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Abstract
Aiming to build foundation models for time-series forecasting and study their
scaling behavior, we present here our work-in-progress on Lag-Llama, a
general-purpose univariate probabilistic time-series forecasting model trained
on a large collection of time-series data. The model shows good zero-shot
prediction capabilities on unseen “out-of-distribution” time-series datasets,
outperforming supervised baselines. We use smoothly broken power-laws [7] to
fit and predict model scaling behavior. The open source code is made available at
https://github.com/kashif/pytorch-transformer-ts.

1 Introduction
Probabilistic time-series forecasting is an important practical problem arising in a wide range
of applications, from finance and weather forecasting to brain imaging and computer systems
performance management [32]. Various methods have been proposed for this task, ranging from
classical autoregressive models [19] to the more recent neural forecasting methods based on deep
learning architectures [44]. The majority of these previous approaches focus on training the model
on the data from the same domain wherein the prediction task is performed.

However, in the past several years, machine-learning is witnessing a paradigm shift due to the rise
of foundation models [5]—large-scale, general-purpose neural networks pretrained in an unsupervised
manner on large amounts of diverse data; such models demonstrate remarkable few-shot generalization
capabilities on a wide range of downstream tasks [6], often outperforming task-specific models.
Following the successes of foundation models in language and image processing domains[30, 33],
we aim to develop foundation models for time-series, investigate their behavior at scale, and push
the limits of transfer achievable across diverse time-series domains.

In this paper, we present preliminary results of our ongoing work along those lines. We train a
transformer model on a large collection of time-series datasets and evaluate its performance on an
unseen “out-of-distribution” dataset. Specifically, we investigate the use of pre-trained time series
models for the univariate probabilistic time series forecasting use case and introduce the Lag-Llama
model1 trained on a large collection of time series from the Monash Time Series Repository [16].
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We report the test-set performance of this model on unseen time-series datasets and present a neural
scaling laws study on the number of parameters and training data.

Our contributions:
• We propose Lag-Llama, a model for univariate probabilistic time-series forecasting suitable for

scaling law analyses of time series foundation models.
• We train Lag-Llama on a corpus of time series datasets and show that Lag-Llama outperforms or

compares favorably to supervised baselines when tested zero-shot on unseen time series datasets,
and we identify a “stable” regime where the model constantly outperforms the baselines beyond
a certain model size.

• We fit empirical scaling laws of the zero-shot test performance of the model as a function of the
model size, allowing us to potentially extrapolate and predict generalization beyond the models
used in this paper.

2 Related Work
Neural forecasting is a rapidly developing research area [4]; its primary focus so far has been mainly
on training and forecasting within individual datasets. We instead focus on building generic foundation
models on a wide range of diverse time-series data. Recent work has investigated the use of pre-trained
language models as frozen encoders, e.g., in Time-LLM [20], LLM4TS [8] and GPT2(6) [51], while
simultaneously fine-tuning/adapting the input and distribution heads for forecasting. Whereas
these models use patches, the Lag-Llama model proposed here differs primarily through its use of
lag-features as explained in Sec. 4.1.

In parallel, self-supervised learning techniques have been proposed for time series [24, 48, 49].
Most related to our work is Yeh et al. [49] who train on a corpus of time series datasets. The key
difference is that they validate their model only on classification tasks downstream, and do not validate
on forecasting tasks. Another related work is TimeGPT-1 [13] a proprietary foundation model for
time series forecasting. One key difference between [13] and ours is that they utilize the machinery
of conformal prediction for uncertainty quantification after the point-forecasting emission head,
while our model is built directly for probabilistic forecasting. [23] demonstrate data scaling for
transformer-based forecasting models trained on proprietary data.

Foundation models are an emerging paradigm of self-supervised deep learning on extensive datasets [5].
Many such models [11, 30, 10, 33, 47] have demonstrated adaptability across domains, extending
beyond web data to scientific domains such as protein design [35]. Scaling the model and dataset size
was shown to result in remarkable transfer capabilities and excellent few-shot learning on novel tasks
[43]. Scale-driven transfer learning [43] unifies tasks, domains, and modalities. The main goal of
our work is to apply the foundation model approach to the time-series data and to investigate the extent
of the transfer achievable across a wide range of time-series domains.

