
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDMAP: UNLOCKING POTENTIAL IN PERSONALIZED
FEDERATED LEARNING THROUGH BI-LEVEL MAP OP-
TIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) enables collaborative training of machine learning (ML)
models on decentralized data while preserving data privacy. However, data across
clients often differs significantly due to class imbalance, feature distribution skew,
sample size imbalance, and other phenomena. Using information from these not
identically distributed (non-IID) datasets causes challenges in training. Existing
FL methods based on a single global model cannot effectively capture client data
variations, resulting in suboptimal performance. Personalized FL (PFL) techniques
were introduced to adapt to the local data distribution of each client and utilize the
data from other clients. They have shown promising results in addressing these
challenges. We propose FedMAP, a novel Bayesian PFL framework which applies
Maximum A Posteriori (MAP) estimation to effectively mitigate various non-IID
data issues, by means of a parametric prior distribution, which is updated during ag-
gregation. We provide a theoretical foundation illustrating FedMAP’s convergence
properties. In particular, we prove that the prior updates in FedMAP correspond to
gradient descent iterations for a linear combination of envelope functions associ-
ated with the local losses. This differs from previous FL approaches, that aim at
minimizing a weighted average of local loss functions and often face challenges
with heterogeneous data distributions, resulting in reduced client performance and
slower convergence in non-IID settings. Finally, we show, through evaluations
of synthetic and real-world datasets, that FedMAP achieves better performance
than the existing methods. Moreover, we offer a robust, ready-to-use framework to
facilitate practical deployment and further research.

1 INTRODUCTION

By leveraging distributed data sources, ML models can be trained more effectively and produce
robust, generalized insights. Nevertheless, stringent privacy restrictions, security threats, and high
data transfer costs have made centralized methods impossible, particularly in sensitive sectors such as
healthcare (Zhang et al., 2024). FL was introduced as a practical paradigm that enables collaborative
training across clients without exchanging raw data.

In practice, data across organizations are often non-IID, which is one of the main challenges to
successfully adopting FL. Non-IID data refers to data that is not identically distributed across clients,
resulting in challenges, including slower model convergence, reduced model accuracy, and increased
communication costs in FL. Li et al. (2022) identified three main categories of non-IID data: label
distribution skew, feature distribution skew, and quantity skew. In real-world settings, clients often
experience combinations of different types of non-IID data. For instance, a rural clinic might have
fewer patient records (quantity skew) and collect data using different medical equipment (feature
distribution skew), and serve a population with different disease prevalence rates (label distribution
skew) compared to urban hospitals. Addressing the combination of these non-IID factors is necessary
for the practical and effective deployment of FL systems.

Classic FL algorithms such as FedAvg (McMahan et al., 2016), rely on Maximum Likelihood
Estimation (MLE) principles and assume that local client updates can be aggregated to obtain a single
global model that maximizes the likelihood of all clients’ data collectively. This assumption fails
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with non-IID data, which the global objective function is unable to accurately represent individual
client’s data distribution (Li et al., 2021b). This discrepancy creates a fundamental optimization
challenge in which local gradients from different clients can point in different directions extensively
and result in slow convergence or poor local optima. Although the variants of FedAvg have made
progress in handling data heterogeneity, they usually struggle to capture the complexities of non-IID
data. PFL was introduced to learn personalized models customized to each client’s unique data
distribution and leverage the collective knowledge across clients (Kulkarni et al., 2020). However,
existing PFL methods face several issues, which include inefficient knowledge transfer between
clients, high communication costs, and limited personalization capabilities (Lin et al., 2022). These
limitations are all due to the underlying optimization approaches that fail to capture the complexities
of non-IID data distributions.

We introduce FedMAP, a new PFL framework that fundamentally addresses the FL challenges of
non-IID data by utilizing a global prior distribution derived from MAP estimation. We formulate the
FL problem as a bi-level optimization that adaptively learns and updates a global prior distribution
that guides local model optimization. This approach can effectively balance knowledge sharing
and local data distribution adaptation. FedMAP tackles the core optimization issues of client drift
and the inconsistency between global and local objectives in non-IID settings. Our contributions
include a mathematical framework for the PFL using MAP estimation, the FedMAP algorithm
with an adaptive weighting scheme for robust global prior updates which specifically mitigate the
practical scenarios where clients experience a combination of non-IID data distributions, empirical
evaluation on both synthetic and public datasets that incorporate various non-IID data distributions,
and the integration of FedMAP with the open-source Flower FL framework (Beutel et al., 2020). The
evaluation results show FedMAP consistently outperforms individual client training and the existing
FL methods. Furthermore, the theoretical analysis indicates that FedMAP converges to the solution
of a bi-level optimization problem, providing a foundation for its effectiveness in handling non-IID
data distributions. With its improved reproducibility, FedMAP is available for community use and
further development. The code is available at https://anonymous.4open.science/r/FedMAP-963/.

1.1 RELATED LITERATURE

Approaches for addressing non-IID issues through standard FL One of the key challenges in
classic FL is the statistical heterogeneity in clients’ data. This often leads to large variations in model
performance (Vahidian et al., 2024). Several solutions have been proposed to mitigate the impact of
this heterogeneity. FedProx (Li et al., 2020) adds a proximal term to the local optimization process,
limiting how far local updates can deviate from the global model. SCAFFOLD (Karimireddy et al.,
2020) utilizes control variates to correct client drift in local updates. Despite these improvements,
relying on a single global model schema often fails to generalize across the diverse data distributions
of different clients, leading to suboptimal performance in many cases (Kulkarni et al., 2020).

Personalized federated learning Recent research highlights the PFL can eliminate the impact of
data heterogeneity by customizing the global model to individual clients’ data distributions(Kulkarni
et al., 2020). The personalization can be achieved in several ways. Fine-Tuning (Marfoq et al., 2022;
Lee et al., 2023) allows clients to adjust a global model locally using their own data. Layer-wise
Personalization involves personalizing specific layers of the network such as the batch normalization
layers while sharing other layers (Li et al., 2021b). FedASA (Deng et al., 2024) was proposed to use
an adaptive cell-wise architecture selection strategy to determine which layers to share based on client
heterogeneity. PerAda (Xie et al., 2024) introduces a parameter-efficient approach using adapters
for personalization while maintaining generalization through knowledge distillation. Multi-Task
Learning treats each client as a unique task, optimizing across related tasks to improve overall model
performance (Smith et al., 2017). pFedEM (Chen et al., 2024) extends this by modelling each client’s
data distribution as a time-varying mixture of multiple base distributions. Meta-Learning strategies
such as Model-Agnostic Meta-Learning (MAML) (Fallah et al., 2020) construct a model to adapt to
new client data with minimal retraining. Cluster-Based Personalization (Ren et al., 2023; Porcu et al.,
2022) groups clients by data similarity, each cluster developing a shared model based on its common
characteristics. These strategies collectively balance robust global model learning with effective local
adaptation, thus optimizing FL across diverse environments. Regularization-based Personalization
adds regularization terms to the learning objective to control the deviation between the local models
and a global model (Li et al., 2021a).
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Bayesian approach in FL Adopting Bayesian methods in FL offers several benefits. Particularly
these methods can effectively handle non-IID data by quantifying uncertainty, enhancing robustness
through evidence-based likelihood estimates, and improving performance on limited data using prior
distributions for each model parameter (Cao et al., 2023). The method pFedBayes (Zhang et al.,
2022) introduces weight uncertainty in neural networks by balancing the loss on private data with the
divergence from a global variational distribution using variational Bayesian inference. β-Predictive
Bayes (Hasan et al., 2024) improves calibration and uncertainty estimation by approximating the
global predictive posterior through interpolating a mixture and a product of local predictive posteriors
using a tunable parameter β. FedPop (Kotelevskii et al., 2022) conceptualizes FL as population
modelling, using Markov Chain Monte Carlo methods for federated stochastic optimization and
accounting for data heterogeneity with common population parameters and random effects. Fur-
thermore, the Bayesian nonparametric framework proposed in (Yurochkin et al., 2019) models local
neural network weights and applies a Beta-Bernoulli process-based inference technique to synthesize
a global network from local models without additional data pooling.

Building upon the challenges and solutions discussed above, FedMAP combines Bayesian principles
with regularization-based PFL. FedMAP shares similarities with Ditto (Li et al., 2021a) on the
methods to balance local specialization with global knowledge sharing. However, Ditto solves a
bi-level optimization problem with separate objectives for global and local models. FedMAP uses
MAP estimation for local optimization, directly integrating global knowledge into the local objective.
pFedMe (T Dinh et al., 2020) is another similar approach to FedMAP, which uses Moreau envelopes as
regularizers in bi-level optimization. With Gaussian prior, FedMAP reduces to pFedMe’s formulation,
however FedMAP is more generic with its flexible choice of prior distributions. Also, FedMAP
differs from pFedBayes which uses variational inference. FedMAP uses MAP estimation since it is
more computationally efficient when incorporating prior knowledge. Similar to FedPop’s population
modelling concept, FedMAP allows each client to have a personalized model and benefit from the
collective knowledge encoded in the global prior. Nevertheless, FedMAP uses a more straightforward
probabilistic framework with an adaptive weighting mechanism in the global aggregation step, which
considers the confidence and relevance of each client’s model instead of sample size. Most of the
mentioned approaches only address isolated non-IID issues, whereas FedMAP is designed to address
the combination of non-IID data distributions which are common in practical scenarios.

2 FROM MLE TO MAP ESTIMATOR

Let us consider a prediction task in which the input space is denoted by X and the output space is
Y . As mentioned in the introduction, in the FL framework, one has available not only one but a
collection of datasets

Zk = {(x(i)
k , y

(i)
k )}Nk

i=1 ∈ (X × Y)Nk , for k = 1, . . . , q,

each of them consisting of an IID sampling from a probability distribution Dk.

