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ABSTRACT

Although the non-autoregressive translation model based on iterative refinement
has achieved comparable performance to the autoregressive counterparts with
faster decoding, we empirically found that such aggressive iterations make the
acceleration rely heavily on small batch size (e.g., 1) and computing device (e.g.,
GPU). By designing synthetic experiments, we highlight that iteration times can
be significantly reduced when providing a good (partial) target context. Inspired
by this, we propose a two-stage translation prototype – Hybrid-Regressive Trans-
lation (HRT). HRT first jumpily generates a discontinuous sequence by autore-
gression (e.g., make a prediction every k tokens, k >1). Then, with the help of
the partially deterministic target context, HRT fills all the previously skipped to-
kens with one iteration in a non-autoregressive way. The experimental results on
WMT’16 En↔Ro and WMT’14 En↔De show that our model outperforms the
state-of-the-art non-autoregressive models with multiple iterations, and the origi-
nal autoregressive models. Moreover, compared with autoregressive models, HRT
can be steadily accelerated 1.5 times regardless of batch size and device.

1 INTRODUCTION

Although autoregressive translation (AT) has become the de facto standard for Neural Machine
Translation (Bahdanau et al., 2015), its nature of generating target sentences sequentially (e.g., from
left to right) makes it challenging to respond quickly in a production environment. One straightfor-
ward solution is the non-autoregressive translation (NAT) (Gu et al., 2017), which predicts the entire
target sequence in one shot. However, such one-pass NAT models lack dependencies between target
words and still struggles to produce smooth translations, despite many efforts developed (Ma et al.,
2019; Guo et al., 2019a; Wang et al., 2019b; Shao et al., 2019; Sun et al., 2019).
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Figure 1: Relative speedup ratio (α) compared
MP with AT on GPU (solid) and CPU (dashed).
The value of α denotes running faster (positive)
or slower (negative) |α| times than AT.

Recent studies show that extending one-pass
NAT to multi-pass NAT, so-called iterative
refinement (IR-NAT), is expected to break
the performance bottleneck (Lee et al., 2018;
Ghazvininejad et al., 2019; Gu et al., 2019; Guo
et al., 2020; Kasai et al., 2020a). Unlike one-
pass NAT, which outputs the prediction imme-
diately, IR-NAT takes the translation hypothe-
sis from the previous iteration as a reference
and regularly polishes the new translation un-
til achieving the predefined iteration count I or
no changes appear in the translation. Compared
with AT, IR-NAT with I=10 runs 2-5 times
faster with a considerable translation accuracy,
as reported by Guo et al. (2020).

However, we highlight that the fast decoding of IR-NAT heavily relies on small batch size and GPU,
which is rarely mentioned in prior studies 1. Without loss of generality, we take Mask-Predict (MP)

1Unfortunately, such a decoding setting is not common in practice. NMT systems deployed on GPUs tend
to use larger batches to increase translation throughput, while the batch size of 1 is used more frequently in
offline systems running on CPUs. e.g., smartphones.
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(Ghazvininejad et al., 2019) as an example, a typical IR-NAT paradigm based on the conditional
masked language model. Figure 1 illustrates that when the batch exceeds 8, MP(I=10) is already
running slower than AT, and the situation is even worse on CPU. Further analysis shows that the
increase in batch size leads to the efficiency degradation of parallel computing in NAT models 2.

To tackle this problem, we first design a synthetic experiment to understand the relationship between
target context and iteration times. We mask some proportion tokens on the translation generated by a
pretrained AT and take it as the decoder input of the pretrained MP. Then we surprisingly found that
even masking 70% AT hypothesis, and the remaining target context can help MP(I=1) to compete
with the standard MP(I=10) (Figure 2). This result confirms that decoding with multiple iterations
in NAT is unnecessary when providing a good (partial) reference hypothesis.

Inspired by this, we propose a two-stage translation prototype——Hybrid-Regressive Translation
(HRT). After encoding, HRT first uses an autoregressive decoder (called Skip-AT) to produce a dis-
continuous translation hypothesis. Concretely, at decoding step i, the SKip-AT decoder immediately
predicts the (i + k)-th token yi+k without generating yi+1, . . . , yi+k−1, where k is a hyperparam-
eter and k > 1. Then, a non-autoregressive decoder like MP (called Skip-MP) predicts previously
skipped tokens with one iteration according to the deterministic context provided by Skip-AT. Since
both Skip-AT and Skip-MP share the same model parameters, HRT does not increase parameters
significantly. To train HRT effectively and efficiently, we further propose joint training guided by
curriculum learning and mixed distillation. Experimental results on WMT En↔Ro and En↔De
show that HRT is far superior to existing IR-NATs and achieves comparable or even better accuracy
than the original AT 3 with a consistent 50% decoding speedup on varying batch sizes and devices
(GPU, CPU).

