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Betrand Charpentier charpent@in.tum.de
Department of Computer Science, Technical University of Munich
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Abstract

Neural network sparsification is a promising avenue to save computational time and mem-
ory costs, especially in an age where many successful AI models are becoming too large
to näıvely deploy on consumer hardware. While much work has focused on different
weight pruning criteria, the overall sparsifiability of the network, i.e., its capacity to be
pruned without quality loss, has often been overlooked. We present Sparsifiability via the
Marginal likelihood (SpaM), a pruning framework that highlights the effectiveness of using
the Bayesian marginal likelihood in conjunction with sparsity-inducing priors for making
neural networks more sparsifiable. Our approach implements an automatic Occam’s razor
that selects the most sparsifiable model that still explains the data well, both for structured
and unstructured sparsification. In addition, we demonstrate that the pre-computed pos-
terior Hessian approximation used in the Laplace approximation can be re-used to define
a cheap pruning criterion, which outperforms many existing (more expensive) approaches.
We demonstrate the effectiveness of our framework, especially at high sparsity levels, across
a range of different neural network architectures and datasets.

1. Introduction

The availability of large datasets and powerful computing infrastructure has fueled the
growth of deep learning, enabling the training of massive and complex neural networks.
While achieving breakthroughs like high image recognition accuracy (Russakovsky et al.,
2015), high-quality text generation (Radford et al., 2022), and catalyzing performance gains
across various domains, this development has amplified the challenge of over-parameterization
(LeCun et al., 1990; Frankle and Carbin, 2019) and raised concerns about the increase in
model size and number of operations. Despite their high performance, over-parameterized
neural networks (NNs) present significant deployment challenges, particularly in hardware-
constrained environments (Ray, 2022; Paleyes et al., 2022). The quest for sparser neural
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networks, while promising for efficiency and interpretability, faces a crucial hurdle: many
trained networks are not sparsifiable, i.e., they resist effective pruning, regardless of the cho-
sen pruning criteria (Molchanov et al., 2016; Frankle and Carbin, 2019; Liebenwein et al.,
2021). Our work tackles this problem, showing that more sparsifiable networks can be
achieved through Bayesian model selection using the marginal likelihood (MacKay, 1995;
Immer et al., 2021a) and the choice of an adequate prior that will induce such sparsifiability.

By leveraging the marginal likelihood in conjunction with well-chosen priors, we use the
automatic Occam’s razor property (Rasmussen and Ghahramani, 2000) of Bayesian model
selection, guiding the training process towards models that are inherently more sparsifiable
while still faithfully representing the data. This is achieved by optimizing thousands of
prior parameters to adaptively regularize weight magnitudes. We make use of recent ad-
vancements in Laplace inference for Bayesian neural networks (BNNs) (Immer et al., 2021a;
Daxberger et al., 2021), allowing us to approximate the marginal likelihood (MacKay, 1995)
efficiently. Once trained, these BNNs can then be more effectively sparsified using different
pruning criteria.

Notably, the pre-computed posterior Hessian from the marginal likelihood training read-
ily translates into a powerful pruning criterion similar to the popular Optimal Brain Damage
(OBD; LeCun et al., 1990), which we call Optimal Posterior Damage (OPD), that can be
cheaply computed in practice and often outperforms existing criteria.

Extensive empirical evaluations demonstrate the strength of our SpaM approach and
the derived OPD pruning criterion in both unstructured and structured sparsification tasks
across various datasets, architectures, and sparsification scheduling scenarios (online and
post-hoc). Moreover, they show that our framework strikes a compelling balance between
performance and computational cost.

2. Shaving Weights with Occam’s Razor

We discuss Marginal Likelihood for Deep Learning and Neural Network Pruning in the
dedicated background section (Appendix B) necessary for the understanding of our method
as well as present the related work in (Appendix C).

We identify sparsifiable neural networks by automatically regularizing (groups of) pa-
rameters to have small magnitudes to facilitate pruning the least important ones, both
within a probabilistic framework. Specifically, we utilize priors that regularize parameters
in potentially structured ways leading to smaller magnitudes. To optimize the resulting
plentitude of regularization hyperparameters, we employ the Bayesian marginal likelihood
as a differentiable objective function, effectively implementing a Bayesian variant of Occam’s
razor that drives irrelevant parameters towards smaller magnitudes. While the regularized
networks can be pruned with any method, we ultimately propose to use the computed pos-
terior precision for sparsification to only keep well-determined weights of large magnitude.

2.1. Structured Priors for Regularization

To reduce the magnitude of parameters and make them more amenable to pruning, we
introduce structured priors and show how to combine them with diagonal and KFAC Laplace
approximations. While a scalar prior, corresponding to weight decay, is the most common,
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it suggests that all parameters in a neural network are equally relevant and favors uniform
magnitude of parameters, which is suboptimal for pruning (Hoefler et al., 2021, Sec. 3.6).

Instead of scalar priors, we regularize parameters with different strengths using layer-,
unit-, and parameter-wise priors. Layer-wise priors regularize individual layers differently
and have been shown to aid pruning and improve generalization (Aghasi et al., 2017; Gordon
et al., 2018; Immer et al., 2021a; Antorán et al., 2022). Unit-wise regularization has been
used mostly in traditional statistics, for example for group sparsity (Yuan and Lin, 2006),
but recently also for channels or feature dimensions in neural networks (Wen et al., 2016;
Scardapane et al., 2017).

We consider different priors in the context of the Laplace approximation for marginal
likelihood optimization and pruning: Scalar priors correspond to standard weight decay
and are identical for all weights. Layer-wise priors provide a scalar regularizer δl per layer
that is stacked into a vector δ in line with the number of parameters per layer. Parameter-
wise priors allow to specify δp for each parameter p individually. We define unit-wise
priors so that each unit, which denotes a channel for convolutional and a hidden neuron
for fully-connected layers, has a regularization strength for incoming and outgoing weights
separately. Thus, a weight θp that connects unit i at layer l-1 with unit j in layer l has prior
N (0, [δl-1]i · [δl]j), that is, each layer l with Ml hidden units has a prior vector δl ∈ RMl . A
weight is thus regularized more strongly whenever both its in- and output neurons are.

Our different priors are simple to combine additively with a diagonal Hessian approx-
imation for the Laplace approximation (Equation (B.2)) but not with a KFAC structure.
For that reason, so far, only scalar or layer-wise priors have been used for KFAC posterior
approximations (Daxberger et al., 2021). The main issue is that we want to preserve the
Kronecker factors and not factor them due to the resulting memory cost. For scalar or
layer-wise priors, this can be achieved by an eigendecomposition of the individual factors

A⊗G + Iδ
def
= QAΛAQ

T ⊗QGΛGQ
T
G + Iδ = (QA ⊗QG)(ΛA ⊗ΛG + δ)(QT

A ⊗QT
G), (1)

which means that the precision only needs to be added to the diagonal eigenvalues and
no Kronecker product needs to be calculated for inversion or determinant calculation. To
add a diagonal prior precision δl with the KFAC of the lth layer, we derive an optimal
approximation in the KFAC eigenbasis, so as to maintain the Kronecker-factored structure
of the posterior. We present the proposition and proof in Theorem 1 This approach is similar
to that of George et al. (2018), who correct KFAC’s eigenvalues towards the diagonal Gauss-
Newton, but solves the problem of adding a full-rank diagonal instead of a rank-1 outer
product to the KFAC eigenbasis.

2.2. Learning Regularization with the Marginal Likelihood

To optimize the potentially millions of regularization parameters, for example, arising from
a parameter-wise prior, we employ the marginal likelihood as a differentiable objective. Op-
timizing regularization parameters has the advantage that different (groups of) parameters
will be regularized differently and therefore become easier to prune. While it would be
intractable to optimize that many regularization parameters using validation-based forms
of optimization, the marginal likelihood can be estimated and differentiated during train-
ing (Immer et al., 2021a, 2023; Lin et al., 2023).
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Automatically determining the relevance of parameter-groups (ARD) is a common
approach in Bayesian learning that can lead to sparsity and smaller parameter magni-
tudes (MacKay et al., 1994; Tipping, 2001) and has been used especially in linear models.
The Bayesian marginal likelihood provides an objective that automatically regularizes irrel-
evant parameter-groups more to lower their magnitude. Therefore, it is said to implement
a Bayesian variant of Occam’s razor by finding the simplest model explaining the data
well (Rasmussen and Ghahramani, 2000).

