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Abstract

Time-resolved CT imaging can aid acute ischemic stroke diagnosis by visualizing contrast
agent transport through the brain (micro)vasculature. CT perfusion imaging, while widely
used for stroke diagnosis, requires approximately 30 sequential scans, leading to extensive
radiation exposure and motion sensitivity. As an alternative to CT perfusion imaging,
some hospitals opt for multiphase CT angiography for time-resolved analysis with reduced
radiation dose. However, multiphase CT angiography lacks standardized perfusion analysis
capabilities, making it more challenging to interpret than CT perfusion imaging. We present
Sparse Temporal Attenuation Reconstruction (star), a novel approach using conditional
neural fields that reconstructs tissue attenuation curves from sparse observations, allowing
for reduced radiation exposure and motion sensitivity with CT perfusion, while enabling
perfusion analysis from multiphase CT angiography. Our method generates full tissue at-
tenuation curves using only 4 out of 30 observations. The results show that perfusion maps
from reconstructed data match the reference perfusion maps, potentially reducing radia-
tion and allowing recovery of motion-corrupted images. Moreover, star enables perfusion
analysis in centers using multiphase CT angiography. Consequently, star has the poten-
tial to improve the stroke imaging work-up while making perfusion analysis more widely
accessible.
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1. Introduction

Assessment of hemodynamic consequences of stroke is commonly performed by time-resolved
CT imaging such as CT perfusion or multiphase CT angiography, where the transport of
the contrast agent through the intracranial (micro) vasculature is assessed. CT perfusion is
widely regarded as the standard method for the hemodynamic analysis in most hospitals.
This technique involves acquiring approximately 30 CT scans at 1–3 second intervals after a
contrast agent is administered. The resulting images are subsequently analyzed by software
to generate perfusion maps, which summarize tissue hemodynamics such as blood flow and
transit times. However, CT perfusion faces several limitations in clinical practice. Firstly,
each acquisition exposes the patient to radiation that builds up to a significant radiation
dose with 30 acquisitions. Secondly, patient movement can cause severe motion artifacts in
acquisitions (Fahmi et al., 2013). If a significant number of images is affected by motion
artifacts, the CT perfusion analysis fails. Previously, multiphase CT angiography has been
introduced to deal with extensive radiation exposure (Menon et al., 2015). Multiphase CT
angiography extends CT angiography with two additional acquisitions, offering temporal
information with minimal protocol changes and little additional costs and scan time (Menon
et al., 2015; Dundamadappa et al., 2021). However, multiphase CT angiography does not
allow for a straightforward generation of perfusion maps, which have superior sensitivity
for detecting perfusion defects, particularly for distal occlusions (Benali et al., 2023).

We propose an approach that tackles CT perfusion’s main drawbacks: radiation dose
and motion sensitivity. Furthermore, we show that our approach allows for performing
perfusion analysis utilizing multiphase CT angiography data, all while maintaining com-
patibility with commercial off-the-shelf perfusion analysis software. The core of our method
lies in reconstructing the complete temporal evolution of contrast enhancement, also known
as tissue attenuation curves, using only a limited number of measurements. Previous re-
search focused on the interpolation of uniformly undersampled CT perfusion data to reduce
radiation (Bae et al., 2024). Others used multiphase CT angiography acquisitions to esti-
mate perfusion parameter maps through methods such as calculating the per-voxel slope
through three attenuation measurements (McDougall et al., 2020) or diffusion models (Cai
et al., 2024). However, these methods are unable to extrapolate beyond acquisitions, re-
stricted to interpolation between temporally close samples (Bae et al., 2024), and focused on
generating software-specific perfusion maps (Son et al., 2024; Cai et al., 2024) rather than
reconstructing tissue attenuation curves, which can be used with any analysis software.

