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Abstract

Multimodal learning with variational autoen-

coders (VAEs) requires estimating joint distri-

butions to evaluate the evidence lower bound

(ELBO). Current methods, the product and mix-

ture of experts, aggregate single-modality dis-

tributions assuming independence for simplicity,

which is an overoptimistic assumption. This re-

search introduces a novel methodology for ag-

gregating single-modality distributions by ex-

ploiting the principle of consensus of dependent

experts (CoDE), which circumvents the afore-

mentioned assumption. Utilizing the CoDE

method, we propose a novel ELBO that approx-

imates the joint likelihood of the multimodal

data by learning the contribution of each sub-

set of modalities. The resulting CoDE-VAE

model demonstrates better performance in terms

of balancing the trade-off between generative

coherence and generative quality, as well as

generating more precise log-likelihood estima-

tions. CoDE-VAE further minimizes the gen-

erative quality gap as the number of modali-

ties increases. In certain cases, it reaches a

generative quality similar to that of unimodal

VAEs, which is a desirable property that is

lacking in most current methods. Finally, the

classification accuracy achieved by CoDE-VAE

is comparable to that of state-of-the-art multi-

modal VAE models. CoDE-VAE is available at:

https://github.com/rogelioamancisidor/codevae.
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1. Introduction

Motivated by the observation that learned representations

from multimodal data tend to be more generalizable (Wu &

Goodman, 2018; 2019), variational autoencoders (VAEs)

(Kingma & Welling, 2014; Rezende et al., 2014) have been

used to learn representations from multiple data modali-

ties as they are capable of simultaneously generating new

observations and inferring joint representations. However,

during model inference, it is not guaranteed that we will

have access to all modalities, as multimodal data is expen-

sive to obtain (Wu & Goodman, 2018; 2019; Sutter et al.,

2021). Therefore, multimodal VAEs should be able to gen-

erate representations even when some modalities are miss-

ing. This fact has led to a line of research on scalable mul-

timodal generative models with VAEs (Wu & Goodman,

2018; Shi et al., 2019; Sutter et al., 2021; Hwang et al.,

2021; Palumbo et al., 2023) in which the number of single-

modality distributions, called experts, is linear to the num-

ber of modalities M .

The product of experts (PoE) (Hinton, 2002) and mixture

of experts (MoE) are currently the predominant methods

to estimate joint variational posterior distributions in mul-

timodal VAEs. However, both assume independence be-

tween the experts for simplicity. This is an overoptimistic

assumption, as the data modalities are simply different

sources of information on the same object. Besides, both

have flaws in the estimation of the joint posterior. PoE can

produce posterior distributions with lower density if any of

the experts also has low density, and if the precision of the

experts is miscalibrated, the results can be biased (Shi et al.,

2019). The weights in MoE, on the other hand, can be seen

as probabilities that the distribution is correct. However,

the notion of a “correct model” is not reasonable in this

context (Winkler, 1981), as the objective is to aggregate es-

timates from expert distributions. Furthermore, MoE is in-

efficient in high-dimensional spaces, as the joint posterior

cannot be sharper than any of the experts (Hinton, 2002).

In addition to the aforementioned limitations in estimating

the joint variational posterior distributions, the optimiza-

tion of multimodal VAEs requires a valid evidence lower

bound (ELBO). In the past, this has been obtained by sum-

ming the ELBOs corresponding to each of the k-th subsets
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Xk ∈ P(X) (Sutter et al., 2021), where X is the multimodal

data, P(X) is its powerset, and where each k-th ELBO con-

tributes equally to optimization. We argue that not all sub-

sets provide the same information and, therefore, should

not contribute equally to optimization.

Methods for aggregation of expert distributions, such as

PoE or MoE, are called consensus of experts (Winkler,

1981). Although the information provided by expert distri-

butions can exhibit dependence, limited attention has been

paid to it. Therefore, this research advances the method in-

troduced in (Winkler, 1981) by extending it to multivariate

data and applying it to the approximation of joint varia-

tional distributions in multimodal VAEs, which is a non-

trivial task. Our proposed consensus of dependent experts

(CoDE) method expresses the dependence between experts

through the experts’ error of estimation and estimates the

joint variational distributions with a principled Bayesian

method, which circumvents the notion of a correct model

and the approximation of vaguer posterior distributions

than any of the experts. Furthermore, when the expert dis-

tributions are miscalibrated, or uncertain, the joint distri-

bution estimated by CoDE leans towards expert distribu-

tions that are more certain. Based on CoDE, we introduce

a novel multimodal VAE model (CoDE-VAE) that not only

takes into account the dependence between expert distribu-

tions when estimating joint posterior variational distribu-

tions, but also learns the contribution of each k-th ELBO

term in optimizing the overall ELBO. An important dis-

tinction in estimating joint posterior distributions and op-

timizing the CoDE-VAE model is that it does not rely on

sub-sampling1 (Daunhawer et al., 2022), which has been

shown to harm the approximation of the joint distribution

of the data and yet is used by some multimodal VAEs.

The empirical analysis in this research shows that, when

dependence between experts is considered, CoDE-VAE ex-

hibits better performance in terms of balancing the trade-

off between generative coherence and generative quality, as

well as generating more precise log-likelihood estimations.

Furthermore, CoDE-VAE minimizes the generative quality

gap as the number of modalities increases, achieving un-

conditional FID scores similar to unimodal VAEs, which

is a desirable property that is lacking in most current mod-

els. Finally, CoDE-VAE achieves a classification accuracy

that is comparable to that of current state-of-the-art multi-

modal VAEs. The contributions of this research are: (1) the

development of a novel consensus of experts method that

takes into account the stochastic dependence between ex-

perts; (2) the use of this novel consensus of experts method

to derive a new ELBO that learns the contribution of each

subset of modalities to optimization; (3) to show that the

1Sub-sampling in this research refers only to the definition of
consensus distributions as a mixture model and the training of
some, but not all, Lk terms (defined in Section 3).

generative coherence and generative quality of generated

modalities, as well as likelihood approximations in mul-

timodal VAEs, are higher when the dependence between

experts is considered and the contribution of ELBO terms

to optimization is learned.

2. Related Work

The initial research on multimodal learning with VAEs fo-

cused on bimodal data, e.g., (Suzuki et al., 2017; Vedan-

tam et al., 2018) where the consensus distribution is ap-

proximated by concatenating the two modalities or (Wang

et al., 2017) where the authors simply approximate the two

expert distributions, assuming that one modality is avail-

able during training and test time. Since then, there have

been different lines of research to improve performance in

multimodal VAEs. For example, the information on the

class labels has been used to improve the performance in

discriminative tasks (Tsai et al., 2019; Mancisidor et al.,

2024) and to disentangle sources of variation (Ilse et al.,

2020); information-theoretic approaches have modeled the

total correlation (Hwang et al., 2021), common informa-

tion (Kleinman et al., 2023), and mutual information (Man-

cisidor et al., 2024) in the objective function; latent distri-

butions have been aligned by minimizing Wasserstein dis-

tances (Theodoridis et al., 2020) and using adversarial net-

works (Chen & Zhu, 2021); (Joy et al., 2022) use mutual

supervision to combine information from modalities; hier-

archical representation levels of latent representations are

used to improve generative properties (Vasco et al., 2022);

modeling modality-specific and shared latent distributions

has been widely used (Hsu & Glass, 2018; Sutter et al.,

2020; Lee & Pavlovic, 2020; Palumbo et al., 2023); diffu-

sion decoders and clustering techniques have been coupled

with multimodal VAEs (Palumbo et al., 2024).