Mathematically, all the prior parameters δ constitute the hyperparameters of the model
M in the log marginal likelihood (Equation (B.1)) that we optimize interleaved with the
neural network parameters. When optimizing the prior parameters, we use gradient ascent

δt+1 ← δt + α∇δ log p(D|δ)|δ=δt , (2)

or adaptive optimizers like Adam (Kingma and Ba, 2014). Algorithmically, we follow Immer
et al. (2021a) and optimize the Laplace approximation to the marginal likelihood after an
initial burn-in phase with a certain frequency.

2.3. Optimal Posterior Damage (OPD)

While sparsity regularization learned by marginal likelihood training can advantageously
be combined with any pruning criteria like Single-shot Network Pruning (SNIP; Lee et al.,
2018), variants of Gradient Signal Preservation (GraSP; Wang et al., 2020; Lubana and
Dick, 2021; Rachwan et al., 2022), or magnitude pruning (Han et al., 2016), we propose in
this section a new pruning criterion which uses our Laplace approximation and extends the
unstructured Optimal Brain Damage (OBD) pruning criterion (LeCun et al., 1990). While
OBD traditionally uses the prior precision Hθ, we propose to adapt it to use the posterior
precision Pθ. In this case the importance score S(θp) for a given parameter becomes

S(θp) = Ppp × θ2p (3)

where Ppp denotes the posterior precision for the parameter θp, extracted from the diagonal
of the posterior precision matrix Pθ. We call this novel posterior-based pruning criterion
Optimal Posterior Damage (OPD). Intuitively, individual weights with high scores indicate
certainty of the posterior distribution and a significant contribution to the model’s func-
tionality, as indicated by the magnitude. In the unstructured process, we perform global
one-shot pruning.

Further, we propose a structured version of OPD by aggregating the score of a structured
set of parameters g, i.e.,

S(g) =
∑
p∈g

S(θp) =
∑
p∈g

Ppp × θ2p (4)

In practice, the structured set of parameters g corresponds to all parameters along one
dimension of the weight matrix inside a layer, in order to reduce the size of the matrix
multiplications. Since subsequent layers might have significantly different weight matrix
dimensions impacting the magnitude of the aggregated sum, we opt for uniform structured
pruning to guarantee a fair pruning treatment across all layers. Moreover, as removing a
full structure is more aggressive, we also apply gradual pruning during training. Finally,
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Figure 1: Predictive performance as a function of sparsity level in unstructured pruning.
We see that SpaM improves the performance over MAP training across most architectures,
datasets, and pruning criteria, and that OPD often outperforms the other pruning criteria.
Both of these effects are particularly visible at higher sparsity levels.

we omit pruning the final layer to mitigate overly strong impacts on classification accuracy
and computational stability (Elsen et al., 2019).

The OPD pruning criterion can be computed to prune online during training or post-
hoc after training by using Laplace approximations. On one hand, in the case of maximum
a posteriori (MAP) training, Laplace approximations of the inverse Hessian at θ∗ can be
additionally computed to approximate OPD. On the other hand, in the case of our marginal
likelihood training, Laplace approximations of the precision matrix can be reused to compute
OPD without computational overhead, in contrast to the other pruning criteria, which
often require additional computations to be performed. Note that we will also show in our
experiments that OPD additionally avoids the need for potentially expensive fine-tuning
after pruning.

3. Experiments

We conduct experiments on various datasets and models and outline our experimental setup
in detail in Appendix G. We compare MAP training with our proposed SpaM approach with
different priors, comparing our OPD pruning criterion with random pruning, magnitude
pruning, SNIP (Lee et al., 2018), GraSP (Wang et al., 2020; Lubana and Dick, 2021), and
SynFlow (Tanaka et al., 2020). We show that SpaM improves pruning performance
across a range of different pruning criteria, especially at higher sparsities, and that our
OPD often outperforms the baselines. This observation extends not only to predictive
accuracy, but also uncertainty estimation. Moreover, we show that the choice of prior can
play a significant role and introduce parameter-wise and unit-wise priors for the
KFAC approximation. Finally, we show that SpaM and OPD also work in a structured
pruning setting, leading to significant computational benefits.

5



Dhahri Immer Charpentier Günnemann Fortuin
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Figure 2: Uncertainty estimation with pruned ResNets on CIFAR-10. We see that SpaM
improves uncertainty estimation in terms of NLL, ECE, and Brier score for many pruning
criteria and that our OPD criterion outperforms the baselines, especially at high sparsities.

SpaM Improves Performance at High Sparsities. We compare SpaM to MAP train-
ing with different pruning criteria, including OPD, across different models and datasets. For
SpaM in this unstructured pruning context, we use the diagonal Laplace approximation with
a parameter-wise prior. Encouragingly, MAP and SpaM reach comparable performance dur-
ing training, showing that the increased sparsifiability of SpaM comes at no additional cost
in unpruned performance (see Figure E.1 in the appendix).

More excitingly, we see in Figure 1 and Table C.1 that SpaM drastically improves the
performance for many pruning criteria, especially magnitude pruning, GraSP, and OPD. We
also see that OPD, despite being a cheap byproduct of our marginal likelihood computation,
often outperforms the other pruning criteria, especially at higher sparsities. For instance,
at 95 % pruning rate (i.e., with 20x fewer parameters), our combination of SpaM and OPD
still retains almost the same performance as the unpruned model, while the other pruning
criteria with MAP training have dropped to unusable performance levels at this sparsity.

Fine-tuning. We see in Figure E.9 in the appendix that some of this performance dif-
ference can be remedied by costly fine-tuning of the networks after pruning, which however
still does not allow the other methods to reach the full SpaM-OPD performance, and in the
case of OPD, also does not further improve its already near-optimal performance.

Online pruning. Figure E.8 shows that our online version of SpaM, which uses the
marginal likelihood and OPD during training to iteratively prune the network, reaches
comparable performance levels to the post-hoc version, thus offering a computationally
even more convenient way to effectively sparsify neural networks.

Uncertainty estimation. Given that SpaM is a Bayesian method, it does not only
offer high predictive accuracies but also calibrated uncertainty estimates. Indeed, we see in
Figure 2 that the trends we have seen for accuracy also apply for negative log-likelihood,
expected calibration error, and the Brier score. Again, SpaM improves the uncertainty
estimates over MAP training, OPD outperforms most other criteria, and we achieve well-
calibrated models up until very high sparsity levels. Note that the random baseline also
achieves a low ECE at high sparsity levels because it essentially reverts to random guessing,
which is a known weakness of the ECE metric (Gruber and Buettner, 2022).

We discuss the impact of prior selection on OPD and other methods in Appendix E.2,
SpaM’s extension to structured sparsity Appendix G.6, and results on modern architectures
Appendix E.9.
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4. Conclusion

We leverage the Bayesian marginal likelihood to identify inherently sparsifiable neural net-
works, achieving significant performance and uncertainty estimation gains at high sparsity
levels across diverse pruning criteria. Notably, our novel pruning criterion, OPD, efficiently
leverages the marginal likelihood computation. Additionally, we present guidelines for ef-
fective prior selection and demonstrate the efficiency of our SpaM approach for structured
pruning. This work paves the way for deploying large, pruned AI models on resource-
constrained devices.
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Appendix A. Method Overview

    SpaM Training
        Unstructured Pruning
        Structured Pruning

KFAC LA 

Laplace Approximation and MargLik estimation 

 

Mask

Mask

Diag LA 

Compute OPD importance score

Aggregate the score per structure Remove

Figure A.1: Overview of our proposed SpaM method. We start by training the network to
maximize the marginal likelihood using the Laplace approximation, while simplifying the
Hessian computation through either the KFAC or diagonal approximation. We can then use
our precomputed posterior Hessian as a pruning criterion (OPD). For the unstructured case,
we compute thresholds to achieve different target sparsities, compute the mask, and apply
it, while for the structured approach, we aggregate the score per layer for easier weight
transfer, compute the mask, and then delete the masked structures to obtain a smaller
model.

Appendix B. Background

We use deep neural networks to model learning tasks with inputs xn ∈ RD and targets
yn ∈ RC collected in a dataset D = {(xn,yn)}Nn=1 of N pairs. A model is parameterized
by weights θ ∈ RP , and maps from inputs to targets using the neural network function
fθ(x). Assuming the data are i.i.d., we have a likelihood p(D|θ) =

∏N
n=1 p(yn|fθ(xn)).

We minimize the negative log likelihood, which corresponds to common losses like the
cross-entropy in classification. Additionally, regularization in the form of weight decay is
commonly used and corresponds to a Gaussian prior on parameters p(θ) = N (θ;0,diag(δ))
with diagonal precision.