The learning procedure in the FL framework consists of two stages, which can be repeated iteratively:

1. Local training: Each client trains a model based on its local data and the global model (if a
global model is available).

2. Aggregation: The central server constructs (or updates) a global model based on the outcome
of the local training at each local client.

Each iteration of this two-stage process is known as a communication round. Both the local training
and the aggregation can be seen as particular examples of learning tasks. Since we are looking for a
probabilistic model ϕ : X → P(Y), a typical choice for the loss functional during the local training
is the negative log-likelihood, defined as

L(ϕ, (x, y)) := − logP(y|ϕ(x)),

where P(y|ϕ(x)) denotes the likelihood of the random variable y associated to the probability
distribution ϕ(x). Let us consider a parameterized family of models

H := {ϕ(·; θ) : X → P(Y) : θ ∈ Θ}, where Θ ⊂ Rd is the parameter space.

3
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Considering empirical risk minimization as the learning algorithm, each local model can be written
as ϕ∗

k = ϕ(· ; θ∗k), where θ∗ ∈ Θ the solution to the minimization problem

θ∗k ∈ argmin
θ∈Θ

1

Nk

Nk∑
i=1

− log
[
P
(
y
(i)
k |ϕ(x

(i)
k ; θ)

)]
. (1)

This corresponds to a maximum likelihood estimator MLE within the hypothesis setH. The problem
of (1) is that the trained model ϕ∗

k only depends on the local data, and no knowledge is leveraged
across the datasets, which is precisely the goal in FL. For this reason, in most FL methods, one does
not aim at solving (1). Instead, one would consider the minimization problem (1), using the global
model as an initial guess but never letting the algorithm reach the minimum. The issue of forgetting
the global model during the local training can be overcome by using the global model, not only as the
initialization of the minimization algorithm but also in the loss function during the local training.

2.1 LOCAL TRAINING AS MAP ESTIMATION

In our FL approach, we formulate the local training problem as a MAP estimation of the local models,
in which the global model acts as a prior distribution on the class of functionsH. Let us consider a
parameterized family of probability measures over the parameter space Θ, denoted by

G := {ργ ∈ P(Θ) : γ ∈ Γ},
where Γ ⊂ Rp is the parameter space for the global model.

Given a global model ργ ∈ G, we can compute, for any (x, y) ∈ X × Y and ϕ(·; θ) ∈ H, the
likelihood of the posterior probability distribution with respect to the prior ργ . Up to a multiplicative
constant, which is independent of θ, we can use Bayes Theorem to write the posterior as

P(θ|(x, y)) ∝ P((x, y)|θ)ργ(θ) = P(y|ϕ(x; θ))ργ(θ).
Then, if we consider the problem of minimizing the negative log-likelihood of the posterior probability
distribution, we can take the following loss function:

L(θ, (x, y), ργ) := − log [P(y|ϕ(x; θ))]− log ργ(θ).

Denoting by γ(t) the parameter of the global model after the (t− 1)-th communication round, the
parameter θ(t)k for the k-local model, based on γ(t), can be obtained as

θ
(t)
k ∈ argmin

θ∈Θ

{ Nk∑
i=1

− log
[
P(y(i)k |ϕ(x

(i)
k ; θ))

]
︸ ︷︷ ︸

L(θ;Zk)

− log ργ(t)(θ)︸ ︷︷ ︸
R(θ,γ(t))

}
, (2)

where we recall that Zk = {(x(i)
k , y

(i)
k )}Nk

i=1 ∈ (X × Y )Nk is the dataset of the k-th client. The term
R(θ, γ(t)) in (2) can be seen as a parametric regularization term.

2.2 ESTIMATING THE PRIOR DURING AGGREGATION

Given the local models (θ1, . . . , θq) ∈ Θq , the parameter γ ∈ Γ for the global prior can be obtained
by minimizing the function

γ 7→
q∑

k=1

wkR(θk, γ) = −
q∑

k=1

wk log ργ(θk),

for some weights (w1, . . . , wq) ∈ (0, 1)q such that
∑

k wk = 1. Using the interpretation of ργ as a
parametric prior, this can be seen as a weighted sum of the negative likelihoods of γ given the local
models θk with k = 1, . . . , q. At the t-th communication round, given the current global parameter
γ(t) and the local models θ(t)k obtained as in (2), the parameter γ(t) is updated by applying gradient
descent to the above function, i.e.

γ(t+1) = γ(t) − λ

q∑
k=1

wk∇γR(θ(t)k , γ(t)), (3)

where λ > 0 is the learning rate. We observe that, during the local training in (2), the local data only
appears in the term L(θ;Zk), and therefore, no local data is transmitted to the central node during the
aggregation step in (3).

4
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2.3 FL AS BI-LEVEL OPTIMIZATION

Next, we address the asymptotic analysis of the iterations given by (2)–(3). More precisely, we
prove in Theorem 1 that the updates of the global parameter γ(t), obtained by iterating (2) and (3),
correspond to gradient descent iterations for the function

M(γ) :=

q∑
k=1

wkMk(γ;Zk), where Mk(γ;Zk) = min
θ∈Θ
{L(θ;Zk) +R(θ, γ)} . (4)

The function Mk(γ;Zk) can be seen as an envelope function associated with the function L(θ;Zk)
and the regularizerR(θ, γ). In the special case of a quadratic regularizer of the formR(θ, γ) = ∥θ−
γ∥2, the function Mk(γ;Zk) is the Moreau envelope of L(·;Zk). Minimizing a linear combination
of Moreau envelopes in the FL setting was proposed in T Dinh et al. (2020). However, we stress that
our proposed approach is much more general. See section A.2 for further details.

Under suitable convexity assumptions on L(θ;Zk) andR(θ, γ), we also prove in Theorem 1 that the
function M(γ) is strongly convex, and therefore, one can ensure that γ(t) given by alternating (2)
and (3) converges to the unique minimizer of M(γ). Moreover, this minimizer is the solution to the
bi-level optimization problem

minimize
θk∈Θ

L(θk;Zk) +R(θk, γ∗) ∀k = 1, . . . , q s.t. γ∗ ∈ argmin
γ∈Γ

(
q∑

k=1

wkR(θk, γ)

)
. (5)

Therefore, local training (2) and aggregation (3) can be seen as an alternating strategy to approximate
the solution to the above bi-level optimization problem. Local training would address the upper-level
problems, whereas the aggregation step addresses the lower-level problems. Incorporating the global
model in the loss function for the local training couples the upper- and lower-level optimization
problems. This coupling leverages the knowledge of the local models across the clients.
Theorem 1. Let Θ ⊂ Rd be compact and Γ = Rd. For each k = 1, . . . , q, let L(θ;Zk) be continuous
and convex w.r.t. θ, and letR(θ, γ) be differentiable and strictly convex in Θ×Γ. Then, the iterations
(2)–(3) can be written as

γ(t+1) = γ(t) − λ∇γM(γ(t)),

where M(γ) is given by (4). Moreover, M(γ) is strictly convex in Γ, and its unique minimizer is the
solution to the bi-level optimization problem (5).

The proof of this result is given in Appendix A. Minimizing a linear combination of envelope
functions such as M(γ) to train a global model differs from most FL approaches, which focus on
minimizing a linear combination of the local loss functions, i.e. F (θ) =

∑q
k=1 wkL(θ;Zk). As

we show in section A.4, through a simple example, minimizing M(γ) and minimizing F (θ) may
produce completely different global models, especially in the case of non-IID data.

3 PROPOSED FedMAP ALGORITHM

We propose FedMAP (Federated Maximum A Posteriori), a novel FL algorithm incorporating a
global prior distribution over the local model parameters, enabling personalized FL. In the sequel, we
will consider, as a hypothesis set for the local models, a family of NNs denoted by

ϕ(· ; θ) : X → Y, θ ∈ Θ := Rd.

As hypothesis set for the global model, we will consider a Gaussian prior on the parameter space,
where the parameter γ represents the mean of the distribution. For a fixed parameter σ2 > 0, we
consider the parameterized family of probability distributions with density function

θ ∈ Θ 7−→ ργ(θ) =
1√
2πσ2

e−
∥θ−γ∥2

2σ2 , for γ ∈ Γ = Θ. (6)

This choice for the parametric prior yields a quadratic regularizerRk(θ, γ). For such regularizer, we
prove in section A.2 that (with a suitable choice of the learning rate λ) the aggregation step in (3) can
be reduced to a weighted average of the local models.

The FedMAP algorithm consists of three main steps: Initialization, Local Optimization, and Global
Aggregation, as outlined in Algorithm 1.

5
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Initialization A client j is randomly selected, and its model parameters are used to initialize the
global model γ(0) and the local model parameters θ(0)j . These initial parameters are then broadcasted
to all clients, ensuring that every client starts from a common initial point.

