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Abstract

Developing and deploying machine learning models safely depends on the ability to char-
acterize and compare their abilities to generalize to new environments. Although recent
work has proposed a variety of methods that can directly predict or theoretically bound
the generalization capacity of a model, they rely on strong assumptions such as matching
train/test distributions and access to model gradients. In order to characterize generalization
when these assumptions are not satisfied, we propose neighborhood invariance, a measure
of a classifier’s output invariance in a local transformation neighborhood. Specifically, we
sample a set of transformations and given an input test point, calculate the invariance as the
largest fraction of transformed points classified into the same class. Crucially, our measure is
simple to calculate, does not depend on the test point’s true label, makes no assumptions
about the data distribution or model, and can be applied even in out-of-domain (OOD)
settings where existing methods cannot, requiring only selecting a set of appropriate data
transformations. In experiments on robustness benchmarks in image classification, sentiment
analysis, and natural language inference, we demonstrate a strong and robust correlation
between our neighborhood invariance measure and actual OOD generalization on over 4,600
models evaluated on over 100 unique train/test domain pairs.

1 Introduction

As deep neural networks find increasing use in safety-critical domains such as autonomous driving (Gupta
et al., 2021) and healthcare (Wiens et al., 2019), it is important to develop methods to understand and
compare how these models generalize to new environments. Although empirically these models generalize in
many settings (Hendrycks et al., 2020a; Allen-Zhu et al., 2018; Neyshabur et al., 2017a) , they also exhibit
numerous failure cases. For example, models have been shown to overfit to a dataset’s meta characteristics
(Recht et al., 2019) or arbitrarily corrupted labels (Zhang et al., 2016), learn spurious correlations (Liang
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Figure 1: The transformation neighborhood Gr(x) around x contains the set of points reachable from a
transformation in Gr (pictured here as a rotation of r degrees). As r increases, the transformation neighborhood
is partitioned into a distinct set of decision regions. More invariant classifiers (right) classify most points in
the neighborhood into the same class and should generalize better compared to less invariant classifiers (left).
Our measure of invariance is independent of what specific region x lies in.

& Zou, 2022), and change their predictions even with small adversarial perturbations (Goodfellow et al.,
2014; Papernot et al., 2017). Many methods have been proposed to mitigate these issues, but precisely
characterizing the generalization properties of a model in diverse settings remains an open problem.

One line of work aims to theoretically bound generalization capacity (Vapnik & Chervonenkis, 1971; Bartlett
& Mendelson, 2003; McAllester, 1999; Neyshabur et al., 2017a; Dziugaite & Roy, 2017; Neyshabur et al.,
2015b) or directly predict generalization (Keskar et al., 2016; Liang et al., 2019; Neyshabur et al., 2015a;
Schiff et al., 2021; Jiang et al., 2019), and are useful in reasoning about a model beyond its performance on a
specific known test set. However, these methods work only when train and test distributions are the same,
and often rely on a strong set of assumptions such as access to labelled test data (Schiff et al., 2021), model
weights (Neyshabur et al., 2015b; Bartlett et al., 2017; Neyshabur et al., 2017b), model gradients (Jiang
et al., 2019), and training data (Keskar et al., 2016). More recent work aims to estimate the generalization of
a trained model on unlabelled test data directly (Deng & Zheng, 2021; Jiang et al., 2021; Deng et al., 2021;
Garg et al., 2022). However, these metrics are typically calculated based on the output logits of a model on
individual examples, which can become poorly calibrated in out-of-domain (OOD) settings (Morteza & Li,
2022). In real world settings, we require a robust measure of generalization that can be applied across a wide
range of test distributions and where we are often given access only to a black box model.

In this paper we propose neighborhood invariance, a complexity measure that correlates well with generalization
and that only assumes access to a set of suitable data transformations. Given a test data point, we define the
transformation neighborhood as the set of points that can be generated from a set of transformations with a
given maximum magnitude. A classifier’s neighborhood invariance is then the proportion of points that are
classified into the most commonly predicted class in this neighborhood. Intuitively, a classifier that is more
invariant in this neighborhood should have be able to represent examples with lower dimensionality and thus
lower complexity, leading to stronger generalization. Different from other similar methods (Aithal K et al.,
2021), we define invariance with respect to the neighborhood itself rather than relative to the prediction at
the test point and do not require manually tuning weights, meaning our measure can be applied even when
test distributions vary. In addition, since our measure makes so few assumptions it is applicable in a wide
range of experimental settings and can be used to compare the generalization properties of multiple models
even when labeled data is unavailable.

We investigate the correlation of a model’s neighborhood invariance with its capacity to generalize, focusing
on experimental settings with OOD dataset shifts (Taori et al., 2020) where test data is sampled from a
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distribution different from the training distribution. We select common OOD benchmark datasets in image
classification (Krizhevsky, 2009; Lu et al., 2020; Recht et al., 2018; Deng, 2012; Darlow et al., 2018; Netzer
et al., 2011; Arjovsky et al., 2019; Taori et al., 2020), sentiment analysis (Ni et al., 2019), and natural language
inference (Williams et al., 2018), which totals over 100 pairs of training/test domains. We consider a large
pool of over 4,600 models trained on these datasets with varying architectures and generalization properties,
and sample sets of transformations commonly used for data augmentation (Ng et al., 2020; Cubuk et al.,
2020; Wei & Zou, 2019; Xie et al., 2019). Across a wide set of correlation metrics, we find that neighborhood
invariance measures outperform or match baselines in almost all experimental settings.

2 Related Work

Characterizing Model Invariance Ensuring various kinds of model invariance is a well studied aspect of
learning generalizable models and has been analyzed extensively from a causality perspective (Bühlmann,
2018; Peters et al., 2015; Haavelmo, 1943). At the largest scale, models trained on a wide support of training
data and domains have demonstrated robust zero-shot and few-shot abilities (Radford et al., 2021; Brown
et al., 2020; Wortsman et al., 2022). At a smaller scale, models that are invariant across data domains
or interventions (Arjovsky et al., 2019; Gulrajani & Lopez-Paz, 2020; Bühlmann, 2018) are able to learn
representations that do not depend on spurious correlations. Finally, at the smallest scale, local invariance to
data augmentations (Cubuk et al., 2020), local changes (Rifai et al., 2011), augmentation graphs (HaoChen
et al., 2021), similar neighbors (Luo et al., 2018), or interpolation between points (Verma et al., 2019; Zhang
et al., 2018) have demonstrated improvements in model generalization. In our paper, we consider model
invariance at this local scale.

Recent work has shown that models that are invariant to local transformations factorize the input space into
a base space and the set of transformations (Sokolić et al., 2017; Sannai et al., 2021), effectively reducing the
input dimensionality and thus model complexity (Anselmi et al., 2016; Anselmi et al., 2015). Measuring this
decrease in complexity can be performed by analyzing the sample cover (Zhu et al., 2021). A similar line of
work derives estimation error bounds based on the intrinsic dimensionality of deep ReLU networks in Hölder
(Schmidt-Hieber, 2019; Nakada & Imaizumi, 2020; Chen et al., 2019), Besov, mixed smooth Besov (Suzuki,
2018), and anisotropic Besov (Suzuki & Nitanda, 2021) function spaces.

Most similar to our work, Aithal K et al. (2021) measures a model’s robustness to perturbations as a proxy
for generalization. Our method generalizes theirs and differs in a few key ways. We calculate our measure on
the test set relative to a transformation neighborhood and can thus adapt to any specific domain for which
we measure complexity and predict generalization. In contrast, Aithal K et al. (2021) calculate their measure
on the training set, use the models’ prediction as a ground truth, and require manually tuning the weights of
augmentations, meaning it is relatively brittle and can only be applied to in-domain data. In addition we
analyze the correlation of our neighborhood invariance measure on a wide range of OOD benchmarks on
image classification, sentiment analysis, and natural language inference, while Aithal K et al. (2021) consider
only image classification tasks with matching train/test distributions.

Measures of Complexity and Predicting Generalization Traditional methods of analyzing the
generalization bounds of neural networks use theoretical measures of complexity. VC dimension (Vapnik
& Chervonenkis, 1971) and Rademacher complexity (Bartlett & Mendelson, 2003) can be used to bound
the generalization of particular function classes, although they are often vacuous at the scale of deep neural
networks (Dziugaite & Roy, 2017). The PAC-Bayes framework (McAllester, 1999; Neyshabur et al., 2017a;
Dziugaite & Roy, 2017; Garg et al., 2021) can be used to build tighter generalization bounds by considering
the “sharpness” of the local minima. Norm-based measures (Neyshabur et al., 2015b; Bartlett et al., 2017;
Neyshabur et al., 2017b) bound generalization by considering different norms of the weights of learned networks.
More recent analyses have focused on empirically motivated measures that do not provide theoretical bounds.
These include the sharpness of minima in parameter space Keskar et al. (2016), Fisher-Rao norm Liang et al.
(2019), distance from initialization (Nagarajan & Kolter, 2019), path norm (Neyshabur et al., 2015a), layer
margin distributions (Jiang et al., 2019), and perturbation response curves Schiff et al. (2021).

However, these measures are only applicable when train and test distributions match. Although some
generalization bounds have been derived for these OOD settings (Garg et al., 2021; Ben-David et al., 2007;

3



Published in Transactions on Machine Learning Research (06/2023)

Figure 2: To estimate neighborhood invariance we sample a set of transformations {gi}N
i=1 ∼ Gr and generate

a set of nearby examples {gi(x)}N
i=1 for every test example x. This set of examples is then evaluated using

each classifier. We expect classifiers with more points classified in the most common class to generalize better
to the given test set.

Zhang et al., 2019), they rely on access to the test data distribution. In addition, many testbeds examine only
synthetic shifts, whereas natural shifts such as WILDS (Koh et al., 2021) are much more difficult. In real
world settings where test distributions are often unknown, a separate line of work aims to directly predict
generalization from unlabelled test data. These methods either predict the correctness on individual examples
(Deng & Zheng, 2021; Jiang et al., 2021; Deng et al., 2021), directly estimate the total error (Garg et al.,
2022; Guillory et al., 2021; Chen* et al., 2021; Chuang et al., 2020; Vedantam et al., 2021), or learn linear
models relating ID and OOD accuracy (Miller et al., 2021) or agreement (Baek et al., 2022).

3 Neighborhood Invariance Measure

In this section we introduce our neighborhood invariance measure. We start by defining the transformation
neighborhood of a point, then motivate our formulation of invariance in this neighborhood, and finally show
how to estimate it in practice.

3.1 Motivation

Consider a classification task from an input space X to an output space Y with k classes. We are given
a model f : X → Y trained on an in-domain training dataset Di = {(x1

i , y1
i ), . . . , (xn

i , yn
i )} sampled from

a distribution Pi(X , Y), and an out-of-domain test dataset Do = {(x1
o, y1

o), . . . , (xm
o , ym

o )} sampled from a
distribution Po(X , Y). We assume further that domains are covariate shifted such that P (Y|X ) does not
change between domains

We consider a set of data transformations Gr = {g : X → X | m(g) < r} where g is a particular data
transformation with an associated measure of the magnitude of the transformation m(g). For example, a
set of image rotation transformations with a maximum angle of 30 degrees might be denoted G30 where
m(gi) = α is the angle of rotation for a specific gi. For a given test point x ∈ Do, we define the transformation
neighborhood Gr(x) = {g(x) ∈ X | g ∈ Gr} as the set of outputs after applying all transformations in Gr.
Defining the neighborhood this way allows us to consider a wide range of nearby points in a controllable
way without needing access to the underlying data distribution. As shown in Figure 1, for a given r, we can
define a neighborhood decision distribution as

pj(x) = |{f(x′) = j | x′ ∈ Gr(x)}|
|Gr(x)| . (1)

We then define our neighborhood invariance measure as

µ(f, x) = max
j∈Y

pj(x). (2)

We assume that data transformations are selected such that the label for the transformed point g(x) is
still well defined. For example, flipping MNIST digits horizontally would cause most examples to have an
undefined label. If the label is undefined, then f(g(x)) should produce close to random outputs and thus
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constant invariance values of 1/k regardless of the generalization properties of f , causing our measure to fail.
We empirically measure this phenomenon across a wide range of transformations in Section 5.4.

Intuitively, a classifier that is more invariant in the neighborhood of x should be able to represent it with
a lower input dimensionality and thus be less complex, leading to stronger generalization capabilities. In
contrast, a less invariant classifier will need a higher input dimensionality to represent the neighborhood of x
and thus be more complex, leading to weaker generalization. Crucially, since our invariance is measured with
respect to the neighborhood around the test point rather than the test point itself, it does not rely on the
ground truth label. In addition, it makes no assumptions about the model or the distribution from which
test data was sampled, making it applicable in many settings where existing complexity measures cannot be
calculated, including common OOD robustness settings.

3.2 Estimating Neighborhood Invariance

Calculating neighborhood invariance exactly is typically intractable since evaluating all possible transforma-
tions is impossible. Instead, we perform Monte Carlo estimation by sampling a set of N transformations
{gi}N

i=1 from Gr (including the identity transformation I(x) = x) and calculating

µ(f, x) = 1
N

N∑
i=1

1 (f(gi(x)) = ŷ(f, x)) , (3)

where

ŷ(f, x) = arg max
j∈Y

N∑
i=1

1 (f(gi(x)) = j) (4)

is the most commonly output label. The average neighborhood invariance across the entire dataset Do is
then 1

m

∑m
j=1 µ(f, xj

o).

4 Experimental Setup

Empirically evaluating the quality of a complexity measure is difficult and requires careful experimental design.
Typically, evaluation is done by generating a large pool of models with sufficiently varied generalization
properties, but if we generate these models by varying only a few hyperparameters, our observed correlation
may be an artifact of these factors affecting both generalization and our measure. To this end, we follow a
similar experimental setup to Jiang et al. (2019).

4.1 Data

For our experiments we focus on three tasks: large and small scale image classification, sentiment analysis
on single sentences and natural language inference on sentence pairs. For each task we construct a set of
datasets sampled from different data domains.

Image Classification For image classification we begin by considering 7 datasets domain shifted from
ImageNet (Deng et al., 2009; Russakovsky et al., 2015) These include ImageNetV2 (Recht et al., 2019) and
Imagenet-Sketch (Wang et al., 2019) with the same output classes, as well as ObjectNet (Barbu et al., 2019),
ImageNetVid, YTBB anchors (Gu et al., 2019; Recht et al., 2019), ImageNet-A (Hendrycks et al., 2021b),
and ImageNet-R (Hendrycks et al., 2021a) with a smaller subset of output classes.

In addition to ImageNet datasets we construct two sets of smaller scale datasets. The first we call CI10
and consists of CIFAR10 (Krizhevsky, 2009), CINIC10 (Darlow et al., 2018), CIFAR10.1(Recht et al., 2018),
and CIFAR10.2(Lu et al., 2020). The second we call Numbers and consists of SVHN (Netzer et al., 2011),
MNIST (Deng, 2012), and Colored MNIST (Arjovsky et al., 2019). Domains in each set share the same set of
output classes.