B.1. Marginal Likelihood for Deep Learning

The marginal likelihood serves as the probabilistic foundation for model evaluation and
selection. It provides an objective to optimize the tradeoff between data fit and model com-
plexity, akin to the concept of Occam’s razor (Rasmussen and Ghahramani, 2000; MacKay,
2002), by quantifying how well a modelM, with all its inherent uncertainties, explains the
observed data:

p(D|M) =
∫
p(D|θ,M) p(θ|M) dθ. (B.1)
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However, it requires computing an intractable integral over all neural network parameters.
The Laplace approximation (LA, MacKay, 1992) provides a tractable and effective

approximation to the marginal likelihood for deep learning (Immer et al., 2021a). It arises
from a second-order Taylor approximation around an estimate of the mode, θ∗, resulting in

log p(D|M) ≈ log p(D,θ∗|M)− 1
2 log | 12πPθ∗ |, (B.2)

where Pθ∗ is the posterior precision given by the Hessian of the negative log joint dis-
tribution, −∇2

θ log p(D,θ|M), evaluated at θ∗. Defining Hθ∗ as the Hessian of the neg-
ative log likelihood objective −∇2

θ log p(D|θ,M), the posterior precision decomposes as
Pθ∗ = Hθ∗ + diag(δ).

In practice, the Hessian of the negative log likelihood is often approximated by the
positive semidefinite generalized Gauss-Newton (GGN, Schraudolph, 2002),

Hθ ≈
∑N

n=1∇θfθ(xn)∇2
f log p(yn|fθ(xn))∇T

θfθ(xn), (B.3)

which relies on the Jacobians of the neural network function and second derivative of the
negative log likelihood at the output. Further, it is amenable to efficient structured approx-
imations like diagonal or layer-wise variants (e.g., Martens and Grosse, 2015; Botev et al.,
2017).

Diagonal and block-diagonal GGN approximations are efficient and therefore
commonly used for Laplace approximations in deep learning (Ritter et al., 2018; Daxberger
et al., 2021). The diagonal LA is cheap in terms of storage and computation by only
modeling the marginal variances of parameters. Kronecker-factored LA (KFAC LA, Ritter
et al., 2018) instead relies on a block-diagonal approximation to the GGN of the parameters
θl in the lth layer,

Hθl
≈ Al ⊗Gl, (B.4)

where the factors are given by the outer products of pre-activations and Jacobians w.r.t.
the output of a layer, respectively (Martens and Grosse, 2015; Botev et al., 2017). The top
left of Figure A.1 shows a comparison of both structures.

B.2. Neural Network Pruning

Unstructured and structured pruning. The goal of the pruning procedure is to remove
parameters from θ without affecting the quality of the model output fθ(x). While unstruc-
tured pruning consists in zeroing individual entries θp of the weight matrices, structured
pruning consists in deleting entire structured sets of parameters g, like rows or columns
(Liang et al., 2021; Fang et al., 2023). The results of structured pruning enable smaller
matrix multiplications which directly provide real-world efficiency gains on most hardware,
including GPUs.

Pruning procedures usually follow three steps: (1) We use a scoring function S(·) to
evaluate the importance of each individual parameter S(θp) for unstructured pruning, or
structured set of parameters S(g) for structured pruning. (2) We compute a binary mask m
with the same dimensions as θ which assign 0 values to parameters whose unstructured or
structured pruning scores are below a threshold T , and 1 otherwise. While the threshold T
is determined based on the target sparsity across layers for global pruning, it is determined
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Table C.1: Accuracies of pruned ResNets on CIFAR-10. The best training method for each
pruning criterion is highlighted in green, where we see that SpaM improves performance
for all criteria except the random baseline. The best performances overall at each sparsity
level are shown in bold, showing that our OPD criterion outperforms the others at high
sparsities.

Criterion Training Sparsity (%)

80 85 90 95 99

OPD
MAP 88.06 (±0.12) 82.32 (±0.44) 64.08 (±1.32) 37.52 (±2.34) 17.32 (±1.01)
SpaM 90.78 (±0.66) 90.78 (±0.65) 90.68 (±0.65) 89.98 (±0.61) 66.28 (±5.89)

GraSP
MAP 82.87 (±0.48) 68.78 (±1.88) 48.65 (±2.69) 26.46 (±1.86) 15.75 (±0.80)
SpaM 91.50 (±0.66) 90.94 (±0.65) 89.42 (±0.71) 82.18 (±2.65) 41.48 (±7.95)

SNIP
MAP 53.96 (±2.72) 37.74 (±2.21) 26.74 (±3.17) 13.88 (±0.87) 12.58 (±0.36)
SpaM 67.40 (±5.68) 52.62 (±6.84) 33.75 (±5.71) 17.06 (±2.23) 11.90 (±0.51)

Magnitude
MAP 88.17 (±0.12) 81.92 (±0.37) 61.60 (±1.11) 32.88 (±1.52) 16.12 (±0.90)
SpaM 91.55 (±0.64) 90.92 (±0.64) 89.23 (±0.62) 81.80 (±2.22) 41.78 (±7.20)

Random
MAP 11.25 (±0.48) 12.15 (±0.92) 11.65 (±0.62) 10.45 (±0.17) 10.27 (±0.17)
SpaM 11.00 (±0.48) 10.47 (±0.86) 10.56 (±1.15) 10.01 (±0.45) 9.81 (±0.61)

per layer for uniform pruning (Liang et al., 2021). (3) We apply the mask on the weight
matrix with element-wise multiplication m ◦ θ to effectively remove the least important
parameters. Alternatively, structured pruning enables to directly remove rows or columns
whose mask values are 0 to reduce weight matrix dimensions.

Pruning before, during, after training. The pruning procedure can be applied at
different times. On the one hand, some methods prune before or during training (Lee et al.,
2018; Rachwan et al., 2022), thus allowing to (partially) train sparse models. On the other
hand, other methods propose to prune after training (LeCun et al., 1990), which allows the
compression of existing pre-trained models.

One-shot and iterative pruning. While the pruning procedure can be applied a
single time to reach the target sparsity in one-shot manner, it is also possible to apply it
iteratively to reach the target sparsity with smaller steps. Further, the pruning iterations
can also be spaced at a specified pruning interval during training to gradually compress the
model.

Appendix C. Related work

Laplace-approximated BNNs. From the early inception of Bayesian neural networks
(Neal, 1992; Hinton and Van Camp, 1993), the Laplace approximation was a popular in-
ference method (MacKay, 1992). In recent years, it has undergone a renaissance (Martens
and Grosse, 2015; Botev et al., 2017; Ritter et al., 2018; Daxberger et al., 2021), including
critical work on using more scalable approximations for the associated marginal likelihood
in the context of model selection (MacKay, 1995; Immer et al., 2021a, 2022), which we use
in our framework. To the best of our knowledge, we are the first to study the benefits of
this Laplace-approximated marginal likelihood in the context of sparsification of deep neural
networks. However, similar methods that automatically quantify the relevance (ARD) of
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parameters have been derived and used for linear and kernel models (Tipping, 2001; Wipf
and Rao, 2004).

Pruning neural networks. Various pruning criteria have been proposed to determine
the importance of model parameters. Many criteria proposed to prune based on the weight
magnitude (Han et al., 2016; Zhou et al., 2020; Bellec et al., 2018) but usually required
additional fine-tuning to recover accuracy. Sun et al. (2023) proposed to combine activa-
tion and weight norms for pruning without fine-tuning. Other approaches include pruning
using first-order information based on connectivity (Lee et al., 2018) or synaptic flow con-
servation (Tanaka et al., 2020), or second-order information aiming at preserving gradient
flow (Rachwan et al., 2022; Wang et al., 2020; Lubana and Dick, 2021). Recently, van der
Ouderaa et al. (2023) focused on pruning LLMs based on a second-order Taylor expansion.
In contrast, OPD uses second-order information provided by the posterior precision given
by the Laplace approximation.

Beyond pruning criteria, there have been many approaches to prune at initialization (Lee
et al., 2018; Wang et al., 2020; Tanaka et al., 2020), during training (Golkar et al., 2019; Zhou
et al., 2021), and after training (Han et al., 2016; Sun et al., 2023). In particular, multiple
works proposed to leverage specific training schemes promoting zero-invariant parameter
groups for structured pruning (Chen et al., 2021, 2023). In contrast, SpaM induces sparse
structures during training using Bayesian marginal likelihood training.

