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ABSTRACT

In the rapidly evolving field of protein engineering, embracing advancements in
machine learning (ML) has led to significant achievements, such as predicting
protein structures (e.g., AlphaFold), representing protein sequences with language
models (i.e., embeddings), and generating functional proteins from scratch. De-
spite these advances, the importance of data curation on ML model performance
has not been thoroughly investigated. As we gather more sequence and structural
data, evidence increasingly supports data-centric over model-centric approaches.
Thus, our ML training strategy should prioritize high-quality, domain-specific data
rather than focusing solely on model improvements. Examining the evolutionary
trajectories and the myriad functional adaptations across millions of years reveals
a vast, underleveraged dataset for protein engineering. Exploiting evolutionary
insights, characterized by hyperstability and extensive functionality can overcome
current limitations regarding data quality and quantity in ML frameworks. This
paper presents a novel methodology that integrates evolutionary information be-
yond multiple sequence alignment (MSA) into ML models, setting a new standard
for data-centric strategies in the field. Ancestral sequences, obtained by sam-
pling from the probability distributions generated by ASR rather than selecting
the single most probable sequence, enable the production of unprecedented scale
data— up to billions. Our findings reveal that protein sequences generated by
ASR-trained generative ML models can produce high stability and a wide variety
of protein sequences. We further introduce family-specific protein representa-
tions by this evolutionary data to fine-tune the ESM protein language model and
improve downstream classification tasks. The obtained sequence representations
improved classification within multiple families tested. Therefore, we underscore
the potential of evolutionary data in ML-driven protein engineering by providing
datasets that are both extensive in quantity and unmatched in functional quality.

Keywords: Protein Engineering, Generative Models, Language Models, Fine-Tuning, Ancestral
Sequence Reconstruction, Data-Centric Models

1 INTRODUCTION

The evolution of machine learning (ML) increasingly emphasizes the use of data-centric approaches.
This shift recognizes that data quality and diversity are as vital as algorithm development for effec-
tive ML models (Singh, 2023; Adeoye et al., 2023). Unlike model-centric methods that are widely
accessible through open-source platforms, data-centric methods offer tailored insights to specific ap-
plications which enhances model learning capabilities beyond scoring metrics (Miranda, 2023)(Zha
& States, 2023). This trend is evident in the development of the GPT model, which evolved from
focusing on architectural improvements to prioritizing data quality and data collection strategies. As
a result, focusing on data-centric approaches promises a profound contribution toward ML-driven
problem-solving in distinct domains. These approaches have already exhibited potential in fields
ranging from finance to healthcare, improving model reliability, scalability, trustworthiness, and
generalizability (Liu et al., 2023; Wang et al., 2023). This shift towards data-centric approaches
is especially significant in areas demanding intricate analysis, like protein engineering, where such
strategies could enhance the understanding and engineering of the complex protein fitness landscape
(Romero & Arnold, 2009; Kauffman & Weinberger, 2018).
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In protein engineering, the adoption of data-centric approaches is paramount due to the field’s unique
challenges, such as its complex and rugged fitness landscape, where minor alterations can signifi-
cantly impact protein functionality and stability. Despite advances in applying ML that have facili-
tated the discovery of high-fitness proteins, these models struggle with imbalanced datasets and the
scarcity of data across protein families. This underscores the necessity of reevaluating our strategies
towards curating training data(Romero & Arnold, 2009; Kauffman & Weinberger, 2018; Mena &
Daugherty, 2005; Gao et al., 2020; Deznabi et al., 2020; Meier et al., 2021). A focus on enhanc-
ing the diversity and quality of datasets is crucial, as it ensures that ML models are trained on data
that accurately reflect the intricate biological properties of proteins. Thus, establishing a method
that can provide a more effective training dataset for ML models will pave the way for strategically
advancing protein engineering campaigns.