Sentiment Analysis (SA) We use the datasets subsampled from the Amazon reviews dataset (Ni et al.,
2019) which contains product reviews from Amazon. Following Hendrycks et al. (2020b) and Ng et al. (2020),
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Model Dataset
Training
Domain

Batch
Size Depth Width Dropout

Weight
Decay

Label
Noise

Learning
Rate

Batch
Norm Seed

Data
Aug # Converged # Evaluations

CNN Amazon 10 3 3 3 3 3 — — — — — 2,418 24,180
MNLI 5 3 3 3 2 — 3 — — — — 796 39,800

RoBERTa Amazon 10 3 — — 2 3 3 — — — — 332 33,200
MNLI 5 3 — — 2 3 3 — — — — 213 10,650

Various ImageNet — — — — — — — — — — — 401 2,406

NiN SVHN — 3 3 — 3 2 — — — — — 54 162
CIFAR10 — 2 2 2 2 2 — — — — — 32 128

VGG CIFAR10 — 3 3 — 3 2 — — — — — 54 216
ResNet CIFAR10 — — — 3 — 3 — 2 2 3 2 216 864
CNN CINIC10 — 2 2 4 — 2 — 2 2 — — 128 512

4,644 112,118

Table 1: Number of possible hyperparameter values for each architecture and task. Fields denoted with
a — indicate that this hyperparameter is fixed or not applicable. We also list the total number of models
converged and evaluations run in each model pool. In total we consider 4,644 models and 112,118 evaluations.

we split the dataset into 10 different domains based on review category. For all domains and datasets, models
are trained to predict a review’s star rating from 1 to 5.

Natural Language Inference (NLI) We use the MNLI (Williams et al., 2018) dataset, a corpus of NLI
data from 10 distinct genres of written and spoken English. We train on the 5 genres with training data and
evaluate on all 10 genres. Models are given two sentences, a premise and hypothesis, and predict whether the
hypothesis is entailed by, is neutral to, or contradicts the premise.

4.2 Model and Hyperparameter Space

For large scale image classification on ImageNet, we use pretrained models from the ImageNet Testbed (Taori
et al., 2020) which covers a wide range of architectures including ResNext (Xie et al., 2016), EfficientNet
(Tan & Le, 2019), BiT (Beyer et al., 2021), Vision Transformers (Dosovitskiy et al., 2020), CLIP (Radford
et al., 2021), and many more models. We provide a full list of models evaluated in Appendix A.2. For smaller
scale image classification tasks, we use models trained for the tasks 1, 2, 4, 5, and 9 from the Predicting
Generalization in Deep Learning competition (PGDL) (Jiang et al., 2020) as well as models from Jiang et al.
(2019), which covers Network in Network (NiN) (Lin et al., 2013), VGG (Simonyan & Zisserman, 2015),
ResNet (He et al., 2015), and CNN models trained on CIFAR10, CINIC10, and SVHN. On natural language
tasks we consider CNN (Kim, 2014; Mou et al., 2016) and RoBERTa (Liu et al., 2019) based models. On
natural language models we apply label noise by randomly replacing a fraction of training labels with uniform
samples from the label space. We argue that label noise is not an artificial training setting as stated in Jiang
et al. (2019) but rather a method of entropy regularization (Pereyra et al., 2017; Xie et al., 2016) which
prevents models from becoming overconfident.

In order to control for the varying convergence rates and learning capacities of our different models, we follow
Jiang et al. (2019) and early stop the training of models when they reach a given training cross entropy loss
(usually around 99% training accuracy), or if they reach the max number of training epochs. We discard
all models which do not converge within this time. The total number of models trained and converged in
each pool as well as details on hyperparameter variations for each task and model provided in Table 1. We
include further details on model training, the hyperparameter space, and specific choices in hyperparameters
in Appendix A.4, A.2, and A.3.

4.3 Evaluation Metrics

Given a set of domains defined by distributions {P1, P2, . . . Pn} and a set of datasets {Di ∼ Pi}n
i=1 sampled

from these domains, we train a set of models Fi = {f1
i , f2

i , . . . , fm
i } on each dataset Di. We evaluate all

models fk
i ∈ Fi on all OOD test datasets Do : o ̸= i, generating a set of invariance and generalization values

(µk
io, gk

io). We define generalization as the top-1 accuracy of fk
i on Do.

We evaluate our measure first by predicting the generalization of a given model to an OOD test set. Specifically,
we select an OOD test set Do and an in-domain training set Di : i ̸= o and predict the OOD generalization gk

io
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of a model fk
i trained on Di and evaluated on Do from its invaraince value µk

io. To generate these predictions
we use a linear model ĝ = aµ + b with parameters a, b ∈ R. To estimate our parameters a and b, we select a
pool of models {fk

j ∈ Fj : j ̸= i, o} that are trained on all remaining datasets. Each model fk
j in this pool is

evaluated on the OOD dataset Do to give us a set of pairs {(µk
jo, gk

jo)}. We then find a, b by minimizing the
mean squared error (a∗, b∗) = arg mina,b

∑
j,k(aµk

jo + b − gk
jo)2 on all models in the pool.

We use the learned parameters to make generalization predictions ĝk
io = aµk

io + b for every model fk
i ∈ Fi on

Do and measure the coefficient of determination R2 (Glantz et al., 1990). We also measure the residuals
of our linear model by calculating the mean absolute error (MAE) between our predictions and the actual
generalization. For every pair of training domain i and OOD test domain o, we evaluate R2 and MAE then
average each metric across all pairs. We report MAE values as percentage points.

We also consider the rank correlation between neighborhood invariance and actual generalization. Specifically,
for a pair of models fi, fj with measure and generalization pairs (µi, gi) and (µj , gj), we want gi > gj if
µi > µj . We use Kendall’s rank τ coefficient (Kendall, 1938) to measure how consistent these sets of rankings
are. We measure four different τ values:

ID τ This metric evaluates the correlation of our measure with in-domain generalization. We select a
training dataset Di and consider pairs {(µk

ii, gk
ii)} generated from the set of models Fi trained on Di. τ values

are averaged across all training domains.

Macro τ This metric evaluates the correlation of our measure individually on each training/OOD test
domain pair. We select a training dataset Di and a OOD test dataset Do and consider pairs {(µk

io, gk
io)}

generated from the set of models Fi trained on Di. τ values are averaged across all pairs of training and
OOD test domains.

Micro τ This metric evaluates the correlation of our measure on a given OOD test domain across models
trained on all other domains. We select a single OOD test domain Do and consider pairs {(µk

io, gk
io)} generated

from the set of models {fk
i ∈ Fi : i ̸= o} trained on all other datasets {Di : i ̸= o}. τ values are averaged

across all test domains. We use this metric only when different models are trained on different training sets.

Arch τ This metric evaluates the correlation of our measure on models trained with different architectures.
Arch τ is calculated similar to Micro τ , except Fi now includes models from all architectures. τ values are
averaged across all test domains.

4.4 Data Transformations

Defining the transformation neighborhood requires defining a set of data transformations with associated
magnitudes. For image classification, we consider four transformations: RandAugment (Cubuk et al.,
2020) which randomly combines various transformations, random translation in the X- and Y-axes, random
patch erasing (Zhong et al., 2020) which removes randomly sized patches from the image, and horizontal
flips and crops. We call neighborhood invariance measures based on these transformations NI-RandAug,
NI-Translate, NI-Erase, and NI-FC respectively. For natural language tasks, we also consider four
transformations: SSMBA (Ng et al., 2020) which generates examples in a manifold neighborhood using a
denoising autoencoder, EDA (Wei & Zou, 2019) which applies random word level operations, backtranslation
(BT) (Rico Sennrich, 2016; Xie et al., 2019) which translates back and forth from a pivot language, and a
transformation that randomly replaces a percentage of tokens. We call neighborhood invariance measures
based on these transformations NI-SSMBA, NI-EDA, NI-BT, and NI-RandRep respectively. For all
experiments we sample n = 10 transformations in addition to the identity tranfsormation, although ablations
in section 5.4 show that our method is relatively robust to the specific number of transformations sampled.
We provide further details on specific transformation magnitude values and implementations for all methods
in Appendix A.5.

4.5 Baselines

Since our experimental setting makes so few assumptions, there are very few complexity measures that we
can compare against. This includes Aithal K et al. (2021), which requires matching train/test distributions.
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We thus consider complexity measures that require only model weights, specifically the Spectral (Yoshida &
Miyato, 2017; Neyshabur et al., 2017b) and Frobenius (Neyshabur et al., 2015b) norms. However, in our
experiments we find close to 0 or negative correlation for these measures, so we do not report their performance.
We also compare our method against output based methods that directly predict OOD generalization. We use
ATC-MC and ATC-NE Garg et al. (2022) as our two baselines, which calculate a threshold on in-domain
validation data based on max confidence and negative entropy scores respectively. To calculate metrics on
these methods we treat the generated accuracy predictions as a score. To calculate ID τ values we select
a threshold value based on validation data then calculate predicted accuracy values on test data from the
same domain. For ImageNet domain shift datasets where the output classes are a subset of the original 1,000
ImageNet classes, we do not recompute a subclassed ATC threshold as we do not assume prior knowledge of
the OOD output classes.

5 Results

We now present the results of our experiments evaluating the quality of our neighborhood invariance measure.
We begin by analyzing the effect of dataset distance on the correlation of neighborhood invariance with
generalization in a toy setting. Our main set of results evaluate neighborhood invariance on OOD benchmarks
in image classification, sentiment analysis, and natural language inference. Finally, we examine the correlation
of our measure in extreme OOD settings and analyze the factors that affect the quality of our neighborhood
invariance estimates.

5.1 Dataset Distance: Toy Analysis

In general, as with any complexity measure or generalization predictor, we expect neighborhood invariance to
perform more poorly as we move farther from the training domain. In the worst case, if a classifier becomes a
degenerate constant classifier in a far enough OOD domain, then neighborhood invariance reaches a constant
maximum value of 1 while generalization becomes random. In order for our measure to work well, we assume
that test domains are sufficiently close to training domains so that model predictions are non-constant. In
this section we present an analysis of the effect of dataset distance on the quality of our measure in a toy
setting.

We consider a binary classification task of points inside and outside a unit hypersphere in X = Rn, as shown
in Figure 2. We define different data domains as univariate gaussian distributions P (X ), centered at a point µ
on the hypersphere. The distance between two datasets D1 ∼ P1(X ) and D2 ∼ P2(X ) can then be measured
as the distance along the hypersphere between µ1 and µ2 in radians. We generate a training dataset D0
by sampling points around the north pole of the hypersphere, then generate out-of-domain datasets Dj at
varying distances from D0. Given a model trained on D0, we can calculate its generalization to Dj , as well as
its neighborhood invariance.

In our experiments, we consider a 16 dimensional hypersphere and sample 1000 points per data distribution
for each dataset. The univariate gaussian distributions that we sample data points from have fixed variance
0.005, ensuring models cannot generalize fully across the entire hypersphere. We train 200 single hidden-layer
MLPs with hidden dimension of 16 on the training dataset D0, each with a random level of label noise
between 0-30% to ensure a wide range of generalization properties. We consider 40 different dataset distances,
equally spaced along the hypersphere between opposite poles. For a given dataset distance, we select 5 points
at random from the corresponding circumference and generate 5 datasets from univariate gaussians centered
at these points. To measure neighborhood invariance for a given x, we sample 10 transformations from the set
of transformations defined as a perturbation along the hypersphere of radius ||x|| with a maximum distance
m(g) = ||g(x) − x|| ≤ 0.01. For each dataset we measure the neighborhood invariance and generalization for
each of the 200 trained models and calculate the Kendall τ correlation between them. For a given dataset
distance, the τ values are then averaged across all datasets. Results are presented in Figure 3b.

For datasets closest to the training dataset, the correlation between generalization and neighborhood invariance
is high. However, as dataset distance increases, correlation decreases. At a distance of around π/4, correlation
becomes nearly 0, and continues decreasing until the two values are negatively correlated on data sampled
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D0

D1

D2

D3

D5

D4

(a) We generate data from univariate gaussians whose
means lie on a hypersphere. We train models on a
dataset D0 to classify points as inside or outside the
hypersphere then test them on out of domain datasets
Dj that lie at various distances from D0 as measured
by radiance distance along the hypersphere.

0 π/4 π/2 3π/4 π
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(b) The correlation between neighborhood invariance
and OOD generalization remains high near the train-
ing domain but quickly decreases as dataset distance
incerases, becoming negatively correlated for datasets
further than π/4 away on the hypersphere. We observe
almost identical results for baseline ATC methods.

Figure 3: Toy analysis of the effect of dataset distance on the correlation between neighborhood invariance
and OOD generalization.

from the opposite side of the hypersphere from the training domain. This behavior almost identical for both
neighborhood invariance and ATC methods (ATC-MC and ATC-NE perform the same so we report only one).
These results demonstrate that the correlation of neighborhood invariance with generalization should decrease
as dataset distance increases. To investigate the degree to which this happens in practice, we consider a set
of extreme OOD experiments (Section 5.3) where we observe a surprisingly small decrease in correlation,
indicating a closer dataset distance than might initially be assumed.

5.2 Correlation with OOD Generalization

We first present results in Table 2 analyzing the correlation of our proposed neighborhood invariance measure
with OOD generalization. We report R2, MAE, Macro τ , Micro τ , ID τ , and Arch τ as detailed in Section
4.3. We omit results on Spectral and Frobenius norm measures as they are close to 0 or negative for all
metrics. We do not report Micro τ values for image classification models since each model type is trained on
only one domain. Additional experiments and results are presented in Appendix B.

ImageNet-Scale Image Classification Results on ImageNet-scale image classification datasets are
presented in Table 28a and are averaged across all architectures. On standard domain shifts, NI-RandAug
performs slightly better than ATC methods on R2 and Macro τ with similar MAE. On the adversarial
ImageNet-A dataset, ATC methods fail completely whereas NI methods maintain strong performance and
still correlate well with accuracy. However, both methods exhibit large MAE and fail to accurately predict
actual OOD accuracy. On ID τ NI methods perform slightly worse than ATC methods although they still
show very strong correlations.

CIFAR10-Scale Image Classification Results on smaller scale image classification datasets are presented
in Table 28b and are averaged across all architectures. On CI10 datasets, NI-RandAug significantly outperforms
ATC baselines and all other measures on all metrics. NI-RandAug also exhibits only a small decrease in
correlation when moving from in-domain (ID τ) to OOD datasets (Macro τ), compared to ATC methods
which suffer a much larger drop. On Numbers datasets, NI-RandAug outperforms all other methods on R2

and MAE, although it performs slightly worse on Macro τ compared to NI-Translate and on ID τ compared
to ATC baselines.