Appendix D. Proof for Diagonal Prior in a Kronecker-factored
Eigenbasis

Proposition 1 (Diagonal Prior in KFAC Eigenbasis) Considering the Frobenius norm,
the optimal diagonal perturbation of the KFAC eigenvalues ΛA⊗ΛB to add a diagonal prior
precision is given by ΛA ⊗ ΛB + δ̂ with mat(δ̂) = (QT

G)2mat(δ)Q2
A where the square is

element-wise and mat(·) reshapes the vector to match the parameter shape used in KFAC.
Thus, it can be computed efficiently without computing a Kronecker product.

Proof We prove this result in two steps. First, we show what the optimum looks like
in terms of the Frobenius norm. Second, we show how to simplify the results to enable
efficient computation without computing Kronecker products. We have a KFAC Hessian
approximation A⊗B with A ∈ RDin×Din and B ∈ RDout×Dout where the dimensionalities D·
depend on the layer type (Martens and Grosse, 2015). In the case of a fully-connected layer,
these are simply the dimensionality of the in- and output hidden representation. The same
layer will have Din×Dout parameters and thus the corresponding diagonal prior precision is
given by δ ∈ RDinDout . For the Laplace approximation, the eigendecomposition of individual
Kronecker factors is already computed as A = QAΛAQ

T
A and similarly for G as shown in

Equation (1). Recall also that diag(·) turns a vector into a diagonal matrix and extracts
the diagonal entries of a matrix into a vector. We are interested in the Frobenius-optimal
diagonal perturbation of the eigenvalues so as to maintain the efficiency structure of the
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KFAC and thus the downstream Laplace approximation:

arg min
δ̂

∥(QA ⊗QG)(ΛA ⊗ΛG + diag (δ̂))(QT
A ⊗QT

G)

− (QA ⊗QG)(ΛA ⊗ΛG)(QT
A ⊗QT

G) + diag (δ)∥2F
= arg min

δ̂

∥ΛA ⊗ΛG + diag (δ̂)−ΛA ⊗ΛG + (QT
A ⊗QT

G) diag (δ)(QA ⊗QG)∥2F

= diag ((QT
A ⊗QT

G) diag (δ)(QA ⊗QG)),

where we first multiplied the orthogonal bases from left and right and then realized that
the values of δ̂ need to be set to the entries of the prior δ projected into the basis.

Näıvely, computing the optimum of δ̂ would require expanding the Kronecker product
above and lead to a potentially intractable complexity ofO(D2

inD
2
out). However, it is possible

to simplify it further to maintain efficient computation: For simplicity, consider the case
without Kronecker factorization. We have

diag (QT diag (d)Q) = (QT ◦QT)d,

where ◦ is the element-wise Hadamard product. So we can express the diagonal of the
matrix-matrix product as a matrix-vector product with the diagonal d as the vector. In
the Kronecker-factored case, we need just one more simplification:

diag((QT
A ⊗QT

G) diag (δ)(QA ⊗QG)) = ((QT
A ⊗QT

G) ◦ (QT
A ⊗QT

G))δ

= ((QT
A ◦QT

A)⊗ (QT
G ◦QT

G))δ

= vec((QT
G ◦QT

G) mat(δ)(QA ◦QA))

= vec(QT
G)2 mat(δ)Q2

A,

where we have used the mixed-product property of the Kronecker product and the properties
for multiplying a Kronecker-product with a vector. The vec operator “flattens” a matrix,
that is, turns a Dout ×Din matrix into a DoutDin vector, and mat does the opposite. The
final approximation δ̂ can be computed efficiently in O(D2

in + D2
out).

Appendix E. Additional Results

E.1. Baselines

Figure E.1 illustrates that both MAP and SPAM achieve similar levels of performance
throughout the training process. This observation underscores that SPAM’s enhanced spar-
sifiability is achieved without compromising the unpruned performance. Furthermore, the
comparable unpruned accuracies of SPAM and MAP models indicate that SPAM’s sparsi-
fiability benefits are not merely a result of higher baseline accuracies, but rather a distinct
advantage offered by the SPAM methodology. The sparsification methods are performed
on these models in a way that once the model is trained for a specific seed, we copy it and
use it to perform the different sparsification methods, we repeat the steps for a minimum
of 4 different seeds ensuring the robustness of our findings.
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(b) FC on MNIST
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(c) LeNet on MNIST
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(d) LeNet on FashionMNIST
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Figure E.1: Training curves for MAP and SpaM training with different priors and Hessian
approximations. We see that all methods achieve a similar performance by the end of
training.

E.2. Influence of Priors on Sparsifiability

The Bayesian marginal likelihood, as employed in SpaM, strongly depends on the chosen
prior. To understand the influence of prior and Hessian approximation on performance in
our proposed SpaM-OPD approach, we compare diagonal and KFAC approximations with
scalar, layer-wise, unit-wise, and parameter-wise priors. Note regarding the latter two, that
in this work, we are the first to ever implement them for the KFAC approximation, thus
contributing to the general framework of Laplace-approximated BNNs (Daxberger et al.,
2021), independent of the pruning use case.

We see in Figure E.2 that our newly introduced unit-wise and parameter-wise priors for
KFAC indeed outperform the others, especially at high sparsities. When comparing KFAC
to the diagonal approximation, we see that KFAC often leads to slightly better performance
at lower sparsity levels. However, we also see that the relatively simple choice of parameter-
wise prior and diagonal Hessian approximation, as used in our previous experiments above,
is a strong baseline across the board and can be recommended as a safe default option for
unstructured pruning. Note that the unit-wise priors can be especially useful for structured
pruning, as we will see in the following experiment. More detailed prior comparisons can
be found in Appendix E.5.

E.3. SpaM Extends to Structured Sparsification

Here, we study the effect of SpaM and OPD in the more challenging setting of eliminat-
ing entire network structures, such as convolutional kernels. Studying different network
architectures, we aim to generalize our unstructured pruning approach to the setting of
structured pruning, where the structures can be freely defined depending on the use case.
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Figure E.2: Comparison of different priors and Hessian approximations for SpaM-OPD
pruning. The unit-wise and parameter-wise priors show better performance at high sparsity
levels, with the parameter-wise one bridging the gap between Diag and KFAC LA.

Encouragingly, we see in Figure E.3 that our findings from the unstructured case trans-
fer qualitatively also to the structured case, with SpaM-OPD outperforming the baselines
at high sparsities. Crucially, while the sparsity patterns generated by unstructured pruning
are more difficult to translate into computational benefits, structured pruning directly leads
to computational savings on standard GPUs (see also Figure E.18 in the appendix). We see
in Figure E.4 that SpaM-OPD dominates the Pareto frontier of the tradeoff between perfor-
mance and computational cost at high sparsities (i.e., low costs), yielding 10x–20x savings
in FLOPS and memory consumption with only minimal deterioration in performance. This
positions our proposed framework as a potentially promising approach for the deployment
of AI models in resource-constrained environments.

E.4. Tables

In tables E.1 and E.2, we present our results comparing different methods using MAP
and SpaM with various priors. Notably, SpaM with Diag LA and parameter-wise priors
significantly outperforms MAP and other SpaM variants at high sparsity levels.

E.5. Prior effects

Figure E.5 and Figure E.6 illustrate our findings when applying SpaM with various priors
for both OPD and GraSP. Notably, Diag LA, using parameter-wise priors, excels in high
sparsity scenarios, even with complex models and datasets like ResNets. Furthermore, for
MLPmixer, we observe that SpaM variants, employing parameter-wise priors and layerwise
approaches, preserve baseline accuracy even at extreme sparsities of 99%.
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Sparsity (%) 20 40 60 70 75 80 85 90 95 99
Criterion Approximation Prior

GraSP

Diag
parameter-wise 98.75 98.75 98.74 98.75 98.75 98.75 98.75 98.74 98.72 52.19
layerwise 99.08 99.09 99.10 98.96 98.50 97.79 93.50 78.93 63.71 16.67
scalar 99.11 99.11 99.12 98.84 98.41 97.74 87.67 57.99 44.60 15.73

KFAC
layerwise 99.25 99.25 99.26 99.01 98.74 97.86 91.48 82.78 50.75 13.48
scalar 99.24 99.24 99.24 99.02 98.58 98.02 92.03 73.64 42.18 12.23

MAP MAP 99.01 99.01 99.01 98.99 98.91 98.75 98.28 96.10 77.30 20.43

SNIP

Diag
parameter-wise 98.73 98.73 98.68 97.95 95.70 83.90 57.55 20.47 13.00 9.10
layerwise 99.08 98.34 46.42 17.69 21.89 14.61 14.47 13.50 11.94 9.83
scalar 99.11 99.11 98.56 91.82 84.70 62.25 34.56 10.75 16.28 16.70