When it comes to quantifying the resources needed to train foundation models, neural scaling laws
seek to predict a neural network’s performance based on quantities of interest such as model size,
training dataset size, and computational resources, among others [27, 3, 7]. We adopt the methodology
introduced in [7] to fit scaling laws to our model’s performance. This approach employs a broken power
law functional form to model and extrapolate nonlinear scaling behaviors of deep neural networks.

3 Probabilistic Time Series Forecasting
We assume a training dataset of D ≥ 1 time series sampled in discrete time, Dtrain = {xi

1:T i}Di=1,
where at each time point t ∈ {1, . . . , T i}, xi

t ∈ R (or a subset thereof, such as N). We wish to predict
P ≥ 1 steps into the future; as such, we require a back-testing test set of these D time series denoted
by Dtest = {xi

T i+1:T i+P }
D
i=1 or some held-out time series dataset. Even though we use t to refer

to the order of elements in a given time series, each xi
t also has a distinct date-time associated with

it, which increments regularly based on the frequency of the dataset. We also include covariates cit
as vector-valued information associated with each xi

t, as described in Sec. 4.1. The covariates are
assumed to be non-stochastic and available in advance for the P future time points.

In the univariate probabilistic time series forecasting problem, we wish to model the potentially
complex unknown joint distribution of the P future values of a one-dimensional sequence given its
observed past and covariate features:

pX (xi
t+1:t+P | xi

1:t, c
i
1:t+P ). (1)
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Rather than considering the whole history of each time series i, which can vary considerably, we
can instead sub-sample fixed context windows of size C ≥ 1 of our choosing from the full time
series (which we assume, without loss of generality, to be sampled starting from t = 1) and learn an
approximation of the unknown distribution of the next P future values given the covariates:

pX (xi
C+1:C+P | xi

1:C , c
i
1:C−1+P ). (2)

Thus, if we denote the parameters of our deep learning model by θ, we can approximate Eqn. 2 by
an autoregressive model which we can write via the chain rule of probability as

pX (xi
C+1:C+P | xi

1:C , c
i
1:C−1+P ; θ) =

C+P∏
t=C+1

pX (xi
t | xi

1:t−1, c
i
1:t−1; θ),

where we assume that the covariates are available for all future time points.

4 Lag-Llama
Our strategy is to train a single model over a large corpus of time series, the details of which are in
App. Table 4. A number of challenges arise in this setting. For one, we are limited to a univariate
model as the multivariate dimension obtained by grouping the time series varies for each dataset. This
work considers univariate probabilistic forecasting, much simpler than the multivariate case. Another
reason is that we need to sample from each dataset in such a way as to learn representations from all
available datasets without disproportionately sampling from any one dataset.

To use Transformer-based architectures [46], we need vector-valued inputs, but the frequency of the
time series in our corpus varies. We therefore need to vectorize univariate data in a way that accounts
for the frequency of the specific datasets that make up our corpus. We now present a general method
to vectorize series from such a dataset given the frequency of the specific datasets.

4.1 Lag Features
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Figure 1: For a time series (left), we depict the sequence
of lag feature vector values (our method, top-right) and
same-sized patch feature vector values (bottom-right).
The sequence of lag vectors captures the periodicity of the
time series, whereas the patch vectors are causally mixed.
Each lag vector contains data from only the previous
vectors, while each patch vector contains values from the
previous and next vectors.

The only covariates we employ in this model are
from the target values, in particular lag features,
where the lags are constructed from a set of appro-
priate lag indices for quarterly, monthly, weekly,
daily, hourly, and second-level frequencies that
correspond to the frequencies in our corpus of
time series data (see App. Table 4). Given a
sorted set of lag indices L = {1, . . . , L}, we de-
fine the lag operation on a particular time value as
xt 7→ ct ∈ R|L| where each entry j of ct is given
by ct[j] = xt−L[j]. Thus to create lag features
for some context-length window x1:C we need
to sample a larger window with L more histor-
ical points denoted by x−L+1:C . The resulting
vectors capture the underlying temporal patterns of the signal.

An alternative approach to vectorizing a univariate series is to use potentially overlapped patches [29]
or segments of a certain size and stride, resulting in a sequence of vectors whose dimension can be
specified. However, this approach can lead to vectors whose entries are causally mixed. See Fig. 1 for
an example of both approaches.