For both CI10 and Numbers, using patch erasing and flip and crop transformations cause our method to
perform worse or fail entirely, in contrast to ImageNet where they perform similarly or better. For these
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Domain Shifts ImageNet-A

Measure R2 MAE Macro τ R2 MAE Macro τ ID τ

NI-RandAug 0.709 11.87 0.724 0.577 31.17 0.586 0.845
NI-Translate 0.587 13.58 0.604 0.468 29.54 0.439 0.834
NI-Erase 0.492 11.86 0.555 0.446 33.06 0.517 0.803
NI-FC 0.603 12.28 0.691 0.679 31.84 0.589 0.867

ATC-NE 0.607 11.40 0.703 0.209 32.00 0.248 0.931
ATC-MC 0.622 11.97 0.691 0.159 32.85 0.190 0.942

(a) Results on ImageNet scale models and datasets. On standard domain shift datasets NI-RandAug performs slightly
better than ATC methods, and maintains strong performance on adversarial data where ATC methods fail completely.

CI10 Numbers

Measure R2 MAE Macro τ ID τ Arch τ R2 MAE Macro τ ID τ

NI-RandAug 0.899 3.11 0.768 0.793 0.837 0.764 5.33 0.642 0.733
NI-Translate 0.732 3.56 0.607 0.661 0.786 0.685 6.12 0.667 0.881
NI-Erase 0.518 4.41 0.411 0.406 0.299 0.153 10.17 -0.135 0.324
NI-FC 0.417 4.47 0.371 0.344 0.683 0.208 10.42 -0.316 -0.033

ATC-NE 0.655 3.61 0.548 0.693 0.689 0.616 6.74 0.637 0.859
ATC-MC 0.640 3.65 0.544 0.682 0.685 0.692 6.19 0.682 0.844

(b) Results on small scale image classification, averaged across all model architectures. No Micro τ is reported since
models are trained on a single domain and no Arch τ is reported for the Numbers dataset since we only consider a
single architecture. NI-RandAug beats all other methods on almost all metrics.

CNN RoBERTa

Measure R2 MAE Macro τ Micro τ ID τ R2 MAE Macro τ Micro τ ID τ Arch τ

NI-SSMBA 0.662 1.93 0.677 0.689 0.629 0.972 1.29 0.832 0.829 0.838 0.588
NI-EDA 0.641 2.04 0.664 0.649 0.611 0.968 1.45 0.830 0.810 0.830 0.512
NI-BT 0.550 2.99 0.592 0.501 0.538 0.961 1.47 0.813 0.801 0.801 0.523
NI-RandRep 0.409 2.64 0.544 0.554 0.439 0.967 1.27 0.821 0.816 0.822 0.537

ATC-NE 0.760 2.47 0.514 0.633 0.467 0.852 2.38 0.707 0.691 0.749 0.660
ATC-MC 0.761 2.46 0.517 0.634 0.467 0.869 2.26 0.722 0.705 0.749 0.663

(c) Results on sentiment analysis (SA) datasets. NI-SSMBA beats all other methods on almost all metrics.

CNN RoBERTa

Measure R2 MAE Macro τ Micro τ ID τ R2 MAE Macro τ Micro τ ID τ Arch τ

NI-SSMBA 0.575 2.09 0.570 0.534 0.704 0.933 1.19 0.750 0.730 0.771 0.301
NI-EDA 0.577 2.04 0.581 0.511 0.709 0.941 1.26 0.789 0.757 0.799 0.572
NI-BT 0.509 2.11 0.470 0.449 0.584 0.944 1.07 0.759 0.740 0.778 0.563
NI-RandRep 0.451 2.20 0.452 0.428 0.570 0.890 1.70 0.688 0.647 0.710 0.401

ATC-NE 0.576 2.52 0.568 0.446 0.705 0.737 2.22 0.557 0.541 0.739 0.635
ATC-MC 0.576 2.52 0.568 0.446 0.706 0.769 2.10 0.581 0.567 0.748 0.636

(d) Results on natural language inference (NLI) datasets. NI measures beat baselines on all metrics except Arch τ .

Table 2: Evaluation metrics measuring the correlation of our neighborhood invariance measure with ID/OOD
generalization. The best performing measures for each metric are bolded. On all tasks, neighborhood
invariance achieves strong generalization and beats baseline methods on almost all metrics. Full tables for
R2, Macro τ , Micro τ , and ID τ on individual train/test domains are in Appendix C
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CNN RoBERTa

Measure R2 Micro τ R2 Micro τ

NI-SSMBA 0.584 0.566 0.941 0.816
NI-EDA 0.575 0.567 0.884 0.715
NI-BT 0.538 0.470 0.906 0.766
NI-RandRep 0.277 0.373 0.918 0.776

ATC-NE 0.271 0.495 0.329 0.356
ATC-MC 0.295 0.506 0.437 0.436

(a) Results on the Drugs.com dataset.

CNN RoBERTa

Measure R2 Micro τ R2 Micro τ

NI-SSMBA 0.083 0.080 0.691 0.463
NI-EDA 0.202 0.110 0.739 0.540
NI-BT 0.213 0.247 0.730 0.527
NI-RandRep 0.096 0.102 0.030 0.012

ATC-NE 0.077 -0.107 0.719 0.345
ATC-MC 0.076 -0.106 0.734 0.354

(b) Results on the MedNLI dataset.

Table 3: Evaluation metrics measuring the correlation of our neighborhood invariance measure with gen-
eralization on extreme OOD datasets. NI-* methods beat baselines on both tasks, with RoBERTa models
exhibiting only a slight degradation in correlation compared to more typical OOD settings.

smaller datasets, since these transformations are more likely to generate images that cannot be classified (e.g.
images without an object in frame) , they produce more similar invariance values between classifiers that
cannot be used to rank them properly. This effect is more pronounced for Numbers datasets because flipping
the image or removing even small portions of the number to be classified can render the task impossible. In
contrast, random image translation which almost always preserves label information performs similarly well
across both datasets and almost matches NI-RandAug. We provide a larger set of ablations on the Numbers
dataset exploring this phenomenon in Section 5.4. The strong performance of NI-RandAug indicates that
combining multiple transformations is helpful for mitigating dataset-specific transformation sensitivities, as
in the case of Numbers.

Sentiment Analysis (SA) Results on Sentiment Analysis datasets are presented in Table 28c. In
experiments on both architectures, our neighborhood invariance measures achieves strong correlation with
OOD generalization and beats all baselines on almost all metrics. Of the transformations considered, NI-
SSMBA performs the best across both architectures. NI-EDA, NI-BT, and even NI-RandRep achieve strong
results as well, often beating ATC baselines. We observe particularly strong correlation on RoBERTa models,
with a nearly perfectly linear R2 value of 0.972 and large Micro τ of 0.829. We hypothesize that this is due
to the pretrained initialization of RoBERTa models, which gives a strong inductive bias towards learning a
space invariant to transformations that preserve meaning. In contrast, CNN models are trained from random
initializations and may not learn as closely aligned a space. On cross architecture analysis, we observe strong
Arch τ for our neighborhood measures, although they are outperformed by both ATC methods. Compared
to image classification results, our results on sentiment analysis tasks are overall less sensitive to the data
transformations selected because they are less likely to destroy information necessary for classification.

Natural Language Inference (NLI) Results on Natural Language Inference tasks are presented in
Table 28d. Similar to our sentiment analysis results, our neighborhood invariance measures achieve strong
correlation with OOD generalization on both architectures and beat all baselines. Correlations in general on
NLI are lower than those of sentiment analysis because it is more difficult to maintain the complex relationship
between the two sentences during a transformation. For example, changing a single word can easily change a
sentence pair from entailment to contradiction, whereas many words must be changed to modify a 5 star
review to a 1 star review. We observe exceptionally high correlation on RoBERTa models, for which we offer
a similar hypothesis as in our sentiment analysis experiments. On cross architecture analysis, we observe
strong correlation for our NI-EDA and NI-BT although they are outperformed by both ATC methods.

5.3 Extreme OOD Generalization

We now consider more extreme generalization to data domains with specialized and knowledge intensive data.
We consider only natural language tasks as it is difficult to find a sufficiently specialized image classification
dataset that maintains the same output classes. For sentiment analysis we use the Drugs.com review dataset
(Gräßer et al., 2018), and for natural language inference we use MedNLI (Romanov & Shivade, 2018), an
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Figure 4: Micro τ for our neighborhood invariance measure calculated with varying ablations on CNN models
evaluated on Amazon toy reviews.

NLI dataset generated from clinical notes and patient history. Both datasets contain highly specific medical
language not seen in any of our training domains. All models from all original training domains are evaluated
on each of these extreme OOD domains, and we report R2 and Micro τ . Results are shown in Table 3

On the Drugs.com dataset, we observe a small decrease in correlation for neighborhood invariance methods
compared to results on AWS datasets. However, ATC methods begin to fail, with Micro τ on RoBERTa
models dropping significantly from 0.706 to 0.356. This suggests that models become poorly calibrated in
extreme OOD settings, making ATC methods fragile. On MedNLI we observe a much larger disparity in
performance. For CNN models, most of our measures fail to correlate at all, and ATC methods degrade
so much they became anti correlated with generalization. For RoBERTa models we observe only minor
drops in correlation for all measures. For both tasks NI-RandRep exhibits almost no correlation with OOD
generalization. This suggests that the choice of transformation becomes much more important as we move
farther from our training domain.

5.4 Ablations

In this section we examine factors that may affect the quality of neighborhood invariance estimation and its
correlation with actual generalization. Since rerunning all of our experiments is too costly, we evaluate on
toys Amazon reviews using a pool of CNN models trained on all other domains for the first three ablations,
and on the Numbers datasets using NiN models trained on SVHN for the final two.

Test Dataset Size: Does our neighborhood invariance measure still correlate well when the test dataset
is small? We randomly and iteratively subsample our test dataset of 2000 examples to reduce our dataset
size down to 10 examples. We then measure our models’ neighborhood invariance on each subsampled
dataset and calculate the Micro τ on all models. Results are shown in Figure 4a. We find that for all
neighborhoods, smaller datasets lead to noisier invariance estimates and lower correlation. As dataset size
increases, correlation increases as well.

Number of Transformations: How many transformations do we need to sample in order to generate a
reliable neighborhood invariance estimate? We sample a varying number of transformations for each test
example, from a minimum of two transformations to a maximum of 100 transformations, then estimate our
neighborhood invariance measure with each set of transformations on the entire test dataset and calculate
the micro τ . By default we always include the identity transformation. Results are shown in Figure 4b. We
find that our measure is surprisingly robust to the number of samples, with only a small difference between
100 and 2 transformations sampled. For all measures, correlation slightly increases as the number of samples
increases and we achieve a better estimation of the true invariance value.
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Training Regime R2 MAE Macro τ ID τ

Standard Training 0.684 12.37 0.763 0.852
+ Augmentation/Robustness 0.707 12.23 0.650 0.855
+ Pretraining/Extra Data 0.799 11.73 0.707 0.836

All Models 0.709 11.87 0.724 0.845

Table 4: NI-RandAug results on different subsets of the ImageNet Testbed models trained with different
training regimes. Training with augmentation and robustness interventions decreases macro τ compared to
standard training but increases all other metrics. R2 and MAE are higher for models trained/pretrained with
large amounts of data.

Transformation Magnitude: How sensitive is our measure to the maximum magnitude of transformation
considered? We use the SSMBA transformation for which the magnitude of a transformation is defined by
the percentage of tokens corrupted, which we vary from a minimum of 5% to a maximum of 85%. After
sampling a set of transformations from each corruption level, we estimate neighborhood invariance on the
test dataset using each set and calculate the micro τ on all models. Results are shown in Figure 4c. We find
that as we begin to increase the corruption percentage, correlation begins to increase as well. Correlation
reaches a maximum, then decreases as we continue to increase our corruption percentage. However, even at
85% corruption, our method is quite robust and achieves a micro τ of 0.416.

Selecting Transformations: How do we ensure that transformations are suitable for a given dataset and
do not destroy label information? We consider the set of NiN models trained on SVHN and a set of image
transformations including RandAugment (Cubuk et al., 2020), rotations, translations, shears, brightness
jittering, contrast jittering, color jittering, patch erasing, and flips and crops. For each transformation and
both OOD datasets ColoredMNIST and MNIST we calculate the Macro τ correlation between accuracy and
neighborhood invariance, as well as the average entropy difference between a model’s output on a transformed
image and on the original image. Results are shown in Figure 5.

Neighborhood invariance is relatively insensitive to the transformation selected, with most transformations
performing similarly up to a certain entropy difference threshold around 0.1, after which it fails. The
transformations that fail, erase and flip crop, both tend to destroy label information and lead to much higher
entropy outputs. We propose this method of examining entropy differences as a simple way to diagnose
whether a given transform is appropriate for a specific dataset.

Pretraining and Training with Augmentation: Does self-supervised pretraining or training with data
augmentations, which should make models more invariant to certain transformations, make our neighborhood
invariance measure ineffective? We begin by examining our metrics on subsets of models from the ImageNet
Testbed (Taori et al., 2020) split by models trained on standard ImageNet (81 models), models trained on
ImageNet with augmentations and robustness interventions (74 models), and finally models trained with
extra data or pretrained with self-supervised objectives (41 models). Results are shown in Table 4. We find
that compared to evaluating only on standard training models, the addition of augmentations or pretraining
slightly degrades Macro τ , but improves R2 and MAE. Compared to the overall results on all models, we do
not observe any large decreases in performance.

Since the augmentations considered in the set of ImageNet Testbed models are not the same across models, we
also consider models from PGDL (Jiang et al., 2020) trained with and without a single type of augmentation:
flip crop. Calculating our evaluation metrics on each set of models allows us to isolate the effect of data
augmentation. Results are shown in Table 5. We find that measuring neighborhood invariance using the
same transformation (NI-FC) that models are trained with causes only a slight degradation compared to
models trained without. When measuring invariance using other transformations (NI-RandAug, NI-Erase),
evaluation metrics actually improve slightly.
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Figure 5: Transformations whose
neighborhood invariance measures cor-
relate well with OOD generalization
exhibit smaller differences in output
entropy.

Measure Flip Crop R2 MAE Macro τ ID τ

NI-RandAug ✗ 0.833 3.32 0.719 0.753
✓ 0.844 3.16 0.732 0.744

NI-Translate ✗ 0.874 2.61 0.768 0.831
✓ 0.877 2.52 0.794 0.845

NI-Erase ✗ 0.790 3.28 0.716 0.702
✓ 0.812 3.17 0.722 0.719

NI-FC ✗ 0.681 4.34 0.620 0.587
✓ 0.663 4.23 0.608 0.554

Table 5: Training with and without flip crop augmentation has a
minimal effect on the effectiveness of our method, even when the
transformation neighborhood aligns with those used to train the
model (NI-FC).