2 BACKGROUND

Given a source sentence x = {x1, x2, . . . , xM} and a target sentence y = {y1, y2, . . . , yN}, there
are several ways to model P (y|x):

Autoregressive translation (AT) is the dominant approach in NMT, which decomposes P (y|x) by
chain rules:

P (y|x) =
N∏
t=1

P (yt|x, y<t) (1)

where y<t denotes the generated prefix translation before time step t. However, the existence of
y<t requires the model must wait for yt−1 to be produced before predicting yt, which hinders the
possibility of parallel computation along with time step.

Non-autoregressive translation (NAT) is first proposed by Gu et al. (2017), allowing the model
to generate all target tokens simultaneously. NAT replaces y<t with target-independent input z and
rewrites Eq. 1 as:

P (y|x) = P (N |x)
N∏
t=1

P (yt|x, z) (2)

In Gu et al. (2017), they monotonically copy the source embedding as z according to a fertility
model. Subsequently, the researchers developed more advanced methods to enhance z, such as
adversarial source embedding (Guo et al., 2019a), reordered source sentence (Ran et al., 2019),
latent variables (Ma et al., 2019; Shu et al., 2019) etc, but there still is a huge performance gap
between AT and NAT.

Iterative refinement based non-autoregressive translation (IR-NAT) extends the traditional one-
pass NAT by introducing the multi-pass decoding mechanism (Lee et al., 2018; Ghazvininejad et al.,
2019; Gu et al., 2019; Guo et al., 2020; Kasai et al., 2020a). IR-NAT applies a conversion function

2Early experiment shows that when the batch size increases from 1 to 32, the latency of AT is reduced by
22 times, while MP(I=10) only reduces by four times. Latency is measured by the average time of translating
a sentence on a constant test set. See Appendix A for details.

3Thanks to the proposed training algorithm, a single HRT model can support both hybrid-regressive decod-
ing and autoregressive decoding at inference. Here, the AT model refers to the autoregressive teacher model
that generates the distillation data.
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F on the deterministic hypothesis of previous iteration y′ as the alternative to z. Common imple-
mentations of F include identity (Lee et al., 2018), random masking (Ghazvininejad et al., 2019) or
random deletion (Gu et al., 2019) etc. Thus, we can predict y by:

P (y|x) =
N ′∏
t=1

P (y′m(t)|x,F(y′)) (3)

where N ′ is the number of refined tokens in F(y′), m(t) is the real position of t-th refined token
in y′. In this way, the generation process of IR-NAT is simple: first, the NAT model produces
an inaccurate translation as the initial hypothesis, and then iteratively refines it until converge or
reaching the maximum number of iterations.

Mask-Predict (MP) is a typical instance of IR-NAT, trained by a conditional masked language
model objective like BERT (Devlin et al., 2019). In this work, we use MP as the representation of
IR-NAT due to its excellent performance and simplification. In MP, F randomly masks some tokens
over the sequence in training but selects those predicted tokens with low confidences at inference.

3 IS ITERATIVE REFINEMENT ALL YOU NEED?

As mentioned earlier, IR-NAT with multiple iterations slows down severely in some cases. It is
natural to think of reducing iterations to alleviate it. This section starts from synthetic experiments
on WMT’16 En→Ro and WMT’14 En→De to verify the assumption that a sufficiently good decoder
input can help reduce iterations. Here we construct the “good ” decoder input from the translation
hypothesis produced by an AT model.

Models We use the official MP models released by Ghazvininejad et al. (2019) 4. Since the authors
did not publish their AT baselines, we use the same data to retrain AT models with the standard
Transformer-Base configuration (Vaswani et al., 2017) and obtain comparable performance with
theirs (see Appendix B for more details).

Decoding AT models decode with beam sizes of 5 on both tasks. Then, we replace a certain
percentage of AT translation tokens with <mask> and use it as input to the MP model (see below
for replacement strategy). Unlike the standard MP model that uses a large beam size (e.g., 5) and
iterates several times (e.g., 10), the MP model used here only iterates once with beam size 1. We
substitute all input <mask> with MP’s predictions to obtain the final translation. We report case-
sensitive tokenized BLEU score by multi-bleu.perl.

Mask Strategy We tested 4 strategies to mask AT translations: Head, Tail, Random and
Chunk. Given the masking rate pmask and the translation length N , the number of masked to-
kens is Nmask=max(1, bN×pmaskc). Then Head/Tail always masks the first/last Nmask tokens,
while Random masks the translation randomly. Chunk is slightly different from the above strate-
gies. It first divides the target sentence into C chunks, where C = Ceil(N/k) and k is the chunk
size. Then in each chunk, we retain the first token, but mask other k-1 tokens. Thus, the actual
masking rate in Chunk is 1-1/k instead of pmask. To exclude randomness, we ran Random three
times with different seeds and report the average results.