Algorithm 1 FedMAP (Federated Maximum A Posteriori)

1: Input: q (Total number of clients)
2: Initialization:
3: Randomly select client j from {1, . . . , q}
4: Initialize θ(0) and γ(0) based on client j’s model
5: Broadcast γ(0) and θ(0) to all clients
6: for each communication round t = 0, 1, 2, . . . do
7: for k = 1 to q in parallel do
8: LOCALOPTIMIZATION(γ(t)) ▷ Algorithm 2
9: end for

10: GLOBALAGGREGATION({θ(t+1)
k , ω(t)

k }
q
k=1) ▷ Algorithm 3

11: end for

Local Optimization Each client k optimizes their model parameters θ
(t+1)
k by minimizing the

negative log-likelihood of the posterior distribution. Using the explicit form of the prior in (6), we
can write the minimization problem as

θ
(t+1)
k = argmin

θ

1

Nk

Nk∑
i=1

L
(
y
(i)
k , ϕ(x

(i)
k ; θ)

)
+

1

2σ2
∥θ − γ(t)∥2, (7)

where L
(
yi, ϕ(x

(i)
k ; θ)

)
:= − logP

(
y
(i)
k |ϕ(x

(i)
k , θ)

)
denotes the loss function, and Nk represents

the count of data points in Zk. The prior term penalizes deviations from the global model param-
eters γ(t). Each client iteratively updates θ(t)k for a fixed number of local epochs e, as detailed in
Algorithm 2.

After optimizing the local model, each client computes a weighting factor ω(t)
k , representing the

importance of the client’s local model in the subsequent Global Aggregation step:

ω
(t)
k = P(Zk|θ(t+1)

k )× ργ(t)(θ
(t+1)
k ) (8)

The locally optimized parameters θ(t+1)
k and their corresponding weighting factor ω(t)

k are then sent
to the server for global aggregation.

Algorithm 2 Local Optimization

1: Input:
2: θ(0) The initial model parameter
3: Zk: The local dataset for client k
4: γ(t): Current global model parameter
5: θ

(t)
k : Current model parameters for client i

6: e: Number of epochs per local optimization
7: if t = 0 then
8: θ

(t)
i ← θ(0)

9: end if
10: for epoch = 1 to e do
11: θ

(t+1)
k ← argmin

θ
− logP(Zk|θ)− log ργ(t)(θ)

12: end for
13: ω

(t)
k ← P(Zk|θ(t+1)

k )× ργ(t)(θ
(t+1)
k )

14: Send θ
(t+1)
k and ω

(t)
k to the server

6
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Global Aggregation The server aggregates the optimized local model parameters θ(t+1)
k from all

clients to obtain the updated global model parameters γ(t+1), as shown in Algorithm 3. In view of
(3) and the specific form of ργ(θ) in (6), the aggregation is performed as a weighted average of the
local model parameters, where the weights are the weighting factors ω

(t)
k computed in the Local

Optimization step:

γ(t+1) =
1∑q

j=1 ω
(t)
j

q∑
k=1

ω
(t)
k θ

(t+1)
k (9)

The updated global model γ(t+1) is then broadcast to all clients for the next round of Local Optimiza-
tion.

Local Optimization and Global Aggregation steps are repeated iteratively until a predefined number
of communication rounds is reached. After the iterative process is complete, the final personalized
model for each client k is given by the optimized local model parameters θ(t+1)

k . These personalized
models capture the unique characteristics of each client’s data while benefiting from the collective
knowledge of all clients through the regularization effect of the global model.

Algorithm 3 Global Aggregation

1: Input:
2: q: Total number of clients
3: θ

(t+1)
k : Optimized model parameters from each client

4: ω
(t)
k : Weighting factors from each client

5: γ(t+1) ← 1∑N
j=1 ω

(t)
j

q∑
k=1

ω
(t)
k θ

(t+1)
k

6: Broadcast γ(t+1) to the all clients

4 EXPERIMENTS

4.1 DATASETS

To evaluate the performance of FedMAP under non-IID data distributions, we utilized both synthetic
and public datasets.

Synthetic Datasets: A number of synthetic datasets were created to evaluate the FedMAP’s ability
to handle practical FL challenges. The evaluation scenarios are designed to reflect the complex
combinations of non-IID issues that occur in practical applications. The datasets include three
primary types of non-IID data distributions across clients: 1) Feature distribution skew, where each
client’s data is influenced by unique affine transformations. These transformations vary the feature
space across clients; 2) Quantity Skew with each client has datasets in varying sample sizes; 3) Label
Distribution Skew by different class proportions across the clients. The details of the synthetic data
are provided in Appendix B.

Office-31 Dataset: To complement the experiments on synthetic datasets, we also used the Office-31
dataset (Saenko et al., 2010). This dataset consists of 4110 images across 31 object categories.
The data are collected from three distinct domains: Amazon (images from Amazon.com), Webcam
(low-resolution images captured by a webcam), and DSLR (high-resolution images captured by
digital SLR cameras). The diversity in image domains, resolution, and acquisition conditions in the
Office-31 dataset naturally introduces realistic non-IID data distributions.

4.2 SETUP

In our experiments, we chose a Gaussian prior for the local model parameters θ, defined by the
probability density function (6), where γ represents the global model parameters and σ2 is the variance
controlling the influence of the prior. When σ → 0, the prior is centered at γ and approximates
FedAvg, prioritizing the global consensus. When σ →∞, the prior becomes a uniform distribution

7
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over Rd, removing any influence from the global model and allowing purely local learning, which
maximizes client-specific adaptation. We selected this prior because the negative logarithm of the
prior adds a convex quadratic term ∥θ − γ∥2/(2σ2) to the local objective function, which makes the
optimization efficient with gradient-based methods.

We evaluated FedMAP across three non-IID scenarios, and each scenario involved 10 clients for
FL training and validation. In the first scenario, each client holds 2000 samples. In the second
scenario, five clients hold 2000 samples each, and the other five hold only 500 samples each.
In the third scenario, all clients have 2000 samples, but five clients have 85% of their samples
belonging to class 0, while the class proportions were balanced for the rest of the clients. In all
scenarios, each client employed a 70:30 train-validation split. The model architecture employed
was a multi-layer perceptron (MLP) with two hidden layers. Models were optimized using the
Adam optimizer. Detailed model architectures are provided in the Appendix B, and all other
training details, including hyperparameters and settings for FL, can be found in the code repository:
https://anonymous.4open.science/r/FedMAP-963/.

To simulate non-IID data distributions in the Office-31 dataset, we partitioned the data across three
clients, each including a distinct domain: Amazon, Webcam, and DSLR. We utilized the Convolu-
tional Neural Network (CNN) model architecture from the FedBN (Li et al., 2021b) experiments,
which consists of five convolutional layers, each with batch normalization and ReLU activation,
ending with an output layer for classification. Models were optimized using the SGD optimizer, and
each client also used a 70:30 train-validation split.

FedMAP was evaluated against three established FL baselines and individual client training. FedAvg
(McMahan et al., 2016) serves as the benchmark of FL. FedProx (Li et al., 2020) was selected due to
its similarity to FedMAP in addressing non-IID by using the regularization approach. FedBN (Li
et al., 2021b) was selected as it is a PFL method that targets similar non-IID scenarios as the FedMAP
does. Individual client training, where models are trained and validated exclusively on each client’s
local data to assess base performance. All experiments were conducted on an AMD 5965WX 24-core
CPU with two NVIDIA RTX A5500 GPUs. To facilitate reproducibility and practical adoption, we
integrated FedMAP into one of the popular open-source frameworks, Flower (Beutel et al., 2020),
enabling simulations of real distributed deployments.

4.3 RESULTS AND DISCUSSION

FedMAP shows prominent performance across non-IID scenarios, especially for clients with limited or
imbalanced data. To ensure consistency and robustness of the results, we conducted each experimental
setup 10 times and recorded the mean and standard deviation for these runs as our final results.

Table 1 illustrates the performance of FedMAP in the label distribution skew scenario, where clients 1-
5 have balanced class distributions, whereas clients 6-10, marked in red, have significantly imbalanced
class distributions. FedMAP is highly effective in this scenario, especially for clients 6-10 with
severely imbalanced class distributions. Clients 8, 9, and 10 achieve accuracy improvements of over
13% compared to their individual training models. Notably, FedMAP also enhances the performance
of the clients with balanced class distributions, demonstrating its ability to leverage diverse data to
benefit all clients.

In contrast, existing FL methods FedAvg, FedProx, and FedBN underperform compared to individual
client training across all clients with skewed label distributions. They show particularly large gaps
in performance on the clients (6-10) with the most skewed data, highlighting their limitations in
handling non-IID data distributions. For a comprehensive overview of FedMAP’s performance in
other non-IID scenarios, such as feature distribution and quantity skew, please refer to Tables 5 and 6
in the Appendix B.

As shown in Figure 1, the validation accuracy curves of clients using FedMAP vary significantly
across different types of data skew. Under feature distribution skew (Figure 1a), all clients consistently
achieve high validation accuracy and demonstrate stable learning trajectories, indicating FedMAP’s
effectiveness in mitigating feature distribution disparities. In contrast, clients under quantity and label
distribution skews exhibit more variability and slower convergence.
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Table 1: Accuracy comparison of FedMAP, FedBN, FedProx, FedAvg, and individual client training
on the synthetic dataset with label distribution skew. Clients 1-5 have balanced label distributions,
while 6-10 (red) have severely skewed label distributions. Standard deviations are shown below each
accuracy value.