KFAC
layerwise 99.25 99.20 79.59 27.70 43.76 23.85 10.28 16.19 19.90 10.27
scalar 99.24 99.24 98.56 94.82 70.25 48.28 27.02 26.88 25.95 9.86

MAP MAP 99.01 99.01 98.95 98.31 97.21 94.26 87.19 65.42 25.15 12.56

OPD

Diag
parameter-wise 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 98.72 75.92
layerwise 99.08 99.09 99.08 99.07 99.04 98.98 98.84 98.40 94.71 36.25
scalar 99.11 99.11 99.10 99.11 99.06 98.89 98.28 95.32 74.78 16.12

KFAC
layerwise 99.25 99.25 99.24 99.23 99.18 99.11 98.95 98.60 95.90 28.16
scalar 99.24 99.24 99.24 99.16 99.10 98.90 97.97 95.88 76.11 27.38

MAP MAP 99.01 99.01 99.03 98.99 98.95 98.90 98.71 98.17 92.82 27.19

Magnitude

Diag
parameter-wise 98.72 98.72 98.72 98.70 98.69 98.67 98.65 98.59 98.03 38.61
layerwise 99.08 99.09 99.08 99.06 99.01 98.92 98.46 94.20 39.86 10.19
scalar 99.11 99.11 99.09 99.12 99.07 98.98 98.48 95.69 74.30 13.53

KFAC
layerwise 99.25 99.25 99.22 99.18 99.08 98.95 98.38 91.93 28.52 9.80
scalar 99.24 99.24 99.20 99.14 99.04 98.92 98.62 97.08 84.66 22.21

MAP MAP 99.01 99.01 98.99 98.96 98.93 98.85 98.57 97.69 88.82 15.42

Random

Diag
parameter-wise 55.88 25.95 11.15 10.88 11.13 10.56 11.88 11.35 9.95 9.81
layerwise 78.86 17.47 22.35 14.23 12.06 11.80 10.18 12.82 9.35 9.80
scalar 88.75 60.17 25.35 15.98 14.26 11.91 8.63 9.74 9.05 9.80

KFAC
layerwise 89.90 18.70 20.36 14.13 14.56 12.61 9.72 12.00 8.93 9.80
scalar 90.46 34.14 19.98 12.72 8.49 11.40 10.08 10.54 9.74 9.80

MAP MAP 79.03 43.25 22.86 9.68 10.34 9.96 11.50 9.50 10.85 9.80

Table E.1: Comparison of pruning accuracies of SpaM training with different pruning cri-
teria, Hessian approximations, and priors for post-hoc pruning LeNet on MNIST.
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Sparsity (%) 20 40 60 70 75 80 85 90 95 99
Method Approximation Prior

GraSP

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.51 98.52 98.51 98.52 98.50
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 90.35
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 92.54

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.11 95.45
layerwise 98.16 98.16 98.16 98.16 98.16 98.16 98.16 98.15 97.92 57.14
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.21 64.88

MAP MAP 98.41 98.41 98.38 98.38 98.33 98.35 98.17 97.38 89.43 38.89

SNIP

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.52 98.49 97.70 83.76 20.00
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 12.41
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 75.84

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 97.84 32.84
layerwise 98.16 98.16 98.16 98.16 98.15 98.15 98.14 98.10 92.04 28.16
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 97.89 54.69

MAP MAP 98.38 98.36 98.34 98.22 98.02 97.44 96.04 92.22 81.42 35.36

OPD

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.51 98.52 98.52 98.51 98.50
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 96.06
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 96.47

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 96.97
layerwise 98.16 98.16 98.16 98.16 98.16 98.16 98.16 98.15 97.84 86.81
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.23 84.91

MAP MAP 98.38 98.39 98.38 98.35 98.34 98.32 98.20 97.72 94.26 57.66

Magnitude

Diag
parameter-wise 98.51 98.51 98.51 98.51 98.51 98.52 98.52 98.51 98.52 98.48
layerwise 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.71 97.70 76.89
scalar 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 97.91 96.24

KFAC
parameter-wise 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 98.10 94.22
layerwise 98.16 98.16 98.16 98.16 98.16 98.16 98.16 98.14 97.89 36.31
scalar 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.29 98.24 82.57

MAP MAP 98.38 98.39 98.38 98.36 98.34 98.30 98.16 97.77 93.56 53.16

Random

Diag
parameter-wise 90.09 62.13 39.76 31.51 19.52 22.50 18.93 14.84 15.57 11.81
layerwise 83.18 53.42 32.12 28.44 22.51 22.82 18.88 17.00 12.95 11.02
scalar 85.66 57.33 37.74 25.43 23.45 20.28 22.31 16.64 14.89 9.85

KFAC
parameter-wise 85.95 58.41 39.27 27.96 24.64 21.94 18.72 17.04 13.66 9.37
layerwise 87.00 58.40 41.93 33.39 30.62 27.91 20.77 21.02 14.07 10.49
scalar 90.16 64.54 40.36 34.11 30.63 28.92 17.88 18.35 13.82 11.47

MAP MAP 97.26 87.54 65.94 52.32 47.22 44.12 40.72 22.46 16.59 8.87

Table E.2: Comparison of pruning accuracies of SpaM training with different pruning cri-
teria, Hessian approximations, and priors for post-hoc pruning MLP-Mixer (2 blocks) on
MNIST.
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Figure E.3: Similarly to unstructured pruning, we also see in this experiment on structured
pruning that SpaM (using a unit-wise prior) improves performance over MAP and that
OPD mostly outperforms other pruning criteria, especially at higher sparsity levels.

1.6e+04 6.2e+04 2.3e+05

FLOPS

0

20

40

60

80

Te
st

ac
cu

ra
cy

(%
)↑

101 102

Size (KB)

0

20

40

60

80

SpaM-GraSP
MAP-GraSP
SpaM-OPD

SpaM-SNIP
MAP-SNIP

SpaM-Rand
MAP-Rand

SpaM-SynFlow
MAP-SynFlow

Figure E.4: Structured pruning with LeNet on FashionMNIST, using unit-wise priors. We
see that our SpaM-OPD dominates the Pareto frontier in terms of predictive performance
as a function of computational time and memory cost.

E.6. Unit-wise and Parameter-wise KFAC for GraSP

As shown in Section 3, networks trained using SpaM and parameter-wise priors were able to
maintain a high accuracy at challenging sparsity levels up to 99%. Moreover, parameter-wise
KFAC and unit-wise priors showed high performance for the OPD pruning approach. We
show in Figure E.7 that the combination of SpaM and these priors leverage the performance
of methods like GraSP.
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Table E.3: NLL of unstructured pruned ResNets on CIFAR-10. The best training method
for each pruning criterion is highlighted in green, showing that SpaM improves performance
over MAP for most criteria. The best performances (lowest NLL) overall at each sparsity
level are shown in bold, showing that our OPD criterion outperforms the others at most
sparsity levels.

Criterion Training Sparsity (%)

70 75 80 85 90 95 99

OPD
MAP 0.53 ± 0.0013 0.52 ± 0.0011 0.54 ± 0.0011 0.69 ± 0.0036 1.31 ± 0.0086 2.08 ± 0.0190 2.62 ± 0.0106
SpaM 0.36 ± 0.0016 0.36 ± 0.0016 0.37 ± 0.0014 0.38 ± 0.0022 0.44 ± 0.0056 0.80 ± 0.0270 3.43 ± 0.0179

GraSP
MAP 0.51 ± 0.0008 0.54 ± 0.0032 0.66 ± 0.0046 1.11 ± 0.0195 1.73 ± 0.0193 2.35 ± 0.0276 2.69 ± 0.0088
SpaM 0.37 ± 0.0007 0.38 ± 0.0006 0.40 ± 0.0015 0.42 ± 0.0032 0.51 ± 0.0093 0.97 ± 0.0317 3.71 ± 0.0709

Magnitude
MAP 0.54 ± 0.0014 0.53 ± 0.0011 0.55 ± 0.0015 0.73 ± 0.0034 1.54 ± 0.0098 2.65 ± 0.0239 2.70 ± 0.0113
SpaM 0.37 ± 0.0011 0.37 ± 0.0012 0.38 ± 0.0016 0.41 ± 0.0028 0.49 ± 0.0072 0.92 ± 0.0320 3.63 ± 0.0418

Random
MAP 2.79 ± 0.0438 2.63 ± 0.0089 2.42 ± 0.0146 2.36 ± 0.0042 2.33 ± 0.0037 2.34 ± 0.0043 2.30 ± 0.0000
SpaM 2.60 ± 0.0292 3.22 ± 0.0701 2.60 ± 0.0230 2.70 ± 0.0447 2.38 ± 0.0044 2.31 ± 0.0009 2.31 ± 0.0003

SNIP
MAP 1.54 ± 0.0595 1.45 ± 0.0235 2.18 ± 0.0331 2.51 ± 0.0350 2.90 ± 0.0450 4.44 ± 0.0864 3.28 ± 0.0203
SpaM 0.84 ± 0.0320 1.27 ± 0.0474 2.01 ± 0.0814 2.93 ± 0.1060 3.72 ± 0.1244 3.97 ± 0.0907 3.26 ± 0.0841
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(d) LeNet on FashionMNIST
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(e) ResNet on CIFAR10 (Not
Augmented)
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Figure E.5: Effect of different priors and Hessian approximations on the sparsification
performance with SpaM-OPD. The diagonal approximation with parameter-wise priors is a
strong choice, especially at higher sparsities, while the KFAC approximation with layerwise
prior yields slightly better performances at lower sparsities.