While both approaches essentially serve the same purpose, the indices of the lags correspond directly to
the various possible seasonalities of the data, and have the advantage of preserving the date-time index
causal structure. By relying on lag features, we can therefore use masked decoders during training and
autoregressive sampling at inference time, which is not trivial with patches. Nonetheless, we note that
a downside to using lags is that it requires an L-sized or larger context window at inference time.

4.2 Lag-Llama Architecture
Lag-Llama’s architecture is based on the recent LlaMA [45] architecture which incorporates pre-
normalization via the RMSNorm [50] and adds Rotary Positional Encoding (RoPE) [41] to each
attention layer’s query and key representations.
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Fig. 2 shows a general schematic of this model with M decoder layers. A univariate sequence of length
xi
−L+1:C along with its covariates is vectorized to a sequence of C vectors xi

1:C via the lag operation.
These are passed through a shared linear projection layer that maps the features to the hidden dimension
of the attention module. After passing through the masked Transformer layers, the model predicts the
parameters of some chosen distribution with a distribution head, as described in Sec. 4.3. The negative
log-likelihood of the predicted distribution over the prediction window is minimized with the actual
values as the ground truth.

At inference time, given a time series of size at least L, we can construct a feature vector that is passed
to the model to obtain the distribution of the next time point. We can obtain many samples from the
predicted distribution and concatenate them to the initial sequence to obtain further lag vectors. In this
fashion, via greedy autoregressive decoding, we are able to obtain many simulated trajectories of the
future up to our chosen prediction horizon P ≥ 1. From these empirical samples, we can calculate the
uncertainty intervals for downstream decision-making tasks and metrics with respect to held-out data.

4.3 Choice of Distribution Head
The last layer of Lag-Llama is a distinct layer known as the distribution head, which projects the
model’s features to the parameters of a probability distribution. We can combine different distribution
heads with the representational capacity of the model to output the parameters of any parametric
probability distribution. For our initial experiments, we use a Student’s t-distribution [40] and output
the three parameters corresponding to this distribution, namely its degrees of freedom, mean, and scale.
More expressive choices of distributions, such as normalizing flows [34] and copulas [36, 12, 2] are left
as future work.

4.4 Value Scaling
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Figure 2: The Lag-Llama architecture. Lag-Llama
learns to output a distribution over the values of the next
time step based on lagged input features. The input at
each timestep is the value of a univariate time series at a
given timestep xi

t concatenated with its covariate vector
cit constructed via the lag operation described in Sec. 4.1.
The inputs are projected through M masked decoder lay-
ers. The features are then mapped to the parameters of
a probability distribution through an additional layer
called the distribution head, on which we elaborate in
Sec. 4.3.

One particular challenge of time series data
is that the time series in a dataset can have
any numerical magnitude, which is perhaps
not the case in image, audio, or NLP data.
Since we train a single shared model with dis-
tribution head over such data, we utilize the
scaling heuristic from [37]. For each uni-
variate window, we calculate its mean value
µi =

∑C
t=−L xi

t/(C + L) and variance σi. We
can then replace the time series {xi

t}Ct=−L in the
window by {(xi

t − µi)/σi}Ct=−L. We also incor-
porate µi via sign(µi) log(1 + |µi|) as well as
log(σi) as time independent real-valued covari-
ates.

During training and obtaining likelihood, the val-
ues are transformed using the mean and variance,
while sampling, every timestep of data that is
sampled is de-standardized using the same mean
and variance. This technique predates the recent
related RevIN [22] method and Non-stationary
Transformers [26].

4.5 Augmentation
To prevent overfitting, we apply time series aug-
mentation techniques, namely Freq-Mix and
Freq-Mask [9], to each batch with a probabil-
ity of 0.5 and a randomized augmentation rate of
0.1. In order to not over/under sample we employ stratified sampling where datasets in our collection
are weighed by the amount of total temporal time points when sampling random training windows.

5 Experiments
5.1 Dataset

We train Lag-Llama on all public time series in the Monash Time Series Repository [16], as well as
from other sources typically used in time series research [1]. These datasets have diverse frequencies
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Table 1: Zero-Shot performance of Lag-Llama on two datasets, compared to baselines trained on the datasets.
The best value of each dataset is in bold . Confidence intervals are reported wherever available. The second best
value is in brown. Results are reported on the CRPS metric. Lower is better.