We propose star: Sparse Temporal Attenuation Reconstruction, which learns continu-
ous voxel-wise temporal representations of attenuation curves using conditional neural fields
to enable attenuation curve reconstruction from sparse measurements. Consequently, star
can estimate the tissue attenuation curve from only 4 out of 30 observations (13%). These
four acquisitions correspond to time points that align with non-contrast CT and multiphase
CT angiography acquisition protocols. The generated attenuation data can subsequently
be analyzed with off-the-shelf CT perfusion analysis software. We show that the obtained
perfusion maps are on par with the perfusion maps obtained from the fully sampled CT
perfusion source data. star allows for perfusion analysis of attenuation data with 87%
fewer CT acquisitions, which could lead to a significant radiation reduction. Additionally,
this method could be used to reconstruct parts of the sequence when a significant number
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of acquisitions are corrupted by motion artifacts. Furthermore, we demonstrate that star
can reconstruct sequential attenuation data using non-contrast CT and multiphase CT an-
giography measurements, enabling perfusion analysis based on multiphase CT angiography.

2. Method

In the following, we introduce star. Figure 1 presents a visual overview of the method.
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Figure 1: Overview of star. During training, a conditional neural field is trained on fully
sampled simulated CT perfusion data with simulation parameters p ∈ R5 (cbf,
cbv, mtt, Tmax, delay). At inference, only the latent variable is updated based
on the observed data on the subsampled domain.

2.1. Conditional neural fields

In physics, a field f is defined as a scalar or vector quantity over a particular domain. For
example, we can view the dynamic contrast attenuation as a field defined on the temporal
domain. A neural field is a field represented by a neural network fθ with parameters θ
(Xie et al., 2022). In our method, we use the simplest one-dimensional and scalar form
of a neural field fθ : R → R, because we want to learn the neural field of the scalar
attenuation (given in Hounsfield Units) only on the temporal domain t ∈ [t0, ..., tT ]. The
goal is to infer the complete tissue attenuation curve using only limited measurements.
Since attenuation curves often share similar patterns, training a separate neural field for
each curve fails to leverage these shared characteristics. Moreover, training individual neural
fields is computationally inefficient, as each curve requires its own complete training process.
Therefore, we employ conditional neural fields.

In a conditional neural field, we enhance the neural field by adding a d−dimensional
latent variable z ∈ Rd as input, allowing us to represent many different curves with a single
field fθ : R1+d → R. This latent variable z is essentially an embedding of the curve’s shape
or a shape conditional. In practice, a latent z exists for each instance in the data set.
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During training, we optimize both the neural field parameters θ and the latent variables
z to minimize the difference between our predictions and the training data. At inference,
we keep the neural field parameters θ fixed and iteratively adjust the latent variable z to
minimize the difference between the neural field predictions and the available data points
for a particular number of iterations. The attenuation data are not required to be densely
sampled on the temporal domain: we may employ a sub-sampled set. We thus optimize the
latents z with data points from the sampled domain. Once we have the optimized latent
variable, we can reconstruct the complete tissue attenuation curve by sampling fθ(t, z) at
all t ∈ [t0, ..., tT ], allowing us to fill the gaps in the temporal data.

Training All latent variables z ∈ Rd are randomly initialized fromN (0, 1√
d
), where d = 32

(Park et al., 2019), which promotes effective optimization and avoids regions with vanishing
gradients. The network fθ(t, z) consists of a single hidden layer of dimension 128 with tanh
activations and outputs the predicted value through a final sigmoid activation function. We
use a compound loss function consisting of three losses. The data reconstruction loss Ldata

is a ℓ2-loss based on the difference between our predictions and the training data with all
30 time points. We use a regularization loss Lreg =

∑
i ∥zi∥2 to prevent the latents from

growing arbitrarily large. Finally, we use a contrastive loss Lcontrastive to ensure that latents
corresponding to similar attenuation curves are close together in the latent space. For any
two curve samples i and j, we measure the similarity of the perfusion parameters p ∈ R5,
corresponding to the cerebral blood flow (cbf), cerebral blood volume (cbv), mean transit
time (mtt), time-to-maximum (Tmax), and the delay, that were used to simulate these
curves (which we denote as dp) and look at how far apart they are in latent space (denoted
as dz). For similar pairs (when dp < τ), we want their latents to be close, so we directly
penalize their distance dz. For different pairs (when dp ≥ τ), we want their latents to be
at least margin m apart. If they are too close, we penalize with max(0,m− dz).