3.1 RESULTS

The experimental results are illustrated in Figure 2, where we can see that:

A balanced bidirectional context is critical. Compared with Tail and Head, it is obvious that
Rand and Chunk both have better performance. We attribute it to the benefit of the bidirectional
context in Rand and Chunk (Devlin et al., 2019), because Tail and Head can only provide
unidirectional context (i.e., prefix or suffix). In addition, compare Chunk with Random, we find
that Chunk is moderately but consistently superior to Random, even if more tokens are masked. For
instance, on the WMT En-De task, when the chunk size is 4 (the masking rate is 75%), the BLEU
score of Chunk is 27.03, which is +0.3 BLEU higher than that of Random with the masking rate of

4https://github.com/facebookresearch/Mask-Predict
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Figure 2: Comparison of four masking strategies {Head, Tail, Random, Chunk} in synthetic
experiments on WMT En→Ro (Left) and En→De (Right) test sets. For Chunk, we test the chunk
size from {2, 3, 4}. Dashed lines represent Mask-Predict’s scores reported by Ghazvininejad et al.
(2019). b stands for “beam size” while I stands for “the number of iterations”.

Table 1: Examples of training samples. <s2> is a special <s> for k=2. <m> is short for <mask>.

Mode Input Target
AT <s>, y1, y2, y3, y4 y1, y2, y3, y4, </s>
MP y1, <m>,<m>, y4, <m> PAD, y2, y3,PAD, </s>

Skip-AT (k=2) <s2>, y2, y4 y2, y4, </s>
Skip-MP (k=2) <m>, y2, <m>, y4, <m>,</s> y1,PAD, y3,PAD, </s>,PAD

70%. Because the difference between Chunk and Random lies only in the distribution of <mask>,
this experiment indicates that making <mask> uniformly on sequence is better than random 5.
Small beams and one iteration are sufficient. Compared with the standard MP with the beam size
of 5 and 10 iterations, it is interesting to find that even if only 30%-40% of the AT translations are
exposed, our MP using greedy search and one iteration can achieve quite comparable performance.

4 HYBRID-REGRESSIVE TRANSLATION

A limitation in the above synthetic experiment is that the MP decoder input comes from an AT
hypothesis, which is impossible in practice 6. To solve this problem as well as inspired by the
Chunk strategy’s success, we propose a two-stage translation paradigm called Hybrid-Regressive
Translation (HRT). Briefly speaking, HRT can autoregressively generate a discontinuous sequence
with chunk size k (stage I), and non-autoregressively fill the skipped tokens (stage II) in one model.
Thus, the standard AT can be regarded as the special case of HRT when k=1 without stage II.

4.1 ARCHITECTURE

Overview. Our HRT consists of three parts: encoder, Skip-AT decoder (for stage I), and Skip-MP
decoder (for stage II). All components adopt the Transformer architecture (Vaswani et al., 2017): the
encoder contains self-attention sublayers and feedforward sublayers, and additional cross-attention
sublayers are added to the decoder. The two decoders have the same network structure and share
model parameters, leading to the same parameter size compared to the standard MP. The only differ-
ence between the two decoders lies in the masking mode in the self-attention sublayer. The Skip-AT
decoder masks future tokens to guarantee strict left-to-right generation, while the Skip-MP decoder
eliminates this limitation to leverage the bi-directional context.
Simplified relative position representation. Another difference from the standard MP architecture
is that our decoder self-attention equips with relative position representation (RPR) (Shaw et al.,

5Chunk guarantees that each unmasked token (except the first or last one in the sequence) can meet two
deterministic tokens within the window size of k. However, in extreme cases, when all <mask> happen to
concentrate on the left/right side of the sequence, Random will degrade into Head/Tail

6We can directly return AT predictions as translation results without going through MP.
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2018) to enable the model to capture the positional relationship between words easily 7. Precisely,
the decoder self-attention with RPR is calculated by:

Oi = Softmax
(Qi(K

T +Ri)√
dk

)
V (4)

where Ri is the relative position embedding 8. Note that Eq. 4 only injects the relative positional
representation in Key (KT + Ri) without involving Value V . We found that this simplification
has no negative impact on performance but significantly saves memory footprint.
No target length predictor. Most previous NAT methods need to jointly train the translation model
with an independent translation length predictor. However, such a length predictor is unnecessary
for us because the translation length is a by-product of Skip-AT, e.g., Nnat=k×Nat, where Nat is
the sequence length produced by Skip-AT 9. Another bonus is that we can avoid carefully tuning the
weighting coefficient between the length loss and the token prediction loss.

4.2 TRAINING

Training HRT models is not trivial because a single HRT model needs to learn to generate sequences
by both autoregression and non-autoregression. This section will introduce three details of training
HRT models, including chunk-aware training samples, curriculum learning, and mixed distillation.
We describe the entire training algorithm in Appendix C.