E.7. Online pruning.

E.8. One Shot Efficiency

As seen in Figure E.9, our proposed post-hoc pruning criterion, OPD, consistently demon-
strates stable performance across diverse model architectures and datasets, achieving sig-
nificant sparsity levels without the need for fine-tuning. It seamlessly operates either post-
training or with pre-trained models, providing a highly flexible and versatile solution.
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(b) FC on MNIST
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(d) LeNet on FashionMNIST
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(e) ResNet on CIFAR10 (Not
Augmented)
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Figure E.6: Priors and Hessian approximations for GraSP pruning. We see that the effects
are qualitatively similar to pruning with OPD.
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Figure E.7: Priors and Hessian approximations for GraSP pruning with SpaM. We see that
the effects are qualitatively similar to pruning with OPD.

E.9. Modern Architectures

E.9.1. Wide ResNet

In Figure E.10, we demonstrate how SpaM enhances the sparsity performance of Wide
ResNet models. This is specifically illustrated in the case of OPD, GraSP, and Magnitude,
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Figure E.8: Predictive performance as a function of sparsity level in unstructured pruning.
We include our online pruning approach that progressively prunes a model during the
training compared to the other curves demonstrating the performance of 10 pruned models
based on a converged baseline. our online pruning approach is often competitive with
post-hoc pruning.

all while maintaining a low Brier score, ECE, and NLL up to 95% sparsity. On a larger
dataset like CIFAR100, We observe the same trend as shown in Figure E.11

E.9.2. Vision Transformer

Figure E.12 demonstrates the impact of SpaM on Unstructured Pruning for a Vision Trans-
former (ViT) trained on MNIST. These results align with the findings presented in Section 3
with SpaM diagonal LA and parameter-wise priors leveraging the sparsifiability of models
using OPD, Magnitude and GraSP, maintaining a test accuracy of 97% for OPD and Mag-
nitude at 95% sparsity compared to an accuracy of lower than 20% under MAP for the
same methods. This serves as a proof-of-concept for vision transformers but efficacy has to
be verified at a larger scale where such models perform best.

E.9.3. GPT-2

We demonstrate the efficacy of OPD on a pre-trained GPT-2 model (124M parameters) fine-
tuned for sentiment analysis on the IMDB dataset. To manage computational resources, we
limit both the Laplace approximation and SpaM to two steps. Despite this constraint, OPD
maintains high predictive performance even at 60% sparsity, as shown in Figure E.13. This
suggests that extending SpaM optimization with more epochs and a more refined posterior
could further enhance performance.

25



Dhahri Immer Charpentier Günnemann Fortuin
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Figure E.9: SpaM post-hoc pruning efficiency with optional fine-tuning after the pruning.
Unlike other pruning criteria, OPD does not require additional tuning to achieve optimal
performance across different architectures and often still outperforms the other fine-tuned
methods.

E.10. Visualization of Pruning Process

To visualize the model’s structural evolution during pruning, we present a series of filter
bank visualizations that capture the key stages of transformation, from the initial dense
architecture to the final compact form (Figures E.14, E.15,E.16, E.17).

E.11. Network Compression

In Figures E.18 and E.19, we demonstrate the efficiency gains achieved by our SpaM-OPD
approach. For the fully connected network on the Cancer dataset, it achieves a remarkable
reduction of over 20 times in disk size and 24 times in FLOPs while simultaneously main-
taining baseline test accuracy. Additionally, it boasts a Brier score of 0.15 and a negative
log marginal likelihood (Neg Log MargLik) lower than the original model. These results
highlight the effectiveness of SpaM-OPD in achieving significant model compression without
compromising performance on key metrics.

E.12. Computational Cost

Instead of using GGN approximation, which scales linearly with the number of classes,
we can also use the EF. Using EF instead of GGN for SpaM does not add computational
overhead compared to MAP, as EF costs roughly as much as gradient computation. The
pruning results are not affected by the choice of GGN or EF. The runtime of MAP and
SPAM was identical (roughly 1h and 20 minutes on A100s) for WRN-16 on Cifar100 using
SpaM (EF) diagonal LA with parameter-wise prior (our recommended settings for pruning)
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Figure E.10: SpaM post-hoc efficiency for Wide ResNet 16 on CIFAR10. Leveraging OPD,
GraSP, and Magnitude performance under SpaM in comparison to MAP show superior test
accuracy at increased sparsity levels coupled with a low ECE, Brier Score, and NLL.

in comparison to MAP training. In prior works (Immer et al., 2021b), it was found that
GGN gives a better posterior predictive approximation, but we do not use it in this work.
We find that EF works similarly well for pruning at a much lower cost.

Appendix F. Technical Details

F.1. Resizing and Compression

Post structured pruning, the model may undergo fine-tuning to regain performance. In
this process, pruned structures are completely removed from the architecture rather than
merely being zeroed out. This leads to a network with fewer filters in convolutional layers
and a reduced number of neurons in fully connected layers, resulting in a leaner and more
efficient model.

The process of compaction involves transferring the weights from the pruned model to
a newly created, smaller architecture that is aligned with the dimensions of the retained
active structures. This results in a denser, storage- and computation-optimized model.

Algorithm 1 summarizes this entire process of structured pruning and model compaction.

This approach transitions the model from a pruned state to a compact and optimized
architecture. The final compressed model Mcompact not only retains essential predictive
capabilities but is also further tuned for performance. The newly configured Mcompact

is saved with updated parameters, ensuring efficient inference and ease of deployment,
especially on resource-constrained edge devices.

The reduced memory footprint and FLOPS of Mcompact are particularly beneficial for
deployment on edge devices with limited computational resources. When models exceed
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20 30 40 50 60 70 80 90 100

Sparsity (%)

0

10

20

30

40

50

60

Te
st

A
cc

ur
ac

y
(%

)↑

20 30 40 50 60 70 80 90 100

Sparsity (%)

0.0

0.2

0.4

0.6

0.8

1.0

E
C

E
↓

20 30 40 50 60 70 80 90 100

Sparsity (%)

0.008

0.012

0.016

0.020

B
ri

er
↓

20 30 40 50 60 70 80 90 100

Sparsity (%)

101

102

103

104

105

N
L

L
↓

SpaM-SNIP
MAP-SNIP

SpaM-GraSP
MAP-GraSP

SpaM-OPD-Post-Hoc
MAP-OPD-Post-Hoc

SpaM-Random
MAP-Random

SpaM-Magnitude
MAP-Magnitude

Figure E.11: SpaM post-hoc efficiency for Wide ResNet 16 on CIFAR100. Leveraging OPD,
GraSP, and Magnitude performance under SpaM in comparison to MAP show superior test
accuracy at increased sparsity levels coupled with a low ECE, Brier Score, and NLL.

the hardware limits, aggressive compression techniques like quantization may be required,
which can compromise performance. Our method aims to significantly reduce the memory
size of the model while minimizing performance trade-offs. The effectiveness of our approach
in achieving this balance is explored in Section 3.

F.2. Pseudocodes

Algorithm 1 outlines our structured pruning procedure, highlighting how we efficiently
achieve a simpler model by transferring weights to a smaller one.

Appendix G. Experimental Setup

G.1. Datasets

Breast Cancer Wisconsin (Diagnostic) (UCI): This dataset, derived from digitized images
of fine needle aspirates of breast masses, includes features describing characteristics of cell
nuclei in the images. It is a classic binary classification dataset used extensively in breast
cancer research (Dua and Graff, 2019).

MNIST : A foundational benchmark dataset in machine learning, MNIST consists of
60,000 training and 10,000 test images of handwritten digits (0 to 9) in 28x28 pixel grayscale
format (LeCun et al., 1998).