Client Individual FedMAP FedBN FedProx FedAvg
1 87.32% 89.03% (↑ 1.71%) 67.11% 55.64% 55.30%

±0.10% ±0.08% ±0.23% ±0.20% ±0.12%

2 88.23% 88.72% (↑ 0.49%) 65.93% 54.92% 55.55%
±0.11% ±0.08% ±0.33% ±0.11% ±0.11%

3 89.94% 90.92% (↑ 0.98%) 69.52% 56.11% 55.54%
±0.11% ±0.05% ±0.49% ±0.42% ±0.21%

4 89.35% 90.52% (↑ 1.17%) 69.41% 57.13% 56.33%
±0.14% ±0.16% ±0.54% ±0.25% ±0.38%

5 86.96% 88.01% (↑ 1.05%) 68.65% 56.50% 56.57%
±0.19% ±0.07% ±0.33% ±0.29% ±0.28%

6 73.95% 84.25% (↑ 10.30%) 59.76% 53.74% 53.27%
±0.92% ±0.13% ±0.62% ±0.24% ±0.32%

7 63.86% 79.37% (↑ 15.51%) 56.85% 53.68% 54.68%
±0.81% ±0.18% ±0.59% ±0.22% ±0.28%

8 61.42% 81.16% (↑ 19.74%) 59.12% 52.37% 52.05%
±0.67% ±0.48% ±0.38% ±0.33% ±0.24%

9 61.02% 80.52% (↑ 19.50%) 55.02% 53.18% 53.34%
±0.40% ±0.33% ±0.60% ±0.22% ±0.38%

10 64.28% 75.92% (↑ 11.64%) 61.41% 55.79% 53.98%
±0.29% ±0.25% ±0.39% ±0.15% ±0.22%

Average 76.63% 84.84% 63.28% 54.91% 54.66%
±0.37% ±0.18% ±0.45% ±0.24% ±0.25%
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(a) Feature Distribution Skew: All
clients have the same number of
samples (2000 each).

0 20 40 60 80 100
Communication Round

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n 
Ac

cu
ra

cy

Client ID
1
2
3
4
5
6
7
8
9
10

(b) Quantity Skew: Clients 1-5 have
2000 samples each, while clients 6-
10 have only 500 each.
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(c) Label Distribution Skew: Clients
1-5 are balanced, while clients 6-10
have 85% of samples in one class.

Figure 1: Comparison of FedMAP’s validation accuracy curves under three non-IID scenarios,
illustrating the impact of feature, quantity, and label distribution skews on model performance.

In scenarios with quantity skew (Figure 1b), clients 6-10 initially show much lower accuracy than
clients 1-5 due to their limited sample sizes. However, as communication rounds progress, these
clients gradually improve, though slower.

For label distribution skew (Figure 1c), clients 6-10 experience an extended initial phase with low
accuracy, indicating a strong bias towards the majority class. This phase persists for about 20
communication rounds which indicates the difficulty in learning the underrepresented minority
class from severely imbalanced data distributions. Eventually, clients 6-10 converge, with their
accuracy gradually improving. This transition suggests that the global prior distribution, shaped by
the aggregation of local models, gradually adapts to the skewed label distributions, enabling clients
6-10 to learn the minority class better. Despite these challenges, FedMAP enhances overall validation
accuracy, demonstrating robustness in heterogeneous data environments.
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Table 2: Comparison of accuracies of all clients for each approach under Office-31 dataset.

Domain Individual FedMAP FedBN FedProx FedAvg
Amazon 65.80% 70.34% (↑ 4.54%) 70.29% 64.37% 64.86%

±0.87% ±0.61% ±0.30% ±0.30% ±0.19%

Webcam 68.98% 86.04% (↑ 17.06%) 83.98% 40.22% 42.22%
±2.36% ±0.20% ±2.73% ±1.77% ±1.55%

DSLR 85.57% 95.54% (↑ 9.97%) 82.52% 75.52% 77.49%
±2.38% ±0.13% ±2.47% ±2.00% ±0.87%

Average 73.45% 83.97% 78.93% 60.04% 61.52%
±1.87% ±0.32% ±1.83% ±1.36% ±0.87%

The results from the Office-31 dataset experiment further confirm FedMAP’s effectiveness in handling
non-IID data distributions encountered in real-world FL scenarios. As depicted in Table 2, FedMAP
demonstrates performance gains over individual client training models across all three clients in the
Office-31 dataset. Moreover, the varying degrees of improvement observed across clients can be
attributed to the inherent diversity in data distributions present in the dataset. The Webcam domain
shows the most significant accuracy gain, 17.06% with FedMAP. This can be explained by the
low-resolution and unique characteristics of the Webcam images, which deviate substantially from
the other domains. By leveraging the global prior, FedMAP effectively transfers relevant knowledge
from the higher-resolution DSLR dataset, enabling the Webcam domain to overcome the limitations
of its low-resolution data. Overall, the experiment results highlight FedMAP’s ability to effectively
address the challenges posed by non-IID data distributions.

5 CONCLUSION

In this paper, we proposed FedMAP, a novel FL framework incorporating a global prior distribution
over local model parameters and enabling personalized FL. We formulated a mathematical framework
for the problem with bi-level optimization, capturing the data heterogeneity across clients. Exten-
sive evaluations across scenarios, including skewed feature, label and quantity distributions, have
demonstrated FedMAP’s performance gains over the existing methods such as FedAvg, FedProx, and
FedBN. Additionally, the theoretical analysis positions FedMAP as a promising approach for robust,
personalized federated learning in heterogeneous data environments. From the practical perspective,
the Flower framework integration further improves reproducibility and practical deployment using
Docker containers. It allows researchers and practitioners to incorporate FedMAP into their existing
FL pipelines easily.

FedMAP can benefit healthcare particularly, as it encourages multiple hospitals to train ML models
collaboratively despite their siloed data. Hospitals face non-IID issues as the variations in disease
prevalence, demographic differences, and different dataset sizes (Zhang et al., 2024). FedMAP allows
the training of robust and personalized diagnostic models tailored to each healthcare provider’s unique
data distribution, unlocking the potential of collaborative learning while preserving data privacy and
integrity.

Although the results are promising, the limitations include assuming the global prior is an isotropic
Gaussian distribution and the mean acts as a unique parameter. Therefore, future work will involve
looking into issues such as covariance matrix tuning and exploring alternatives to Gaussian distribu-
tions for priors. We believe FedMAP offers an effective framework and streamlines collaboration in
distributed data environments.
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A CONVERGENCE ANALYSIS OF FEDMAP

We consider q clients with datasets Zk ∈ (X ×Y)Nk for each k = 1, . . . , q. As mentioned in section
2, in the FedMAP framework, each client obtains its local model by solving a regularized empirical
risk minimization problem as follows:

θ
(t)
k ∈ argmin

θ∈Θ

{
L(θ;Zk) +R(θ, γ(t))

}
, (10)

where L(θ;Zk) is the empirical risk, andR(θ, γ(t)) is a parametric regularizer, where the parameter
is γ(t) ∈ Γ ⊂ Rp. If one considers a parametric regularizerR(θ, γ) such that, for every γ ∈ Γ, the
function θ 7→ R(θ, γ) satisfies suitable growth assumptions, the optimization problem (10) can be
viewed as a MAP estimator for the parametric prior distribution on Γ, with probability density given
by

ργ(θ) =
exp (−R(θ, γ))

Cγ
, where Cγ =

∫
Θ

exp (−R(ω, γ)) dω.

Once each client has trained its local model θ(t)k , this one is transmitted to the central node, that
aggregates them to update the parameter γ(t) of the regularizer as follows:

γ(t+1) = γ(t) − λ

q∑
k=1

wk∇γR(θ(t)k , γ(t)), (11)

where λ > 0 is the learning rate for the aggregation, and (w1, . . . , wq) ∈ (0, 1)q with
∑

k wk = 1
are weights than can be chosen based on the size of the datasets or the quality of the data of each
client. Note that during the local training (10), the local data Zk appears only in the term L(θ;Zk),
and therefore, no data needs to be shared during the aggregation step in (11).
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A.1 MAIN RESULT

Our main goal in this section is to prove that, under suitable convexity assumptions, the communi-
cation rounds in FedMAP, given by the local training (10) and the aggregation (11), correspond to
gradient descent iterations of a strongly convex function M(γ), defined as the linear combination of
envelop functions associated with the local losses L(θ;Zk) and the parametric regularizerR(θ, γ).
Moreover, the minimizer of M(γ) provides the unique solution to the bi-level optimization problem

minimize
θk∈Θ

L(θk;Zk) +R(θk, γ∗) for each k = 1, . . . , q,

s.t. γ∗ ∈ argmin
γ∈Γ

(
q∑

k=1

wkR(θk, γ)

)
.

(12)

Throughout this section, we shall make the following convexity assumption on L andR.
Assumption 1. The parameter space Θ ⊂ Rd is compact and convex, and Γ = Rp for some p ∈ N.
Moreover, for each k = 1, . . . , q, the function θ 7→ L(θ;Zk) is continuous in Θ and convex, i.e. it
satisfies

1

2
L (θ1;Zk) +

1

2
L (θ2;Zk) ≥ L

(
θ1 + θ2

2
;Zk

)
∀θ1, θ2 ∈ Θ.

We also assume that the function (θ, γ) 7→ R(θ, γ) is differentiable and strongly convex in Θ× Γ, i.e.
there exists α > 0 such that

1

2
R(θ1, γ1) +

1

2
R(θ2, γ2) ≥ R

(
θ1 + θ2

2
,
γ1 + γ2

2

)
+ α

(∥∥∥∥θ1 − θ2
2

∥∥∥∥2 + ∥∥∥∥γ1 − γ2
2

∥∥∥∥2
)
,

for all (θ1, γ1), (θ2, γ2) ∈ Θ× Γ.