Ancestral sequence reconstruction (ASR) offers one possible data-centric approach to protein en-
gineering. ASR utilizes computational techniques to infer ancient protein sequences from modern
descendants, thereby enriching our datasets with high-quality, diverse, and stable sequences (Joho
et al., 2022; Gumulya & Gillam, 2017; Zaugg et al., 2014; Pauling et al., 1963). Built on the founda-
tion of evolutionary biology and molecular phylogenetics, ASR involves constructing phylogenetic
trees using substitution models, a process that maps out evolutionary relationships and predicts an-
cestral states. ASR’s approach to assigning posterior probabilities to amino acids at various positions
allows for the exploration of a vast array of sequence combinations. For example, with just 15 po-
sitions that each have four high-likelihood amino acids, ASR can generate up to a billion unique
sequences (refer to Figure 1). Recent studies across various protein families have highlighted ASR’s
effectiveness in dealing with statistical uncertainties. These studies demonstrate that sequences gen-
erated from ASR predictions, which sample a broad distribution of amino acids, can be functional
and in some cases, more functional or offer novel functionalities, compared to sequences based
solely on the most likely amino acid predictions. This suggests that relying solely on the maximum
likelihood in each position may not always yield the best outcomes (Eick et al., 2017; Bar-Rogovsky
et al., 2015). Therefore, with the potential to generate many high-quality sequences, ASR represents
a potentially impactful approach to incorporating data-centric strategies in protein engineering.

In this study, we explore how evolutionary data, particularly that gleaned from ASR and ancestral
proteins, can be integrated into state-of-the-art ML models to address two primary objectives: (1)
the generation of novel protein sequences through generative modeling and (2) the enhancement
of protein classification via fine-tuned language models. Our findings demonstrate the untapped
potential of evolutionary information in refining and advancing the capabilities of ML models in
protein engineering, paving the way for more biologically informed computational strategies.

2 METHOD

2.1 GENERATIVE MODEL FOR NOVEL PROTEIN SEQUENCE GENERATION

We aimed to test whether incorporating evolutionary data into the training of generative models
yields protein sequences that are both novel and structurally stable. To this end, we selected the
PK2 protein family as our focus and employed a Variational Autoencoder (VAE) as our generative
ML model. Subsequent computational analyses (i.e., AlphaFold, FoldX, UMAP visualization) were
conducted on the sequences generated by this model to rigorously assess their quality.

2.1.1 DATA PROCESSING

PK2 is an ethylene-forming enzyme (EFE) in which we extracted its evolutionary infor-
mation using the AP-LASR (VanAntwerp et al., 2023) software(https://github.com/
WoldringLabMSU/AP-LASR), a tool designed to reconstruct evolutionary information by lever-
aging the phylogenetic tree of the query protein sequence. This tool has facilitated ASR by fully
automating the reconstruction process from multiple sequence alignment by MAFFT (Katoh & Stan-
dley, 2013) to tree phylogeny predictions via IQ-Tree2 (Minh et al., 2020). AP-LASR outputs sev-
eral key datasets: sequences of modern proteins, ancestral proteins (ASR-Max), and near-ancestral
proteins (ASR-Dist). The ASR Dist dataset is created by sampling from a posterior probability
distribution generated via the ASR.state file in IQ-Tree. For our project, the threshold for pick-
ing amino acids from this distribution was set at 0.2 (Eick et al., 2017; Sennett & Theobald, 2022)
to strike an optimal balance between maintaining ancestral properties and sequence diversity (i.e.,
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Figure 1: Large Ancestral Datasets are Compiled from the Evolutionary Landscape to Train
ML Models. A. Represents the generation of high-quality evolutionary data. The phylogenetic
tree for the family of interest is generated via ASR to access the ancestral sequences. Ancestral
sequences are often known to be stable, promiscuous, and evolvable. It is important to know each
node in the tree is not just one ancestor but a predicted distribution of sequences when the most
probable amino acid having the highest likelihood is shown in yellow. B. Obtained evolutionary
information was used as training data for sequence generation and family-specific protein sequence
representation.

amino acids with a posterior probability greater than 0.2 for a given position were included for
sampling in the dataset). From the data generated by AP-LASR, we sampled the sequences from
four nodes that represented high-stability ancestors obtained from various evolutionary timescales
Node10, Node13, Node 253, and Node 384. Then two distinct datasets for training our ML model
were crafted: the ”Homogeneous Dataset,” which comprises sequences equally sampled from an-
cestral nodes, and the ”Diverse Dataset,” created by passing the initial dataset through CD-Hit (Li
& Godzik, 2006) with a 0.9 similarity threshold. This process was aimed at enhancing the diversity
of the sequences in our training set, a critical step for ensuring the robustness and generalizability of
our model.