FashionMNIST : A drop-in replacement for MNIST, Fashion-MNIST offers a greater
challenge with its 60,000 training and 10,000 test images in grayscale (28x28 pixels). Each
image represents one of ten clothing categories (Xiao et al., 2017).
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Figure E.12: SpaM post-hoc efficiency for ViT on MNIST. Leveraging OPD, GraSP, and
Magnitude performance under SpaM in comparison to MAP show superior test accuracy
at increased sparsity levels coupled with a low ECE, Brier Score, and NLL.

Algorithm 1 Structured OPD pruning

Require: Trained Model M , Target Sparsity Threshold T
Ensure: Compacted Model Mcompact, Count of Pruned Units Npruned

1: for each layer l in M do
2: if l is not the output layer then
3: for each structure s in layer l do
4: Calculate As =

∑
i∈S Pii · θ2i

5: end for
6: Sort structures in l by As in ascending order
7: Determine the number of structures to prune based on T
8: Prune determined number of structures with the lowest As values
9: end if

10: end for
11: Update Npruned with the count of pruned structures
12: Fine-tune the pruned model M
13: Initialize Mcompact with dimensions aligned to the unpruned structures of M
14: Transfer weights from unpruned structures of M to Mcompact

15: Save Mcompact with updated parameters

CIFAR-10 : This dataset contains 60,000 color images (32x32 pixels) divided equally
among 10 classes (e.g., airplane, bird, cat) (Krizhevsky, 2009). For our ResNet experiments,
we augment CIFAR-10 with random flipping and cropping.
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Figure E.13: GPT-2 (124M) on IMDB. We tune GPT-2 for sentiment analysis on IMDB
datasets. Our results show that OPD maintains significantly higher accuracy than other
methods, which degrade towards random classifier performance (50%) at 60% sparsities.
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Figure E.14: Visualization of model weights for unpruned LeNet on FashionMNIST.

CIFAR-100 : A more fine-grained version of CIFAR-10, this dataset includes 60,000 color
images (32x32 pixels) across 100 classes, with 600 images per class (Krizhevsky, 2009). We
apply random flipping and cropping for augmentation.

IMDB Movie Review : This dataset is a collection of 50,000 movie reviews, balanced
between positive and negative sentiments. It is commonly used for binary sentiment classi-
fication tasks (Maas et al., 2011).

G.2. Models

FCN for MNIST (784, 256, 10): This Fully Connected Network (FCN) is specifically de-
signed for the MNIST dataset. It comprises an input layer with 784 nodes, a hidden layer
with 256 nodes, and an output layer with 10 nodes, making it a 2-layer FC network. Its
architecture is optimized to handle the simplicity and characteristics of handwritten digit
images.

FCN for CANCER (30, 100, 2): Customized for the CANCER dataset, this FCN
includes an input layer of 30 nodes, two hidden layers, each containing 100 nodes, and
a final output layer of 2 nodes. The 3-layer structure of this network is instrumental in
distinguishing between benign and malignant tumors based on cellular features.

LeNet : As a foundational Convolutional Neural Network (CNN), LeNet has shown
exceptional performance in digit and image recognition tasks. We have applied LeNet to
the MNIST, Fashion MNIST, and CIFAR-10 datasets, leveraging its capability to handle
varying complexities of image data (LeCun et al., 1998). LeNet on CIFAR-10 is not a very
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Figure E.15: Visualization of model weights for 95 % pruned LeNet on FashionMNIST.
Black refers to pruned weights or a part of a filter. An entire black square refers to an
entire filter being pruned. A black row or column represents a pruned neuron.
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Figure E.16: Visualization of model weights for 95 % pruned LeNet on FashionMNIST after
the zeroing stage. Black refers to pruned weights or a part of a filter. An entire black square
refers to an entire filter being pruned. A black row or column represents a pruned neuron.
(Model size = 241 KB).
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Figure E.17: Visualization of model weights for 95 % pruned LeNet on FashionMNIST after
the compression stage. Black refers to pruned weights or a part of a filter. An entire black
square refers to an entire filter being pruned. A black row or column represents a pruned
neuron. (Model size = 12 KB).
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Figure E.18: Structured and unstructured pruning of LeNet on FashionMNIST with SpaM-
OPD. We see that through structured sparsification, we are able to obtain models that are
still performant at a significantly reduced computational and memory cost, while unstruc-
tured pruning does not directly translate into computational benefits.
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Figure E.19: Structured and unstructured pruning of FC on Cancer with SpaM-OPD.
We see that through structured sparsification, we are able to obtain models that are still
performant at a significantly reduced computational and memory cost. At the same time,
unstructured pruning does not directly translate into computational benefits.

common benchmark for pruning; here, it is used to demonstrate how SpaM, and specifically
SpaM-OPD, is able to prune at high percentages without a performance loss up to 80%
in a model that struggles with representing the data’s complexity, showing that our work
extends beyond over-parametrized networks for the task at hand.

MLPMixer : The MLPMixer serves as a streamlined alternative to more complex mod-
els like CNNs and transformers. It relies solely on Multi-Layer Perceptrons (MLPs) for
integrating inputs across spatial and channel dimensions (Tolstikhin et al., 2021). We im-
plement an MLPMixer with 2 blocks designed for MNIST.

ResNet with inplanes 64 and depth 18 for CIFAR-10 : We modify the implementation
of ResNet and incorporate fixup initialization and custom bias and scale parameters to
align with the constraints of the ASDL backend (Osawa et al., 2023) used for the Laplace
computations in this work, which does not support batch normalization.

Wide ResNet : decreases depth compared to ResNet and increases the width of residual
networks (Zagoruyko and Komodakis, 2017) with a depth of 16 and a widening factor of 4
(WRN16-4). We use fixup blocks to be able to utilize ASDL backend (Osawa et al., 2023).

Vision Transformer (ViT) (Dosovitskiy et al., 2021): unlike CNNs, which extract local
features through filters and pooling layers, ViT breaks down images into fixed-size patches,
treating each as a ”token” in a sequence (Dosovitskiy et al., 2021). This allows it to
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leverage the Transformer architecture, initially designed for language processing, to analyze
relationships between patches through self-attention mechanisms (Vaswani et al., 2017).

DistilBERT : DistilBERT (Sanh et al., 2020) is a smaller, faster, and cheaper ver-
sion of BERT, achieved by leveraging knowledge distillation during the pre-training phase.
This model retains 97% of BERT’s language understanding capabilities while being 60%
faster and 40% smaller. We use the pre-trained DistilBERT hosted in Hugging Face un-
der (distilbert-base-uncased) (Sanh et al., 2020) and tune it for sentiment analysis to
classify reviews in the IMDB dataset (Maas et al., 2011) , which involves predicting the
sentiment (positive or negative) of user reviews based on their textual content.

GPT-2 : a large-scale transformer-based language model developed by OpenAI , with
impressive text generation capabilities. Trained on a vast corpus of internet text (Radford
et al., 2019). In our study, we leverage the 124M parameter version of GPT-2, fine-tuning
it on the IMDB dataset for sentiment analysis to assess its performance under different
pruning conditions.

G.3. Dependencies

For the computation of second-order information (e.g., Hessian, Fisher information) needed
for the Laplace approximation, we utilize the ASDL Library (Osawa et al., 2023). We use the
library in its version under https://github.com/kazukiosawa/asdl/tree/011a942b2698b9ec33b0c8c47c96bd49335e5d80.
The ASDL Library is distributed under the MIT License, which allows for reuse with a few
restrictions that we respect in our work.

G.4. Hyperparameters

Marginal Likelihood

• Hessian Approximation: The choice between GGN and EF. GGN was initially em-
ployed for fully connected networks, LeNets, and ResNets. However, for complex
architectures (WRNs, ViTs, DistilBERT), GGN’s computational cost became pro-
hibitive, exceeding MAP runtime by up to 20x and even more for casual modeling
tasks. Switching to EF maintained pruning performance while closely matching MAP
runtime, which is particularly beneficial as GGN scales linearly with the number of
classes. We discuss further the cost in Appendix G.7.

• n epochs burnin Dictates the number of epochs after which marginal likelihood opti-
mization starts. If set superior to the number of training epochs, marginal likelihood
is skipped, and the training is equivalent to MAP.

• marglik frequency Controls the frequency of marginal likelihood estimation. The de-
fault value of 1 signifies re-estimation after each epoch, while a value of 5 indicates
approximation for every fifth epoch.