One of the fundamental problems in multimodal VAEs

is how to approximate joint variational posterior distribu-

tions. Joint representations must capture the abstract com-

positional structure of the underlying object (Wu & Good-

man, 2019), and the approximation method must be flex-

ible to scale to a large number of modalities. The pre-

dominant methods for this task are PoE (Wu & Goodman,

2018; Sutter et al., 2021; Hwang et al., 2021) and MoE

(Shi et al., 2019; Sutter et al., 2020; Palumbo et al., 2023),

where the joint distributions are approximated q(z|X) =
∏

m qm(z|xm) and q(z|X) = 1/M
∑

m qm(z|xm), re-

spectively. However, none of these methods take into ac-

count the dependence between expert distributions, and

failure to do so may harm the performance of multimodal

VAEs. In addition, the MoE method introduces a sub-

sampling of modalities that has a negative impact on the

likelihood estimation and the generative quality of multi-

modal VAEs (Daunhawer et al., 2022). Instead, this re-

search introduces an efficient consensus of experts method
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to model the dependence between experts via errors of es-

timation.

3. Methods

We observe multimodal data X composed of M modal-

ities x1,x2, · · · ,xM that are governed by a latent vari-

able z through the conditional distribution p(X|z) =
p(x1|z)p(x2|z) · · · p(xM |z). In this context, assum-

ing a prior distribution p(z), the marginal p(X) =
∫

p(X|z)p(z)dz and posterior p(z|X) distributions are in-

tractable. Therefore, variational inference (VI) approxi-

mates the true and unknown posterior distribution p(z|X)
with the parametric variational distribution q(z|X). It

seems natural to minimize the Kullback-Leibler (KL) di-

vergence KL[q(z|X)||p(z|X)]; however, it contains the

intractable marginal distribution KL[q(z|X)||p(z|X)] =
log p(X)−Eq(z|X)[log p(X|z)]+KL[q(z|X)||p(z)]. Given

that the KL divergence is strictly positive, it is straight-

forward to derive a lower bound on log p(X) as fol-

lows log p(X) ≥ Eq(z|X)[log p(X|z)]−KL[q(z|X)||p(z)].
However, we are interested in approximating the true pos-

terior distribution p(z|X) even when only a subset Xk ∈
P(X) is available. In the case of missing modalities, as

shown by (Sutter et al., 2021), a valid lower bound for the

available subset Xk ∈ P(X) is

Lk(X) = Eq(z|Xk)[log p(X|z)]−KL[q(z|Xk)||p(z)]. (1)

To consider all scenarios of missing modalities, we opti-

mize all lower bounds Lk(X) governed by its variational

distribution q(z|Xk). The next section introduces our pro-

posed CoDE method for estimating joint variational pos-

terior distributions taking into account the stochastic de-

pendence between single-modality distributions. The main

point to note is that the single-modality distributions have

access to the same source of information. Therefore, as-

suming independence between them, as PoE and MoE do,

is an overoptimistic assumption.

3.1. Consensus of Experts with Stochastic Dependence

In multimodal learning we are interested in generating la-

tent variables z even when multimodal data X have missing

modalities. Under this premise, there are K = 2M − 1 dis-

tributions q(z|Xk) to be learned given M modalities, where

k = 1, 2, · · · ,K denotes a subset of the powerset P(X)2.

Since the number of distributions is exponential in the num-

ber of modalities, we need methods that scale linearly in

M , more details in Appendix B . This research advances

the consensus of experts method in (Winkler, 1981) by ex-

tending it to multivariate data, considering dependence be-

tween expert distributions, and applying it to multimodal

2In this research, we do not consider the empty set of P (X)
since there are no learnable parameters in q(z).

VAEs. The CoDE method, therefore, represents the first

principled Bayesian approach capable of approximating

joint variational posterior distributions q(z|Xk) ∈ P(X)
in multimodal VAEs.

Definition 1. All M distributions q(z|Xk = 1), where Xk

denotes the cardinality of Xk, are considered expert dis-

tributions, estimating the remaining unknown distributions

q(z|Xk > 1), which are called consensus distributions.

Definition 1 introduces expert and consensus distributions,

also referred to as single-modality and joint posterior distri-

butions in previous research. Each expert distribution pro-

vides information to estimate all consensus distributions in

P(X). In the remainder of this section, we use standard

Bayesian notation where θ denotes unknown variables for

which we compute posterior distributions.

Definition 2. Let θk = (θ1k, θ
2
k, · · · , θDk )T denote the la-

tent variable z ∈ R
D for the k-th consensus distribution

q(z|Xk). Each j-th expert distribution provides a point es-

timate µd
j on the d-th dimension θdk, and the uncertainty

about the estimation is expressed in the parameter σd
j of

each expert distribution. Therefore, the error of estimation

of the j-th expert in the d-th dimension is edj = µd
j − θdk

and the error of estimation of all experts in the d-th dimen-

sion is ed = (ed1, e
d
2, · · · , edM ′ )T , where M

′

is the number

of experts who evaluate the subset Xk. The overall error of

estimation on θk is ek = (e1, e2, · · · , eD)T .

According to Definition 2, all expert distributions provide

estimates of the unknown variable θ, as well as a mea-

surement of the uncertainty on their estimation. Then, af-

ter considering the estimates of all relevant expert distri-

butions, we can calculate the unknown consensus distri-

butions. Note that only the consensus distribution corre-

sponding to the subset with all elements, i.e. q(z|X = M),
contains estimates of all M expert distributions. In general,

consensus distributions are derived from different numbers

of expert distributions, depending on the cardinality of the

subset on which they are conditioned. Therefore, the size

of the vector ek depends on the cardinality of Xk.

Lemma 1. Assume that the error of estimation ek of the

k-th consensus distribution is a random variable with mul-

tivariate Gaussian distribution ek ∼ N (0,Σk), where 0

is a [M
′ ·D × 1] vector, M

′

is the number of experts who

are elements of the subset Xk, and D is the dimensionality

of z. The covariance matrix is defined as

Σk =











Σ
1

0 · · · 0

0 Σ
2 · · · 0

...
...

. . .
...

0 0 · · · Σ
D











,
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(b) Consensus distributions

Figure 1. Two univariate expert distributions with estimates µ1 =
4 and µ2 = 8 on the unknown variable θ = 8. Expert 2 is more

certain (σ2

2 = 1) than expert 1 (σ2

1 = 3).

where

Σ
d =











σ2
1 σ1,2 · · · σ1,M ′

σ2,1 σ2
2 · · · σ2,M ′

...
...

. . .
...