Lcontrastive =
1

|P |
∑
i,j

{
dz(i, j) if dp(i, j) < τ (similar pairs)

max(0,m− dz(i, j)) if dp(i, j) ≥ τ (different pairs)
(1)

To make all comparisons fair, p and z are normalized. We average over all possible pairs
(the total number of pairs is denoted as |P |). The threshold τ = 0.1 decides what we
consider similar, while m = 1.0 defines how far apart different latents should be. Figure 1
visualizes the contrastive loss. The total training loss, with weights empirically set, is:

L = 100 · Ldata + 0.1 · Lreg + 10 · Lcontrastive (2)

We optimize both the model parameters and the latents using Adam and employ a cosine
learning rate schedule that decays the initial learning rate 10−2 to 10−6. We train for
16,000 iterations with batches of 4,000 densely sampled attenuation curves. Training takes
22 minutes on consumer hardware with an NVIDIA RTX 2080S GPU and requires∼ 1.6GB.

Inference All latent variables z are randomly initialized from N (0, 1√
d
). We optimize

the latents z with Ldata and Lreg with the same weights as during training, using only
the observed data while keeping the neural field parameters θ fixed. We use ℓ1-loss during
inference (rather than the ℓ2-loss used during training) to better preserve the tail charac-
teristics of the attenuation curves. We optimize for 1000 iterations using Adam (<1 minute
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and requiring ∼ 0.7GB GPU memory) with learning rate 10−2 with a cosine learning rate
schedule decaying the learning rate to 10−6. To obtain the attenuation values at all time
points we infer the network fθ(t, z) at all t ∈ [t0, ..., tT ].

2.2. Datasets

We use simulated phantom data to train, and validate with both phantom and patient data.
We refer to Appendix A for more details regarding the data and preprocessing.

Phantom CT perfusion data In perfusion analysis, cerebral blood flow (cbf), cerebral
blood volume (cbv), mean transit time (mtt), time-to-maximum (Tmax), and the delay
are the main parameters of interest. The phantom developed by Kudo et al. (2012) included
cbv values of 1–5 ml/100g. Here, we expand the phantom to cover a wider range of 1–20
ml/100g such that our method learns to operate on attenuation curves corresponding to non-
tissue voxels like vessels. In total, we trained with 735 perfusion parameter combinations.

Patient CT perfusion data We evaluate with CT perfusion data sets from 17 patients
from the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2024 (de la Rosa et al.,
2024). We used one patient for validation and the other 16 patients for testing.

Patient multiphase CT angiography data We curated a dataset from Erasmus MC of
five patients with matched non-contrast CT, multiphase CT angiography, and CT perfusion.

2.3. Baseline: gamma variate model

We fit a voxel-by-voxel gamma variate model to the attenuation curves (Thompson et al.,
1964) using constrained curve-fitting. Initialization and bounds are based on the expected
contrast dynamics (details provided in Appendix B). The model parameters represent phys-
ical properties: peak enhancement, arrival time, rise time, and washout rate. Given the
inherent noise in the data, we use this parametric model over more flexible approaches.