Chunk-aware training samples. As listed in Table 1, the training samples for Skip-AT and Skip-
MP are different from the standard AT and MP. Compared with AT, Skip-AT shrinks the sequence
length from N to N/k. It should be noted that, although the sequence feeding to Skip-AT is shortened,
the input position still follows the original sequence rather than the surface position. For example,
in Table 1, the position of Skip-AT input (<s2>, y2, y4) is (0, 2, 4), instead of (0, 1, 2). Moreover,
MP has the opportunity to mask any token over the target sequence without considering the position.
However, the masking pattern in Skip-MP is deterministic, i.e., masking all non-first tokens in each
chunk. Therefore, we can say that the training sample for Skip-AT and Skip-MP is in a chunk-aware
manner.
Curriculum learning. Unfortunately, direct joint training of Skip-AT and Skip-MP is problematic
because the chunk-aware training samples cannot make full use of all the tokens in the sequence.
For example, in Table 1, the target tokens y1 and y3 have no chance to be learned as the decoder
input of either Skip-AT or Skip-MP. However, there is no such problem in AT and MP. Therefore,
we propose to gradually transition from joint training {AT, MP} to {Skip-AT, Skip-MP} through
curriculum learning (Bengio et al., 2009). In other words, the model is trained from chunk size 1
to chunk size k (k>1). More concretely, given a batch of original sentence pairs B = (xi, yi)|ni=1
and let the proportion of chunk size k in B be pk, we start with pk = 0 and construct the training
samples of AT and MP for all pairs. And then we gradually increase pk to introduce more learning
signals for Skip-AT and Skip-MP until pk=1. In implement, we schedule pk by:

pk =
( t
T

)λ
(5)

where t and T are the current and total training steps, respectively. λ is a hyperparameter and we
use λ=1 to increase pk in a linear manner for all experiments.
Mixed Distillation. NAT models generally use the distillation data generated by AT models due to
more smoothing data distribution (Zhou et al., 2020). However, making full use of distillation data
may miss the diversity in raw data. To combine the best of both worlds, we propose a simple and
effective approach – Mixed Distillation (MixDistill). During training, MixDistill randomly samples
a target sentence from the raw version y with probability praw or its distillation version y∗ with
probability 1-praw, where praw is a hyperparameter 10. By learning from raw target sentences, we
empirically found that HRT is less prone to over-fit in some simple tasks (e.g., WMT’16 En→Ro).

7We keep the sinusoidal absolute position embedding unchanged.
8Ri = Embed(clip(i, 1), . . . , clip(i,N)), where clip(i, j) = max(w,min(w, j−i)), w is the window size.
9More precisely, Nnat here is the maximum target length rather than the realistic length because multiple

</s> may be predicted in the last k tokens.
10Training with full raw data or full distillation data can be regarded as the special case of MixDistill when

praw=1 or praw=0.
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Table 2: The BLEU scores of our proposed HRT and the baseline methods on four tasks. Unless
otherwise stated, the used beam size is 5. “?” denotes dynamic iterations. “20L” stands for using a
20-layer encoder. “NPD” is short for Noisy Parallel Decoding. All HRT models only iterate once
by non-autoregression.

System Iterations WMT’16 WMT’14
En-Ro Ro-En En-De De-En

AT
s Transformer - 34.25 34.40 27.45 31.86

Transformer-20L - - - 28.79 33.02
E

xi
st

in
g

N
AT

s
Iterative

Iterative Refinement (Lee et al., 2018) ? 29.66 30.30 21.54 25.43
Mask-Predict (Ghazvininejad et al., 2019) 1 27.32 28.20 18.05 21.83
Mask-Predict (Ghazvininejad et al., 2019) 10 33.08 33.31 27.03 30.53
LevTransformer (Gu et al., 2019) ? - - 27.27 -
JM-NAT (Guo et al., 2020) 10 33.52 33.72 27.69 32.24

Non-Iterative
SAT (k=2) (Wang et al., 2018a) - - - 26.90 -
FCL-NAT (NPD 9) (Guo et al., 2019b) 1 - - 25.75 29.50

O
ur

m
od

el
s HRT (bat=1, bmp=1) 1 34.11 34.28 27.85 31.80

HRT (bat=5, bmp=1) 1 34.36 34.55 27.98 31.93
HRT (bat=5, bmp=5) 1 34.53 34.80 28.10 32.07
HRT-20L (bat=1, bmp=1) 1 - - 28.79 32.86
HRT-20L (bat=5, bmp=1) 1 - - 28.90 33.06
HRT-20L (bat=5, bmp=5) 1 - - 28.99 33.08

4.3 INFERENCE

After encoding, the Skip-AT decoder starts from<sk> to autoregressively generate a discontinuous
target sequence yat = (z1, z2, . . . , zm) with chunk size k until meeting</s>. Then we construct the
input of Skip-MP decoder xmp by appending k − 1 <mask> before every zi. The final translation
is generated by replacing all <mask> with the predicted tokens by Skip-MP decoder with one
iteration. If there are multiple </s> existing, we truncate to the first </s>. Note that the beam size
bat in Skip-AT can be different from the beam size bmp in Skip-MP as long as st. bat ≥ bmp. If bat
> bmp, then we only feed the Skip-MP with the top bmp Skip-AT hypothesis. Finally, we choose
the hypothesis with the highest score:

score(ŷ) =

m∑
i=1

(zi|x, z<i)︸ ︷︷ ︸
Skip-AT score

+

m−1∑
i=0

k−1∑
j=1

(ŷi×k+j |x,xmp)︸ ︷︷ ︸
Skip-MP score

(6)

where zi=ŷi×k. In Appendix D, we summarized the comparison with the existing three methods
from the aspects of decoding step and calculation cost, including AT, MP, and semi-autoregressive
translation (SAT) (Wang et al., 2018a). Besides, thanks to the joint training of chunk size 1 and k
simultaneously, the HRT model can also behave like a standard AT model by forcing decoding by
chunk size one (denoted as Cd=1). In this way, we can only use the Skip-AT decoder to generate the
entire sequence without the help of Skip-MP. Thus, Cd=1 can be regarded as the performance upper
bound when the decoding chunk size is k (denoted as Cd=k).