Model Dataset

m4-weekly traffic

Supervised

AutoARIMA 0.050 N/A
AutoETS 0.052 0.52
AutoGluon Best [39] 0.041 0.166
AutoTheta 0.053 1.054
DeepAR [38] 0.046 0.166
TFT [25] 0.049 0.167
Naive N/A 0.79
SeasonalNaive 0.073 0.332

Zero shot

Lag-Llama (ours) 0.0691 ± 0.0061 0.149 ± 0.0058
Lag-Transformer (ours) 0.0607 ± 0.0066 0.268 ± 0.0048

and come from different application domains; the properties of these datasets are outlined in App.
Table 4. In total, our training set comprises a total of 305,443 individual time series.

We reserve the M4 Weekly and Traffic datasets as our test sets. These test sets are completely unseen
during training and are used to test the out-of-distribution generalization performance of the model. We
pick these test sets arbitrarily, but other choices of training-test splits will be explored in future work.

5.2 Model Training and Specification

We train the models with a batch size B of 100 and a learning rate α of 10−3. Training stops if the
validation loss does not improve for 50 validation epochs, where each epoch consists of 100 windows,
sampled as described in Sec. 4.5.

We train models with a random grid across the parameters in Table 2. Early stopping is performed
using the average loss on the held-out splits of the respective datasets used during training. Each
model is trained on 6 different seeds that constitute different initializations and data orders. The other
hyperparameters are held constant; their values can be found in App. Sec. A.1.

5.3 Evaluation

The models are evaluated on the test split of the unseen test set(s). Evaluation is performed by sampling
from the model autoregressively starting with conditioning on the context, and until a prediction length
as defined for the respective test dataset. We sample 100 samples for each timestep.

We then use the Continuous Ranked Probability Score (CRPS) metric [15, 28] score as our evaluation
metric. CRPS is a proper scoring rule that measures the compatibility of a predicted cumulative
distribution function (CDF) F with the ground-truth sample x as

CRPS(F, x) =

∫
R
(F (y)− I{x ≤ y})2 dy,

where I{x ≤ y} is 1 if x ≤ y and 0 otherwise. We approximate the CDF via empirical samples at each
time point, and the final metric is averaged over the prediction horizon of the time series and across the
time series of a dataset.

6 Results
6.1 Zero-Shot Performance
Preliminary results on the zero-shot performance of Lag-Llama and Lag-Transformer are reported
in Table 1, in comparison with baselines from [39]. All baselines are trained solely on the train splits
of the respective test datasets with supervised learning. Lag-Llama and Lag-Transformer are only
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Figure 3: Zero-shot CRPS of the best Lag-Llama with respect to the number of data windows seen during training
from the training corpus of datasets (average and standard error of 6 seeds) for M4 Weekly (left) and Traffic
(right).

pretrained on a corpus of time series and are the only models that never see either of the two test datasets,
as detailed in Table 4. Lag-Llama achieves better performance on Traffic zero-shot, surpassing
all supervised baselines, while Lag-Transformer does not perform well on Traffic. While on the
m4-weekly dataset, both Lag-Llama and Lag-Transformer do not outperform the baselines. This
shows that there is great scope for detailed analysis of both architectures with different training and test
splits that can lead to improved data sampling or model selection choices.

6.2 Performance of the model with increasing number of training windows
For the best model of Lag-Llama obtained above on both unseen test datasets, we zoom in further
into how many windows the models need to see during training to reach the performance. Fig. 3 plots
the test performance of Lag-Llama as a function of the number of training windows seen from the
corpus of datasets. Lag-Llama achieves better zero-shot performance on both the unseen test sets as the
number of windows seen from the training corpus of datasets increases. Further, in this case, we do not
fix the size of the training dataset and instead let early stopping decide when to stop training. Instead,
as in the literature of scaling laws [21, 7, 14], we further plan to fix the dataset size and understand the
scaling properties of the model as a function of the dataset size when the entire dataset is exhausted
during training. This will require careful reconsideration of our choices made for early stopping, model
selection, and data sampling.