3. Experiments

Phantom study We compare the perfusion parameters obtained from the complete CT
perfusion scan with different subsampling scenarios. The first two scenarios correspond to
uniform temporal subsampling at 15/30 (t ∈ [t0, t2, ...]) and 7/30 (t ∈ [t0, t4, ...]). The third
scenario corresponds to time points aligning with multiphase CT angiography acquisition
times. These include the first frame t = t0 and frames corresponding to the peak arterial
phase (the time point where the arterial input function peaks) and two delayed phases
(peak venous and late venous): t ∈ [tpa, tpv, tlv]. The selected time points are at: t0 = 0
seconds (the first frame of the sequence), tpa = 16 seconds, tpv = 24 seconds, and tlv = 32
seconds, using similar intervals between phases as with multiphase CT angiography acquisi-
tion protocols (Menon et al., 2015). Lastly, as a fourth scenario, we use t ∈ [t0, tpa]. We use
commercially available CT perfusion analysis software Syngo.via (version VB60S; Siemens
Healthcare, Erlangen, Germany) to obtain the perfusion parameters, and qualitatively and
quantitatively compare the perfusion parameters obtained from star-reconstructions with
the fully sampled CT perfusion data. Moreover, we quantitatively analyze the gamma
variate model as a baseline. We calculate the mean absolute error as an evaluation metric.
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Table 1: Mean absolute error in perfusion parameter estimation from phantom data.

Scenario
Total cbf cbv mtt Tmax delay

time pts. [ml/100g/s] [ml/100g] [s] [s] [s]

t ∈ [t0, t2, ...] 15/30 1.6 0.2 2.1 0.9 0.6
t ∈ [t0, t4, ...] 7/30 6.4 0.3 3.7 1.6 0.8
t ∈ [t0, tpa, tpv, tlv] – proposed 4/30 4.5 0.3 3.8 1.6 0.8
t ∈ [t0, tpa, tpv, tlv] – curve fit 4/30 10.3 0.4 6.6 4.4 3.8
t ∈ [t0, tpa] 2/30 12.7 2.6 3.2 1.8 0.8

Patient study We extract sparse measurements t ∈ [t0, tpa, tpv, tlv] from fully sampled
CT perfusion data. Our method is flexible regarding temporal spacing and can handle any
distribution of measurements, making it compatible with various CT scanner acquisition
protocols. Since, at inference time, the arterial peak is not available, we use the same
time points that we extracted from the phantom data. With two commercially available
CT perfusion analysis software solutions: Syngo.via and StrokeViewer (version 3.2.11;
Nicolab, Amsterdam, The Netherlands), we qualitatively compare perfusion maps generated
from fully sampled and star-derived CT perfusion data from these sparse measurements
and assess the volumetric agreement between penumbra and ischemic core volumes.

Multiphase CT angiography study As a proof-of-concept, we qualitatively assess
agreement between Syngo.via and StrokeViewer perfusion maps from star-derived
data reconstructed from multiphase CT angiography with those from CT perfusion.

Additional studies With UMAP (McInnes et al., 2018), a dimensionality reduction
technique, we visualize the latent space to assess if physiologically similar curves are encoded
proximally in the latent space and if the contrastive loss stimulates this space to be well-
structured. Furthermore, as ablation studies, we investigate loss function combinations and
tpa ↔ tpv ↔ tlv intervals on the phantom data perfusion parameter accuracy.

4. Results

Phantom study All perfusion parameters derived from star reconstructions show strong
agreement with those from complete CT perfusion data. Table 1 lists the mean absolute
error. We refer to Table 3 in Appendix C for the mean error en standard deviation. As we
subsample more extensively, we see that the errors in the temporal perfusion parameters
increase. For the scenario with four time points, the gamma variate model performs poorly,
with particularly large errors in temporal parameters. Figure 4 in Appendix C confirms the
error increase with more sub-sampling by comparing the cbf and Tmax maps.

Patient study Figure 2 presents Syngo.via and StrokeViewer perfusion maps. We
observe strong visual correspondence between the perfusion maps from the star-derived
and fully sampled CT perfusion data. The main deviations are in the temporal perfusion
parameter Tmax. Table 2 lists the volumetric agreement between infarct core and penumbra
estimates. When comparing star-derived versus fully sampled CT perfusion data, the
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Figure 2: Perfusion maps from both Syngo.via and StrokeViewer comparing: (left)
fully sampled CT perfusion versus four timepoints and (right) CT perfusion versus
non-contrast CT with multiphase CT angiography.

Table 2: Infarct core and penumbra volume (ml) estimates based on reconstructed and fully
sampled data, from Syngo.via and StrokeViewer. Listing median (IQR) (ab-
solute) volumetric difference (VD, AVD) over the test patients. Symbols indicate
if smaller (↓) or closer to zero (0) values denote better performance.