2.1.2 MODEL TRAINING

A Variational Autoencoder (VAE) was selected for its proficiency in generating new data points (in
this case, protein sequences) that are coherent with the training data. We employed one-hot encoding
to transform the sequences into a format suitable for computational processing. Feature extraction
from these one-hot encoded sequences was performed using a 1D Convolutional Neural Network
(CNN) layer, allowing us to capture the local sequence patterns effectively. The architecture of our
VAE was designed with a latent space dimensionality of 100, ensuring sufficient complexity to cap-
ture the nuances of protein sequence variability. Additionally, we incorporated batch normalization
within the network to facilitate smoother and more stable learning dynamics. This combination of
1D CNN for feature learning and batch normalization for optimization contributed to refining the
model’s ability to generate meaningful protein sequences.
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2.1.3 EVALUATION

The ultimate test of our generative model’s efficacy lies in its ability to produce viable and ther-
mostable sequences of the PK2 enzyme. To assess this, we utilized AlphaFold2 to predict the 3D
structures of the generated PK2 sequences. Results from AlphFold2 were visualized and superim-
posed in PyMol. This allowed verification that a similar folding pattern to the wild-type sequence
was maintained. Following structural prediction, stability calculations were carried out using FoldX.
This evaluation phase was crucial, as it allowed us to ascertain not just the novelty of the generated
sequences, but to also assess their practical applicability in terms of structural integrity and thermal
stability. We then compared the distribution of generated structure stability measurements followed
by the Dunn statistical test for measuring the obtained results’ significance. The generated sequences
using sequences generated on a model trained with the ASR-Dist sequence were compared to mod-
ern sequences via random sampling and UMAP visualizations. This plot is a proficient dimensional
reduction technique that represents the data manifold in lower dimensions.

2.2 FINE-TUNING LANGUAGE MODELS FOR FITNESS PREDICTION

In this section, we detail our approach to creating family-specific protein representations which is a
promising route for improved prediction scores in downstream tasks. We crafted four datasets that
incorporate modern and evolutionary sequences in fine-tuning the ESM2 protein language model.
The fine-tuned representations obtained from these datasets were compared against the ESM base
representation and against each other in stability prediction task proficiency.

2.2.1 DATA PROCESSING

To generate precise, family-specific protein representations for downstream tasks, we concentrated
on two proteins, Endolysin and Lysozyme C, in which we obtained their labeled datasets for sta-
bility prediction in FireProtDB (https://loschmidt.chemi.muni.cz/fireprotdb/).
Our data processing involved assembling four distinct unlabeled datasets to fine-tune the ESM
model for each protein family of interest: (i) Modern sequences sourced with NCBI’s BLAST,
(ii) a collection of Interpro-derived sequences that encompass an expanded set of modern proteins
based on family affiliations, (iii) ancestral sequences inferred through maximum likelihood estima-
tions in ASR via AP-LASR (ASR-Max), and (iv) near-ancestral sequences (ASR-Dist). The latter
were meticulously derived not only from the most probable sequences but also from those showing
promising likelihood in ancestral inference, thereby ensuring a comprehensive dataset that integrates
a wide spectrum of evolutionary insights and is substantially higher in data quantity, compared to
ASR-Max. We sampled 1000 sequences from each high-quality ancestral node (SH-aLRT > 80%
and ultrafast bootstrapping > 95%) reconstructed in ASR and removed repeat sequences. The pre-
diction task was designed to be stability classification—determining if a given sequence is stable
(∆∆G < −0.5 kcal/mol) or unstable (∆∆G > 0.5 kcal/mol).
2.2.2 MODEL TRAINING

For model fine-tuning, we employed the ESM2 model (esm2 t12 35M UR50D) trained with 35M
parameters which generates 480 embedding dimensions and contains 12-layer representations. We
unfroze its last two layers to adapt its learning to our specific datasets. A batch size of 32 sequences
was utilized to optimize the training process, alongside the implementation of early stopping to mit-
igate the risk of over-fitting. This fine-tuning phase was critical, allowing us to tailor the model to
our evolutionary-informed datasets. Post-tuning, we extracted the embedding from each of the four
datasets to further refine our approach to protein family classification, employing KNN, Random
Forest, and XGBoost algorithms to assess the model’s predictive performance within each represen-
tation derived from distinct fine-tuning methods.