6 Discussion

In this paper, motivated by the limited settings in which existing complexity measures can be applied,
we propose a simple to calculate neighborhood invariance measure that can be applied even when test
distributions are unknown and model training data, weights, and gradients are unavailable. We evaluate our
method on image classification, sentiment analysis, and natural language inference datasets, calculating a
variety of correlation metrics with both in-domain and out-of-domain (OOD) generalization. Across almost all
tasks and experimental settings, we find that our neighborhood invariance measure consistently outperforms
baseline methods and correlates strongly with actual generalization. However, our method has several
limitations. Data transformations must be selected such that labels for transformed points are still well
defined, although examining entropy differences can diagnose poor transformation choices In settings where
such transformations are difficult to define, our method may not be applicable or provide inappropriately
high estimates, so practitioners must be careful to verify their estimates with a labelled test set. In addition,
our neighborhood invariance measure may fail in sufficiently OOD settings where a model may become poorly
calibrated or degenerate, although we find in practice on our tasks that even extreme OOD settings are
similar enough for our measure to perform well. In future work we plan to explore using similar measures
calculated over transformation neighborhoods as a method for OOD detection.
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In this section we present full details of our experimental setup, including data preprocessing and specifics on
model architecture and hyperparameter space. All models are trained on a single RTX6000 GPU.
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A.1 Data Preprocessing

Large ImageNet scale datasets are preprocessed using the pipeline provided by Taori et al. (2020). Small
scale image classification datasets are preprocessed by normalizing pixel values and resizing to 32 × 32 if
necessary. We use the same preprocessing steps for sentiment analysis and NLI experiments. All data is first
tokenized using a GPT-2 style tokenizer and BPE vocabulary provided by fairseq (Ott et al., 2019). This
BPE vocabulary consists of 50263 types. Corresponding labels are encoded using a label dictionary consisting
of as many types as there are classes. Input text and labels are then binarized for model training.

A.2 Model Architecture

The full list of the 196 models we evaluate from the Imagenet-Testbed (Taori et al., 2020) is provided below:
alexnet_lpf2, vit_large_patch32_384, wide_resnet101_2, resnet50_aws_baseline, resnet50_feature_cutmix, densenet169,
efficientnet-b2-autoaug, vgg11_bn, resnet50_with_jpeg_compression_aws, BiT-M-R101x3-nonfinetuned, efficientnet-b6-autoaug,
resnet18_lpf5, mobilenet_v2, resnet50_swsl, densenet121_lpf3, BiT-M-R101x1-nonfinetuned, efficientnet-b2-advprop-autoaug,
resnext101_32x8d_swsl, resnet50_with_fog_aws, resnet50_trained_on_SIN_and_IN, resnext101_32x4d, resnet50_with_-
contrast_aws, FixResNet50CutMix, resnet50_imagenet_subsample_1_of_32_batch64_original_images, resnext101_32x4d_-
swsl, squeezenet1_1, resnet50_imagenet_subsample_1_of_16_batch64_original_images, resnet18-rotation-nocrop_40,
resnet101_cutmix, efficientnet-b3, resnet50_with_motion_blur_aws, vit_large_patch16_384, efficientnet-b4, resnet50_-
lpf3, dpn107, resnext101_32x8d_deepaugment_augmix, vgg19, resnet18_ssl, vgg13_bn, vgg13, resnet50_with_pixelate_aws,
senet154, resnet18_lpf2, shufflenet_v2_x1_0, se_resnet101, alexnet_lpf5, densenet121, efficientnet-b3-advprop-autoaug,
resnet50_augmix, resnet50_simsiam, efficientnet-b0-advprop-autoaug, resnet50_imagenet_subsample_500_classes_batch64_-
original_images, vgg16_lpf2, mnasnet1_0, resnet34_lpf2, dpn68b, mobilenet_v2_lpf3, resnet101_lpf3, alexnet, vgg16_bn,
efficientnet-b0, inceptionv3, resnet18-rotation-worst10_30, resnet152_3x_simclrv2_finetuned_100pct_tf_port, resnet50_-
imagenet_subsample_1_of_2_batch64_original_images, wide_resnet50_2, polynet, efficientnet-b7-randaug, dpn131, vgg16_-
bn_lpf2, instagram-resnext101_32x16d, vgg16_bn_lpf5, resnet50_linf_eps8_robust, efficientnet-b1-advprop-autoaug,
inceptionv4, vit_b_32_clip_zeroshot, resnet18-rotation-worst10_40, resnet50_imagenet_100percent_batch64_original_-
images, resnet50_with_frost_aws, efficientnet-b3-autoaug, resnet50_imagenet_subsample_125_classes_batch64_original_-
images, efficientnet-b7-autoaug, resnet50_ssl, vgg16_lpf5, vit_base_patch16_224, resnet34_lpf5, resnet152, resnext50_-
32x4d, FixPNASNet, resnet50_with_saturate_aws, FixResNet50CutMix_v2, densenet121_lpf5, resnet50_imagenet_subsample_1_of_-
4_batch64_original_images, resnet18-rotation-random_40, resnet50_adv-train-free, resnet18_lpf3, BiT-M-R50x3-nonfinetuned,
efficientnet-b7-advprop-autoaug, resnet50_with_spatter_aws, resnet50_trained_on_SIN, resnet50_simclrv2_finetuned_100pct_tf_-
port, pnasnet5large, BiT-M-R50x3-ILSVRC2012, resnet50_imagenet_subsample_250_classes_batch64_original_images, efficientnet-b5,
resnet50_deepaugment, efficientnet-b5-randaug, resnet50_lpf2, se_resnext50_32x4d, resnet50_clip_zeroshot, resnext50_32x4d_-
swsl, BiT-M-R50x1-nonfinetuned, BiT-M-R101x3-ILSVRC2012, resnet50_imagenet_subsample_1_of_8_batch64_original_images, vit_-
large_patch16_224, efficientnet-b1-autoaug, efficientnet-b6-advprop-autoaug, efficientnet-b5-autoaug, resnet50_with_zoom_-
blur_aws, resnext50_32x4d_ssl, FixResNet50_v2, resnet50_lpf5, resnet101, resnet18_swsl, efficientnet-b2, squeezenet1_0,
resnet152-imagenet11k, resnet50_simclrv2_linear_probe_tf_port, alexnet_lpf3, bninception, efficientnet-b8-advprop-autoaug,
resnet50_linf_eps4_robust, FixResNet50, mnasnet0_5, resnet50_mixup, densenet121_lpf2, resnet18-rotation-standard_40, se_-
resnext101_32x4d, resnet18-rotation-random_30, efficientnet-b0-autoaug, efficientnet-b4-autoaug, vgg11, resnext101_32x8d,
BiT-M-R50x1-ILSVRC2012, resnet50, resnet50_with_gaussian_noise_contrast_motion_blur_jpeg_compression_aws, shufflenet_v2_x0_5,
dpn92, xception, resnet152_3x_simclrv2_linear_probe_tf_port, dpn98, bninception-imagenet21k, efficientnet-b5-advprop-autoaug,
resnext101_32x16d_ssl, vit_base_patch32_384, densenet201, inceptionresnetv2, cafferesnet101, instagram-resnext101_32x8d,
resnet34, FixResNet50_no_adaptation, resnext101_32x8d_ssl, resnet101_lpf5, mobilenet_v2_lpf5, instagram-resnext101_32x32d,
nasnetamobile, mobilenet_v2_lpf2, resnet101_lpf2, se_resnet50, dpn68, resnet50_with_brightness_aws, resnext101_64x4d,
resnext101_32x4d_ssl, vgg19_bn, fbresnet152, resnet50_deepaugment_augmix, se_resnet152, resnet50_cutout, resnet50_cutmix,
resnet50_l2_eps3_robust, efficientnet-b1, resnet50_with_defocus_blur_aws, BiT-M-R101x1-ILSVRC2012, vgg16_bn_lpf3, resnet50_-
trained_on_SIN_and_IN_then_finetuned_on_IN, nasnetalarge, resnet50_with_gaussian_noise_aws, vit_base_patch16_384, resnet50_-
swav, resnet50_with_greyscale_aws, vgg16, resnet34_lpf3, efficientnet-b4-advprop-autoaug, vgg16_lpf3, resnet18, densenet161

Our small image classification models are Network in Network (NiN) (Lin et al., 2013), VGG (Simonyan &
Zisserman, 2015), and CNN models. Training and hyperparemeter details for these models are provided in
Jiang et al. (2020).

For natural language tasks, our CNN models are based on the architecture in Kim (2014). Our input
embeddings are 512 dimensional, which we treat as our channel dimension. Our base model applies a set of
three one dimensional convolutions of kernel size 3, 4, and 5 with 256 output channels. We modulate the
number of stacked convolutions (depth) as well as the channel size (width). Each convolution generates a
separate representation that is max pooled across the sequence and concatenated together. We feed this
representation into a MLP classifier with a single hidden layer of 512 dimensions. We apply dropout of 0.2 to
our inputs and MLP classifier.

Our RoBERTa models use a pre-trained RoBERTaBASE model provided by fairseq. Classification token
embeddings are fed into an MLP classifier with a single hidden layer of 512 dimensions. All models are
written within the fairseq framework (Ott et al., 2019) and trained on a single RTX6000 or T4 GPU.
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CNN RoBERTa

Hyperparameter SA NLI SA NLI

Batch Size {32, 64, 128} {32, 64, 128 } {8, 16, 32} {8, 16, 32}
Depth {1, 2, 3 } {1, 2, 3 } 1 1
Width {128, 256, 512} {128, 256, 512 } 768 768
Dropout {0.0, 0.25, 0.5} {0.0, 0.25} {0.0, 0.1} {0.0, 0.1}
Weight Decay {0.0, 0.0001, 0.0005} 0.0 {0.0, 0.0001, 0.0005} {0.0, 0.0001, 0.0005}
Label Noise 0.0 {0.0, 0.2, 0.4} {0.0, 0.2, 0.4} {0.0, 0.2, 0.4}

Table 6: Possible hyperparameter values for each architecture and task.

A.3 Model Hyperparameters

Hyperparameter values for image classification models are provided in Jiang et al. (2020). For natural language
models we vary the following hyperparameters: training domain, batch size, depth, width, dropout, weight
decay, and label noise. For training domains, on sentiment analysis we choose between books, clothing,
home, kindle, movies, pets, sports, tech, tools, toys. For training domains on NLI, we choose
between slate, government, fiction, telephone, travel. NLI datasets include additional test sets
oup, nineeleven, facetoface, verbatim, letters. Possible values for all other hyperparameters are
provided in Table 6

A.4 Model Training

All models are trained with the Adam optimizer (Kingma & Ba, 2014) with β = (0.9, 0.98) and ϵ = 1 × 10−6.
CNN models are trained with learning rate 1 × 10−3 and RoBERTa models are trained with learning rate
1 × 10−5. We use a inverse square root learning rate scheduler to anneal learning rate over training. We early
stop CNN models on sentiment analysis at 0.04 cross entropy and on NLI at 0.03 cross entropy. We early
stop RoBERTa models on sentiment analysis at 0.05 cross entropy and on NLI at 0.03 cross entropy. Training
details for image classification models are provided in Jiang et al. (2020).

A.5 Transformation Magnitudes

We define how to determine the magnitude of each data transformation below, and use a maximum value
based on best practices provided in their respective papers.

• RandAugment: The magnitude of a transformation is determined by the magnitude parameter in
the RandAugment algorithm as well as the number of augmentations applied. In our experiments
we consider transformations with a maximum magnitude of 15, with 3 augmentations for larger
ImageNet models and 1 augmentation for smaller models.

• Translate: The magnitude of a transformation is determined by the maximum percentage of the
image the image will be translated in both the X- and Y-axes. In our experiments we consider
translations of up to 10% of the size of the image in both axes.

• Erase: The magnitude of the erase transformation is determined by the percentage of the image
erased. In our experiments we consider transformations that remove a maximum size of 33% of the
total image area and an aspect ratio between 1/3 and 10/3.

• Flip and Crop: The magnitude of the flip and crop transformation is determined by the flip
probability and the crop size. In our experiments we consider transformations that flip the image
50% of the time and crop the image with a lower bound of 8% of total image area and an aspect
ratio between 3/4 and 4/3. Images are resized to 32 × 32 after cropping.

• SSMBA: The magnitude of a SSMBA transformation is determined by the percentage of tokens
corrupted, where of the tokens selected, 10% are unmasked, 10% are randomly replaced, and the
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remaining 80% are masked. In our experiments we consider SSMBA transformations with a maximum
of 15% of tokens corrupted.

• EDA: The magnitude of an EDA transformation is determined by the percentage of tokens noised.
In our experiments we consider transformations with a maximum of 10% of the tokens.

• Backtranslation: The magnitude of a backtranslation operation is determined by the temperature
of the softmax-ed distribution from which we sample tokens. In our experiments we consider
transformations with a maximum temperature of 0.7.

• Random Replacement: The magnitude of a random replacement operation is determined by the
percentage of tokens replaced. In our experiments we consider transformations with a maximum of
15% of tokens replaced.

B Additional Experiments

B.1 Norm-Based Complexity Measures

Following (Jiang et al., 2019), we calculate our spectral norm measure as Πd
i=1||Wi||22 and Frobenius norm

measure Πd
i=1||Wi||2F . We do not list results on these measures as the correlations are often negative or 0.

B.2 Cross-Domain Correlation

In this set of experiments we measure the correlation between neighborhood invariance and generalization
values of a single model trained on a single training domain evaluated across different OOD test domains.
For natural language experiments we average correlations across all CNN and RoBERTa models and training
domains and call these the CNN τ and Roberta τ . Since these results are rank correlations over only 9
values, they are quite noisy. Results are presented in Table 7.

Neighborhood invariance performs quite poorly on both models, although they still outperforms ATC baselines.
We hypothesize different regions of the input space may have different optimal levels of smoothness that
achieve the lowest generalization error. Our value of interest is then not the absolute smoothness, but the
relative smoothness compared to this optimal value. These values are the same when comparing different
models evaluated on the same domain, but are not the same for the same model evaluated on different
domains, making correlating across domains difficult. On the natural image manifold where domains are
more well behaved and uniform compared to the natural language manifold, the relative smoothness may not
differ much between domains allowing us to correlate our measure across domains.

B.3 Negative Entropy Results

As an alternative to defining the invariance as the maximum value of the neighborhood decision distribution
in Eq. 1, we also consider defining it using the negative entropy of the same distribution:

µ(f, x) =
∑
j∈Y

pj(x) log pj(x)

A full table of results including metrics calculated on neighborhood invariance measured with negative entropy
is provided in Table 8. We refer to measures calculated with entropy as NE-SSMBA, NE-EDA, NE-BT,
and NE-Random. For most metrics, NE-* methods perform similarly or slightly worse.