5 EXPERIMENTS

Datasets. We conducted experiments on four widely used tasks: WMT’16 English↔Romanian
(En↔Ro, 610k) and WMT’14 English↔German (En↔De, 4.5M). We replicated the same data
processing as Ghazvininejad et al. (2019) for fair comparisons.

AT teachers for distillation. Since Ghazvininejad et al. (2019) only release the distillation data
of En↔Ro, not En↔De, we retrained the AT teacher models of En↔De to produce the distillation
data. Specifically, Ghazvininejad et al. (2019) use Transformer-Large as the teacher, but we use
the deep PreNorm Transformer-Base with a 20-layer encoder, which is faster to train and infer with
comparable performance (Wang et al., 2019a).

Models and hyperparameters. We ran all experiments on 8 TITAN X (Pascal) GPUs. Unless
noted otherwise, we use the chunk size k=2 and λ=1. praw=0.5 for En↔Ro and praw=0.8 for

6
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En↔Ro according to validation sets. The windows size of RPR is 16 11. HRT models are finetuned
on pretrained AT models for the same training steps 12. Other training hyperparameters are the same
as Vaswani et al. (2017) or Wang et al. (2019a) (using deep-encoder). Please refer to them for more
details.
Translation quality. Table 2 reports the BLEU scores on four tasks. First of all, we can see
that IR-NAT models significantly outperform those one-pass NAT models (e.g., SAT, FCL-NAT,
FlowSeq). However, our small beam model (bat=bmp=1) can defeat the existing multiple-iteration
models. Furthermore, when the beam sizes increase to 5, HRT equipped with a standard 6-layer
encoder achieves +1.0 BLEU point improvement in En↔Ro compared to the previous best results
(Guo et al., 2020). Even on harder En↔De tasks, we also outperform them with a 0.4 BLEU score.
We can easily trade-off between performance and speed by using bat=5 but bmp=1. Not only NAT
models, but also we are surprised to find that HRT can even surpass the AT models trained from
scratch. We attribute it to two reasons: (1) HRT is fine-tuned on a well-trained AT model, making
training easier; (2) Mixing up AT and NAT has a better regularization effect than training alone.
Besides, in line with Guo et al. (2020), which demonstrate that the encoder is critical for NAT, we
can obtain a further improvement of about +0.8 BLEU when using a deeper encoder.

On distant language pair. To verify our method can
apply to distance language pairs, we conducted a new
experiment on the Chinese-English (Zh-En) translation
task. We use the same datasets as Wang et al. (2018b):
the training data is selected from LDC Corpus and con-
tains 1.8M sentence pairs; NIPS MT06 as the valida-
tion set and MT04, MT05, and MT08 as test sets. We
train all models for 50k steps, and other training setting
is the same as WMT En-De. The experimental results
are listed in Table 3. We can see that HRT is superior
to the original AT model and MP model again, which
indicates that HRT is effective in both close and distant
language pairs.

Figure 3: BLEU scores on the
Chinese-English task.

Model MT04 MT05 MT08
AT 43.86 52.91 33.94

MP(I=10) 42.47 52.16 33.09
HRT1-1 43.96 53.16 33.99
HRT5-1 44.28 53.44 34.63
HRT5-5 44.31 53.77 34.74

Translation speed. Unlike the previous works that only run the model on GPU with batch size
of 1, we systematically test the decoding speed using varying batch sizes and devices on WMT’14
En→De test set (see Figure 4). By default, the beam size is 5. It can be seen that although HRT is
slower than MP10 when running on GPU with a batch size of 1, MP10 dramatically slows down as
the batch size increases. In contrast, HRT5-1 is consistently more than 50% faster than AT without
changing with the environment. These results show that our HRT can be an effective and efficient
substitute for AT and IR-NAT.