σM ′,1 σM ′,2 · · · σ2
M ′











,

and 0 is a [M
′×M ′

] matrix. Let µd = (µd
1, µ

d
2, · · · , µd

M
′ )T

be a vector with estimates of all expert distributions about

the d-th dimension and µk = (µ1,µ2, · · · ,µD)T be the

vector containing estimates of all expert distributions about

all dimensions of θk. Therefore, the distribution of all es-

timates of the k-th consensus distributions is the multivari-

ate Gaussian distribution µk ∼ N (uθk,Σk), where u is

a [M ′ · D × D] design matrix with size M ′ vectors of 1s

along the diagonal and 0s elsewhere.

There are a couple of interesting results according to

Lemma 1 (see Appendix A.1 for the proof). First, the point

estimates µk provided by the expert distributions are ran-

dom Gaussian variables. If N (uθk,Σk) is viewed as a

function of θk instead of µk, it can be interpreted as a like-

lihood function and we can calculate the posterior distribu-

tion of θk in a principled Bayesian manner. Second, each

covariance matrix Σ
d expresses both the uncertainty in the

expert error of estimation on the d-th dimension of z (main

diagonal) and the dependency between expert errors (off-

diagonal). It seems reasonable to assume that expert distri-

butions have overlapping information, or positive correla-

tion, since the data modalities are simply different sources

of information about the same object.

Toy example: To gain insight into the aggregation of ex-

pert distributions with CoDE, PoE, and MoE, Fig. 1 shows

two experts with dependence on their assessment of the

unknown parameter θ. Experts 1 and 2 provide estimates

µ1 = 4 and µ2 = 8, as well as a degree of uncertainty

about their estimates σ2
1 = 3 and σ2

2 = 1. This informa-

tion is summarized in expert distributions, assumed to be

Gaussian. Taking estimates (µ1, µ2) as samples from the

likelihood function N (uθ,Σ), we can calculate the pos-

terior (consensus) distribution of θ. The dependence be-

tween experts is considered in the off-diagonal of Σ using

ρ = 0.6, σ1 =
√
3, and σ2 =

√
1. The estimated consen-

sus distribution by CoDE recovers the unknown parameter

θ, by leaning even more towards expert 2. Note that MoE

estimates a consensus distribution that is not sharper than

any of the experts and does not recover, in expectation, the

θ parameter. PoE underestimates the variance of the con-

sensus distribution, as it neglects the dependence between

experts. Consequently, the consensus distribution for PoE

is sharper than that of any of the experts3, even when it does

not recover θ. See Appendix B for additional details.

Lemma 2. Assuming a flat prior distribution on the pa-

rameter θk of the k-th consensus distribution and known

covariance matrix Σk, the posterior distribution is

h(θk|µk) ∼ N (A−1
k Bk,A

−1
k ), (2)

where Ak = uT
Σ

−1
k u, Bk = uT

Σ
−1
k µk, Σ−1

k is the

inverse matrix of Σk, and u and µk are defined in Lemma

1.

Remark 1. Lemma 2 subsumes PoE for Σk with

diagonal matrices Σ
d, in which case h(θk|µk) ∼

N ((
∑

i µiτi)(
∑

i τi)
−1, (

∑

i τi)
−1). See Appendix B for

details.

Lemma 2 (proof in Appendix A.2) shows that we can es-

timate the posterior distribution of the unknown param-

eter θk after observing its estimates µk from the expert

distributions. Recall that Definition 2 refers to the latent

variable z with θk, having z ∼ q(z|Xk). Therefore,

CoDE approximates consensus distributions in a principled

Bayesian manner with the posterior distribution q(z|Xk) ∼
N (A−1

k Bk,A
−1
k )4, and it can be used in any multimodal

VAE that uses PoE as an approximation method. It is

noteworthy that CoDE does not rely on sub-sampling tech-

niques, which have been shown to harm the performance of

multimodal VAEs (Daunhawer et al., 2022). Furthermore,

note that choosing a diagonal matrix Σ
d, as PoE does (see

Remark 1), assumes that expert estimates are not correlated

and, therefore, the variance of the consensus distribution is

underestimated.

Dependency between expert distributions: Lemma 2

shows that the covariance matrix of the consensus distribu-

tions is a function of Σk, which is composed of Σd on its

main diagonal. The off-diagonal elements of Σd capture

the dependency between the error of estimation of expert

distributions. Therefore, in the forward pass the only un-

known parameters in Ak and Bk to calculate the consen-

sus distribution are the off-diagonal elements σj,i in Σ
d,

3Note that τPoE = τ1 + · · ·+ τ
M

′ , where τ is the inverse of

the variance, so τPoE > τi or σ2

PoE < σ2

i , for i = 1, · · · ,M
′

.
4Conditioning on µk or Xk have the same meaning, as µk are

estimates from all experts in the subset Xk.
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as (µi, σ
2
i ) are outputs of the encoder networks for all di-

mensions. We specify σi,j as ρσjσi and the unknown cor-

relation parameter ρ is found by cross-validation over the

values [0, 0.2, 0.4, 0.6, 0.8]. Note, CoDE does not impose

any restriction on specifying Σ
d differently, e.g. different

or negative ρ values, as long as it is an invertible matrix.

3.2. Evidence Lower Bound

To leverage the proposed CoDE for multi-modal VAEs, we

follow an approach similar to that of (Sutter et al., 2021),

where the objective function is the sum of all ELBOs

Lk(X) in Eq. 1 that arises from all subsets Xk ∈ P(X).
In (Sutter et al., 2021) each k-th ELBO term contributes

equally to optimization. In this work, however, we argue

that if tr(Σj) > tr(Σk), where tr(·) is the trace of a ma-

trix and Σ is the covariance matrix of expert or consensus

distributions, the distribution associated with the k-th sub-

set is more confident in its estimate, indicating that it has

relatively more reliable information than the j-th subset.

Similarly, if Xj > Xk, the j-th subset contains relatively

more information and it should contribute more to the op-

timization of the objective function. To avoid using equal

weights in the weighted sum of all ELBOs, we introduce

an indicator vector ξ that is drawn from the categorical dis-

tribution Cat(π), where π = (π1, · · · , πK) is a probability

vector, and K is the number of subsets in P(X) (excluding

the empty set). In our context, the indicator vector ξ maps

each k-th subset Xk ∈ P(X) to either 1 or 0, and each event

occurs with probability πk. For example, the first subset

in P(X) occurs with probability Pr(ξ|X1) = π1, where

ξ = [1, 0, · · · , 0].
Assuming the generative model p(X, z, ξ) =
p(X|z)p(z)p(ξ), where p(ξ) ∼ Cat(η) is a prior

categorical distribution with equal probabilities

η = (1/K, · · · , 1/K), and the inference model

q(z, ξ|Xk) = q(z|Xk)q(ξ|Xk), where q(ξ|Xk) ∼ Cat(π)
is the posterior distributions of ξ, the variational lower

bound of the CoDE-VAE model for a single data point is

given in Lemma 3.

Lemma 3. The concave function

L(X) =
∑

Xk

{

πk

[

Eqφ(z|Xk)[log pθ(X|z)]

−KL[qφ(z|Xk)||p(z)]
]

+H(qφ(ξ|Xk))
}

+ C, (3)

where H denotes the entropy function and C is a constant

term, is a variational lower bound on log p(X) that opti-

mizes all k-th ELBOs Lk with weight coefficients πk.