C Full Results

We provide a full breakdown of results on the correlation metrics R2 (Tables 10, 11, 12, 13, 14, 15), macro τ
(Tables 17, 18, 19, 20, 21, 22, micro τ (Tables 23, 24), and ID τ (Tables 25, 26, 27) for each set of datasets
and models. We also provide additional standard deviations for all main results in Table 2.
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Task Measure CNN τ RoBERTa τ

SA

NI-SSMBA 0.360 0.010
NI-EDA 0.431 0.266
NI-BT 0.505 0.245
NI-RandRep 0.570 0.150

ATC-NE 0.543 0.228
ATC-MC 0.539 0.224

NLI

NI-SSMBA 0.022 0.260
NI-EDA 0.102 0.335
NI-BT 0.089 0.333
NI-RandRep 0.226 0.440

ATC-NE 0.219 0.231
ATC-MC 0.223 0.239

Table 7: Correlation metrics evaluating the ability of our smoothness measure to predict OOD generalization
across test datasets. Our smoothness measures achieves strong correlation in image classification tasks but
fails in natural language tasks.

CNN RoBERTa

Task Measure R2 MAE Macro τ Micro τ R2 MAE Macro τ Micro τ

SA

NI-SSMBA 0.662 1.93 0.677 0.689 0.972 1.29 0.832 0.829
NI-EDA 0.641 2.04 0.664 0.649 0.968 1.45 0.830 0.810
NI-BT 0.550 2.99 0.592 0.501 0.961 1.47 0.813 0.801
NI-RandRep 0.409 2.64 0.544 0.554 0.967 1.27 0.821 0.816

NE-SSMBA 0.595 2.53 0.708 0.713 0.971 1.32 0.830 0.824
NE-EDA 0.534 2.71 0.698 0.674 0.965 1.55 0.825 0.801
NE-BT 0.471 3.59 0.618 0.541 0.961 1.46 0.813 0.799
NE-RandRep 0.283 3.37 0.570 0.552 0.964 1.34 0.818 0.809

ATC-NE 0.530 3.80 0.506 0.642 0.849 3.59 0.684 0.706
ATC-MC 0.528 3.76 0.507 0.642 0.863 3.54 0.698 0.716

NLI

NI-SSMBA 0.575 2.09 0.570 0.534 0.933 1.19 0.750 0.730
NI-EDA 0.577 2.04 0.581 0.511 0.941 1.26 0.789 0.757
NI-BT 0.509 2.11 0.470 0.449 0.944 1.07 0.759 0.740
NI-RandRep 0.451 2.20 0.452 0.428 0.890 1.70 0.688 0.647

NE-SSMBA 0.588 2.20 0.579 0.520 0.941 1.39 0.738 0.711
NE-EDA 0.606 2.11 0.597 0.512 0.937 1.48 0.767 0.732
NE-BT 0.536 2.27 0.480 0.422 0.954 1.12 0.764 0.750
NE-RandRep 0.457 2.36 0.451 0.397 0.904 1.79 0.665 0.591

ATC-NE 0.378 3.57 0.430 0.294 0.673 2.35 0.536 0.52
ATC-MC 0.382 3.57 0.433 0.297 0.718 2.21 0.570 0.556

Table 8: Correlation metrics evaluating the quality of our neighborhood invariance measure on two tasks,
sentiment analysis and natural language inference, and two architectures, CNN and RoBERTa. Details on
metric calculations and baselines are provided in sections 4.3 and 4.5. This full table of results includes
metrics calculated with neighborhood negative entropy measure as well.
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Test Domain

Measure ImageNetV2 ImagenNet-Sketch ObjectNet ImageNet-Vid YTBB ImageNet-R ImageNet-A

NI-RandAug 0.810 0.641 0.613 0.767 0.570 0.763 0.577
NI-Translate 0.794 0.436 0.461 0.642 0.395 0.560 0.468
NI-Erase 0.715 0.222 0.384 0.635 0.399 0.398 0.446
NI-FC 0.767 0.406 0.516 0.706 0.446 0.618 0.679

ATC-MC 0.980 0.710 0.451 0.552 0.200 0.463 0.159
ATC-NE 0.991 0.709 0.392 0.484 0.229 0.441 0.209

Table 9: Full R2 metrics for all ImageNet test domains. We average values across models.

Test Domain

Model Train Domain Measure SVHN Colored MNIST MNIST

NiN SVHN

NI-RandAug — 0.785 0.744
NI-Translate — 0.728 0.642
NI-Erase — 0.088 0.218
NI-FC — 0.134 0.283

ATC-NE — 0.506 0.725
ATC-MC — 0.615 0.769

Table 10: Full R2 metrics for all test domains for image classification models on SVHN, Colored MNIST, and
MNIST.

Test Domain

Model Train Domain Measure CIFAR10 CINIC10 CIFAR10.1 CIFAR10.2

NiN CIFAR10

NI-RandAug — 0.898 0.927 0.876
NI-Translate — 0.688 0.864 0.730
NI-Erase — 0.404 0.526 0.547
NI-FC — 0.109 0.028 0.000

ATC-NE — 0.237 0.575 0.435
ATC-MC — 0.252 0.538 0.390

ResNet CIFAR10

NI-RandAug — 0.816 0.844 0.853
NI-Translate — 0.889 0.899 0.836
NI-Erase — 0.807 0.812 0.783
NI-FC — 0.726 0.628 0.660

ATC-NE — 0.736 0.782 0.693
ATC-MC — 0.702 0.760 0.680

VGG CIFAR10

NI-RandAug — 0.969 0.950 0.929
NI-Translate — 0.849 0.844 0.809
NI-Erase — 0.096 0.100 0.104
NI-FC — 0.637 0.524 0.487

ATC-NE — 0.557 0.774 0.724
ATC-MC — 0.559 0.764 0.709

CNN CINIC10

NI-RandAug 0.922 — 0.876 0.865
NI-Translate 0.516 — 0.449 0.407
NI-Erase 0.603 — 0.504 0.548
NI-FC 0.416 — 0.397 0.395

ATC-NE 0.869 — 0.750 0.724
ATC-MC 0.868 — 0.741 0.716

Table 11: Full R2 metrics for all test domains for image classification models on CIFAR10, CINIC10,
CIFAR10.1, and CIFAR10.2.

26



Published in Transactions on Machine Learning Research (06/2023)

Test Domain
Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

NI-SSMBA — 0.688 0.771 0.752 0.683 0.823 0.762 0.697 0.711 0.729
NI-EDA — 0.720 0.725 0.699 0.689 0.810 0.693 0.663 0.727 0.805
NI-BT — 0.560 0.663 0.639 0.593 0.675 0.602 0.591 0.592 0.658
NI-RandRep — 0.413 0.418 0.331 0.343 0.479 0.373 0.304 0.401 0.496
ATC-NE — 0.765 0.859 0.828 0.777 0.834 0.834 0.791 0.814 0.872
ATC-MC — 0.759 0.854 0.821 0.771 0.828 0.830 0.790 0.808 0.871

clothing

NI-SSMBA 0.517 — 0.601 0.531 0.525 0.535 0.566 0.484 0.549 0.631
NI-EDA 0.409 — 0.419 0.452 0.408 0.395 0.457 0.388 0.486 0.534
NI-BT 0.234 — 0.164 0.267 0.273 0.121 0.191 0.164 0.193 0.355
NI-RandRep 0.236 — 0.237 0.223 0.250 0.212 0.213 0.156 0.246 0.335
ATC-NE 0.480 — 0.673 0.478 0.467 0.466 0.739 0.299 0.772 0.847
ATC-MC 0.477 — 0.675 0.477 0.466 0.474 0.742 0.300 0.772 0.848

home

NI-SSMBA 0.533 0.545 — 0.524 0.511 0.665 0.648 0.576 0.604 0.592
NI-EDA 0.412 0.554 — 0.451 0.433 0.586 0.496 0.417 0.525 0.657
NI-BT 0.313 0.260 — 0.327 0.316 0.346 0.366 0.304 0.385 0.408
NI-RandRep 0.273 0.260 — 0.236 0.325 0.286 0.299 0.270 0.282 0.370
ATC-NE 0.608 0.861 — 0.675 0.618 0.838 0.838 0.720 0.863 0.894
ATC-MC 0.612 0.861 — 0.679 0.626 0.838 0.839 0.719 0.863 0.895

kindle

NI-SSMBA 0.645 0.680 0.650 — 0.626 0.765 0.659 0.551 0.556 0.634
NI-EDA 0.722 0.688 0.695 — 0.662 0.785 0.690 0.658 0.623 0.783
NI-BT 0.655 0.674 0.684 — 0.625 0.745 0.704 0.695 0.649 0.735
NI-RandRep 0.325 0.364 0.253 — 0.269 0.442 0.292 0.244 0.274 0.445
ATC-NE 0.747 0.659 0.701 — 0.690 0.792 0.717 0.505 0.610 0.776
ATC-MC 0.759 0.642 0.699 — 0.687 0.784 0.708 0.507 0.594 0.765

movies

NI-SSMBA 0.541 0.640 0.658 0.615 — 0.633 0.656 0.583 0.653 0.741
NI-EDA 0.542 0.662 0.571 0.676 — 0.629 0.594 0.574 0.636 0.789
NI-BT 0.602 0.679 0.677 0.653 — 0.723 0.739 0.700 0.709 0.754
NI-RandRep 0.194 0.276 0.281 0.279 — 0.228 0.316 0.216 0.316 0.369
ATC-NE 0.698 0.719 0.708 0.668 — 0.718 0.707 0.611 0.752 0.818
ATC-MC 0.707 0.725 0.713 0.664 — 0.732 0.711 0.624 0.755 0.820

pets

NI-SSMBA 0.458 0.543 0.578 0.529 0.548 — 0.606 0.528 0.590 0.721
NI-EDA 0.426 0.552 0.554 0.467 0.513 — 0.546 0.463 0.549 0.677
NI-BT 0.485 0.523 0.477 0.549 0.563 — 0.581 0.550 0.580 0.587
NI-RandRep 0.260 0.333 0.284 0.302 0.320 — 0.304 0.271 0.345 0.432
ATC-NE 0.641 0.851 0.849 0.651 0.680 — 0.825 0.591 0.812 0.883
ATC-MC 0.644 0.846 0.848 0.648 0.683 — 0.824 0.589 0.810 0.883

sports

NI-SSMBA 0.499 0.530 0.569 0.524 0.463 0.573 — 0.517 0.590 0.721
NI-EDA 0.464 0.514 0.460 0.489 0.381 0.508 — 0.448 0.541 0.594
NI-BT 0.406 0.295 0.334 0.383 0.381 0.325 — 0.331 0.393 0.411
NI-RandRep 0.283 0.173 0.212 0.256 0.219 0.239 — 0.204 0.231 0.331
ATC-NE 0.712 0.900 0.926 0.744 0.656 0.891 — 0.828 0.931 0.953
ATC-MC 0.723 0.897 0.926 0.754 0.665 0.896 — 0.833 0.933 0.952

tech

NI-SSMBA 0.610 0.508 0.635 0.620 0.596 0.604 0.636 — 0.545 0.848
NI-EDA 0.550 0.475 0.519 0.603 0.608 0.581 0.587 — 0.532 0.649
NI-BT 0.588 0.447 0.572 0.632 0.597 0.558 0.603 — 0.523 0.648
NI-RandRep 0.340 0.241 0.262 0.307 0.337 0.285 0.291 — 0.200 0.432
ATC-NE 0.766 0.820 0.904 0.791 0.817 0.866 0.874 — 0.882 0.893
ATC-MC 0.771 0.823 0.904 0.794 0.817 0.864 0.875 — 0.882 0.893

tools

NI-SSMBA 0.554 0.505 0.548 0.556 0.605 0.651 0.606 0.577 — 0.660
NI-EDA 0.466 0.413 0.460 0.459 0.589 0.587 0.512 0.465 — 0.593
NI-BT 0.451 0.385 0.447 0.476 0.482 0.501 0.483 0.484 — 0.462
NI-RandRep 0.323 0.241 0.204 0.306 0.399 0.316 0.253 0.227 — 0.297
ATC-NE 0.661 0.875 0.901 0.679 0.719 0.867 0.908 0.795 — 0.916
ATC-MC 0.670 0.874 0.903 0.684 0.729 0.866 0.909 0.801 — 0.916

toys

NI-SSMBA 0.625 0.693 0.656 0.620 0.643 0.661 0.708 0.618 0.650 —
NI-EDA 0.473 0.582 0.487 0.481 0.498 0.552 0.535 0.429 0.528 —
NI-BT 0.311 0.408 0.331 0.351 0.324 0.355 0.420 0.334 0.357 —
NI-RandRep 0.272 0.307 0.234 0.254 0.286 0.257 0.301 0.215 0.248 —
ATC-NE 0.686 0.936 0.855 0.742 0.712 0.838 0.885 0.561 0.866 —
ATC-MC 0.691 0.935 0.858 0.742 0.718 0.843 0.886 0.574 0.869 —

Table 12: Full R2 metrics for all pairs of training and test domains for CNN models trained on AWS.
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Test Domain
Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