For a given dataset Zk ∈ (X ×Y)Nk and a functionR : Θ× Γ→ R satisfying Assumption 1, let us
define the function

Mk(γ;Zk) := min
θ∈Θ
{L(θ;Zk) +R(θ, γ)} . (13)

Assumption 1 implies that the minimizer in the right-hand-side of (13) is attained at a unique θ ∈ Θ
which depends on γ. Our main theoretical contribution reads as follows. This is a more detailed
version of Theorem 1, presented in the main paper.
Theorem 2. Let Zk ∈ (X × Y)Nk with k = 1, . . . , q be q datasets, and assume that the functions
θ 7→ L(θ;Zk) and (θ, γ) 7→ R(θ, γ) satisfy Assumption 1. For any γ(0) ∈ Γ and λ > 0, the sequence
{γ(t)}t∈N given by the FedMAP iterations (11)–(10) can be written as

γ(t+1) = γ(t) − λ∇γM(γ(t)),

where the function M : Γ→ R is defined as

M(γ) :=

q∑
k=1

wkMk(γ;Zk),

where Mk(γ;Zk) is given by (13). Moreover, the function M(·) is strongly convex in Γ and its unique
minimizer γ∗ is such that (θ∗1 , . . . , θ

∗
q ) given by

θ∗k ∈ argmin
θ∈Θ
{L(θk;Zk) +R(θk, γ∗)} , for all k = 1, . . . , q,

is the unique solution of the bi-level optimization problem (12).

The proof of this theorem is given in section A.3. The above result implies that, since FedMAP
iterations are gradient descent iterations of a strongly convex function, with a suitable choice of the
learning rate λ, one can ensure that γ(t) converges to the unique minimizer of M(·) and, therefore, to
the solution of (12).
Remark 1. Let us point out some important differences between FedMAP and other FL approaches
such as FedAvg (McMahan et al., 2016), FedProx (Li et al., 2020), FedBN (Li et al., 2021b) and Ditto
(Li et al., 2021a). First of all, most FL approaches focus on finding a global global model, which is in
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the same hypothesis set as the local models. Instead, in FedMAP one seeks for an optimal regularizer,
in a potentially different hypothesis set. Note that the parameter space Θ for the local model and the
parameter space Γ for the regularizer might be different.

Another important difference is that, whereas most FL approaches focus on estimating the global
model θ∗ ∈ Θ by minimizing a function of the form

F (θ) =

q∑
k=1

wkL(θ;Zk), (14)

which is a weighted average of the local loss functions L(θ;Zk), FedMAP minimizes a linear
combination of functions Mk(γ;Zk) defined in (13). In particular, FedMAP minimizes the function

M(γ) =

q∑
k=1

wkMk(γ;Zk) =

q∑
k=1

wk min
θ∈Θ
{L(θ;Zk) +R(θ, γ)} . (15)

As we show in the section A.2 below, for a special choice ofR(θ, γ), and when the data across the
clients comes from the same distribution, minimizing F (θ) in (14) and minimizing M(γ) in (15) are
equivalent (or close to equivalent). However, when the datasets Zk come from different distributions,
the minimizers of F (θ) and M(γ) might be very different, even for the case of a quadratic regularizer
of the formR(θ, γ) = (θ− θ∗)⊤A(s)(θ− θ∗). This phenomenon is illustrated in section A.4 through
a simple example using linear regression. Here, A(s) is a parametric positive definite diagonal
matrix with parameter s ∈ Rd and θ∗ ∈ Ω. Note that the parameter γ of the regularizerR(θ, γ) is
of the form γ = (s, θ∗) ∈ Rd ×Θ.

A.2 QUADRATIC REGULARIZER

Let us consider the special case when Θ = Γ = Rd and, for a diagonal d × d matrix Dσ with
σ = (σ1, . . . , σd) ∈ Rd

∗ in the main diagonal, let us consider the regularizerR(θ, γ) defined as

R(θ, γ) = ∥Dσ(θ − γ)∥2

2
=

d∑
i=1

σ2
i

2
(θi − γi)

2. (16)

In this case, the function Mk(γ;Zk) is given by

Mk(γ;Zk) = min
θ∈Rd

{
L(θ;Zk) +

∥Dσ(θ − γ)∥2

2

}
. (17)

This function is an anisotropic variant of the Moreau envelope of the function θ 7→ L(θ;Zk), and is
well studied in the field of convex optimization. One of the main features of Moreau envelopes is
that minimizing Mk(γ;Zk) over γ is equivalent to minimizing L(θ;Zk) over θ. Therefore if all the
local loss functions L(θ;Zk) were equal, minimizing F (θ) =

∑q
k=1 wkL(θ;Zk) and minimizing

M(γ) =
∑q

k=1 wkM(γ;Zk) would produce the same global model. The same argument can
be used when the datasets Zk are not equal but come from the same distribution, in which case
L(θ;Zk) ≈ EZ [L(θ;Z)] for all k = 1, . . . , q.

However, it is important to note that in the non-IID case, which is the case that interests us in this
paper, the local loss functions L(θ;Zk) might be rather different across the clients. In this case,
minimizing a linear combination of Moreau envelopes such as

M(γ) =

q∑
k=1

wkM(γ;Zk)

is not equivalent to minimizing the function

F (θ) =

q∑
k=1

wkL(θ;Zk).

Indeed, we show in subsection A.4, through an example using linear regression, that minimizing
M(γ) and minimizing F (θ) can produce very different results. The use of Moreau envelopes in

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the framework of personalized Federated Learning was already proposed in T Dinh et al. (2020).
However, our approach is much more general that the one proposed in T Dinh et al. (2020), which
can be seen as the special case in which the parametric regularizer is chosen with the form (16).

One of the key considerations when using a quadratic regularizer such as (16) is the choice of the
hyperparameters σ1, . . . , σd, which are related to the variance of each parameter in θ = (θ1, . . . , θd)
across the clients. When constructing a parametric model, it is in general difficult to know a priori
which model parameters should be similar across the clients, and which parameters should vary.
Using the flexibility of our approach described in Section 2, we can consider a parametric regularizer
of the form

R(θ, γ) =
d∑

i=1

α(si)
(θi − µi)

2

2
, with γ = (s, µ) ∈ Rd ×Θ (18)

where α : R 7→ R+ is a function that has to be suitably chosen in a way that R(θ, γ) satisfies the
convexity condition in Assumption 1.

Similarly to R(θ, γ) given in (16), the choice of the regularizer R(θ, γ) in (18) corresponds to the
assumption of a Gaussian prior in the parameter space Θ. The advantage of the parametrization of
R(θ, γ) in (18), is that the variance of the Gaussian prior is a parameter which can be learned during
the aggregation. The main challenge of usingR(θ, γ) as in (18) is that it must satisfy the convexity
condition in Assumption 1.

The following result provides a suitable choice for function α(·) that ensures that a parametric
regularizer, similar to (18), fulfills Assumption 1.

Lemma 1. Let d ∈ R, and for any c > 0, define the function α : (−c,∞) → R given by

α(s) =
1

s+ c
. Then, for any ε > 0 and any bounded interval I ⊂ (−c,∞), the function

R(θ, µ, s) =
d∑

i=1

α(si)
(θi − µi)

2

2
+ ε(∥s∥2 + ∥µ∥2)

is strongly convex in Rd × Rd × Id.

Remark 2. The term ε(∥s∥2 + ∥µ∥2) is only added to the regularizer in (18) to ensure strong
convexity. However, we note that this term is only relevant during the aggregation, and it can be
dropped during the local training since it does not depend on the local parameter θ:

θ
(t)
k ∈ argmin

θ∈Θ
{L(θ;Zk) +R(θ, µ, s)} = argmin

θ∈Θ

{
L(θ;Zk) +

d∑
i=1

α(si)
(θi − µi)

2

2

}
.

In section A.4, we show, through a simple example for linear regression, how a parametric regularizer
of the form (18) can be used to address a FL problem with heterogeneous data. Let us now prove
Lemma 1.

Proof. To prove thatR(θ, µ, s) is strongly convex, it is enough to prove that the Hessian matrix is
definite positive for all (θ, µ, s) ∈ Θ × Θ × Id, and that the smallest eigenvalue can be bounded
away from 0 independently of (θ, µ, s). The functionR(θ, µ, s) has 3d variables, and therefore, its
Hessian matrix is of size 3d× 3d. However, sinceR(θ, µ, s) can be written as the sum of d terms in
the following way:

R(θ, µ, s) =
d∑

i=1

(
α(si)

(θi − µi)
2

2
+ εs2i + εµ2

i

)
=

d∑
i=1

F (θi, µi, si),

the Hessian matrix ofR(θ, µ, s) is block diagonal with d blocks of size 3× 3 of the form

Hi =

[
Fθθ(θi, µi, si) Fθµ(θi, µi, si) Fθs(θi, µi, si)
Fθµ(θi, µi, si) Fµµ(θi, µi, si) Fµs(θi, µi, si)
Fθs(θi, µi, si) Fµs(θi, µi, si) Fss(θi, µi, si),

]
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where the sub-indexes represent the partial derivatives of F . Proving that the Hessian matrix of
R(θ, µ, s) is definite positive is equivalent to proving that each block Hi is definite positive.

From now on, we omit the dependence of F on (θi, µi, si) to make the notation lighter. Using simple
calculus, one can compute the second derivatives in Hi as

Fθθ = 2α(si), Fθµ = −2α(si), Fθs = 2α′(si)(θi − µi),

Fµµ = 2α(si) + ε, Fµs = −2α′(si)(θi − µi), Fss = α′′(s)(θi − µi)
2 + ε.

Since Hi is a symmetric matrix, it is well-known, by Sylvester’s criterion, that Hi is definite positive
if and only if all its leading principal minors are definite positive.

The leading principal minor of order one is simply the scalar Fθθ = 2α(si) =
2

si + c
> 0 which is

uniformly positive in the bounded interval I . The leading principal minor of order two is∣∣∣∣ 2α(si) −2α(si)
−2α(si) 2α(si) + ε

∣∣∣∣ = 2εα(si) =
2

si + c
> 0,

which, again, is uniformly positive in the bounded interval I . After some computations, one can
verify that the leading principal minor of order three can be written as

M3 =

∣∣∣∣∣∣
2α(si) −2α(si) 2α′(si)(θi − µi)
−2α(si) 2α(si) + ε −2α′(si)(θi − µi)

2α′(si)(θi − µi) −2α′(si)(θi − µi) α′′(si)(θi − µi)
2 + ε

∣∣∣∣∣∣
= 2ε(θi − µi)

(
α(si)α

′′(si)− 2(α′(si))
2
)
+ 2ε2α(si).