The ELBO of the CoDE-VAE model in Eq. 3 (proof in

Appendix A.3) parameterizes the conditional likelihoods

pθ(X|z), expert and consensus distributions qφ(z|Xk) with

neural networks, where θ and ϕ denote the learnable

weights of the neural networks. The weight coefficients π

are learnable parameters optimized by entropy maximiza-

tion. See Algorithm 1 in Appendix D.1 for details.

4. Experiments

Following the standard experimental setup in this domain

(Sutter et al., 2021; Daunhawer et al., 2022; Palumbo et al.,

2023), performance is evaluated using the following multi-

modal datasets: MNIST-SVHN-Text dataset (Sutter et al.,

2020) composed of matching MNIST and SVHN digits and

a text describing the digit; PolyMNIST (Sutter et al., 2021)

composed of 5 MNIST images of the same digit, but dif-

ferent background and handwriting style; and The Caltech

Birds (CUB) dataset (Wah et al., 2011; Daunhawer et al.,

2022), which is composed of images of birds paired with

captions describing each bird. This is a significantly more

challenging version compared to the one used in (Shi et al.,

2019), where they use ResNet embeddings rather than ac-

tual images making the learning task significantly easier.

Note that these datasets have different levels of complexity

due to the shared and modality-specific information across

modalities. MNIST-SVHN-Text and CUB have a large

amount of modality-specific information given the hetero-

geneity across modalities. On the other hand, PolyMNIST

contains a moderate amount of modality-specific informa-

tion, but is a suitable dataset for analyzing the quality gap

as the number of input modalities for model training in-

creases.

We compare the performance of the CoDE-VAE model5

with that of MVAE (Wu & Goodman, 2018), MMVAE

(Shi et al., 2019), mmJSD (Sutter et al., 2020), MoPoE

(Sutter et al., 2021), MVTCAE (Hwang et al., 2021), and

MMVAE+ (Palumbo et al., 2023). Note that MMVAE+ is

the only model in the comparison that utilizes modality-

specific and shared latent variables in the decoder to im-

prove the quality of the generated modalities. We measure

the performance of all models in terms of the generative co-

herence and the generative quality of the generated modali-

ties conditioned on both latent variables from the joint pos-

terior and prior distributions. In addition, to assess the qual-

ity of the approximation of joint posterior distributions, we

measure the tightness of the lower bound by log-likelihood

estimations. Finally, for completeness, the discriminative

power of the joint latent representations z using linear clas-

sifiers is shown in the appendix. Limitations of our pro-

posed model are provided in Appendix C, while details on

datasets, evaluation criteria, network architectures, training

procedure, and extra results are in Appendix D.

All experiments report the average performance over three

different runs, and the hyperparameters β (Higgins et al.,

5https://github.com/rogelioamancisidor/codevae.
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Figure 2. Trade-off between generative coherence (↑) and joint log-likelihoods (↑) on the MNIST-SVHN-Text test set.

Table 1. Generative quality measured by FID scores (↓) and generative coherence (↑) on the MNIST-SVHN-Text test set.

Conditional Coherence Unconditional Coherence Conditional FID Unconditional FID

MVAE 0.38 ±0.042 0.18 ±0.047 41.09 ±2.57 44.96 ±3.26

MMVAE 0.72 ±0.014 0.34 ±0.031 153.96 ±7.73 111.72 ±5.07

mmJSD 0.74 ±0.013 0.02 ±0.001 148.47 ±4.38 291.59 ±1.38

MoPoE-VAE 0.79 ±0.015 0.46 ±0.014 105.36 ±1.49 101.43 ±7.49

MVTCAE 0.66 ±0.031 0.15 ±0.040 38.34 ±1.85 52.86 ±0.48

MMVAE+ 0.53 ±0.012 0.20 ±0.005 54.69 ±0.86 77.35 ±1.37

CoDEVAE 0.82 ±0.022 0.51 ±0.015 79.11 ±2.73 71.40 ±1.93

2016) and ρ are found by cross-validation over the val-

ues [0.1, 1, 5, 10, 15, 20] and [0, 0.2, 0.4, 0.6, 0.8], respec-

tively. In addition, we consider β = 2.5 in the experiments

on the PolyMNIST data to be consistent with the setup in

(Palumbo et al., 2023). Given that the parameter ρ is ex-

clusive to CoDE-VAE, all experiments present results that

correspond to the ρ value demonstrating the strongest over-

all performance. We compare the performance of all mod-

els across the entire range of β values. When only single

values are reported, e.g., in tables or figures, the results

correspond to the optimal β for each method to ensure a

fair comparison as different models achieve optimal per-

formance at different values (Daunhawer et al., 2022).

4.1. MNIST-SVHN-Text

An important aspect of multimodal VAEs is their ability to

approximate the joint likelihood of multimodal data with-

out sacrificing generative coherence. Fig. 2 shows the

trade-off between generative coherence and log-likelihood

estimation for all β values. Simple models based on MoE,

e.g. mmJSD and MMVAE, show poor log-likelihoods,

which is a result of modality sub-sampling and clearly pre-

vents a tight approximation as there is a large amount of

modality-specific information in the data. Even though

MMVAE+ approximates the consensus distributions with

the MoE, its log-likelihood estimations are tighter due to

the factorization of the latent space that learns the modality-

specific information. On the other hand, methods based

on PoE all have relatively tight log-likelihood estimations.

However, simple models such as MVAE, trades off tighter

log-likelihoods for generative coherence. The CoDE-VAE

models finds a balance between generative coherence and

the approximation of the joint likelihood, showing superior

performance than all benchmark models for all beta values.

While generative coherence is important, the generated

modalities should be of a high-quality. Table 1 compares

generative coherence with generative quality measured by

FID scores (Heusel et al., 2018). Both the MVAE and

MVTCAE models are able to generate high-quality im-

age modalities, but this is accomplished by compromis-

ing generative coherence. In the family of models using

MoE, MMVAE+ achieves the highest conditional quality,

which is an obvious result of the modality-specific vari-

ables. However, this is achieved by trading off generative

coherence. On the other hand, the CoDE-VAE model is

able to generate highly coherent images without too much

compromise of the generative quality.

4.2. PolyMNIST

Generative quality gap: The generative quality gap

(Daunhawer et al., 2022) is defined as the difference mea-

sured by FID scores between modalities generated with

unimodal VAEs and multimodal VAEs. Methods that rely

on sub-sampling of modalities suffer from it and the gap

increases with the number of modalities used for model

training (Daunhawer et al., 2022). To assess the genera-

tive quality gap, we train all models with 2-5 modalities in

the PolyMNIST data, always using the modalities m0 and
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Figure 3. Generative quality gap for modality m0 as a function of the number of modalities used to train the model.
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Figure 4. Trade-off between generative coherence (↑) and log-likelihood estimation (↑), and between generative coherence and genera-

tive quality (↓) for β ∈ [1, 2.5, 5] on the PolyMNIST dataset.

m1 and generating modality m0. For each of these four

training scenarios, Fig. 3 shows that the generative quality

gap increases with the number of modalities in all models

using sub-sampling of modalities. Only the MVAE, MVT-

CAE, and CoDE-VAE models, which do not rely on sub-

sampling of modalities and MoE, have a linear or decreas-

ing trend as the number of modalities increases. Only the

CoDE-VAE model achieves the same unconditional gener-

ative quality as unimodal VAEs when the number of modal-

ities is increased to 4 and 5.