2.2.3 EVALUATION

The evaluation of our fine-tuned language model focused on its ability to classify protein families
accurately, employing a suite of classification metrics to gauge performance comprehensively. Pre-
cision, recall, balanced accuracy, Area Under the Curve (AUC), and the F1 score were calculated
for each protein family (Endolysin and Lysozyme C) across the representations. For more robust
training, we performed 5-fold cross-validation for the datasets. Then the trained models were tested
on a held-out test set which was 30% of the initial data. Note that, for robustness, we repeated this
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on 20 distinct random states and reported the mean and standard deviation for the obtained results
among all the classification scores.

3 RESULTS
The critical importance of data in the realm of protein engineering, particularly in structure pre-
diction and the enhancement of generalization metrics, is acknowledged. This paper sets out to
illuminate the potential of integrating underutilized yet rich evolutionary information to elevate the
performance of the generative model and language models in the field. It is important to note that
the efficacy of fine-tuning, recognized as a state-of-the-art method for ML predictive tasks, is in-
trinsically linked to the caliber of the dataset upon which it is refined. For generative models, the
selection of training data that aptly captures the prior distribution holds substantial weight in de-
termining the quality of the sequences generated. Accordingly, our investigation seeks to discern
how this evolutionary information can be strategically employed in ML platform to facilitate a more
informed exploration and subsequently navigation of the protein fitness landscape.

3.1 GENERATED SEQUENCES VIA EVOLUTIONARY INFORMATION WERE NOVEL & STABLE
Novel sequences were generated after loss minimization in the validation set following the sampling
from the learned latent representations. Three different sets of training data (called modern, homo-
geneous, and diverse described in detail in the method section) were used to generate distinct sets of
sequences. We sampled sets of sequences both in training and generation populations within these
datasets. Our study’s findings are quite promising, revealing that: (i) our datasets not only augment
the volume of training data through the innovative integration of uncertainty in ML but also (ii) pro-
vide a richer set of sequences with inherently higher stability for training purposes. Moreover, (iii)
the stability distribution of the sequences generated using near ancestors aligns closely with those
of the training set, attesting to the potential of our method to replicate high-quality protein stability
profiles in novel sequence creation.

Figure 2: ASR-derived sequences exhibited higher thermal stability compared to modern se-
quences. Moreover, generated sequences maintained stability profiles with the training data.
Stability comparison of PK2 protein sequences derived from various training datasets. The top-left
panel illustrates the shift in thermodynamic stability (∆∆G values) when incorporating ancestral in-
formation into the training data, with ancestral sequences demonstrating increased thermal stability.
The remaining panels compare the ∆∆G distributions of novel sequences, generated post-training,
to those of the training data across modern, homogeneous ancestral (AncType1), and diverse ances-
tral (AncType2) datasets, underscoring our method’s effectiveness in producing novel, yet thermally
stable protein variants.

3.2 EVOLUTIONARY-DRIVEN PROTEIN REPRESENTATIONS IMPROVED CLASSIFICATIONS

As detailed in the methods section, we fine-tuned the ESM2 model on four distinct datasets to ob-
tain protein representations termed modern, Inter-Pro, ancestral, and near-ancestors. Intriguingly, in
both predictive stability tasks—determining if a given sequence is stable (∆∆G < −0.5 kcal/mol)
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or unstable (∆∆G > 0.5 kcal/mol) for Endolysine and Lysozyme C proteins—the representations
derived from fine-tuning ESM2 with ancestral data exhibited enhanced performance relative to those
derived from modern data. Furthermore, they showed comparable or superior performance to those
obtained from Inter-Pro-derived sequences. The outcomes for both protein families are presented in
Table 1 and Table 2. Our Method derived from ASR and uncertainty estimations (ASR-Dits) has
shown improved performance across other representations in KNN and comparable or improved per-
formance over InterPro-derived representations in ensemble-based classifiers (i.e. Random Forest,
XGBoost).