Syngo.via StrokeViewer

Data Volume VD (0) AVD (↓) VD (0) AVD (↓)

CTP
Core –5.5 (–18.1–0.1) 10.8 (3.1–22.7) 0.0 (–3.5–4.5) 5.0 (0.0–15.5)
Penumbra 1.3 (–22.4–28.6) 28.4 (12.5–47.6) –1.5 (–11.3–4.8) 10.5 (4–18.0)

median (IQR) volumetric differences are –5.5 (–18.1–0.1) ml (Syngo.via) and 0.0 (–3.5–4.5)
ml (StrokeViewer) for the infarct core. For reference, Appendix D lists the inter-software
differences (StrokeViewer–Syngo.via) for infarct core and penumbra volumes. In the
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case of fully sampled CT perfusion data, the difference is –10.5 (–10.2–(–6.5)) ml for the
infarct core.

Multiphase CT angiography study Figure 2 demonstrates the correspondence be-
tween perfusion maps from star-derived attenuation data from clinical multiphase CT
angiography data and CT perfusion data. We refer to Appendix E for more examples.

data data + reg data + contrastive data + reg + contrastive

Figure 3: Visualization of the latent space under different loss function combinations. The
color of each dot represents its cbv value.

Additional studies Figure 3 visualizes the latent space under different loss functions.
The figure shows that contrastive loss groups similar perfusion patterns closer together. We
refer to Appendix F for more details. The ablation studies in Appendix G show the impact
of different loss function combinations and different tpa ↔ tpv ↔ tlv intervals on perfusion
parameter accuracy on the phantom data, demonstrating that contrastive learning improves
perfusion parameter accuracy and that an interval of 6 or 8 seconds is appropriate.

5. Discussion and Conclusion

star enables a CT perfusion subsampling approach that aligns with the As Low As Rea-
sonably Achievable (ALARA) principle. star allows a significant reduction in radiation
exposure while maintaining diagnostic quality. The high undersampling rate suggests that
the method can also reconstruct CT perfusion data with severe motion corruption, allowing
for perfusion analysis even in such cases. Moreover, star shows promise in reconstruct-
ing full-sequence attenuation data from multiphase CT angiography. Since star completes
CT attenuation curves rather than directly generating perfusion maps, clinicians can use
off-the-shelf CT perfusion analysis software without modifying existing workflows.

We note three observations that need discussion. First, we observed deviations in the
temporal perfusion maps, as sparse sampling naturally misses exact bolus arrival time and
wash-out (Table 1). The deviations increase with more aggressive subsampling protocols.
Despite these temporal deviations, our method maintains sufficient clinical value. Sec-
ond, star’s training on tissue contrast attenuation curves creates a constraint: the model
struggles to reconstruct higher attenuation values typical of arterial and venous structures,
despite our expanded phantom’s cerebral blood volume range. Consequently, this limitation
affects the automated selection of arterial input and venous outflow locations by CT per-
fusion software, impacting perfusion estimates. Using population-based arterial input and
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venous outflow attenuation curves could offer a solution. Finally, replacing CT perfusion
attenuation data with the combination of non-contrast CT and multiphase CT angiogra-
phy data results in increased perfusion parameter deviations. While we can detect infarcts
qualitatively, the perfusion maps lack precision needed for accurate core-penumbra volume
calculations. Differences in acquisition protocols, tube current, and kilovolt-peak settings
impact attenuation values. These findings highlight the need to explore alignment between
non-contrast CT and multiphase-CT angiography to match CT perfusion source data.