Log-likelihoods, generative quality, and coherence:

Fig. 4 shows the same pattern as for MNIST-SVHN-Text,

where the MVAE and mmJSD models have a poor approx-

imation of the joint distribution of the data. However, due

to the moderate amount of modality-specific information

in PolyMNST, the generative coherence for these models

is not compromised, specially conditional coherence. We

can corroborate that models using the PoE to approximate

consensus distributions have higher log-likelihoods estima-

tions. However, models like MVAE and MVTCAE trade

off generative coherence. Both the MMVAE+ and CoDE-

VAE models are able to balance the trade-off between gen-

erative coherence and log-likelihoods estimations.

The pattern in generative quality is similar to that in the

log-likelihoods estimation, except for the relatively poor

FID scores achieve by the MoPoE model, specially in the

conditional scenario. Both MVAE and MVTCAE gener-

ate high-quality modalities but at the expense of genera-

tive coherence, which is clearly not desirable. Similarly

to the log-likelihood estimations, MMVAE+ and CoDE-

VAE find a balance in the generative quality and gener-

ative coherence of modalities. However, we would like

to emphasize that MMVAE+ is not able to achieve sig-

nificantly better FID scores than CoDE-VAE despite us-

ing modality-specific variables that improve the generative

model. It is noteworthy that MMVAE+ shows higher co-

herence due to the low β values in this experiment, which

replicate the setup in (Palumbo et al., 2023). CoDE-VAE

performs better at higher β values, achieving coherence of

0.38 at β = 10 for example.

4.3. CUB

To validate the performance of our proposed model on

complex real-world data, we test the generative coherence

and generative quality on the CUB data. Table 2 shows

the quantitative results for the caption-to-image generative

quality and coherence, while the qualitative results can be

found in Appendix D.5. Conditional coherence is calcu-

lated using the approach introduced in (Palumbo et al.,

2023), as the captions describing the CUB data do not

necessarily describe the shared content between modali-

ties. The results obtained by MVAE, mmJSD, MoPoE, and

MVTCAE reflect the complexity of the CUB data when

real images are considered. While MMVAE is able to ob-

tain relatively high coherence, its performance totally de-

pends on the estimation of the variance parameter in the

prior distribution. CoDE-VAE achieves relative high co-

herence without compromising the quality of the generated

images, which is not far away from MMVAE+ that uses
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Figure 5. The bars show the learned coefficients πk (left axis), while red lines show the average trace of the covariance matrix of the
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Table 2. Caption-to-image conditional generative quality and gen-

erative coherence on the CUB dataset.

Conditional Coherence Conditional FID

MVAE 0.27 ±0.007 172.21 ±39.61

MMVAE 0.71 ±0.057 232.20 ±2.14

mmJSD 0.56 ±0.158 262.80 ±6.93

MoPoE-VAE 0.58 ±0.158 265.55 ±4.01

MVTCAE 0.22 ±0.007 208.43 ±1.10

MMVAE+ 0.72 ±0.090 164.94 ±1.50

CoDEVAE 0.75 ±0.050 175.97 ±0.30

modality-specific variables to improve precisely this met-

ric.

4.4. Contribution of each Lk to optimization

Fig. 5a shows the learned coefficients πk (left axis) asso-

ciated with each k-th ELBO Lk(X) in the overall ELBO in

Eq. 3, as well as the average trace (right axis) of the covari-

ance matrix of the k-th distribution. In both cases, averaged

over subsets with equal cardinality. The average πk for sub-

sets Xk = 1 is lower than that of subsets Xk ≥ 2, and the

ELBO that dominates optimization on the MNIST-SVHN-

Text data is X = 3. On the other hand, as the average

trace increases, meaning that the distributions are relatively

uncertain about their estimates, the average weight πk de-

creases. Similarly, Fig. 5b and 5c show that for the PolyM-

NIST and CUB datasets, subsets with more modalities con-

tribute more to optimization and have smaller average trace

values, indicating decreased uncertainty as modalities in-

crease. The findings validate our motivation to learn each

k-th ELBO term’s contribution to optimization, since distri-

butions for which experts are certain should have a greater

contribution.

4.5. Ablation Experiments: the effect of π and ρ

Fig. 6a shows that considering dependencies between ex-

perts and learning πk yields higher performance across all

beta values (blue error bars), compared to assuming equal

weights and independent expert distributions (orange error

bars), using the MNIST-SVHN-Text dataset. See Appendix

F for results on PolyMNIST. Furthermore, we train the

CoDE-VAE model optimizing Eq. 3 and using 2-5 modal-

ities of the PolyMNIST data in the following scenarios:

learning the weights π and i) cross-validating ρ (denoted

as ρ∗) or ii) using ρ = 0; alternatively using equal weights

πk for all ELBOs and iii) cross-validating ρ or iv) using

ρ = 0. Figs. 6b and 6c reveal that learning π and consid-

ering dependence among experts improve FID scores for

the generated modalities. Finally, Fig. 6d shows that aver-

age joint log-likelihoods increase with higher ρ and lower

β values.

5. Conclusion

This research introduces CoDE, a novel consensus of ex-

perts method that, unlike existing approaches, takes into

account the stochastic dependence between expert distri-

butions through the experts’ error of estimation. Based

on CoDE, we introduce CoDE-VAE, an innovative mul-

timodal VAE that optimizes each ELBO associated with

every k-th subset within P(X) by learning its contribution
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πk. Extensive experimentation shows that CoDE-VAE ex-

hibits better performance in terms of balancing the trade-

off between generative coherence and generative quality,

as well as generating more precise log-likelihood estima-

tions. As the CoDE-VAE optimization does not rely on

sub-sampling of modalities, it reduces the generative qual-

ity gap as modalities increase, which is a desirable prop-

erty that is missing in most current methods. Further-

more, CoDE-VAE achieves a classification accuracy com-

parable to that of current models. Finally, ablation exper-

iments show the benefit of modeling the dependence be-

tween expert distribution and learning the contribution of

each ELBO term to optimization.
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Appendix

A. Proofs

A.1. PROOF OF LEMMA 1

Proof. Let us rewrite the error of estimation as ek = (µk − uθk), where u is a [M ′ · D × D] design matrix with size

M ′ vectors of 1s along the diagonal and 0s elsewhere. Furthermore, assume that the error of estimation has a Gaussian

distribution ek ∼ N (0,Σk). Therefore, the expectation of µk is

E[µk] =E[ek + uθk]

=E[ek] + uθk

=uθk (4)

Similarly, the covariance matrix is

E[(µk − E[µk])(µk − E[µk])
T ] =E[(ek + uθk − E[µk])(ek + uθk − E[µk])

T ]

=E[(ek − E[ek])(ek − E[ek])
T ]

=Σk. (5)

Given that µk is a linear function of a random variable with a multivariate Gaussian distribution, it follows that µk is also

multivariate Gaussian, i.e, µk ∼ N (uθk,Σk).