NI-SSMBA — 0.973 0.983 0.987 0.963 0.973 0.985 0.985 0.977 0.968
NI-EDA — 0.961 0.970 0.982 0.966 0.966 0.970 0.957 0.978 0.981
NI-BT — 0.946 0.979 0.985 0.961 0.972 0.972 0.975 0.970 0.955
NI-RandRep — 0.956 0.970 0.981 0.958 0.967 0.970 0.973 0.952 0.961
ATC-NE — 0.845 0.861 0.957 0.927 0.940 0.852 0.925 0.853 0.876
ATC-MC — 0.838 0.842 0.947 0.924 0.929 0.840 0.927 0.845 0.876

clothing

NI-SSMBA 0.944 — 0.974 0.942 0.980 0.981 0.984 0.973 0.969 0.978
NI-EDA 0.974 — 0.970 0.922 0.955 0.978 0.961 0.971 0.953 0.972
NI-BT 0.944 — 0.977 0.921 0.971 0.983 0.982 0.980 0.970 0.993
NI-RandRep 0.950 — 0.965 0.933 0.982 0.977 0.985 0.981 0.974 0.973
ATC-NE 0.792 — 0.934 0.764 0.913 0.939 0.933 0.846 0.914 0.973
ATC-MC 0.801 — 0.945 0.789 0.917 0.948 0.933 0.887 0.926 0.971

home

NI-SSMBA 0.973 0.972 — 0.976 0.972 0.979 0.976 0.980 0.972 0.984
NI-EDA 0.961 0.975 — 0.967 0.959 0.960 0.949 0.917 0.963 0.979
NI-BT 0.947 0.958 — 0.944 0.947 0.948 0.977 0.972 0.971 0.974
NI-RandRep 0.978 0.976 — 0.970 0.967 0.975 0.973 0.964 0.975 0.983
ATC-NE 0.878 0.959 — 0.958 0.908 0.930 0.962 0.860 0.928 0.951
ATC-MC 0.885 0.960 — 0.963 0.913 0.945 0.964 0.872 0.938 0.952

kindle

NI-SSMBA 0.992 0.963 0.966 — 0.961 0.957 0.963 0.971 0.943 0.984
NI-EDA 0.983 0.968 0.951 — 0.966 0.962 0.953 0.974 0.963 0.969
NI-BT 0.973 0.947 0.975 — 0.954 0.949 0.954 0.973 0.923 0.973
NI-RandRep 0.979 0.946 0.956 — 0.967 0.961 0.946 0.970 0.934 0.975
ATC-NE 0.931 0.380 0.510 — 0.861 0.162 0.260 0.424 0.179 0.608
ATC-MC 0.930 0.534 0.623 — 0.871 0.294 0.392 0.551 0.316 0.672

movies

NI-SSMBA 0.984 0.976 0.969 0.981 — 0.962 0.983 0.958 0.961 0.971
NI-EDA 0.974 0.975 0.947 0.985 — 0.928 0.977 0.950 0.972 0.969
NI-BT 0.971 0.952 0.965 0.965 — 0.951 0.970 0.957 0.950 0.977
NI-RandRep 0.981 0.969 0.954 0.971 — 0.958 0.969 0.957 0.958 0.962
ATC-NE 0.948 0.864 0.902 0.949 — 0.746 0.908 0.813 0.817 0.917
ATC-MC 0.949 0.893 0.928 0.948 — 0.802 0.929 0.861 0.859 0.926

pets

NI-SSMBA 0.943 0.974 0.981 0.945 0.942 — 0.979 0.982 0.978 0.969
NI-EDA 0.965 0.980 0.985 0.958 0.952 — 0.983 0.975 0.976 0.983
NI-BT 0.936 0.971 0.974 0.931 0.926 — 0.980 0.963 0.979 0.977
NI-RandRep 0.941 0.976 0.971 0.925 0.931 — 0.976 0.968 0.976 0.979
ATC-NE 0.594 0.967 0.900 0.577 0.862 — 0.947 0.959 0.929 0.882
ATC-MC 0.611 0.968 0.909 0.589 0.851 — 0.955 0.959 0.939 0.894

sports

NI-SSMBA 0.979 0.982 0.994 0.980 0.979 0.970 — 0.982 0.984 0.978
NI-EDA 0.979 0.987 0.986 0.960 0.984 0.985 — 0.985 0.986 0.987
NI-BT 0.966 0.977 0.989 0.949 0.969 0.979 — 0.986 0.984 0.988
NI-RandRep 0.981 0.979 0.994 0.978 0.980 0.978 — 0.985 0.985 0.984
ATC-NE 0.655 0.945 0.963 0.688 0.850 0.890 — 0.938 0.969 0.957
ATC-MC 0.705 0.951 0.965 0.722 0.882 0.905 — 0.944 0.972 0.953

tech

NI-SSMBA 0.944 0.979 0.977 0.947 0.967 0.958 0.975 — 0.990 0.981
NI-EDA 0.917 0.969 0.971 0.925 0.953 0.937 0.967 — 0.963 0.972
NI-BT 0.894 0.982 0.987 0.924 0.937 0.933 0.978 — 0.987 0.972
NI-RandRep 0.929 0.959 0.977 0.918 0.952 0.944 0.963 — 0.984 0.971
ATC-NE 0.937 0.939 0.983 0.933 0.946 0.961 0.961 — 0.974 0.981
ATC-MC 0.941 0.941 0.980 0.928 0.955 0.958 0.963 — 0.971 0.982

tools

NI-SSMBA 0.977 0.988 0.975 0.967 0.971 0.986 0.985 0.978 — 0.983
NI-EDA 0.975 0.985 0.978 0.969 0.980 0.986 0.988 0.975 — 0.982
NI-BT 0.940 0.976 0.970 0.941 0.944 0.969 0.978 0.948 — 0.975
NI-RandRep 0.963 0.985 0.978 0.954 0.963 0.988 0.984 0.977 — 0.987
ATC-NE 0.857 0.945 0.964 0.883 0.865 0.925 0.964 0.963 — 0.922
ATC-MC 0.868 0.941 0.965 0.887 0.876 0.936 0.967 0.971 — 0.919

toys

NI-SSMBA 0.955 0.971 0.985 0.980 0.961 0.966 0.988 0.978 0.971 —
NI-EDA 0.965 0.968 0.984 0.970 0.985 0.973 0.981 0.975 0.983 —
NI-BT 0.890 0.946 0.959 0.944 0.925 0.935 0.965 0.943 0.934 —
NI-RandRep 0.959 0.970 0.979 0.960 0.965 0.967 0.977 0.978 0.974 —
ATC-NE 0.883 0.878 0.885 0.763 0.906 0.798 0.938 0.815 0.899 —
ATC-MC 0.889 0.897 0.895 0.754 0.920 0.818 0.947 0.833 0.914 —

Table 13: Full R2 metrics for all pairs of training and test domains for BERT models trained on AWS.
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Test Domain
Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

NI-SSMBA — 0.457 0.760 0.544 0.642 0.706 0.727 0.585 0.640 0.714
NI-EDA — 0.574 0.723 0.565 0.620 0.708 0.731 0.549 0.595 0.706
NI-BT — 0.862 0.920 0.942 0.930 0.913 0.878 0.936 0.949 0.940
NI-RandRep — 0.242 0.336 0.501 0.415 0.121 0.170 0.301 0.652 0.470
ATC-NE — 0.681 0.677 0.594 0.599 0.741 0.669 0.664 0.661 0.773
ATC-MC — 0.682 0.675 0.590 0.600 0.737 0.670 0.665 0.661 0.771

fiction

NI-SSMBA 0.581 0.492 0.765 0.451 0.530 — 0.683 0.499 0.502 0.614
NI-EDA 0.657 0.601 0.728 0.620 0.530 — 0.676 0.527 0.508 0.642
NI-BT 0.889 0.887 0.917 0.950 0.921 — 0.863 0.928 0.935 0.941
NI-RandRep 0.360 0.414 0.459 0.666 0.531 — 0.188 0.464 0.680 0.631
ATC-NE 0.530 0.425 0.718 0.323 0.536 — 0.556 0.425 0.597 0.522
ATC-MC 0.525 0.418 0.719 0.326 0.534 — 0.555 0.422 0.592 0.521

telephone

NI-SSMBA 0.539 0.453 0.826 0.429 0.480 0.647 — 0.436 0.559 0.439
NI-EDA 0.677 0.636 0.804 0.492 0.639 0.819 — 0.557 0.653 0.568
NI-BT 0.882 0.901 0.928 0.936 0.927 0.912 — 0.937 0.916 0.919
NI-RandRep 0.332 0.498 0.488 0.584 0.538 0.310 — 0.586 0.677 0.576
ATC-NE 0.557 0.518 0.762 0.527 0.467 0.695 — 0.368 0.554 0.468
ATC-MC 0.561 0.518 0.762 0.524 0.467 0.698 — 0.372 0.560 0.470

travel

NI-SSMBA 0.503 0.506 0.588 0.419 0.501 0.543 0.597 — 0.670 0.507
NI-EDA 0.444 0.429 0.502 0.388 0.342 0.532 0.478 — 0.438 0.377
NI-BT 0.806 0.799 0.861 0.916 0.889 0.828 0.802 — 0.923 0.907
NI-RandRep 0.315 0.333 0.385 0.643 0.516 0.182 0.224 — 0.690 0.626
ATC-NE 0.561 0.516 0.498 0.686 0.546 0.581 0.606 — 0.585 0.598
ATC-MC 0.563 0.517 0.503 0.690 0.544 0.588 0.611 — 0.582 0.607

government

NI-SSMBA 0.592 0.497 0.618 0.572 0.596 0.648 0.593 0.539 0.676 —
NI-EDA 0.577 0.574 0.550 0.476 0.618 0.600 0.491 0.518 0.526 —
NI-BT 0.818 0.812 0.859 0.909 0.893 0.813 0.809 0.909 0.917 —
NI-RandRep 0.010 0.083 0.207 0.306 0.279 0.011 0.027 0.123 0.360 —
ATC-NE 0.663 0.405 0.564 0.722 0.337 0.634 0.630 0.509 0.653 —
ATC-MC 0.666 0.405 0.574 0.721 0.341 0.633 0.636 0.509 0.654 —

Table 14: Full R2 metrics for all pairs of training and test domains for CNN models trained on MNLI.
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Test Domain
Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

NI-SSMBA — 0.920 0.905 0.943 0.916 0.929 0.930 0.957 0.931 0.970
NI-EDA — 0.701 0.754 0.816 0.784 0.790 0.708 0.787 0.820 0.837
NI-BT — 0.862 0.920 0.942 0.930 0.913 0.878 0.936 0.949 0.940
NI-RandRep — 0.242 0.336 0.501 0.415 0.121 0.170 0.301 0.652 0.470
ATC-NE — 0.878 0.899 0.954 0.911 0.925 0.911 0.904 0.890 0.951
ATC-MC — 0.871 0.884 0.953 0.908 0.932 0.914 0.911 0.887 0.949

fiction

NI-SSMBA 0.954 0.928 0.895 0.952 0.946 — 0.952 0.975 0.946 0.954
NI-EDA 0.661 0.687 0.699 0.840 0.686 — 0.683 0.764 0.799 0.797
NI-BT 0.889 0.887 0.917 0.950 0.921 — 0.863 0.928 0.935 0.941
NI-RandRep 0.360 0.414 0.459 0.666 0.531 — 0.188 0.464 0.680 0.631
ATC-NE 0.808 0.585 0.881 0.726 0.939 — 0.836 0.826 0.850 0.890
ATC-MC 0.817 0.652 0.889 0.732 0.936 — 0.841 0.830 0.861 0.892

telephone

NI-SSMBA 0.943 0.962 0.948 0.953 0.917 0.954 — 0.921 0.934 0.956
NI-EDA 0.776 0.787 0.790 0.852 0.823 0.847 — 0.853 0.877 0.852
NI-BT 0.882 0.901 0.928 0.936 0.927 0.912 — 0.937 0.916 0.919
NI-RandRep 0.332 0.498 0.488 0.584 0.538 0.310 — 0.586 0.677 0.576
ATC-NE 0.662 0.576 0.884 0.904 0.762 0.665 — 0.771 0.856 0.889
ATC-MC 0.714 0.668 0.902 0.924 0.807 0.732 — 0.795 0.857 0.899

travel

NI-SSMBA 0.938 0.935 0.949 0.924 0.948 0.946 0.958 — 0.962 0.953
NI-EDA 0.538 0.553 0.471 0.711 0.602 0.638 0.533 — 0.755 0.699
NI-BT 0.806 0.799 0.861 0.916 0.889 0.828 0.802 — 0.923 0.907
NI-RandRep 0.315 0.333 0.385 0.643 0.516 0.182 0.224 — 0.690 0.626
ATC-NE 0.319 0.417 0.500 0.889 0.768 0.396 0.494 — 0.928 0.911
ATC-MC 0.412 0.506 0.591 0.906 0.789 0.525 0.572 — 0.921 0.917

government

NI-SSMBA 0.916 0.960 0.781 0.919 0.816 0.882 0.914 0.950 0.920 —
NI-EDA 0.484 0.572 0.544 0.728 0.715 0.655 0.566 0.644 0.681 —
NI-BT 0.818 0.812 0.859 0.909 0.893 0.813 0.809 0.909 0.917 —
NI-RandRep 0.010 0.083 0.207 0.306 0.279 0.011 0.027 0.123 0.360 —
ATC-NE 0.544 0.385 0.439 0.914 0.731 0.157 0.449 0.538 0.842 —
ATC-MC 0.624 0.481 0.478 0.919 0.797 0.243 0.505 0.576 0.856 —

Table 15: Full R2 metrics for all pairs of training and test domains for BERT models trained on MNLI.

Test Domain

Measure ImageNetV2 ImagenNet-Sketch ObjectNet ImageNet-Vid YTBB ImageNet-R ImageNet-A

NI-RandAug 0.816 0.677 0.646 0.790 0.692 0.724 0.586
NI-Translate 0.785 0.515 0.516 0.685 0.544 0.581 0.439
NI-Erase 0.779 0.322 0.52 0.706 0.560 0.444 0.517
NI-FC 0.842 0.552 0.645 0.780 0.649 0.679 0.589

ATC-MC 0.891 0.708 0.756 0.761 0.509 0.521 0.190
ATC-NE 0.926 0.717 0.671 0.651 0.494 0.569 0.248

Table 16: Full macro τ metrics for all ImageNet test domains. We average values across models.