While Tmax shows expected deviations with 87% fewer acquisitions, the core and
penumbra volume measurements remain comparable to fully-sampled data, with differences
within inter-software variability ranges. For centers using multiphase CT angiography, our
method enables perfusion analysis that would otherwise be unavailable, supporting both
radiation safety and diagnostic needs.

star only considers the temporal domain for reconstruction. Future work could in-
corporate spatial context through neural fields that operate in spatial and temporal do-
mains (Dupont et al., 2022; Bauer et al., 2023), leveraging brain tissue’s spatial coherence
where neighboring voxels share similar attenuation patterns. However, for complex spatio-
temporal signals, neural fields with global conditioning scale poorly (Dupont et al., 2022;
Bauer et al., 2023; Papa et al., 2024; Xie et al., 2022). Recent work on equivariant neural
fields could provide a solution with geometry-informed latent spaces (Wessels et al., 2024).

We deliberately kept the network architecture small, as our experiments with deeper
networks showed they captured high-frequency artifacts rather than the fundamental shape
of attenuation curves. The contrastive loss provides further regularization of the latent
space, ensuring reconstructed curves maintain physiologically plausible shapes even from
very sparse measurements – a clear advantage over the gamma-variate model, which lacks
flexibility to capture the full range of attenuation patterns. The threshold τ = 0.1 was
chosen to represent approximately 10% difference in normalized parameters, which proved
effective in practice, while m = 1.0 was an empirical choice without a specific physiological
basis. In future work, these parameters could be systematically tuned for potentially even
better performance. While the five perfusion parameters suggest a minimum dimension-
ality for the latent space, our larger latent space provides flexibility to capture complex,
non-linear relationships between parameters. Future work could explore other approaches
like physics-informed losses to constrain solutions toward physiologically valid curves, par-
ticularly when working with extremely limited temporal samples (De Vries et al., 2023).

Our validation cohort is limited in size, which represents a current limitation to be
addressed in future work with larger clinical datasets.

While our paper focuses on temporal undersampling, we acknowledge other dose re-
duction strategies exist, including hardware-based approaches (Lira et al., 2015), iterative
reconstruction algorithms (Rapalino et al., 2012), and denoising techniques (Chen et al.,
2017), which could be combined with our method for greater reduction.

In conclusion, we demonstrated that reconstructing full perfusion attenuation curves
from as few as four measurements is possible, potentially allowing both substantial radia-
tion dose reduction and correction of motion-corrupted acquisitions. Our method enables
perfusion measurements from standard multiphase CT angiography acquisition protocols
while maintaining compatibility with existing clinical software and workflows.
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Appendix A. Dataset description

Phantom CT perfusion data The phantom includes attenuation curves corresponding
to cerebral blood volume: cbv ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20} ml/100g. The
mean transit time and delay perfusion values used for simulation are: mtt ∈ {3.4, 4.0,
4.8, 6.0, 8.0, 12.0, 24.0} s and delay ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} s. The corresponding
cerebral blood flow (cbf) and time-to-maximum (Tmax) are: cbf = cbv/mtt ml/100g/s
and Tmax = delay+ 1

2mtt s. The data also includes a simulated arterial input function
and a simulated venous output function. All attenuation data is generated with a temporal
resolution of two seconds and with a total acquisition time of 58 seconds (30 time points).
The attenuation curves are generated through the convolution of an arterial input function
with a box-shaped impulse response function. The phantom is organized in a series of
axial slices, where each slice represents a distinct cbv level. Within each slice, the data is
arranged in a 7 × 7 grid of tiles. In this grid, the mtt values increase from right to left,
which consequently means that cerebral blood flow (cbf = cbv/mtt) increases from left
to right. The delay values increase from top to bottom. Each tile contains 32 × 32 tissue
attenuation curves with different noise realizations. We use a 50/25/25 split for training,
validation, and testing. After splitting the data we apply a Gaussian filter with a standard
deviation of one voxel to each tile in each axial slice. We scale all attenuation values between
0 and 1. We subtract the attenuation value of the first time point as a baseline and restore
the baseline after inferring the attenuation curve.

Patient CT perfusion data We resampled the CT perfusion data sets from 17 patients
from the Ischemic Stroke Lesion Segmentation Challenge (ISLES) 2024 (de la Rosa et al.,
2024) to a temporal resolution of 2 seconds and motion-corrected all CT perfusion images by
registering all frames to the first frame of the sequence. Thereafter, we applied the bilateral
smoothing filter (σdomain = 3 mm, σrange = 10 HU) to approximate the signal-to-noise of
the phantom data.