Table 1: Comparison of Classifier Performance Across Fine-Tuned Representations– Endolysin

Classifier Dataset
Score (Mean±STD)

Balanced Accuracy F1 Precision Recall ROC AUC

KNN

Modern 0.75±0.04 0.63±0.08 0.80±0.12 0.53±0.08 0.91±0.04

Interpro 0.77±0.05 0.66±0.09 0.84±0.10 0.55±0.10 0.90±0.03

ASR-Max 0.80±0.05 0.69±0.08 0.78±0.09 0.62±0.09 0.91±0.04

ASR-Dist 0.82±0.05 0.73±0.08 0.84±0.09 0.65±0.10 0.94±0.03

Random Forest

Modern 0.83±0.05 0.74±0.07 0.83±0.08 0.68±0.09 0.96±0.02

Interpro 0.82±0.04 0.73±0.07 0.85±0.06 0.65±0.09 0.96±0.02

ASR-Max 0.83±0.05 0.74±0.07 0.83±0.07 0.67±0.09 0.96±0.02

ASR-Dist 0.84±0.04 0.77±0.06 0.85±0.07 0.70±0.08 0.97±0.02

XGBoost

Modern 0.84±0.04 0.75±0.07 0.83±0.07 0.70±0.08 0.95±0.03

Interpro 0.84±0.05 0.76±0.07 0.85±0.07 0.70±0.09 0.95±0.04

ASR-Max 0.84±0.05 0.75±0.07 0.83±0.07 0.69±0.10 0.95±0.03

ASR-Dist 0.85±0.04 0.78±0.06 0.84±0.07 0.72±0.07 0.94±0.04

Table 2: Comparison of Classifier Performance Across Fine-Tuned Representations– Lysozyme C

Classifier Dataset
Score (Mean±STD)

Balanced Accuracy F1 Precision Recall ROC AUC

KNN

Modern 0.71±0.05 0.57±0.10 0.85±0.13 0.44±0.10 0.83±0.06

Interpro 0.70±0.05 0.54±0.10 0.74±0.10 0.44±0.12 0.81±0.04

ASR-Max 0.71±0.05 0.57±0.10 0.90±0.12 0.43±0.10 0.81±0.04

ASR-Dist 0.73±0.05 0.61±0.09 0.83±0.13 0.50±0.09 0.86±0.05

Random Forest

Modern 0.74±0.05 0.63±0.09 0.83±0.09 0.51±0.12 0.94±0.02

Interpro 0.75±0.06 0.64±0.10 0.80±0.09 0.55±0.13 0.92±0.02

ASR-Max 0.73±0.06 0.60±0.10 0.78±0.11 0.50±0.12 0.93±0.02

ASR-Dist 0.75±0.05 0.64±0.09 0.82±0.11 0.54±0.11 0.94±0.02

XGBoost

Modern 0.76±0.05 0.65±0.08 0.80±0.12 0.57±0.11 0.92±0.03

Interpro 0.78±0.05 0.67±0.08 0.80±0.10 0.60±0.13 0.94±0.02

ASR-Max 0.77±0.05 0.67±0.09 0.78±0.12 0.60±0.09 0.94±0.03

ASR-Dist 0.78±0.05 0.67±0.07 0.77±0.10 0.60±0.10 0.93±0.03

4 CONCLUSION

In this work, we explored the augmentation of ML models for protein engineering by incorporat-
ing evolutionary information. Our methodology involved generating novel protein sequences with
a VAE model and fine-tuning language models for improved fitness prediction. The results demon-
strated that the sequences generated from evolutionary-informed datasets were not only novel but
also exhibited higher thermal stability, showcasing the potential of ASR to enhance the quality and
diversity of training data for generative models. Additionally, fine-tuning the ESM2 model with
these datasets led to improved classification accuracy in protein family prediction tasks. This pi-
oneering approach underscores the significant impact of integrating evolutionary insights into ma-
chine learning frameworks, marking a substantial advancement in our ability to navigate the complex
protein fitness landscape with greater precision and efficiency.
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