We can see that the function α(s) =
1

s+ c
satisfies α(s)α′′(s) = 2(α′(s))2 for all s > −c. Hence,

the leading principal minor of order three is given by M3 = 2ε2α(si) > 0 which is uniformly positive
in I . This implies that each block Hi in the Hessian ofR(θ, µ, s) is uniformly positive in Θ×Θ×Id,
and hence, we conclude that the functionR(θ, µ, s) is strongly convex in Θ×Θ× Id.

A.3 PROOF OF THEOREM 2

Proof. For each k ∈ {1, . . . , q} and for any γ ∈ Γ, by the Assumption 1, the function θ 7→
L(θ;Zk) +R(θ, γ) is strongly convex in Θ, and therefore, there exists a unique θ∗k ∈ Θ such that

Mk(γ;Zk) = L(θ∗k;Zk) +R(θ∗k, γ).

Now, by means of Danskin’s Theorem (see (Danskin, 1966; Bernhard & Rapaport, 1995)), and since
the loss L(θ;Zk) is independent of γ, the gradient of Mk(·;Zk) at γ is given by

∇γMk(γ;Zk) = ∇γR(θ∗k, γ).

Since this is true for any k ∈ {1, . . . , q}, we obtain

∇γM(γ) =

q∑
k=1

wk∇γMk(γ;Zk) =

q∑
k=1

wk∇γR(θ∗k, γ),

where θ∗k is the unique minimizer in Θ of θ 7→ L(θ;Zk) +R(θ, γ). Hence, we can write the update
formula (11) as

γ(t+1) = γ(t) − λ∇γM(γ(t)).

The strong convexity of M(γ) is proved in Lemma 2 below.

Let us now prove that the minimizer of M(γ), denoted by γ∗, together with (θ∗1 , . . . , θ
∗
q ) ∈ Θq,

obtained as the unique solution of the optimization problem

minimize
θ∈Θ

{L(θ;Zk) +R(θ, γ∗)} , for each k = 1, . . . , q,

is the unique solution to the bi-level optimization problem (12). For that, we will first prove that (12)
has at least one solution, and then we will prove that, for any solution (θ∗1 , . . . , θ

∗
q ) of (12), the unique

17
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γ∗ ∈ Γ satisfying γ∗ ∈ argminγ
∑q

k=1 wkR(θ∗k, γ∗) is a critical point of M(γ). The uniqueness of
the solution follows from the strong convexity of M(γ).

By the compactness of Θ and the strong convexity of R(θ, γ), it follows that the function
(θ, γ) 7→ L(θ;Zk) + R(θk, γ∗) is bounded from below for all k = 1, . . . , q. Then, there ex-
ists a minimizing sequence {(θ(n)1 , . . . , θ

(n)
q )}n∈N in Θq associated to the minimization problem

(12). By the compactness of Θq, the minimizing sequence converges (through a subsequence)
to some (θ∗1 , . . . , θ

∗
q ) ∈ Θq. Also, by the continuity and the strong convexity of the function

γ 7→
∑q

k=1 wkR(θk, γ), there exists a unique sequence {γ∗
n}n∈N in Γ, satisfying

γ∗
n ∈ argmin

γ

q∑
k=1

wkR(θ(n)k , γ), ∀n ∈ N,

which also converges to the parameter γ∗ ∈ Γ associated to the limit point (θ∗1 , . . . , θ
∗
q ). Due to the

continuity of θ 7→ L(θ;Zk) and (θ, γ) 7→ R(θ, γ) we conclude that (θ∗1 , . . . , θ
∗
q ), together with γ∗ is

a solution to the optimization problem (12).

Let us now prove that the parameter γ∗ associated to any solution of (12) is a critical point of M(γ).
By the first-order optimality condition, the parameter γ∗ associated to any solution (θ∗1 , . . . , θ

∗
q ) of

(12) satisfies
q∑

k=1

wk∇γR(θ∗k, γ∗) = 0.

Since for each k ∈ {1, . . . , q}, θ∗k is the unique minimizer of θ 7→ L(θ;Zk) +R(θ, γ∗), it is easy
to deduce that γ∗ is a fixed point for the FedMAP iterations defined by (10)–(11), and then, since
these iterations correspond to gradient descent iterations for the strongly convex function M(γ), we
deduce that γ∗ is the unique critical point of M(γ).

In the next lemma we prove that the function M(γ) defined in Theorem 2 is strongly convex in Γ.

Lemma 2. Let Zk ∈ (X ×Y)Nk with k = 1, . . . , q be q datasets, and consider that the loss functions
L : Θ×

⋃
N∈N(X ×Y)N → R andR : Θ× Γ→ R satisfy Assumption 1. Then, the function M(γ)

defined in Theorem 2 is strongly convex in Γ, i.e. it satisfies

1

2
M(γ1) +

1

2
M(γ2) ≥M

(
γ1 + γ2

2

)
+ α

∥∥∥∥γ1 − γ2
2

∥∥∥∥2 , ∀γ1, γ2 ∈ Γ.

Proof. Let γ1, γ2 ∈ Γ, and for each k = 1, . . . q, let θ∗k,1, θ
∗
k,2 ∈ Θ be such that

Mk(γi;Zk) = L(θ∗k,i;Zk) +R(θ∗k,i, γi), for i = 1, 2.

Using the definition of Mk(γ;Zk) in (13) and the Assumption 1, we obtain

Mk

(
γ1 + γ2

2
;Zk

)
≤ L

(
θ∗k,1 + θ∗k,2

2
;Zk

)
+R

(
θ∗k,1 + θ∗k,2

2
,
γ1 + γ2

2

)
≤ 1

2
L(θ∗k,1;Zk) +

1

2
L(θ∗2 ;Zk) +

1

2
R(θ∗k,1, γ1) +

1

2
R(θ∗k,2, γ2)

−α

(∥∥∥∥θ∗k,1 − θ∗k,2
2

∥∥∥∥2 + ∥∥∥∥γ1 − γ2
2

∥∥∥∥2
)

≤ 1

2
Mk(γ1;Zk) +

1

2
Mk(γ2;Zk)− α

∥∥∥∥γ1 − γ2
2

∥∥∥∥2 ∀k = 1, . . . q.

Re-arranging the terms in the above inequality, we obtain

1

2
Mk(γ1;Zk) +

1

2
Mk(γ2;Zk) ≥Mk

(
γ1 + γ2

2
;Zk

)
+ α

∥∥∥∥γ1 − γ2
2

∥∥∥∥2 ∀k = 1, . . . q,

and taking the summation over k = 1, . . . , q, we conclude the proof.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.4 EXAMPLE FOR LINEAR REGRESSION

We consider a simple linear regression task, in which the goal is to estimate the parameters (a, b) ∈ R2

in the model
Y = aX + b+ ε, (19)

where X ∈ R is the input and ε ∈ R is Gaussian noise N(0, σ2), with variance σ2 = 0.8. Let Zk =

{(x(i)
k , y

(i)
k )}Nk

i=1, for k = 1, . . . , 5, be q = 5 datasets. Since we want to address a heterogeneous
setup, we assume that the parameter b in (a, b) is different for each dataset, as well as the distribution
of the input variable X . We will also assume different sizes Nk for the 5 datasets. More precisely,
we consider

a = −1 and bk = 4(k − 1), for k = 1, . . . , 5.

Concerning the distribution of the input data, we consider that

Xk ∼ N(k − 1, 1), for k = 1, . . . , 5.

In other words, the input x(i)
k in each data point (x(i)

k , y
(i)
k ) in Zk follows a Normal distribution

with mean k − 1 and variance 1, and the output y(i)k follows a Normal distribution with mean
ax

(i)
k + 4(k − 1) and variance σ2 = 0.8. As for the size of the datasets, we considered

(N1, N2, N3, N4, N5) = (60, 1, 2, 3, 50).

See Figure 2a for a representation of the 5 datasets.

Since we are considering Gaussian noise in the model (19), a suitable choice for the local loss would
be

L(a, b;Zk) =
1

Nk

Nk∑
i=1

(
ax

(i)
k + b− y

(i)
k

)2
.

We recall that in this case, the parameter of the model is of the form θ = (a, b) ∈ R2 and the dataset
is given by Zk = {(x(i)

k , y
(i)
k )}Nk

i=1. Minimizing this loss function gives the MLE for the local model
k, but shares no information with the other clients. This approach would be effective for clients 1 and
5, which have large datasets, be might result in poor performance for clients 2, 3 and 4, which have
smaller datasets.

In many FL approaches, a global model (a∗, b∗) ∈ R2 is obtained by minimizing a function of the
form

(a∗, b∗) ∈ arg min
(a,b)∈R2

F (a, b) :=

q∑
k=1

Nk

N
L(a, b;Zk) =

1

N

q∑
k=1

Nk∑
i=1

(
ax

(i)
k + b− y

(i)
k

)2
. (20)

See Figure 2b for a representation of the global model (a∗, b∗) obtained by minimizing such function.
Minimizing this function gives the MLE estimator for the union of the datasets Z =

⋃q
k=1 Zk.

However, it ignores the fact that data points come from different clients. This can have a catastrophic
effect for personalization purposes. Indeed, note that the real parameter a is −1 for all the clients,
whereas a∗ in the global model is positive.