6 ANALYSIS

Effect of Mixed Distillation. In Table 3, we compared different data strategies, including raw data
(Raw), sequence-level knowledge distillation (Dist.), and mixed distillation (Mix Dist.). Overall,
Mix Dist. is superior to other methods across the board, which indicates that training with raw
data and distillation data is complementary. In addition, we also find that the performance of the
distillation data is lower than the raw data on En→Ro task, which is against the previous results.
As interpreted by Zhou et al. (2020), we suspect that when the translation model is strong enough,
training by distillation data completely may make the learning too easy and lead to over-fitting.
Effect of chunk size. We tested the chunk size k from {2, 3, 4}, and the results are listed in Table 4.
Obviously, we can see that: (1) A large k has more significant acceleration on GPU because fewer
autoregressive steps are required; (2) As k increases, the performance of hybrid-regressive decoding

11For autoregressive baselines, adding RPR in the Transformer decoder did not bring obvious improve-
ment over the vanilla Transformer. For example, on WMT’14 En→De, Transformer=27.45 and Trans-
former+RPR=27.34.

12Since HRT needs to train Skip-AT and Skip-MP jointly (please see Algorithm 1 in Appendix C), the wall-
clock time is about two times longer than AT in the same training epochs. One more thing to note is that the
officially released MP models are trained for 300k steps from scratch.
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Figure 4: Comparison of decoding speed w.r.t. batch size and computing device on WMT’14
En→De task. The x-axis is the relative speed compared to the corresponding autoregressive models
(dashed lines at x=1). GPU:TITAN X (Pascal), CPU:Intel(R) Xeon(R) E5-2680 v3 @ 2.50GHz.
MP{#} denotes the MP model with # iterations. HRT{#1}−{#2} denotes HRT with bat=#1 and
bmp=#2. Note that the BLEU score of MP4 is 25.94, which is significantly lower than that of HRT
(e.g., the BLEU score of HRT1-1 is 27.85).

Table 3: Performance against different data
strategies. Cd=1 represents decoding the
HRT model in an autoregressive manner.

Lang. Cd Raw Dist. Mix Dist.

En→Ro
k 33.92 33.41 34.53
1 34.29 33.41 34.27

En→De
k 26.37 28.00 28.10
1 27.60 28.42 28.51

Table 4: The effect of training by different
chunk sizes. Latency is tested in batch size
of 16 using Cd=k and bat=bmp=1.

Chunk BLEU Latency (sec.)
(k) Cd= k Cd= 1 GPU CPU
2 34.11 33.86 20.0 70.5
3 31.15 33.78 13.0 54.6
4 28.22 34.12 12.2 53.9

drops sharply (e.g., k=4 is 6 BLEU points lower than k=2.), but k has little effect on autoregressive
modes. It indicates that the training difficulty of Skip-AT increases as k gets bigger. We think that
skip-generation may require more fancy model architecture or training method, which is left for our
future work.

Effect of decoding mode. We tested the well-trained HRT model with two decoding modes: au-
toregressive (Cd=1) and hybrid-regressive (Cd=k). Concretely, We divided the test set of WMT’14
En→De into several groups according to the source sentence’s length and then compared the two
decoding modes in terms of translation speed and accuracy in each group (see Figure 5). First of all,
we can see that regardless of the source sentence length, the running speed of Cd=k is consistently
faster than Cd=1 on both GPU and CPU, thanks to the shorter autoregressive length. This advantage
is more evident on CPU: When the source length is less than 10, Cd=k runs 1.6 times faster than
Cd=1, while the speedup ratio increases to 2.0 when the source length > 50. As for accuracy, Cd=k
has closed performance to Cd=1 when the length is between 10 and 30, but shorter or longer sen-
tences will hurt the performance. This result indicates that if we dynamically adjust the decoding
chunk size Cd according to the source sentence’s length, the HRT model can be expected to improve
the performance further at the expense of a certain speed.

Ablation study. We also did an ablation study on WMT’16 En→Ro test set. As shown in Table 5,
we can see that all introduced techniques help to improve performance. In particular, using mixed
distillation prevents the HRT model from over-fitting and leads to +1.1 BLEU points improvement
compared to the standard distillation (-MixDistill). In addition, the other three methods, including
training the HRT model from a pretrained AT model (FT), using a relative positional representation
on decoder (RPR), and using curriculum learning (CL), can bring about 0.3-0.4 BLEU improve-
ments each. It should be noted that removing curriculum learning makes the trained HRT model
fail to decode by Cd=1, whose BLEU score is only 5.18. Since the BLEU score decreases slightly
(0.3-0.4 except -MixDistill) when each component is excluded independently, it is difficult to say
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Figure 5: Translation speed (Left: GPU, Middle: CPU) and BLEU score (Right) against source
sentence’s length for different decoding modes in HRT (k=2): Cd=1 denotes decoding by autore-
gression, while Cd=k denotes hybrid-regressive decoding. Speed is measured at batch size=32,
bat=5, bmp=1.

that the difference of BLEU is not caused by random fluctuation. To verify it, we try to exclude them
all from the standard HRT (-ALL). Interestingly, the obtained model drops by 1.96 BLEU points,
which is very close to the cumulative BLEU loss (2.13) of excluding each component separately. It
indicates that these newly introduced components are complementary. In addition, we also test these
methods in MP training. Please see Appendix E for details.

Table 5: Ablation study on WMT’16 En→Ro test set.