6.3 Performance of the model with respect to model size
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autogluon_best
Lag-Llama

Figure 4: Zero-shot CRPS of Lag-Llama as a function
of parameter count on the Traffic dataset. The figure
plots the average and standard error of 6 seeds. The red
line represents the performance of the best supervised
baseline trained solely on the Traffic dataset.

We train a series of models of various sizes, with
hyperparameters sampled from the grid given
in Table 2. The total number of parameters of
the trained models ranges from 103 to 3 × 107.
Training such models allows us to test the per-
formance of the model at various scales. Fig. 4
shows such a plot of Lag-Llama on the traffic
dataset. Lag-Llama outperforms the baseline
with no training on the Traffic dataset, after
around 106 parameters, and achieves stable zero-
shot performance with multiple possible configu-
rations of hyperparameters between 106 and 107.
We perform the same analysis on the M4-weekly
dataset and for the Lag-Transformer model in
App. Sec. A.3.

6.4 Scaling Laws

We fit scaling laws to the zero-shot CRPS of Lag-Llama and Lag-Transformer as a function of
model size. Fitting such scaling laws potentially allows us to extrapolate further with the obtained
mathematical power law. The details of the scaling laws obtained and the extrapolations predicted can
be found in App. Sec. A.4.
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7 Discussion
In this work, we propose Lag-Llama, a step towards foundation models for probabilistic time-series
forecasting. Lag-Llama’s zero-shot performance beats or compares favorably to supervised baselines,
and as the model size increases, its performance improves and stabilizes across hyperparameter
specifications. We further fit smoothly broken power laws [7] that model’s test performance with
respect to its size.

Going beyond these preliminary experiments, we plan to first ablate various architectural design and
model selection choices. We will assess the model’s zero-shot performance across other datasets in a
leave-one-out fashion, to obtain zero-shot performance results across a spectrum of datasets that would
allow for interesting analyses. We also plan to fine-tune the pretrained models on the training splits of
the downstream datasets and assess the few-shot and many-shot finetuning performance of our model
across datasets. Finally, we plan to scale both the model size and the amounts of diverse time-series
training data, while comparing scaling laws of this and other candidate architectures for time-series
foundation models.
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A Appendix

A.1 Hyperparameter Choices

Table 2: Hyperparameter choices for a random grid search. The dimension of the feedforward layers n_hidden is
derived from n_embed as described in (App. Sec. A.2).

Hyperparameter Symbol Lag-Llama Lag-Transformer

Layers M [1-16] [2-16]
Decoder layers Mdec [1-16] [1-8]
Encoder layers Menc 0 [1-8]
Heads n_head [1, 2, 4, 8] [1, 2, 4, 8]
Latent dimension n_embed [256, 512, 768] [256, 512, 768]
Feedforward dimension n_hidden [256, 512, 768] [256, 512, 768]

Table 3: Fixed hyperparameter values used for experiments in Sec. 5.

Hyperparameter Symbol Values
Context length C 256
Augmentation probability aug_prob 0.5
Augmentation rate aug_rate 0.1
Batch size B 100
Batches per epoch Be 100
Early stopping patience 50
Limit of validation batches 10
Max training epochs 1000
Lag sequence indices L [ Q, M, W, D, T, M, S]
Size of ct |L|, µ, σ 84 + 2
Learning rate α 10−3

Weight decay λ 10−8

Dropout 0

Table 2 describes the hyperparameter choices of Lag-Llama and Lag-Transformer.

Table 3 describes the model hyperparameters and other parameters that are used during training, for all
experiments described in Sec. 5. The lag-sequence indices are those indices obtained using the lags
at several granularity levels - quarterly, monthly, weekly, daily, minute-level, and second-level. For
reference, we give below the GluonTS [1] code used to obtain these lags:

Listing 1: Lags used as in the code based on GluonTS

from gluonts.time_feature import get_lags_for_frequency

lags = sorted(
list(

set(
get_lags_for_frequency(freq_str="Q", num_default_lags=1)
+ get_lags_for_frequency(freq_str="M", num_default_lags=1)
+ get_lags_for_frequency(freq_str="W", num_default_lags=1)
+ get_lags_for_frequency(freq_str="D", num_default_lags=1)
+ get_lags_for_frequency(freq_str="H", num_default_lags=1)
+ get_lags_for_frequency(freq_str="T", num_default_lags=1)
+ get_lags_for_frequency(freq_str="S", num_default_lags=1)