Test Domain

Model Train Domain Measure SVHN Colored MNIST MNIST

NiN SVHN

NI-RandAug — 0.668 0.616
NI-Translate — 0.699 0.635
NI-Erase — -0.102 -0.168
NI-FC — -0.233 -0.398

ATC-NE — 0.577 0.695
ATC-MC — 0.646 0.716

Table 17: Full macro τ metrics for all test domains for image classification models on SVHN, Colored MNIST,
and MNIST.
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Test Domain

Model Train Domain Measure CIFAR10 CINIC10 CIFAR10.1 CIFAR10.2

NiN CIFAR10

NI-RandAug — 0.785 0.830 0.783
NI-Translate — 0.621 0.739 0.644
NI-Erase — 0.385 0.485 0.499
NI-FC — 0.194 0.077 -0.037

ATC-NE — 0.250 0.543 0.484
ATC-MC — 0.319 0.514 0.446

ResNet CIFAR10

NI-RandAug — 0.706 0.722 0.742
NI-Translate — 0.800 0.796 0.741
NI-Erase — 0.723 0.727 0.699
NI-FC — 0.647 0.585 0.607

ATC-NE — 0.644 0.687 0.630
ATC-MC — 0.631 0.672 0.624

VGG CIFAR10

NI-RandAug — 0.868 0.831 0.772
NI-Translate — 0.700 0.679 0.632
NI-Erase — -0.153 -0.196 -0.215
NI-FC — 0.597 0.569 0.512

ATC-NE — 0.531 0.656 0.599
ATC-MC — 0.533 0.648 0.586

CNN CINIC10

NI-RandAug 0.756 — 0.698 0.695
NI-Translate 0.347 — 0.318 0.267
NI-Erase 0.619 — 0.539 0.577
NI-FC 0.249 — 0.286 0.252

ATC-NE 0.607 — 0.510 0.447
ATC-MC 0.611 — 0.500 0.440

Table 18: Full macro τ metrics for all test domains for image classification models on CIFAR10, CINIC10,
CIFAR10.1, and CIFAR10.2.
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Test Domain
Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

NI-SSMBA — 0.708 0.741 0.687 0.678 0.754 0.738 0.738 0.721 0.669
NI-EDA — 0.722 0.738 0.640 0.685 0.756 0.688 0.709 0.719 0.725
NI-BT — 0.615 0.631 0.549 0.596 0.656 0.602 0.644 0.584 0.621
NI-RandRep — 0.591 0.586 0.499 0.587 0.587 0.530 0.530 0.546 0.589
ATC-NE — 0.605 0.642 0.534 0.496 0.629 0.605 0.538 0.618 0.673
ATC-MC — 0.604 0.639 0.534 0.489 0.630 0.606 0.544 0.616 0.670

clothing

NI-SSMBA 0.769 — 0.774 0.773 0.793 0.726 0.653 0.716 0.692 0.709
NI-EDA 0.681 — 0.670 0.787 0.721 0.696 0.675 0.694 0.690 0.784
NI-BT 0.574 — 0.542 0.654 0.595 0.481 0.506 0.501 0.503 0.679
NI-RandRep 0.623 — 0.591 0.603 0.612 0.557 0.496 0.507 0.549 0.640
ATC-NE 0.420 — 0.366 0.408 0.450 0.308 0.501 0.242 0.560 0.563
ATC-MC 0.421 — 0.363 0.409 0.451 0.315 0.498 0.239 0.558 0.563

home

NI-SSMBA 0.786 0.552 — 0.731 0.731 0.769 0.790 0.789 0.775 0.614
NI-EDA 0.734 0.659 — 0.767 0.649 0.757 0.707 0.723 0.696 0.748
NI-BT 0.670 0.498 — 0.641 0.639 0.634 0.706 0.688 0.662 0.630
NI-RandRep 0.700 0.549 — 0.665 0.705 0.686 0.663 0.664 0.632 0.651
ATC-NE 0.450 0.480 — 0.459 0.447 0.455 0.559 0.497 0.558 0.445
ATC-MC 0.459 0.480 — 0.460 0.452 0.458 0.557 0.495 0.557 0.448

kindle

NI-SSMBA 0.546 0.679 0.648 — 0.557 0.699 0.656 0.608 0.607 0.630
NI-EDA 0.663 0.644 0.717 — 0.637 0.743 0.699 0.676 0.643 0.696
NI-BT 0.556 0.648 0.652 — 0.562 0.686 0.683 0.668 0.643 0.674
NI-RandRep 0.454 0.519 0.406 — 0.428 0.555 0.434 0.415 0.415 0.535
ATC-NE 0.370 0.517 0.468 — 0.338 0.583 0.540 0.383 0.472 0.545
ATC-MC 0.388 0.512 0.469 — 0.342 0.578 0.538 0.384 0.467 0.541

movies

NI-SSMBA 0.572 0.689 0.717 0.660 — 0.732 0.741 0.675 0.714 0.749
NI-EDA 0.500 0.717 0.711 0.629 — 0.733 0.725 0.660 0.719 0.748
NI-BT 0.619 0.681 0.687 0.595 — 0.738 0.729 0.717 0.717 0.717
NI-RandRep 0.435 0.491 0.523 0.554 — 0.460 0.528 0.436 0.517 0.570
ATC-NE 0.436 0.605 0.623 0.398 — 0.571 0.622 0.502 0.659 0.701
ATC-MC 0.449 0.612 0.631 0.403 — 0.586 0.628 0.520 0.661 0.704

pets

NI-SSMBA 0.747 0.560 0.653 0.766 0.769 — 0.719 0.696 0.697 0.731
NI-EDA 0.762 0.684 0.682 0.794 0.773 — 0.709 0.666 0.689 0.745
NI-BT 0.741 0.550 0.625 0.751 0.776 — 0.704 0.676 0.702 0.654
NI-RandRep 0.619 0.575 0.572 0.696 0.662 — 0.580 0.532 0.590 0.710
ATC-NE 0.570 0.545 0.462 0.533 0.543 — 0.511 0.333 0.503 0.634
ATC-MC 0.575 0.541 0.461 0.535 0.546 — 0.510 0.332 0.502 0.632

sports

NI-SSMBA 0.774 0.561 0.657 0.812 0.764 0.683 — 0.689 0.746 0.651
NI-EDA 0.770 0.633 0.659 0.791 0.710 0.712 — 0.701 0.732 0.692
NI-BT 0.670 0.484 0.598 0.669 0.672 0.545 — 0.534 0.704 0.538
NI-RandRep 0.684 0.472 0.562 0.704 0.638 0.589 — 0.614 0.622 0.693
ATC-NE 0.502 0.456 0.454 0.506 0.443 0.374 — 0.397 0.565 0.577
ATC-MC 0.513 0.459 0.459 0.521 0.453 0.393 — 0.410 0.574 0.574

tech

NI-SSMBA 0.784 0.674 0.768 0.793 0.779 0.755 0.785 — 0.690 0.746
NI-EDA 0.718 0.698 0.760 0.743 0.752 0.817 0.772 — 0.726 0.781
NI-BT 0.715 0.576 0.719 0.732 0.746 0.716 0.726 — 0.687 0.683
NI-RandRep 0.680 0.647 0.652 0.686 0.668 0.677 0.664 — 0.553 0.742
ATC-NE 0.547 0.688 0.681 0.560 0.640 0.653 0.666 — 0.637 0.723
ATC-MC 0.553 0.690 0.678 0.567 0.639 0.650 0.664 — 0.633 0.721

tools

NI-SSMBA 0.783 0.541 0.604 0.777 0.782 0.757 0.758 0.730 — 0.682
NI-EDA 0.716 0.544 0.628 0.769 0.735 0.764 0.722 0.696 — 0.745
NI-BT 0.691 0.342 0.454 0.681 0.677 0.567 0.575 0.636 — 0.513
NI-RandRep 0.661 0.550 0.581 0.675 0.685 0.668 0.623 0.584 — 0.687
ATC-NE 0.621 0.472 0.480 0.647 0.648 0.536 0.598 0.448 — 0.619
ATC-MC 0.630 0.465 0.491 0.649 0.655 0.538 0.597 0.456 — 0.622

toys

NI-SSMBA 0.760 0.702 0.758 0.763 0.731 0.775 0.782 0.750 0.753 —
NI-EDA 0.689 0.678 0.661 0.757 0.646 0.736 0.711 0.661 0.700 —
NI-BT 0.582 0.604 0.683 0.626 0.610 0.695 0.723 0.660 0.658 —
NI-RandRep 0.629 0.660 0.575 0.661 0.609 0.605 0.599 0.543 0.582 —
ATC-NE 0.401 0.617 0.309 0.479 0.370 0.323 0.485 0.143 0.526 —
ATC-MC 0.408 0.614 0.315 0.476 0.368 0.329 0.488 0.146 0.535 —

Table 19: Full macro τ metrics for all pairs of training and test domains for CNN models trained on AWS.
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Test Domain
Train Domain Measure books clothing home kindle movies pets sports tech tools toys

books

NI-SSMBA — 0.886 0.906 0.893 0.901 0.900 0.925 0.918 0.931 0.857
NI-EDA — 0.883 0.851 0.890 0.852 0.863 0.854 0.855 0.895 0.844
NI-BT — 0.830 0.887 0.893 0.883 0.884 0.871 0.878 0.869 0.824
NI-RandRep — 0.882 0.871 0.908 0.906 0.897 0.894 0.900 0.913 0.846
ATC-NE — 0.803 0.814 0.851 0.821 0.885 0.756 0.843 0.774 0.832
ATC-MC — 0.789 0.806 0.850 0.794 0.874 0.760 0.845 0.768 0.824

clothing

NI-SSMBA 0.797 — 0.882 0.714 0.773 0.826 0.881 0.826 0.883 0.824
NI-EDA 0.828 — 0.848 0.813 0.787 0.862 0.741 0.839 0.848 0.777
NI-BT 0.817 — 0.903 0.686 0.837 0.832 0.849 0.835 0.823 0.778
NI-RandRep 0.762 — 0.858 0.691 0.826 0.832 0.872 0.822 0.868 0.786
ATC-NE 0.729 — 0.805 0.672 0.681 0.817 0.728 0.698 0.792 0.791
ATC-MC 0.735 — 0.794 0.683 0.701 0.858 0.744 0.736 0.808 0.791

home

NI-SSMBA 0.736 0.800 — 0.786 0.780 0.868 0.896 0.876 0.888 0.885
NI-EDA 0.680 0.885 — 0.768 0.830 0.880 0.879 0.843 0.877 0.930
NI-BT 0.749 0.788 — 0.756 0.778 0.819 0.871 0.835 0.906 0.866
NI-RandRep 0.729 0.811 — 0.701 0.759 0.853 0.931 0.831 0.876 0.874
ATC-NE 0.691 0.788 — 0.750 0.802 0.791 0.797 0.739 0.824 0.824
ATC-MC 0.684 0.782 — 0.738 0.793 0.806 0.772 0.751 0.826 0.819

kindle

NI-SSMBA 0.735 0.850 0.885 — 0.701 0.913 0.875 0.869 0.763 0.871
NI-EDA 0.840 0.830 0.824 — 0.709 0.879 0.856 0.865 0.854 0.790
NI-BT 0.727 0.848 0.892 — 0.763 0.856 0.926 0.871 0.879 0.861
NI-RandRep 0.773 0.848 0.816 — 0.735 0.875 0.857 0.843 0.794 0.847
ATC-NE 0.695 0.335 0.486 — 0.644 0.211 0.274 0.426 0.238 0.589
ATC-MC 0.729 0.455 0.558 — 0.671 0.337 0.366 0.509 0.369 0.652

movies

NI-SSMBA 0.845 0.897 0.888 0.782 — 0.850 0.931 0.877 0.881 0.896
NI-EDA 0.764 0.881 0.852 0.863 — 0.859 0.901 0.863 0.882 0.938
NI-BT 0.810 0.894 0.882 0.719 — 0.837 0.894 0.864 0.872 0.870
NI-RandRep 0.851 0.875 0.855 0.742 — 0.850 0.905 0.864 0.861 0.874
ATC-NE 0.692 0.745 0.807 0.712 — 0.561 0.768 0.580 0.620 0.763
ATC-MC 0.698 0.770 0.847 0.722 — 0.622 0.813 0.637 0.678 0.784

pets

NI-SSMBA 0.728 0.737 0.866 0.737 0.829 — 0.883 0.867 0.859 0.773
NI-EDA 0.732 0.831 0.880 0.601 0.788 — 0.853 0.834 0.903 0.841
NI-BT 0.697 0.685 0.816 0.758 0.816 — 0.867 0.814 0.865 0.810
NI-RandRep 0.753 0.731 0.813 0.735 0.841 — 0.828 0.871 0.869 0.774
ATC-NE 0.623 0.740 0.719 0.553 0.737 — 0.815 0.788 0.748 0.781
ATC-MC 0.662 0.753 0.723 0.566 0.711 — 0.831 0.781 0.752 0.750

sports

NI-SSMBA 0.715 0.743 0.879 0.764 0.837 0.863 — 0.879 0.860 0.870
NI-EDA 0.757 0.731 0.807 0.673 0.798 0.786 — 0.815 0.827 0.833
NI-BT 0.728 0.753 0.766 0.664 0.826 0.832 — 0.783 0.824 0.865
NI-RandRep 0.735 0.702 0.816 0.728 0.808 0.802 — 0.830 0.849 0.836
ATC-NE 0.489 0.734 0.738 0.567 0.720 0.726 — 0.726 0.725 0.862
ATC-MC 0.484 0.728 0.766 0.562 0.754 0.727 — 0.725 0.741 0.860

tech

NI-SSMBA 0.784 0.763 0.845 0.710 0.769 0.853 0.755 — 0.886 0.877
NI-EDA 0.771 0.867 0.881 0.763 0.801 0.855 0.886 — 0.904 0.869
NI-BT 0.753 0.750 0.867 0.719 0.805 0.869 0.787 — 0.842 0.835
NI-RandRep 0.819 0.721 0.843 0.711 0.854 0.889 0.787 — 0.854 0.874
ATC-NE 0.737 0.744 0.787 0.751 0.732 0.795 0.727 — 0.830 0.863
ATC-MC 0.771 0.730 0.764 0.749 0.704 0.809 0.771 — 0.789 0.843

tools

NI-SSMBA 0.792 0.854 0.786 0.707 0.746 0.875 0.888 0.792 — 0.866
NI-EDA 0.859 0.846 0.834 0.847 0.790 0.837 0.886 0.819 — 0.894
NI-BT 0.769 0.802 0.763 0.709 0.750 0.832 0.824 0.744 — 0.856
NI-RandRep 0.792 0.825 0.816 0.717 0.724 0.885 0.877 0.801 — 0.845
ATC-NE 0.745 0.789 0.775 0.744 0.632 0.698 0.856 0.737 — 0.799
ATC-MC 0.749 0.798 0.772 0.745 0.634 0.737 0.876 0.777 — 0.793

toys

NI-SSMBA 0.779 0.830 0.813 0.766 0.695 0.808 0.872 0.872 0.891 —
NI-EDA 0.696 0.790 0.805 0.821 0.790 0.837 0.834 0.860 0.840 —
NI-BT 0.748 0.762 0.746 0.755 0.707 0.840 0.809 0.773 0.811 —
NI-RandRep 0.813 0.788 0.783 0.770 0.660 0.788 0.838 0.873 0.891 —
ATC-NE 0.656 0.469 0.743 0.550 0.628 0.515 0.792 0.703 0.771 —
ATC-MC 0.694 0.482 0.726 0.539 0.651 0.571 0.805 0.730 0.777 —

Table 20: Full macro τ metrics for all pairs of training and test domains for BERT models trained on AWS.
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Test Domain
Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