A.2. PROOF OF LEMMA 2

Proof. Assuming an improper flat prior distribution on θk, and dropping the subscript k to avoid cluttering the nota-

tion, the posterior distribution of the k-th consensus distribution is proportional to the likelihood function, i.e. h(θ|µ) ∝
N (uθk,Σk). Therefore,

h(θ|µ) ∝ exp

[

−1

2
[(µ− uθ)TΣ−1(µ− uθ)]

]

=exp

[

−1

2
[µT

Σ
−1µ− µT

Σ
−1uθ − θTuT

Σ
−1µ+ θTuT

Σ
−1uθ]

]

=exp

[

−1

2
[θT

Aθ − 2θT
B + C]

]

=exp

[

−1

2
[θT

AAA
−1θ − 2θT

AA
−1

B +B
T
A

−1
B −B

T
A

−1
B + C]

]

∝ exp

[

−1

2
[(Aθ −B)TA−1(Aθ −B)]

]

,

which is an exponential form on θ. Taking the first derivative of log h(θ|µ) wrt θ and solving for θ, we obtain the

expectation of the posterior distribution.
∂

∂θ
log h(θ|µ) = −θA+B.

Similarly, the variance of the posterior distribution is given at −
(

∂2

∂θ2 log h(θ|µ)
)−1

.

∂2

∂θ2
log h(θ|µ) = −A.

Therefore, the posterior distribution

h(θ|µ) ∼ N (A−1
B,A−1) (6)

is also Gaussian, where A = uT
Σ

−1u, B = uT
Σ

−1µ, Σ−1 is the inverse matrix of Σ, u is a [M
′ ·D×D] design matrix

with size M
′

vectors of 1s along the diagonal and 0s elsewhere, and µ is a [M
′ ·D × 1] vector with point estimates from

relevant expert distributions on all D dimensions of the k-th consensus distribution.
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A.3. PROOF OF LEMMA 3

Proof. We introduce an indicator vector ξ that maps each k-th subset Xk ∈ P(X) to 1 or 0. We assume that both prior and

posterior distributions of the indicator vector are categorical, i.e. ξ ∼ Cat(π). Therefore, the probability that the subset Xk

occurs is πk, where πk ∈ π. Furthermore, we assume the inference model q(z, ξ|Xk) = q(z|Xk)q(ξ|Xk), where q(z|Xk)
and q(ξ|Xk) are variational distributions, which are conditionally independent given Xk.

Minimizing the sum of all the Kullback-Leibler divergences between the intractable posterior distribution p(z, ξ|X) =
p(X|z)p(z)p(ξ)

p(X) and the inference model, we obtain the following.

∑

Xk

KL[q(z, ξ|Xk)||p(z, ξ|X)] =
∑

Xk

Eq(z,ξ|Xk)

[

log
q(z, ξ|Xk)

p(X|z)p(z)p(ξ) + log p(X)

]

=
∑

Xk

Eq(z,ξ|Xk)

[

log
q(z, ξ|Xk)

p(X|z)p(z)p(ξ)

]

+ (2M − 1) log p(X)

∝
∑

Xk

Eq(z,ξ|Xk)

[

log
q(z, ξ|Xk)

p(X|z)p(z)p(ξ)

]

+ log p(X),

where in line 3 we factor out 2M − 1 as a constant, which should not affect the optimization (Wu & Goodman, 2019).

Assuming a categorical prior distribution for p(ξ) with probability mass function η = (1/K, · · · , 1/K), where K =
2M − 1, i.e. equal prior probabilities for all subsets, we obtain

log p(X) ∝
∑

Xk

Eq(z,ξ|Xk)

[

log
p(X|z)p(z)p(ξ)
q(z|Xk)q(ξ|Xk)

]

+
∑

Xk

KL[q(z, ξ|Xk)||p(z, ξ|X)]

log p(X) ≥
∑

Xk

Eq(z,ξ|Xk)

[

log
p(X|z)p(z)p(ξ)
q(z|Xk)q(ξ|Xk)

]

=
∑

Xk

Eq(ξ|Xk)Eq(z|Xk)

[

log p(X|z) + log p(z)− log q(z|Xk)− log q(ξ|Xk)
]

+
∑

Xk

Eq(ξ|Xk)[log p(ξ)]

=
∑

Xk

[

Eq(ξ|Xk)Eq(z|Xk)[log p(X|z)]−KL[q(z|Xk)||p(z)] +H(q(ξ|Xk))
]

+
∑

Xk

Eq(ξ|Xk)[log p(ξ)],

Note that the expected value of the indicator variable ξ iif the k-th subset occurs is

E[ξ|Xk] =ξ · π
=[0, · · · , 1k, · · · , 0] · [π1, · · · , πk, · · ·]
=πk,

(Cormen et al., 2022) (Lemma 5.1 p. 130), and that
∑

Xk
Eq(ξ|Xk)[log p(ξ)] = log p(ξ) is just a constant term6. Therefore,

the variational lower bound for a single data point is

log p(X) ≥
∑

Xk

{

πk

[

Eqφ(z|Xk)[log pθ(X|z)]−KL[qφ(z|Xk)||p(z)]
]

+H(qφ(ξ|Xk))
}

+ C, (7)

where H is the entropy function, θ and ϕ are the learnable weights of the neural networks parameterizing generative and

variational distributions.

It is noteworthy that the entropy term H(qφ(ξ|Xk)) decreases during optimization of the ELBO, as it is not optimized in

isolation. Therefore, CoDE-VAE learns uneven parameters πk as shown in Fig. 5.

6Alternatively, the lower bound could contain the KL[q(ξ|Xk)||p(ξ)] divergence term. However, minimizing this divergence can tilt
the parameters πk towards 1/K. Instead, we let the data speak and optimize the entropy of the posterior distribution to learn π.
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B. CoDE - A simple example

At this point it is important to note that all Σd in Σk are guaranteed to be full rank by construction, as σi,j > 0 for all i, j,

where σi,i = σ2
i . To see this, we need to show that the quadratic form βT

Σ
dβ = 0, is only satisfied for a zero-vector β.

Further, let κ be the smallest σi,j value, which is positive by construction. Therefore,
∑

i

∑

j βiσi,jβj > κ
∑

i

∑

j βiβj .

Since κ > 0, the only solution that satisfies κ
∑

i

∑

j βiβj = 0 is the zero-vector β. Since βT
Σ

dβ = 0 only for the

zero-vector, Σd is positive definite and therefore invertible, and so is Σk. Σ
d is still invertible even if its off-diagonal

elements are 0 given that σ2
i > 0 for all i. Without loss of generality, assume that we observe bimodal data X = (x1, x2)

with unimodal Gaussian data modalities. Therefore, the powerset is P(X) = {(x1), (x2), (x1, x2)}, implying that there

are two expert distributions q(z|x1) and q(z|x2), and one unknown consensus distribution q(z|x1, x2), i.e., K = 2M − 1
distributions in total, where M = 2 is the number of modalities. Note that there are exactly K scenarios where a set of

modalities may not be available at test time. Therefore, we are interested in learning all K distributions, so that at test

time we can draw z ∼ q(z|Xk), for k = 1, · · · , 3, regardless if there are unavailable sets. In what follows, we drop the k
subscript and superscript in the formulae. Furthermore, assume that the unknown parameter is θ = 8, the expert estimates

and their uncertainty are µ1 = 4, µ2 = 8, σ2
1 = 3, and σ2

2 = 1, and that the estimates have correlation ρ = 0.6. Therefore,

we have that

u =

[

1
1

]

, µ =

[

4
8

]

=

[

µ1
1

µ1
2

]

, e =

[

4− θ
8− θ

]

=

[

e11
e12

]

and Σ =

[

3 0.6 ·
√
3 ·
√
1

0.6 ·
√
3 ·
√
1 1

]

.