System AT HRT −FT −RPR −MixDistill −CL(qk=1.0) −ALL
BLEU 34.25 34.53 34.14 34.22 33.41 34.22 32.57

7 RELATED WORK

Iterative refinement. Lee et al. (2018) first extend NAT from the conventional one-pass manner
to the multi-pass manner. They add an additional decoder to learn to recover from a collapsed
target sequence to gold one. Mask-Predict (Ghazvininejad et al., 2019) simplifies the two-decoder
structure by introducing the conditional masked language model objective. During each iteration,
Mask-Predict retains partial inputted target tokens according to the prediction confidence, while
LevTransformer (Gu et al., 2019) uses multiple discriminators to determine the edited tokens.
Combination of AT and NAT. The idea of incorporating AT in the NAT model is not new (Kaiser
et al., 2018; Ran et al., 2019; Akoury et al., 2019). The main difference from existing methods lies
in the content of AT output, such as latent variables (Kaiser et al., 2018), reordered source tokens
(Ran et al., 2019), syntactic labels (Akoury et al., 2019) etc. In contrast, our approach uses the
deterministic target tokens, which has been proven effective in Ghazvininejad et al. (2019).
Decoding acceleration. In addition to transforming the decoding paradigm from autoregressive to
non-autoregressive, there are many works to explore how to achieve faster decoding from other as-
pects. Zhang et al. (2018c;b) propose to optimize the beam search progress by recombining or prun-
ing the translation hypothesis. Considering the network architecture, Zhang et al. (2018a) use light
AAN instead of the standard self-attention module; Xiao et al. (2019) share the self-attention weight
matrix across decoder layers; Kasai et al. (2020b) suggest using deep-encoder and shallow-decoder
network to keep high BLEU score and low delay. Moreover, some common model compression
techniques, such as distillation (Kim & Rush, 2016) and quantization (Bhandare et al., 2019; Lin
et al., 2020), have also helpful for acceleration. However, the above methods mainly focus on the
traditional autoregressive translation, which is orthogonal to our work.

8 CONCLUSION

We have pointed out that NAT, especially IR-NAT, cannot efficiently accelerate decoding when using
a large batch or running on CPUs. Through a well-designed synthetic experiment, we highlighted
that given a good decoder input, the number of iterations in IR-NAT could be dramatically reduced.
Inspired by this, we proposed a two-stage translation paradigm HRT to combine AT and NAT’s
advantages. The experimental results show that HRT owning equivalent or even higher accuracy
and 50% acceleration ratio on varying batches and computing devices is a good substitute for AT.
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A SPEED DEGRADATION ANALYSIS OF NAT MODEL

Table 6: Time-consuming of decoding newstest2014 by different batch sizes on Titian X GPU.

Model BH=1 BH=8 BH=16 BH=32
AT 962s 151s 78s 43s

MP (I=10) 464s 125s 119s 129s

For the NAT model, we assume that the computation cost of each iteration is proportional to the size
of decoder input tensor (BH ×BM,L,H), where BH is the batch size, BM is the beam size, L is
the predicted target length, andH is the network dimension. In this way, the total cost of I iterations
(generally, I < L) is Cnat ∝ I × O(BH × BM × L × H). For convenience, we omit BM and
H and simplify Cnat to I × O(BH × L). Likely, the computational cost of AT model is about
Cat ∝ L×O(BH × 1) 13. Then, we can denote the speedup ratio r as r = Cat

Cnat
= L

I ×
O(BH×1)
O(BH×L) .

Thus, fewer iterations (small I) and faster parallel computation (large O(BH×1)
O(BH×L) ) are the keys to

IR-NAT.

However, in practice, we find it difficult to increase O(BH×1)
O(BH×L) , especially in larger batches. As

shown in Table 6, the direct evidence is that when decoding the test set of the WMT’14 En→De
task, the time spent by AT decreases with the increase of batch size, while MP(I=10) cannot benefit
from this. We test it on Titian X GPU and report the average of 3 runs. BM=5. Note that CPU has
similar results. Specifically, we can see that when BH increases from 1 to 32, AT’s latency reduces
by 962/43 (about 22) times, while MP (I=10) only reduces by 464/129 (about 4) times. It means
that O(BH×1)

O(BH×L) becomes lower as BH increases. Until O(BH×1)
O(BH×L) <

I
L , NAT will start to be slower

than AT.

B AT TRANSFORMER IN SYNTHETIC EXPERIMENTS

Table 7: Performance of autoregressive models in the synthetic experiment.

AT Transformer En-Ro En-De
Vaswani et al. (2017) - 27.3

Ghazvininejad et al. (2019) 34.28 27.74
Our implementation 34.25 27.45

In the synthetic experiment, we trained all AT models with the standard Transformer-Base configu-
ration: layer=6, dim=512, ffn=2048, head=8. The difference from Ghazvininejad et al. (2019) is that
they trained the AT models for 300k steps, but we updated 50k/100k steps on En→Ro and En→De,
respectively. Although fewer updates, as shown in Table 7, our AT models have comparable perfor-
mance with theirs.