Let us now consider the FedMAP approach with Θ = R2 and Γ = R2×(−1,∞)2 and the parametric
regularizer

Rk(a, b, µa, µb, sa, sb) =
α(sa)

2
(a− µa)

2 +
α(sb)

2
(b− µb)

2 + ε(µ2
a + µ2

b + s2a + s2b), (21)

with ε = 10−4 and α(s) =
1

s+ 1
. This choice corresponds to a quadratic regularizer with the

perturbation ε(µ2
a + µ2

b + s2a + s2b). The parameters of this regularizer are (µa, µb, sa, sb) ∈ Γ. The
parameters (µa, µb) represent the mean of the parameters a and b, respectively, in the linear regression
model, whereas the parameters (sa, sb) are associated with the variance of these parameters. Note
that utilizing a different variance for a and b is important since the parameter a is the same in all the
datasets, and the parameter b varies across the different clients. Ideally, one should take α(sa) much
bigger than α(sb), however, we do not assume that we have this information a priori. In the FedMAP
approach, α(sa) and α(sb) are learned, through the parameters sa and sb, during the aggregation
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steps, according to the trained local models. The choice of the function α : (−1,∞) → R+ is
motivated by Lemma 1, ensuring that the convexity assumption of Theorem 2 is satisfied.

As shown in section A.1, the FedMAP iterations correspond to gradient descent applied to the function

M(µa, µb, sa, sb) =

q∑
k=1

wkMk(µa, µb, sa, sb;Zk), (22)

where the weights wk are chosen, based on the sample size of each dataset, as wk = Nk/N , and
Mk(µa, µb, sa, sb;Zk) is the envelope function given by

Mk(µa, µb, sa, sb;Zk) = min
(a,b)∈R2

{L(a, b;Zk) +Rk(a, b, µa, µb, sa, sb)} ,

whereRk(a, b, µa, µb, sa, sb) is the parametric regularizer defined in (21). Note that, by the form of
the regularizer, we can write

Mk(µa, µb, sa, sb;Zk) = min
(a,b)∈R2

{
L(a, b;Zk) +

α(sa)

2
(a− µa)

2 +
α(sb)

2
(b− µb)

2

}
+ ε(µ2

a + µ2
b + s2a + s2b).

This implies that the perturbation ε(µ2
a + µ2

b + s2a + s2b) does not need to be considered during the
local training.

We initialized the parameters (µa, µb) following a Normal distribution N(0, 1), and the parameters
(sa, sb) were initialised as (0, 0), which corresponds to α(sa) = α(sb) = 1. After 10 communication
rounds of FedMAP algorithm, we obtained the following parameters for the regularizer:

µa = −1.0735 µb = 9.4882
sa = 1.9431 sb = 97.7605

which after applying α to the parameters sa and sb yields α(sa) = 0.3400 and α(sb) = 0.0101. We
observe that the estimated mean for the parameter a is µa ≈ −1, and the estimated parameter α(sa)
is much larger than α(sb). This implies that, after only 10 communication rounds, the estimated
variance for the parameter a is much smaller than that for the parameter b.

We see in Figure 2c that the linear regression model associated to the parameters (a, b) = (µa, µb)
obtained by minimizing M(µa, µb, sa, sb) differs a lot from the one obtained when minimizing
F (a, b) in (20).

(a) Training data from the 5 datasets
used in the example from A.4.

(b) Global model obtained by mini-
mizing F (a, b) in (20).

(c) Global model associated to
(a, b) = (µa, µb).

Figure 2: Training data and global models for the linear regression example from section A.4. The
global models were obtained by minimizing two loss functions that combine the data across the
clients differently. In (b), the parameters (a, b) are obtained by minimizing F (a, b) in 20, whereas in
(c), we used (a, b) = (µa, µb) where (µa, µb) are obtained by minimizing M(µa, µb, sa, sb) in (22).

Of course, none of the global models (a∗, b∗) and (µa, µb) can be reliably used to make predictions
for the 5 clients. Therefore, in such a non-IID setting, a personalized FL approach needs to be
implemented. The main idea in the Ditto approach Li et al. (2021a), as well as in the FedMAP
approach, is to use a global model as a regularization term to train local models for each client. In the
Ditto approach, the global model is obtained by minimizing the functional F (a, b) in (20), and thus,
the personalised models are obtained by minimizing the following functional:

(ak, bk) ∈ arg min
(a,b)∈R2

L(a, b;Zk) +
σa

2
(a− a∗)2 +

σb

2
(b− b∗)2, for each k = 1, . . . , 5,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where (a∗, b∗) ∈ R2 is the solution to (20). The choice of the hyperparameters σa and σb in this
approach is critical, and in general, it is not straightforward to make this choice without having prior
knowledge about the datasets. In Figure 3b we see the 5 personalized models obtained by minimizing
the above functional. To better visualize the mismatch of some of the local models with the local
data, we plotted a larger dataset that has only been generated for test purposes. We observe that using
(a∗, b∗) in the regularisation term has a negative impact. This is due to the fact that the global model
has been trained without taking into account the heterogeneity of the data.

Instead, the local models in FedMAP are obtained by minimizing the functional

(ak, bk) ∈ arg min
(a,b)∈R2

L(a, b;Zk)+
α(sa)

2
(a−µa)

2+
α(sb)

2
(b−µb)

2, for each k = 1, . . . , 5,

where (µa, µb, sa, sb) ∈ Γ are obtained by minimizing the functional M(µa, µb, sa, sb) in (22). We
can see in Figure 3c that using (γa, γb) in the regularisation term produces much better personalized
models. We also stress that, in this approach, the parameters α(sa) and α(sb) in front of the quadratic
terms of the regularizer are not manually chosen. Instead, they are learned, during the aggregation
steps, according to the local models.

(a) Data from the 5 datasets used in
A.4. This data was generated for
test purposes only.

(b) Local models obtained by using
(a∗, b∗) and (σa, σb) in the regular-
isation term.

(c) Local models obtained by using
(µa, µb) and (α(sa), α(sb)) in the
regularisation term.

Figure 3: Test data from the example in section A.4 and local models trained through regularised
empirical risk minimization. The data was generated for test purposes only. For the central plot,
the parameters in the quadratic regularizer are σa = σb = 0.1 and (a∗, b∗) obtained by minimizing
F (a, b) in (20). In the right plot, the parameters in the quadratic regularizer are (α(sa), α(sb)) and
(µa, µb) obtained by minimizing M(µa, µb, sa, sb) in (22) respectively.

B SUPPLEMENTARY MATERIAL FOR THE EXPERIMENTS

B.1 DESCRIPTION OF THE SYNTHETIC DATA

We designed a data synthesis method that generates synthetic data for a binary classification problem
in Rn, where n = 30 is the number of features. We assume that the intrinsic dimension of the data is
d = 4, so we start by randomly selecting a d-dimensional linear subspace of Rn. This is done by
randomly generating d orthonormal vectors of Rn, that we stack as a matrix B = (b1, . . . , bd) ∈
Rn×d. For every data point (x, y) ∈ Rn × {0, 1}, the label y is correlated only with the projection
of x onto the space spanned by B, and the orthogonal component to B is assumed to be a nuisance
variable.

The data generation for the two classes is as follows:

1. For the label y = 0, the projection of x onto the d-dimensional subspace B follows an
isotropic Normal distribution centered at the origin, i.e. Bx ∼ N (0, σ2

0Id), with σ2
0 = 2.

2. For the label y = 1, the projection of x onto the d-dimensional subspace B is distributed
around the (d − 1)-dimensional sphere of radius 8 as follows: Bx

∥Bx∥ ∼ U(S
d−1), where

U(Sd−1) denotes the uniform distribution on the unit (d− 1)-dimensional sphere, and the
norm of Bx is normally distributed around 8, i.e. ∥Bx∥ ∼ N (8, σ2

1Id), with σ2
1 = 2.
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(a) IID (b) Feature Distribution Skew (c) Quantity Skew

Figure 4: t-SNE visualizations of synthetic data under different skew scenarios. The IID scenario
(left) shows uniform data distribution across clients, while Feature Distribution Skew (middle) and
Quantity Skew (right) demonstrate different types of non-IID scenarios.

Figure 5: Label Distribution Skew

In both cases, the projection of the vector of features onto the orthogonal space to B follows a Normal
distribution N (0, σ2

0In−d).

In this way, the binary classification task consists of separating the feature vectors x such that Bx
is close to 0 from those such that Bx is close to the (d− 1)- dimensional sphere of radius 8, where
B = (b1, . . . , bd) is an unknown n× d matrix with orthonormal columns.

This data generation process is repeated independently for each of the q = 10 clients, with the number
of samples per machine determined by a split ratio. Finally, in order to simulate Feature Distribution
Skew across the clients, for each client, the vector of features x is further transformed by an affine
transformation Ax+ b, where A ∈ Rn×n is a random matrix and b ∈ Rn is a random vector that
scales with the client index. The matrix A and the vector b are different for each client.

The method introduces three types of data skew to simulate realistic FL non-IID scenarios. Feature
Distribution Skew is achieved by applying client-specific random affine transformations x 7→ Ax+b
to the local data points, with A ∈ Rn×n and b ∈ Rn varying between clients. This results in the
data distribution shifts across clients. Label Distribution Skew and Quantity Skew are simulated
by varying the proportion of class 0 samples and the number of samples assigned to each client,
respectively, on top of Feature Distribution Skew. This results in clients having different class
proportions, feature distributions, and numbers of samples.

The method allows fine-grained control over the degree and nature of the induced data skew, enabling
the generation of realistic synthetic federated datasets to study the impact of different non-IID data
scenarios on the performance of FL algorithms.

