v* on synthetic data. We evaluated our algorithm against
three benchmark approaches: (i) the Method-of-Moments (MoM) estimator presented in|Yang et al.
(2020); [Tripuranent et al.| (2021)), (ii) the approach in Chen et al. |Chen et al.| (2022), (iii) our proposed
estimator via a uniform sampling approach. We ran experiments on synthetic data, varying the number
of tasks M, the rank k, and the dimension d. The proposed algorithm consistently outperforms all
three benchmark approaches, as expected.

Synthetic data: The default parameter settings are defined as n, = 50,d = 300, k = 4, M =
100. Following the same strategy as before, the entries of matrix B* were randomly generated by
orthonormalizing an i.i.d. standard Gaussian matrix, while the entries of matrix W™ for the source
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10
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Figure 3: m proposed algorithm (adaptive sampling), m proposed algorithm (uniform sampling), m MoM (adaptive
sampling), m Chen et al. (adaptive sampling). * known setting: Figures and v* unknown setting:
Figures[3d} 3] and[31] We use 200 data samples for each source task and 100 data samples for the target task.
We altered the number of tasks to M = 50, 75, 100, altered the rank of the ©* to k = 2,4, 8, and altered the
dimension to d = 200, 300, 400. It is obvious that our proposed approach with adaptive sampling outperforms
all other benchmark approaches.
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Figure 4: Estimation error vs. GD iteration for d = 300, M = 100, k = 2, noise variance = 107S.

tasks were randomly generated according to an i.i.d. Gaussian distribution. In this experiment, by
fixing all others at the default settings and only varying the rank or the number of source tasks, the
matrices B* and W*, as well as the data, are the same to guarantee that the differences are only
attributable to changing the rank or the number of source task. The trends demonstrate significant
dependence as the rank or the number of source task vary. The task relevance parameter v* was
randomly generated for the known setting, while in the unknown setting v* was assigned by allocating
20% of tasks a weight of 2, 60% of tasks set to 0, and the remaining 20% tasks to 8. The matrices
X, were generated randomly according to an i.i.d. standard Gaussian distribution. We produced the
noise following an i.i.d standard Gaussian distribution with a mean of zero and a variance of 1076,
We conducted 100 independent Monte-Carlo trials and averaged the results.

Excess risk plots. Figure [3]demonstrates the plots for the excess risk. Figures[3a] [3b] and [3c]illustrate
the excess risk for the known setting, while Figures [3d] [3¢] and [3f] depict the excess risk for the
unknown setting. Figure [3a] [3b} and [3c| demonstrate that, under the known relevance parameter
setting, our algorithm consistently provides a significantly lower excess risk than the other approaches,
validating the theoretical findings. In the unknown setting, as illustrated in Figures[3d] [3¢] and 31}
our proposed approach significantly outperforms both the MoM estimator-based approach and the
approach presented by Chen et al.. Our approach demonstrates significant improvement compared
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to the approach in the v* known setting. Consequently, the numerical experiments validate our
theoretical conclusions and the efficacy of the proposed approach.

Estimation error plot (+* unknown). In Figure ] we present the plot for estimation error vs.
GD iterations. The plot clearly demonstrates that our proposed approach provides outstanding
performance while achieving a very small percentage error; however, it cannot fall below the noise
variance, which is set to 10~%. This validates the benefit of adaptive sampling for generalizing to a
target task.
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