C TRAINING ALGORITHM

Algorithm 1 describes the process of training the HRT model. The HRT model is pre-initialized
by a pre-trained AT model (Line 1). During training, the training batch Bi randomly select a raw
target sentence Yi or its distilled version Y ′ (Line 4-6). Then according to Eq. 5, we can divide B
into two parts: Bc=1 and Bc=k, where |Bc=k|/|B| = pk (Line 7-8). Next, we construct four kinds
of training samples based on corresponding batches: Bat

c=k, Bat
c=1, Bmp

c=k and Bmp
c=1. Finally, we

collect all training samples together and accumulate their gradients to update the model parameters,
which results in the batch size being twice that of standard training.
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Algorithm 1 Training Algorithm for Hybrid-Regressive Translation

Input: Training dataD including distillation targets, pretrained AT model Mat, chunk size k, mixed
distillation rate praw

Output: Hybrid-Regressive Translation model Mhrt

1: Mhrt ← Mat . finetune on pre-trained AT
2: for t in 1, 2, . . . , T do
3: X = {x1, . . . ,xn}, Y = {y1, . . . ,yn}, Y ′ = {y′1, . . . ,y′n} ← fetch a batch from D
4: for i in 1, 2, . . . , n do
5: Bi = (Xi,Y

∗
i )← sampling Y ∗i ∼ {Yi, Y ′i } with P (Yi) = praw . mixed distillation

6: end for
7: pk ← get the chunk-aware proportion by Eq. 5 . curriculum learning
8: Bc=k,Bc=1 ← B:bn×pkc,Bbn×pkc: . split batch
9: Bat

c=k,B
mp
c=k ← construct {Skip-AT, Skip-MP} training samples based on Bc=k

10: Bat
c=1,B

mp
c=1 ← construct {AT, MP} training samples based on Bc=1

11: Optimize Mhrt using Bat
c=k ∪Bat

c=1 ∪Bmp
c=k ∪Bmp

c=1 . joint training
12: end for

Table 8: Compare hybrid-regressive translation (HRT) to autoregressive translation (AT), itera-
tive refinement based non-autoregressive translation (IR-NAT), and semi-autoregressive translation
(SAT). Q(i) denotes the computation cost in autoregressive mode when producing the i-th token
(e.g., the prefix length is i − 1). Q̂b(i) denotes the computation cost in non-autoregressive mode
when producing i tokens by one shot with a beam size of b. I=4 ∼ 10, k is generally 2.

Method Steps Computing Cost
AT L

∑L
i=1Q(i)

IR-NAT I I ×Q̂b=5(L)

SAT L/k L/k ×(Q̂b=5(k) + ε)

HRT L/k + 1
∑L/k
i=1 Q(i× k) + Q̂b=1(L)

D COMPUTATION COMPLEXITY

In Table 8, we summarized the comparison with autoregressive translation (AT), iterative refinement
based non-autoregressive translation (IR-NAT) and semi-autoregressive translation (SAT) (Wang
et al., 2018a).

AT. Although both HRT and AT contain a slow autoregressive generation process, HRT’s length is
k times shorter than AT. Considering that the computational complexity of self-attention is quadratic
with its length, HRT can save more time in autoregressive decoding.
IR-NAT. Since Skip-AT provides a high-quality target context, HRT does not need to use large
beam size and multiple iterations like IR-NAT. The experimental results also show that our light
NAT can make up for the increased cost in Skip-AT and can achieve stable acceleration regardless
of the decoding batch size and running device.
SAT. SAT generates segments locally by non-autoregression, but it is still autoregressive between
segments. We claim that the SAT reduces the decoding steps by k, but each token’s calculation
remains unchanged. In other words, in the time step i, there are i− 1 tokens used for self-attention.
By contrast, only i/k tokens are involved in our Skip-AT.

E APPLY THE OPTIMIZATION METHODS TO MASK-PREDICT

We conducted experiments on the WMT En-De task to verify whether the optimization methods used
in HRT training are complementary to MP, including fine-tuning from the pre-trained autoregressive

13While the decoder self-attention module considers the previous i tokens, we omit it here for the sake of
clarity.
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Table 9: Apply the optimization methods used in HRT training to MP. BLEU scores are evaluated
on the WMT’14 En→De test set.

Method Steps BLEU
MP (official) 300k 27.03

HRT (bat=5, bmp=1) 100k 27.98
MP + FT + RPR + MD 100k 27.02
MP + FT + RPR + MD 160k 27.32
MP + FT + RPR + MD 300k 27.63

model (FT), relative positional representation (RPR), and mixed distillation (MD). The joint training
of Skip-AT and Skip-MP through curriculum learning is not involved, because it is incompatible with
MP training. Table 9 shows that the optimization methods used in HRT training are complementary
to MP training. With the help of FT+RPR+MD, our MP model with 100k steps can achieve almost
the same BLEU score as the officially released model with 300k steps. What’s more, when we train
more steps, our MP is improved by +0.61 BLEU points compared with the official model, but still
falls behind our HRT model.
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