Patient non-contrast and multiphase CT angiography data The proof-of-concept
dataset from Erasmus MC consisted of five patients with matched non-contrast CT, multi-
phase CT angiography, and CT perfusion source data. The patients participated in the MR
CLEAN-NO IV trial (Treurniet et al., 2021). The MR CLEAN-NO IV trial (MEC-2017-
368) obtained ethics approval from Erasmus MC University Medical Center in Rotterdam
and required written informed consent from all participants. The CT perfusion data were
temporally resampled to 2-second intervals to maintain consistency with our previous ex-
periments. We applied identical preprocessing steps as described above, including motion
correction through registration to the first frame and bilateral filtering. All non-contrast
CT and multiphase CT angiography volumes were spatially aligned to the first frame of the
CT perfusion sequence.

Data normalization We normalize time values by standardizing to zero mean and unit
variance. For attenuation values, we subtract the baseline (first frame), add a +5 HU offset
to handle negative values, and divide by the dataset maximum value (170 HU) to scale to
[0,1]. During reconstruction, we reverse this process.
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Appendix B. Baseline: Gaussian variate curve fit

Following principles from the indicator dilution theory, we implemented a four-parameter
gamma variate function to model the contrast agent dynamics:

f(t) = a · (t− b)c · e−(t−b)/d ·H(t− b) (3)

where H(t− b) is the Heaviside step function. The gamma variate’s parameters capture the
key physiological aspects of contrast dynamics: amplitude a represents the peak enhance-
ment reflecting maximum contrast concentration, time offset b indicates contrast arrival
time in the tissue, shape parameter c characterizes the rise time corresponding to tissue
perfusion rate, and scale parameter d describes the washout rate. Parameter bounds and
initialization were defined based on the measured intensity values C(t) at the expected
domain t ∈ [t0, . . . , tT ]:

0 ≤ a ≤ 5max(C(t))

t0 ≤ b ≤ tmax(C(t))

0.1 ≤ c ≤ 5.0

tT /10 ≤ d ≤ tT

(4)

Initial parameter estimates were set as:

a0 = max(C(t))

b0 = t0

c0 = 1.0

d0 = tT /3

(5)

These constraints ensure physiologically plausible fits while providing sufficient flexibility
to capture varying perfusion patterns. The initialization strategy proved robust across our
dataset. We enforce that the attenuation returns to baseline levels after the contrast passes
through.

Appendix C. Additional phantom data results

Table 3 lists the mean error and standard deviation on the phantom data. We observe a
larger variation for the curve-fit baseline than our proposed method.

For the qualitative comparison in Figure 4, we focus on the cbf and Tmax perfusion
parameters because these typically assess the acute infarct core and the salvageable tissue.
We note that the error tends to increase for the temporal perfusion parameters as we
progress to more severe subsampling.

Appendix D. Inter-vendor results for patient CT perfusion data

Table 4 presents the volumetric differences between StrokeViewer and Syngo.via soft-
ware when measuring infarct core and penumbra tissue volumes with fully sampled CT
perfusion data.
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Table 3: Mean error (standard deviation) in perfusion parameter estimation from phantom
data.

Scenario
Time cbf cbv mtt Tmax delay
pts. [ml/100g/s] [ml/100g] [s] [s] [s]

t ∈ [t0, t2, ...] 15/30 -0.1 (2.4) 0.0 (0.2) 0.1 (5.6) 0.0 (4.8) -0.2 (4.6)
t ∈ [t0, t4, ...] 7/30 5.4 (6.5) 0.1 (0.3) -2.8 (6.2) -1.3 (4.6) -0.1 (4.2)
t ∈ [t0, tpa, tpv, tlv]