Then we can calculate the consensus distribution using Lemma 2 as follows:

A = [1 1]

[

α1,1 α1,2

α2,1 α2,2

] [

1
1

]

= α1,1 + α2,1 + α1,2 + α2,2,

B = [1 1]

[

α1,1 α1,2

α2,1 α2,2

] [

µ1

µ2

]

= (α1,1 + α2,1)µ1 + (α1,2 + α2,2)µ2,

and q(z|x1, x2) ∼ N
(

(α1,1+α2,1)µ1+(α1,2+α2,2)µ2

α1,1+α1,2+α2,1+α2,2
, 1
α1,1+α1,2+α2,1+α2,2

)

, where Σ
−1 = αi,j .

CoDE subsumes PoE: Now, let us assume that ρ = 0. Hence,

Σ =

[

σ2
1 0
0 σ2

2

]

, Σ
−1 =

1

σ2
1σ

2
2

[

σ2
2 0
0 σ2

1

]

=

[

1/σ2
1 0

0 1/σ2
2

]

,

A = τ1,1+ τ2,2, B = τ1,1µ1+ τ2,2µ2, and the consensus distribution is q(z|x1, x2) ∼ N
(

τ1,1µ1+τ2,2µ2

τ1,1+τ2,2
, 1
τ1,1+τ2,2

)

, where

τi = 1/σ2
i , like in (Wu & Goodman, 2018). Therefore, for ρ = 0 the CoDE parameters are simply PoE parameters.

As shown by (Winkler, 1981), we can write the mean of the consensus distribution as

µCoDE = ω1µ1 + ω2µ2,

where ω1 =
(σ2

2
−ρσ1σ2)

σ2

1
+σ2

2
−2ρσ1σ2

and ω2 =
(σ2

1
−ρσ1σ2)

σ2

1
+σ2

2
−2ρσ1σ2

, to show that the posterior parameter µCoDE is a weighted average

of the expert parameters µ1 and µ2. Note that the weights can be negative depending on the value of ρ with respect to σ1

and σ2. In the above example, for ρ = 0.6, the posterior mean is µCoDE = −0.02 ∗ 4 + 1.02 ∗ 8 and for ρ = 0 the mean

becomes µCoDE = 0.25 ∗ 4 + 0.75 ∗ 8. In both cases, the weights sum up to 1. However, when the correlation between

expert estimates is taken into account and the correlation is relatively high, the posterior mean leans even more towards the

more accurate (with less variance) estimate. Fig. 7 shows both weights as a function of ρ and, only for ρ greater than 0.5,

the weight for the less accurate estimate becomes negative. On the other hand, for ρ = 0 the weights are always positive

and µCoDE is a convex function of the expert mean parameters. Similarly, we can write the variance of the consensus

distribution as

σ2
CoDE =

(1− ρ2)σ2
1σ

2
2

σ2
1 + σ2

2 − 2ρσ1σ2
.

Note that when the dependence between experts is neglected, i.e. ρ = 0, the variance of the consensus distribution is higher

than it should be, as the denominator increases.
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Figure 7. The consensus parameter µCoDE can be estimated as µCoDE = ω1µ1 + ω2µ2, where the weights ω1 and ω2 are functions of

the correlation parameter ρ.

Two expert distributions and 2D joint representation z: In this case, θ = (θ1,θ2)T and the matrices for the consensus

distributions are

u =









1 0
1 0
0 1
0 1









, µ =









µ1
1

µ1
2

µ2
1

µ2
2









=

[

µ1

µ2

]

, e =









µ1
1 − θ1

µ1
2 − θ1

µ2
1 − θ2

µ2
2 − θ2









=

[

e1
e2

]

, Σ =

[

Σ
1

0

0 Σ
2

]

,

where

Σ
d =

[

σ2
1 ρσ1σ2

ρσ2σ1 σ2
2

]

for d = 1, 2 is the covariance matrix of the d-th dimension, and 0 is a 2x2 zero matrix. Therefore,

A = uT
Σ

−1u =

[

1 1 0 0
0 0 1 1

]









α1,1 α1,2 0 0
α2,1 α2,2 0 0
0 0 α1,1 α1,2

0 0 α2,1 α2,2

















1 0
1 0
0 1
0 1









and

B = uT
Σ

−1µ =

[

1 1 0 0
0 0 1 1

]









α1,1 α1,2 0 0
α2,1 α2,2 0 0
0 0 α1,1 α1,2

0 0 α2,1 α2,2

















µ1
1

µ1
2

µ2
1

µ2
2









where Σ
−1 = αi,j for d = 1, 2.

C. Limitations

The dependence between expert distributions is captured in the ρ parameter, which is found by cross-validation. For large

and complex data, cross-validating ρ can be computationally costly. Moreover, although CoDE is a principled Bayesian

method, in which it is possible to choose different prior distributions and likelihood functions, it is not clear how multimodal

VAEs can be trained with different choices than the ones we make for these. Finally, although CoDE-VAE has a relatively

high computational cost O(2M − 1), model training is feasible even for 5-modality datasets on a single GPU.

Overhead added by CoDE: To calculate consensus distributions with the CoDE method, we only need to find the

inverse of each Σ
d matrix, which is an affordable computation. The average processing time for one batch of the MNIST-

SVHN-Text data using CoDE is 46 milliseconds, which is not significantly higher than using PoE (Wu & Goodman, 2018)

(36 milliseconds). For PolyMNIST data, where z ∈ R
512, the average processing time for one batch is 1050 and 790

milliseconds using CoDE and PoE, respectively. Models are trained on a single A100 GPU.
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Algorithm 1 Minibatch version of the CoDE-VAE algorithm.