NI-SSMBA — 0.483 0.675 0.553 0.608 0.650 0.661 0.570 0.622 0.641
NI-EDA — 0.564 0.675 0.563 0.599 0.658 0.672 0.557 0.599 0.649
NI-BT — 0.669 0.742 0.736 0.756 0.727 0.754 0.751 0.738 0.791
NI-RandRep — 0.393 0.526 0.529 0.480 0.398 0.438 0.445 0.640 0.531
ATC-NE — 0.650 0.632 0.577 0.594 0.683 0.625 0.602 0.621 0.699
ATC-MC — 0.652 0.632 0.578 0.594 0.681 0.625 0.603 0.622 0.697

fiction

NI-SSMBA 0.577 0.537 0.692 0.482 0.539 — 0.629 0.520 0.546 0.598
NI-EDA 0.632 0.584 0.691 0.608 0.557 — 0.631 0.529 0.540 0.608
NI-BT 0.783 0.704 0.771 0.693 0.671 — 0.776 0.680 0.707 0.693
NI-RandRep 0.495 0.446 0.522 0.531 0.437 — 0.434 0.464 0.531 0.493
ATC-NE 0.538 0.461 0.630 0.428 0.513 — 0.542 0.469 0.581 0.536
ATC-MC 0.530 0.450 0.631 0.427 0.513 — 0.543 0.463 0.576 0.534

telephone

NI-SSMBA 0.567 0.503 0.736 0.493 0.507 0.608 — 0.492 0.572 0.496
NI-EDA 0.637 0.633 0.726 0.537 0.615 0.735 — 0.579 0.642 0.580
NI-BT 0.657 0.668 0.722 0.637 0.663 0.639 — 0.621 0.602 0.614
NI-RandRep 0.504 0.470 0.573 0.470 0.510 0.480 — 0.482 0.576 0.440
ATC-NE 0.533 0.507 0.681 0.526 0.500 0.632 — 0.453 0.564 0.491
ATC-MC 0.534 0.507 0.681 0.522 0.501 0.637 — 0.455 0.564 0.494

travel

NI-SSMBA 0.524 0.528 0.585 0.462 0.517 0.537 0.569 — 0.617 0.521
NI-EDA 0.492 0.484 0.523 0.461 0.418 0.550 0.524 — 0.507 0.458
NI-BT 0.619 0.634 0.630 0.660 0.681 0.655 0.645 — 0.713 0.699
NI-RandRep 0.465 0.476 0.467 0.514 0.492 0.472 0.526 — 0.569 0.497
ATC-NE 0.579 0.528 0.533 0.643 0.541 0.571 0.591 — 0.572 0.597
ATC-MC 0.576 0.528 0.534 0.642 0.536 0.573 0.594 — 0.570 0.602

government

NI-SSMBA 0.578 0.531 0.600 0.568 0.565 0.617 0.589 0.563 0.616 —
NI-EDA 0.581 0.582 0.565 0.535 0.594 0.624 0.519 0.552 0.566 —
NI-BT 0.719 0.693 0.686 0.687 0.755 0.701 0.651 0.712 0.719 —
NI-RandRep 0.274 0.268 0.357 0.444 0.464 0.301 0.247 0.395 0.452 —
ATC-NE 0.624 0.464 0.581 0.666 0.440 0.601 0.616 0.524 0.641 —
ATC-MC 0.621 0.465 0.583 0.667 0.446 0.602 0.616 0.522 0.642 —

Table 21: Full macro τ metrics for all pairs of training and test domains for CNN models trained on MNLI.
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Test Domain
Train Domain Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

slate

NI-SSMBA — 0.743 0.746 0.709 0.767 0.742 0.727 0.771 0.782 0.819
NI-EDA — 0.580 0.695 0.674 0.696 0.703 0.655 0.651 0.671 0.737
NI-BT — 0.669 0.742 0.736 0.756 0.727 0.754 0.751 0.738 0.791
NI-RandRep — 0.393 0.526 0.529 0.480 0.398 0.438 0.445 0.640 0.531
ATC-NE — 0.689 0.768 0.786 0.728 0.752 0.761 0.744 0.743 0.766
ATC-MC — 0.684 0.761 0.794 0.730 0.761 0.789 0.765 0.744 0.785

fiction

NI-SSMBA 0.755 0.673 0.699 0.726 0.729 — 0.769 0.806 0.770 0.727
NI-EDA 0.609 0.505 0.649 0.659 0.532 — 0.608 0.554 0.624 0.629
NI-BT 0.783 0.704 0.771 0.693 0.671 — 0.776 0.680 0.707 0.693
NI-RandRep 0.495 0.446 0.522 0.531 0.437 — 0.434 0.464 0.531 0.493
ATC-NE 0.618 0.377 0.707 0.478 0.711 — 0.596 0.558 0.658 0.711
ATC-MC 0.631 0.422 0.702 0.513 0.707 — 0.603 0.549 0.670 0.706

telephone

NI-SSMBA 0.720 0.768 0.793 0.792 0.668 0.720 — 0.813 0.758 0.788
NI-EDA 0.670 0.667 0.706 0.617 0.718 0.795 — 0.642 0.732 0.661
NI-BT 0.657 0.668 0.722 0.637 0.663 0.639 — 0.621 0.602 0.614
NI-RandRep 0.504 0.470 0.573 0.470 0.510 0.480 — 0.482 0.576 0.440
ATC-NE 0.462 0.486 0.692 0.575 0.641 0.542 — 0.644 0.697 0.702
ATC-MC 0.519 0.551 0.717 0.641 0.637 0.597 — 0.665 0.684 0.708

travel

NI-SSMBA 0.700 0.806 0.737 0.676 0.744 0.707 0.848 — 0.789 0.783
NI-EDA 0.483 0.453 0.486 0.493 0.489 0.515 0.483 — 0.522 0.495
NI-BT 0.619 0.634 0.630 0.660 0.681 0.655 0.645 — 0.713 0.699
NI-RandRep 0.465 0.476 0.467 0.514 0.492 0.472 0.526 — 0.569 0.497
ATC-NE 0.155 0.320 0.234 0.559 0.533 0.146 0.360 — 0.633 0.630
ATC-MC 0.175 0.370 0.320 0.613 0.576 0.219 0.443 — 0.648 0.646

government

NI-SSMBA 0.769 0.777 0.727 0.652 0.640 0.783 0.784 0.805 0.754 —
NI-EDA 0.521 0.513 0.480 0.578 0.661 0.657 0.494 0.565 0.598 —
NI-BT 0.719 0.693 0.686 0.687 0.755 0.701 0.651 0.712 0.719 —
NI-RandRep 0.274 0.268 0.357 0.444 0.464 0.301 0.247 0.395 0.452 —
ATC-NE 0.377 0.176 0.472 0.660 0.558 0.239 0.497 0.302 0.638 —
ATC-MC 0.427 0.231 0.487 0.653 0.600 0.275 0.496 0.323 0.629 —

Table 22: Full macro τ metrics for all pairs of training and test domains for BERT models trained on MNLI.

Test Domain
Model Measure books clothing home kindle movies pets sports tech tools toys

CNN

NI-SSMBA 0.677 0.688 0.758 0.641 0.691 0.786 0.784 0.758 0.722 0.683
NI-EDA 0.637 0.672 0.704 0.612 0.658 0.746 0.739 0.680 0.703 0.711
NI-BT 0.601 0.532 0.572 0.509 0.521 0.509 0.587 0.536 0.571 0.529
NI-RandRep 0.485 0.542 0.501 0.522 0.440 0.491 0.650 0.477 0.507 0.550
ATC-NE 0.406 0.727 0.728 0.362 0.499 0.722 0.726 0.679 0.730 0.752
ATC-MC 0.410 0.726 0.729 0.359 0.500 0.724 0.727 0.681 0.730 0.752

BERT

NI-SSMBA 0.790 0.850 0.868 0.664 0.899 0.864 0.855 0.874 0.880 0.845
NI-EDA 0.739 0.848 0.825 0.731 0.793 0.836 0.825 0.828 0.837 0.841
NI-BT 0.702 0.845 0.830 0.668 0.792 0.839 0.843 0.813 0.819 0.858
NI-RandRep 0.839 0.841 0.891 0.694 0.864 0.834 0.747 0.825 0.850 0.831
ATC-NE 0.613 0.721 0.712 0.618 0.695 0.666 0.733 0.693 0.708 0.755
ATC-MC 0.621 0.735 0.730 0.616 0.711 0.691 0.749 0.710 0.726 0.764

Table 23: Full micro τ metrics for all test domains for CNN and BERT models trained on AWS.
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Test Domain
Model Measure slate verbatim facetoface oup nineeleven fiction telephone travel letters government

CNN

NI-SSMBA 0.540 0.493 0.562 0.493 0.527 0.431 0.607 0.544 0.579 0.563
NI-EDA 0.560 0.555 0.427 0.520 0.488 0.435 0.499 0.552 0.532 0.542
NI-BT 0.698 0.684 0.611 0.713 0.713 0.595 0.676 0.714 0.697 0.722
NI-RandRep 0.448 0.417 0.427 0.503 0.472 0.324 0.395 0.450 0.550 0.509
ATC-NE 0.461 0.413 0.549 0.427 0.350 0.517 0.531 0.307 0.497 0.404
ATC-MC 0.460 0.411 0.550 0.429 0.351 0.517 0.532 0.307 0.496 0.404

BERT

NI-SSMBA 0.782 0.710 0.742 0.652 0.724 0.756 0.779 0.691 0.768 0.700
NI-EDA 0.563 0.556 0.481 0.622 0.586 0.545 0.529 0.607 0.607 0.630
NI-BT 0.698 0.684 0.611 0.713 0.713 0.595 0.676 0.714 0.697 0.722
NI-RandRep 0.448 0.417 0.427 0.503 0.472 0.324 0.395 0.450 0.550 0.509
ATC-NE 0.375 0.389 0.660 0.606 0.593 0.414 0.523 0.511 0.655 0.687
ATC-MC 0.405 0.434 0.676 0.632 0.614 0.466 0.554 0.530 0.663 0.693

Table 24: Full micro τ metrics for all test domains for CNN and BERT models trained on MNLI.

Train Domain (Model)

Measure SVHN (NiN) CIFAR10 (NiN) CIFAR10 (ResNet) CIFAR10 (VGG) CINIC10 (CNN)

NI-RandAug 0.733 0.797 0.746 0.869 0.759
NI-Translate 0.881 0.782 0.833 0.699 0.329
NI-Erase 0.324 0.409 0.708 -0.183 0.606
NI-FC -0.033 -0.015 0.568 0.628 0.289

ATC-NE 0.859 0.648 0.757 0.773 0.548
ATC-MC 0.843 0.605 0.756 0.767 0.553

Table 25: Full in-domain τ metrics for all test domains for image classification models and datasets.

Train Domain
Model Measure books clothing home kindle movies pets sports tech tools toys

CNN

NI-SSMBA 0.646 0.613 0.643 0.577 0.597 0.591 0.703 0.648 0.643 0.620
NI-EDA 0.653 0.558 0.615 0.660 0.447 0.666 0.708 0.646 0.663 0.565
NI-BT 0.569 0.449 0.582 0.537 0.626 0.605 0.568 0.653 0.640 0.652
NI-RandRep 0.560 0.557 0.559 0.559 0.593 0.596 0.572 0.545 0.566 0.615
ATC-NE 0.575 0.413 0.561 0.478 0.294 0.464 0.539 0.561 0.446 0.341
ATC-MC 0.566 0.405 0.558 0.478 0.300 0.461 0.540 0.569 0.451 0.338

BERT

NI-SSMBA 0.735 0.874 0.868 0.693 0.780 0.871 0.884 0.851 0.851 0.884
NI-EDA 0.875 0.788 0.814 0.700 0.870 0.894 0.818 0.858 0.882 0.810
NI-BT 0.801 0.811 0.857 0.638 0.835 0.813 0.860 0.846 0.803 0.750
NI-RandRep 0.839 0.841 0.891 0.694 0.864 0.834 0.747 0.825 0.850 0.831
ATC-NE 0.733 0.724 0.822 0.640 0.721 0.711 0.778 0.783 0.799 0.783
ATC-MC 0.742 0.746 0.813 0.630 0.730 0.725 0.814 0.780 0.774 0.739

Table 26: Full in-domain τ metrics for all test domains for CNN and BERT models trained on AWS.
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Train Domain

Model Measure slate fiction telephone travel government

CNN

NI-SSMBA 0.664 0.655 0.753 0.692 0.758
NI-EDA 0.629 0.723 0.786 0.652 0.755
NI-BT 0.751 0.765 0.637 0.786 0.826
NI-RandRep 0.437 0.471 0.546 0.570 0.491

ATC-NE 0.704 0.662 0.719 0.715 0.722
ATC-MC 0.703 0.660 0.722 0.716 0.728

BERT

NI-SSMBA 0.713 0.754 0.766 0.785 0.839
NI-EDA 0.608 0.664 0.781 0.575 0.726
NI-BT 0.751 0.765 0.637 0.786 0.826
NI-RandRep 0.437 0.471 0.546 0.570 0.491

ATC-NE 0.722 0.796 0.740 0.737 0.701
ATC-MC 0.745 0.791 0.791 0.719 0.696

Table 27: Full in-domain τ metrics for all train domains for CNN and BERT models trained on MNLI.
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Domain Shifts ImageNet-A

Measure R2 Macro τ R2 Macro τ ID τ

NI-RandAug 0.091 0.061 — — —
NI-Translate 0.159 0.099 — — —
NI-Erase 0.174 0.153 — — —
NI-FC 0.139 0.095 — — —

ATC-NE 0.272 0.136 — — —
ATC-MC 0.279 0.135 — — —

(a) Standard deviations for ImageNet scale results. No standard deviations are reported for ImageNet-A or ID τ since
we report only a single value.

CI10 Numbers

Measure R2 Macro τ ID τ R2 Macro τ ID τ

NI-RandAug 0.044 0.054 0.048 0.021 0.026 —
NI-Translate 0.170 0.181 0.197 0.043 0.032 —
NI-Erase 0.254 0.348 0.345 0.065 0.033 —
NI-FC 0.239 0.225 0.255 0.074 0.083 —

ATC-NE 0.169 0.115 0.091 0.109 0.059 —
ATC-MC 0.168 0.101 0.093 0.077 0.035 —

(b) Standard deviations for small scale image results. No standard deviation is reported for Numbers ID τ since we
report only a single value.

CNN RoBERTa

Measure R2 Macro τ Micro τ ID τ R2 Macro τ Micro τ ID τ

NI-SSMBA 0.079 0.067 0.046 0.035 0.012 0.063 0.064 0.065
NI-EDA 0.108 0.051 0.041 0.072 0.016 0.058 0.040 0.055
NI-BT 0.161 0.078 0.032 0.060 0.021 0.060 0.061 0.063
NI-RandRep 0.069 0.080 0.054 0.021 0.015 0.060 0.055 0.055

ATC-NE 0.126 0.110 0.143 0.092 0.168 0.135 0.044 0.051
ATC-MC 0.125 0.109 0.143 0.091 0.139 0.112 0.048 0.050

(c) Standard deviations on sentiment analysis results.

CNN RoBERTa

Measure R2 Macro τ Micro τ ID τ R2 Macro τ Micro τ ID τ

NI-SSMBA 0.098 0.060 0.048 0.043 0.035 0.046 0.040 0.041
NI-EDA 0.107 0.068 0.046 0.060 0.108 0.087 0.044 0.075
NI-BT 0.045 0.049 0.042 0.063 0.045 0.049 0.042 0.063
NI-RandRep 0.196 0.079 0.061 0.049 0.196 0.079 0.061 0.049

ATC-NE 0.108 0.068 0.076 0.022 0.206 0.180 0.111 0.032
ATC-MC 0.108 0.068 0.076 0.024 0.174 0.164 0.100 0.038

(d) Standard deviations on NLI results.

Table 28: Standard deviations for reported values in Table 2
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