We use these parameters to manage the computational cost of our experiments, where
for small models like LeNets, FC Networks, the n epochs burnin is set to zero and mar-
glik frequency to one reflecting estimating each epoch since the start of the training. In
contrast, for complex networks like MLPMixer, ResNets, WideResNet, and ViT that we
train from scratch, we start after 20 epochs and at an interval frequency of 5 epochs.
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Hyperparameter Table Table G.1 presents the specific hyperparameters employed for
each dataset-architecture combination. We use † to denote the use of data augmentation
in the training process. The symbols ⋆ and ⋄ represent the use of the Generalized Gauss-
Newton (GGN) and Empirical Fisher (EF) approximations for the Hessian, respectively.
We use cosine decay scheduler towards a fixed minimum learning rate of 1e-6 across all
experiments. The symbols D1, D2, etc., represent the following datasets:

* D1: Breast Cancer Wisconsin (Diagnostic) * D2: MNIST * D3: FashionMNIST * D4:
CIFAR-10 * D5: CIFAR-100 * D6: IMDB Movie Review

All models are trained from scratch, denoted by the symbol ▲, except for DistilBERT
and GPT-2, which are fine-tuned from pre-trained weights and are indicated by ▼.

Dataset (Arch.) Marglik Freq. Batch Size Learning Rate Optimizer Temp. Burn-in / Epochs

D▲
1 (FCN) 1 ⋆ 64 0.001 Adam 1.0 0 / 50
D▲

2 (FCN) 1 ⋆ 64 0.001 Adam 1.0 0 / 100
D▲

2 (LeNet) 1 ⋆ 128 0.001 SGD 1.0 0 / 100
D▲

3 (LeNet) 1 ⋆ 128 0.001 SGD 1.0 0 / 100
D▲

3 (MLPMixer) 1 ⋆ 128 0.001 Adam 1.0 0 / 100

D†
4 (ResNet) 5 ⋆ 128 0.1 SGD 5 20 / 100

D†
5 (WRN) 5 ⋄ 128 0.1 SGD 5 20 / 200
D▲

2 (ViT) 5 ⋄ 128 0.001 Adam 1.0 20 / 100
D▼

6 (DistilBERT) 5 ⋄ 32 2e-5 AdamW 1.0 5 / 20
D▼

6 (GPT-2) 5 ⋄ 8 2e-5 Adam 1.0 5 / 10

Table G.1: Hyperparameters used in the experiments.

Computational resources Our experiments are run on GPUs. We run our experi-
ments in a single GPU configuration on available variation between 1080 Tis, V100s, and
A100s, with the majority being run on A100s with 40GB memory as we run the experiments
intensively one after the other for different architecture on the same allocated GPU and
in order to provide enough GPU memory. For models such as FCs, LeNets, ResNets, and
MLP-Mixer, a GPU with 12GB of memory ( 1080 Ti) proved sufficient to run our method
for our recommended laplace and prior, which is diagonal with parameter-wise priors and
reproduce the results. For the sentiment analysis task using GPT-2, we recommend us-
ing a 32 GB GPU for tuning to be able to utilize a high batch size and to use diagonal
approximation to fit laplace on the data without running into memory shortage.

Runtime Table

Table G.2 presents the training and pruning runtimes on A100 for each dataset-architecture
combination. Training times are given for both SpaM diagonal with parameter-wise prior
and MAP, while pruning time is identical to both. Pruning runtimes refer to the time taken
for OPD to compute and prune a model at 10 target sparsities. OPD and magnitude are
very close in terms of runtime and the most efficient compared to SNIP, which is slightly
slower due to it requiring an additional forward pass, and GraSP, which is significantly
slower as it accumulates the gradient as shown in Figure G.1.
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Dataset (Arch.) Train Prune

SpaM MAP OPD

D▲
1 (FCN) 0:01 0:01 0:04
D▲

2 (FCN) 0:15 0:5 0:23
D▲

2 (LeNet) 0:16 0:10 0:15
D▲

3 (LeNet) 0:16 0:10 0:21
D▲

3 (MLPMixer) 0:05 0:07 0:10

D†
4 (ResNet) 1:24 0:25 0:55

D†
5 (WRN) 1:17 1:12 0:51
D▲

2 (ViT) 0:26 0:15 0:24
D▼

6 (DistilBERT) 5:20 2:15 1:05
D▼

6 (GPT-2) 17:34 6:24 17:41

Table G.2: Runtimes for the experiments. Train: Training time (h:m), Prune: Pruning
time (m:s).

G.5. Pruning Criteria

• SNIP: Uses connection sensitivity, how much a specific weight contributes to the
output loss, for effective pruning (Lee et al., 2018).

• GraSP: Employs gradient signal preservation. GraSP relates to the concept of Gra-
dient Flow (GF), defined as:

GF = gL(Θ)T gL(Θ) = ||gL(Θ)||22, (G.1)

emphasizing the impact of pruning on the training dynamics (Wang et al., 2020). We
replicate the GraSP implementation of Rachwan et al. (2022), where we consider the
absolute value of the importance score initially proposed by Lubana and Dick (2021)
given by:

I(Θt) = |ΘT
t HL(Θt)gL(Θt)| (G.2)

Note that while the importance score was initially used before training, we propose to
use this importance score as a one-shot criterion after the training process and show
how SpaM can leverage the performance of GraSP.

• Structured-SynFLow: We challenge the capabilities of SynFlow (Tanaka et al.,
2020), a data-agnostic pruning approach that prevents layer collapse that happens at
high sparsities where layers are no longer able to perform at the model’s predictive
power. This typically occurs when the pruning algorithm, intentionally or inadver-
tently, removes a significant portion of weights or filters from a specific layer, effec-
tively collapsing its functionality (Tanaka et al., 2020). We push SynFlow to its limits
through advanced structured pruning strategies, where we prune layers aggressively
at the same target sparsity, which facilitates the compression process and resizing.
By applying rigorous layer-specific filtering and neuron pruning, we aim to test the
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robustness and effectiveness of SynFlow in extreme sparsity structured scenarios. This
approach not only benchmarks SynFlow’s performance under stringent conditions but
also explores its potential to maintain network functionality and accuracy in highly
sparse neural network architectures.

• Magnitude Pruning: Relies on the magnitude of weights for pruning, aiming to
maintain model performance while reducing complexity (Han et al., 2015). After the
success shown by Han et al. (2015), many methods adapted magnitude as a pruning
criterion coupled with different scheduling (Bellec et al., 2018; Mostafa and Wang,
2019; Zhou et al., 2020).

• Random Pruning: Prune weights or structure randomly.

G.6. Structured Sparsification Process

For structured sparsification, contrasting with the unstructured approach, the process ne-
cessitates reshaping the weight matrices to effectively reduce model complexity. The steps
include:

1. One-shot structure masking based on aggregated importance scores.

2. Continue training for five epochs using the model from Step 1 for preliminary evalu-
ation.

3. Implementing two software design approaches:

• In-place layer replacement in the model with smaller ones fitting the non-masked
regions.

• Creating a new, flexible model initialized to match the dimensions of the non-
masked areas, requiring repeated reading of the nonzero mask for state-dictionary
and metadata alignment.

4. Transferring non-zero structures to smaller layers and tuning the model.

Post structure removal, we extend the training phase to adapt the model weights and
re-evaluate, ensuring seamless functionality once transferred to smaller layers. Particularly
after significant structural reduction, our primary objective shifts to maximizing perfor-
mance in the downsized model. This fine-tuning spans 5 or 10 epochs depending on the
complexity of the original model’s structure, which was initially trained for either 50 or 100
epochs.

G.7. Computational Cost

Instead of using the Generalized Gauss-Newton (GGN) approximation, which scales lin-
early with the number of classes, we can also use the Empirical Fisher (EF). For most
architectures, using EF instead of GGN for SpaM does not add a very large computational
overhead to MAP, as EF costs roughly as much as gradient computation. This is particu-
larly beneficial as GGN scales linearly with the number of classes. The pruning results are
not significantly affected by the choice of GGN or EF.
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The runtime of MAP and SpaM was close (roughly 1h and 20 minutes on A100s) for
WRN-16 on CIFAR100 using SpaM (EF) with diagonal LA and parameter-wise priors (our
recommended settings for pruning). For language transformers, specifically DistilBERT and
GPT-2, SpaM with EF does result in a longer training time compared to MAP. However,
this increase is considerably less than when using GGN, where a single epoch can take
longer than the entire SpaM training with EF.

In prior works (Immer et al., 2021b), it was found that GGN gives a better posterior
predictive approximation, but we do not use it in this work. We find that EF works similarly
well for pruning at a much lower cost.
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