)
)

)
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A.2 Dimension of the Feedforward Layer

To ensure comparability, the dimension of the feedforward layers in both architectures is derived as the
largest multiple of 256 less than or equal to 8

3n_embed as in Llama [45]:

n_hidden = 256×
⌊
8× n_embed

3× 256

⌋
(3)

Practically, the possible dimensions of the feedforward layers are [256, 512, 768]

A.3 Parameter Scaling Plots on all Architectures and Datasets
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Figure 5: Lag-Llama (left) and Lag-Transformer (right) performance as a function of parameter count on the
unseen datasets Traffic (top) and M4 Weekly (bottom). Error bars are from the 6 different runs.

Additional plots on the performance of the model as the model size is scaled can be found in Fig. 5.

A.4 Fitting Scaling Laws

As detailed in [7], the functional form of a broken neural scaling law is

y = a+
(
bx−c0

) n∏
i=1

(
1 +

(
x

di

)1/fi
)−ci∗fi

To avoid choosing the number of breaks n manually, we fit the functional form to the leftmost 85% of
the data (black points) using nonlinear least squares for multiple values of n. We then select the value
of n that minimizes RMSE on the subsequent 5% of the data, meaning that the rightmost 10% of the
data, i.e. the largest model sizes (green points), are never used to estimate nor validate the fit of the
scaling law (red line). The scaling laws are plotted for each architecture and dataset in Fig. 6.

For example, the functional form of Lag-Llama on Traffic, which has two breaks, is:

y = 0.351+
(
(3× 10−16x4.75

)(
1 +

( x

1389.77

)1/1.62)−2.36∗1.62(
1 +

( x

1418.26

)1/1.61)−2.44∗1.61

A.5 Dataset details

The details of all datasets used during training are given in Table 4.
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Figure 6: Two breaks Neural Scaling laws fit for Lag-Llama (left) and Lag-Transformer (right), on traffic
(top) and m4-weekly (bottom) respectively. Green points are the held-out data for the fit.

Table 4: Properties of the datasets used in the experiments, in particular the domain of time series, the total
number of time series, the temporal frequency of the time series, the minimal length of the time series, and the
maximum length. We use all the datasets apart from M4 Weekly and Traffic for training.

Name Domain No. of series Freq. Min. len. Max. len.
Air Passengers Transport 1 1M 108 108
Aus. Elec. Demand Energy 5 30T 230, 736 232, 272
Car Parts Sales 2674 1M 51 51
CIF Finance 72 1M 34 120
Covid Health 266 1D 212 212
Electricity Energy 321 1H 26, 304 26, 304
Exchange Rate Finance 8 1B 6, 071 6, 071
Fred-MD Finance 107 1M 728 728
Hospital Health 767 1M 84 84
Kaggle Web Traffic Web 145, 063 1D 803 803
KDD Cup Nature 270 1H 9, 504 10, 920
London Smart Meters Energy 5, 560 30T 288 39, 648
NN5 Finance 111 1D 791 791
Pedestrian Count Transport 66 1H 576 96, 424
Ride Share Transport 2, 304 1H 541 541
Saugeen River Nature 1 1D 23, 741 23, 741
Solar Energy 137 10T 52, 560 52, 560
Taxi Transpose 1, 214 30T 1, 488 1, 488
Temperature Nature 32, 072 1D 725 725
Tourism Transpose 1, 311 1M 11 333
Uber Transpose 262 1H 2, 602 4, 320
Vehicle Trips Transpose 329 1D 70 243
Weather Nature 3, 010 1D 1, 332 65, 981
Wikipedia Web 9, 535 1D 762 762
M4 Hourly Diverse 414 1H 700 960
M4 Daily Diverse 4, 227 1D 93 9, 919
M4 Monthly Diverse 48, 000 1M 42 2, 794
M4 Quarterly Diverse 24, 000 1Q 16 866
M4 Yearly Diverse 23, 000 1Y 13 278
Wind Farms Energy 339 1T 6, 345 527, 040

M4 Weekly Diverse 359 1W 80 2, 597
Traffic Transport 862 1H 17, 544 17, 544
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