– proposed 4/30 3.6 (4.7) -0.2 (0.4) -3.4 (5.7) -1.3 (4.4) 0.1 (4.0)
– curve fit 4/30 7.9 (18.8) 0.1 (0.5) -3.0 (18.4) -3.8 (17.0) -3.5 (16.3)

t ∈ [t0, tpa] 2/30 11.2 (8.9) 2.6 (1.3) 0.5 (4.5) 1.0 (3.0) 0.4 (2.4)

C
B

F

30/30 15/30 7/30 4/30 2/30

Tm
ax

30/30 15/30 7/30 4/30 2/30

Figure 4: Comparison of commercially available CT perfusion analysis software Syngo.via
perfusion estimates (cbf and Tmax) derived from complete CT perfusion data
and four subsampling protocols. Maps show phantom data with cbv= 5ml/100g
arranged in a grid where delay increases top-to-bottom (0.0 − 3.0 s) and mtt
increases right-to-left (3.4− 24.0 s), resulting in cbf increasing left-to-right.

Appendix E. Perfusion maps for multiphase CT angiography-derived
tissue attenuation data

Figure 5 present more qualitative results for perfusion maps derived from multiphase CT
angiography data. The perfusion maps from star reconstructed curves appear smoother.
While we can observe the lower cbf and elevated Tmax regions, the quality of the estimated
perfusion maps is not the same as the reference perfusion maps. The elevated Tmax in the
same region as the reference maps suggests the quality may be sufficient for detection.
However, the accuracy is inadequate for core and penumbra estimates.

15
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Table 4: Infarct core and penumbra volume (ml) estimates based on fully sampled data,
analyzed with Syngo.via and StrokeViewer. The table lists median (IQR)
(absolute) volumetric difference (VD, AVD) over the test patients between the
two softwares. Symbols indicate if smaller (↓) or closer to zero (0) values denote
better performance.

StrokeViewer – Syngo.via

Data Volume VD (0) AVD (↓)

CTP
Core –10.5 (–10.2–(–6.5)) 10.5 (6.5–20.2)
Penumbra –88.5 (–107.9–(–62.0)) 88.5 (62.0–107.9)

Appendix F. Latent visualization

Figure 3 visualizes the inferred latent space with each combination of training loss functions,
for attenuation curves simulated with mtt = 4 seconds and delay = 2 seconds. With
the contrastive loss enabled, we see that the latents corresponding to attenuation curves
simulated with identical perfusion values are much closer in the latent space. The more
compact latent space reduces the likelihood of converging to undesirable local optima.

Appendix G. Ablation studies

Table 5 lists the results for the ablation studies. We observe that the contrastive loss
reduces the error on the perfusion parameters. Moreover, we see that a sampling interval
of 8 seconds is a good middle ground in terms of performance, balancing the error in cbf
and delay.

We conducted empirical tests of inference stability using different hyperparameter set-
tings (learning rates ranging from 10−3−10−1, iteration counts from 200−2000, and various
loss weightings) on our validation set. The reconstruction quality remained fairly consistent
across these settings, likely due to the regularizing effect of the contrastive loss on the latent
space.
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Figure 5: Qualitative results for perfusion maps derived from multiphase CT angiography
data.
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Table 5: Ablation studies results for different combinations of loss functions and various
sampling intervals. Values closer to zero represent better performance.

L’s used cbf cbv mtt Tmax delay
[ml/100g/s] [ml/100g] [s] [s] [s]

Ldata 7.4 1.4 5.4 4.2 3.5
Ldata + Lreg 5.9 0.6 4.8 2.8 2.2
Ldata + Lcontrastive 3.3 0.9 4.0 1.3 0.7
Ldata + Lreg + Lcontrastive 4.5 0.3 3.8 1.6 0.8

tpa ↔ tpv ↔ tlv interval
cbf cbv mtt Tmax delay

[ml/100g/s] [ml/100g] [s] [s] [s]

6 sec. 2.9 0.3 3.7 1.7 1.2
8 sec. 4.5 0.3 3.8 1.6 0.8
10 sec. 6.0 0.4 4.2 1.7 0.7
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