To verify and gain an in-depth understanding of our synthetic data generation process for different
non-IID scenarios and compare them to IID scenarios, we employed t-SNE (t-distributed Stochastic
Neighbor Embedding) (van der Maaten & Hinton, 2008) to reduce the high-dimensional data to 2D
representations. The t-SNE visualizations, as shown in Figures 4 and 5, illustrate the different data
heterogeneity scenarios in the datasets used in the evaluation. The IID scenario (Figure 4a) shows
the idealistic data distribution for FL as it has no distribution skewness, with data points uniformly
mixed across clients. The Feature Distribution Skew (Figure 4b) indicates distinct clusters for each
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client, which confirms each client has a specific data distribution. The Quantity Skew (Figure 4c)
shows the varying densities of points per client, which indicates imbalanced sample sizes. The
Label Distribution Skew (Figure 5) illustrates the distribution variation in class. These visualizations
provide us invaluable insights into the diverse challenges in non-IID data.

B.2 MODEL ARCHITECTURE AND TRAINING DETAILS ON BENCHMARK

For the synthetic dataset, we employed an MLP with two hidden layers (see Table 3). The simplicity
of the MLP allows us to isolate and analyze the impact of non-IID on FedMAP’s bi-level optimization
interactions.

For the Office-31 dataset, we used the same Convolutional Neural Network (CNN) architecture as
implemented in FedBN (see Table 4). This choice was made to recreate the experiments conducted in
FedBN for direct performance comparison.

Table 3: Model architecture used in the evaluation with the synthetic dataset.

Layer Details
1 Linear(input dim, 32), ReLU
2 Linear(32, 16), ReLU
3 Linear(16, 1), Sigmoid
4 Output Layer

Table 4: Model architecture used in the evaluation with Office-31 dataset, as implemented in FedBN
(Li et al., 2021b)

Layer Details
1 Conv2D(3, 64, kernel size=11, stride=4, padding=2),

BatchNorm(64), ReLU, MaxPool2D(kernel size=3, stride=2)
2 Conv2D(64, 192, kernel size=5, padding=2),

BatchNorm(192), ReLU, MaxPool2D(kernel size=3, stride=2)
3 Conv2D(192, 384, kernel size=3, padding=1),

BatchNorm(384), ReLU
4 Conv2D(384, 256, kernel size=3, padding=1),

BatchNorm(256), ReLU
5 Conv2D(256, 256, kernel size=3, padding=1),

BatchNorm(256), ReLU, MaxPool2D(kernel size=3, stride=2)
6 AdaptiveAvgPool2D((6, 6))
7 Linear(256 * 6 * 6, 4096),

BatchNorm1d(4096), ReLU
8 Linear(4096, 4096),

BatchNorm1d(4096), ReLU
9 Linear(4096, num classes)
10 Output Layer

B.3 RESULTS IN DIFFERENT NON-IID SCENARIOS

Table 5 presents the results for the feature distribution skew scenario, where clients have heterogeneous
feature distributions. FedMAP consistently improves upon individual client training for all clients,
validating its effectiveness in handling diverse feature distributions through personalized client models
while leveraging the guidance of the global prior.

Table 6 shows the results for the quantity skew scenario, where some clients (6-10) have limited
sample sizes (highlighted in red). FedMAP provides significant gains of up to 8.90% over individual
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Table 5: Validation accuracies of FedMAP, FedBN, FedProx, FedAvg, and individual training on the
synthetic dataset with feature distribution skew. Each client has a unique transformation applied to its
local data, introducing heterogeneity in the feature space.

Client Individual FedMAP FedBN FedProx FedAvg
1 82.25% 85.26% (↑ 3.01%) 62.77% 58.44% 57.85%

±0.44% ±0.10% ±0.39% ±0.07% ±0.15%

2 86.24% 88.94% (↑ 2.70%) 65.86% 64.28% 65.35%
±0.31% ±0.09% ±0.34% ±0.07% ±0.15%

3 80.76% 83.70% (↑ 2.94%) 66.99% 65.99% 66.06%
±0.14% ±0.13% ±0.31% ±0.14% ±0.16%

4 88.07% 89.70% (↑ 1.63%) 65.32% 62.09% 63.46%
±0.15% ±0.03% ±0.31% ±0.13% ±0.14%

5 83.03% 84.97% (↑ 1.94%) 66.46% 64.78% 64.74%
±0.24% ±0.12% ±0.22% ±0.07% ±0.14%

6 80.27% 83.39% (↑ 3.12%) 61.08% 58.92% 60.03%
±0.24% ±0.15% ±0.25% ±0.11% ±0.09%

7 83.48% 86.55% (↑ 3.07%) 68.39% 67.34% 66.65%
±0.21% ±0.05% ±0.52% ±0.17% ±0.10%

8 82.21% 85.38% (↑ 3.17%) 64.47% 61.25% 61.54%
±0.27% ±0.11% ±0.39% ±0.07% ±0.05%

9 85.92% 87.45% (↑ 1.53%) 66.16% 63.14% 63.55%
±0.16% ±0.07% ±0.16% ±0.16% ±0.24%

10 85.78% 87.38% (↑ 1.60%) 66.33% 63.77% 62.53%
±0.25% ±0.14% ±0.30% ±0.05% ±0.09%

Average 83.38% 86.27% 65.38% 63.00% 63.10%
±0.24% ±0.10% ±0.32% ±0.10% ±0.13%

training for clients 6-10, demonstrating its ability to effectively leverage information from clients
with larger sample sizes.

B.4 ADDITIONAL EXPERIMENT

We performed additional experiments using the Federated Extended MNIST (FEMNIST) dataset
provided by the LEAF framework (Caldas et al., 2019). FEMNIST consists of 62 different classes of
handwritten characters (0-9, a-z, A-Z) collected from 3,500 writers, with a total of 805,263 samples.
With LEAF’s preprocessing tools, we partitioned the dataset into 36 subsets with non-IID settings.
Each partition followed LEAF’s default split ratio of 90% training and 10% validation data. We
implemented a CNN architecture detailed in Table 7. The model was trained using the SGD optimizer
with an initial learning rate of 0.001 and a batch size of 64. The experimental results in Table 8, which
show averages of validation accuracies across all 36 clients, demonstrate that FedMAP outperformed
other FL approaches and individual training. These results align with our findings from the synthetic
and Office-31 experiments, further validating FedMAP’s effectiveness in handling real-world FL
scenarios with natural non-IID settings.
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Table 6: Validation accuracies of FedMAP, FedBN, FedProx, FedAvg, and individual training on the
synthetic dataset with quantity skew. Clients 1-5 have 2000 samples each, while clients 6-10 (red)
have only 500 samples each.

Client Individual FedMAP FedBN FedProx FedAvg
1 83.37% 84.47% (↑ 1.10%) 67.69% 64.33% 66.45%

±0.08% ±0.13% ±0.24% ±0.08% ±0.10%

2 88.10% 89.64% (↑ 1.54%) 72.41% 70.10% 70.22%
±0.15% ±0.08% ±0.48% ±0.10% ±0.10%

3 87.48% 88.88% (↑ 1.40%) 73.74% 72.56% 71.08%
±0.13% ±0.06% ±0.45% ±0.06% ±0.13%

4 84.40% 86.95% (↑ 2.55%) 71.38% 69.19% 68.82%
±0.15% ±0.16% ±0.46% ±0.09% ±0.12%

5 78.47% 80.23% (↑ 1.76%) 66.96% 63.93% 62.76%
±0.16% ±0.07% ±0.31% ±0.17% ±0.13%

6 61.62% 65.48% (↑ 3.86%) 56.28% 54.49% 53.96%
±0.70% ±0.34% ±0.61% ±0.11% ±0.52%

7 64.07% 72.97% (↑ 8.90%) 54.96% 56.05% 55.02%
±0.45% ±0.15% ±0.76% ±0.14% ±0.33%

8 63.83% 67.10% (↑ 3.27%) 48.58% 45.45% 46.33%
±0.31% ±0.15% ±0.53% ±0.20% ±0.32%

9 67.32% 74.92% (↑ 7.60%) 62.26% 60.37% 61.03%
±0.37% ±0.25% ±0.82% ±0.18% ±0.17%

10 64.04% 71.74% (↑ 7.70%) 61.99% 57.03% 59.73%
±0.49% ±0.40% ±0.69% ±0.30% ±0.14%

Average 75.37% 79.06% 63.80% 61.54% 61.88%
±0.30% ±0.18% ±0.54% ±0.14% ±0.21%

Table 7: Model architecture used in the experiment with FEMNIST dataset.

Layer Details
1 Conv2D(1, 32, kernel size=3, padding=1),

BatchNorm2d(32), ReLU
2 Conv2D(32, 64, kernel size=3, padding=1),

BatchNorm2d(64), ReLU, MaxPool2D(kernel size=2, stride=2)
3 Conv2D(64, 64, kernel size=3, padding=1),

BatchNorm2d(64), ReLU
4 Conv2D(64, 128, kernel size=3, padding=1),

BatchNorm2d(128), ReLU, MaxPool2D(kernel size=2, stride=2)
5 Flatten Layer
6 Linear(128 * 7 * 7, 512),

BatchNorm1d(512), ReLU, Dropout(p=0.5)
7 Linear(512, 62)
8 Output Layer

Table 8: Validation accuracies of individual training, FedMAP, FedBN, FedProx and FedAvg and on
FEMNIST

Approach Individual FedMAP FedBN FedProx FedAvg
Avg Accuracy 78.64% 84.15%(↑ 5.51%) 78.37% 79.37% 78.06%
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