θ,ϕ,π ← initialize network parameters randomly and πk = 1/(2M − 1). Define ρ by cross-validation.

repeat

X
i ← Random minibatch with all data modalities

ϵ← Random samples from N (0,1)
for X

i
k ∈ P(Xi) do

Σk ← Define Σ
d using the encoder outputs σ2

i and ρσiσj , for d = 1, · · · , D.
Ak,Bk ← Use encoder outputs µi and find the inverse of Σk

q(z|Xi
k)← Expert and consensus distributions ▷Apply Lemma 2

∇Lk(θ,ϕ, πk,X
i, ϵ)← Get gradients ▷Apply Lemma 3

end for

θ,ϕ,π ← Update parameters with the Adam optimizer

until Convergence of θ,ϕ,π
return θ,ϕ,π

D. Experiments

D.1. COMMON MODEL TRAINING

We optimize Eq. 3 by stochastic gradient descent using the reparameterization trick (Kingma & Welling, 2014) for es-

timating gradients (see Algorithm 1), and the Adam optimizer (Kingma & Ba, 2017) is used on all datasets. Models

are trained on single A100 GPUs with AMD EPYC Milan processors with 24 cores. We find the optimal correlation

parameter ρ by cross-validation using the values [0, 0.2, 0.4, 0.6, 0.8] and the off-diagonal in the covariance matrices Σ
d

in Lemma 1 are specified as σj,i = ρσjσi. We cross-validate only positive ρ values, as it is reasonable to infer that

the dependency between experts arises from common information about their underlying object. Following previous re-

search, we scale the Kullback-Leibler divergence terms in Eq. 3 by a regularization coefficient β (Higgins et al., 2016),

i.e. βKL[qφ(z|Xk)||p(z)], as it has a significant impact on the evaluation of the model. The β value is found by cross-

validation using the values [0.1, 1, 5, 10, 15, 20]. We also consider β = 2.5 in the PolyMNIST data to replicate the setting

in (Palumbo et al., 2023). For all datasets, we assume that the prior distribution is an isotropic Gaussian distribution, and

the expert distributions are assumed to be multivariate Gaussian distributions with diagonal covariance matrix. All consen-

sus distributions are approximated using Lemma 2. Finally, all experiments report the average performance and standard

deviations of 3 different runs and for the benchmark models we use the following original implementation codes: MMVAE

https://github.com/iffsid/mmvae/tree/public; MVAE, mmJSD, and MoPoE https://github.com/thomassutter/MoPoE; MVT-

CAE https://github.com/gr8joo/MVTCAE/tree/master; MMVAE+ https://github.com/epalu/mmvaeplus/tree/new release.

D.2. EVALUATION CRITERIA

Linear classification: We use the LogisticRegression class in sklearn to fit linear classifiers with 500

latent representations of all subsets X ∈ P(X). The only parameters that we specify are solver=’lbfgs’,

multi_class=’auto’ and max_iter=3000. To test the performance of the classifiers on the entire test set, we

use accuracy_score, which is available in sklearn, for the MNIST-SVHN-Text and PolyMNIST data. See the

released code for further details.

Coherence: For each of the modalities in the datasets, we train classifier networks that have the same architecture as their

encoder, using original observations of the same modality. Then we generate modalities conditioned on latent representa-

tions of each subset Xk ∈ P(X), including the empty set, in which case z ∼ p(z). To evaluate unconditional coherence,

we classify the generated modalities conditioned on representations of the prior, calculate the number of generated modal-

ities classified as having the same label, and divide it by the number of total modalities generated. To measure conditional

coherence, we classify generated modalities conditioned on representations of subsets where the modality being classified

is not present, e.g., MNIST images can only be generated conditioned on subsets containing SVHN, Text, and SVHN&Text

modalities, and calculate the accuracy_score for the MNIST-SVHN-Text and PolyMNIST data.

Fréchet inception distance (FID): We use a TensorFlow pre-trained inception network to calculate the FID scores. Note

that we tested our TensorFlow implementation with that of (Daunhawer et al., 2022), which is coded in PyTorch, and for
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Table 3. MNIST encoder and decoder layers. All layers are linear with ReLU activations. Finally, the number of input and output

dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Layer Type #F.In #F.Out

1 linear 784 400 1 linear 20 400

2a linear 400 20 2 linear 400 784

2b linear 400 20

Table 4. SVHN encoder and decoder layers. The last column for each model specifies the kernel size, stride, padding, and dilation.

All layers are 2D convolutional (conv) and upconvolutional (upconv) in the encoder and decoder, respectively, with ReLU activations.

Finally, the number of input and output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 3 32 (4,2,1,1) 1 linear 20 128

2 conv 32 64 (4,2,1,1) 2 upconv 128 64 (4,2,0,1)

3 conv 64 64 (4,2,1,1) 3 upconv 64 64 (4,2,1,1)

4 conv 64 128 (4,2,0,1) 4 upconv 64 32 (4,2,1,1)

5a linear 128 20 5 upconv 32 3 (4,2,1,1)

5b linear 128 20

a sample of PolyMNIST images, we obtained the same values. See the released code for details of the implementation.

The conditional FID scores are calculated using generated modalities conditioned on representations of all subsets, while

the unconditional FID scores are calculated using generated modalities conditioned on representations from the prior

distribution. In both cases, generated images are compared with original ones. The conditional FID scores reported in

Table 1 and in Fig. 4 are averages of generated images conditioned on all subsets and all modalities, while the conditional

FID scores in Fig. 3 for modality m0 are averages of generated images conditioned on all subsets. Finally, the scores in

Table 2 correspond to generated images conditioned on the subset containing the caption modality.

D.3. MNIST-SVHN-TEXT

Data and training details: The dataset consists of handwritten digits, images, and a text strings corresponding to an

underlying digit. The triples are created in a many-to-many mapping, therefore, there are 1,121,360 and 200,000 obser-

vations in the train and test sets, respectively. The digit text has 8 characters and its initial position is chosen randomly,

leaving the remaining characters blank. We train our CoDE-VAE model with the Adam optimizer with default values and

a learning rate of 0.001, using mixed-precision to speed up model training. Both image modalities are assumed to have

Laplace likelihoods, whereas the text modality is assumed to have a categorical likelihood. The dimension of the latent

space is set to 20, as in (Sutter et al., 2020; 2021; Palumbo et al., 2023; Mancisidor et al., 2024). For a fair comparison

of all models, we follow a similar approach as (Palumbo et al., 2023) to select the dimension of the modality-specific

latent space in MMVAE+. That is, divide the total number of dimensions in the latent space assumed by models without

modality-specific variables by the number of modalities.

We use weights to scale the decoder networks, as the distributions for the modalities have different scales. The weights are

calculated as in (Sutter et al., 2021), where the modality with the highest dimension is set to 1 and all the others are scaled

by their relative ratio to the dimension of the data. Hence, the weights we use are 1, 3.9, and 384 for the SVHN, MNIST,

and text decoders, respectively. Similarly, we scale the entropy loss by 1,000, a value which we found by cross-validation

and that works well for all datasets in this research. The architectures that we use in the encoder and decoder networks are

shown in Tables 3-5.

Classification and qualitative results: Fig. 8 shows the classification accuracy of a linear classifier trained with latent

representations for all subsets Xk ∈ P(X), averaged over equal cardinality subsets. We omit standard deviations as they

are smaller than 0.01 for all models. Note that only the models using PoE and CoDE are able to achive higher classification

accuracy as the number of expert increases. On the other hand, models using MoE achieves a flat performance despite

having more modalities to approximate the joint posterior distributions. The CoDE-VAE model achieves slightly higher
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Table 5. Text encoder and decoder layers. The last column for each model specifies the kernel size, stride, padding, and dilation. All

layers are 1D convolutional (conv) and upconvolutional (upconv) in the encoder and decoder, respectively, with ReLU activations.

Finally, the number of input and output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 71 128 (1,1,0,1) 1 linear 20 128

2 conv 128 128 (4,2,1,1) 2 upconv 128 128 (4,1,0,1)

3 conv 128 128 (4,2,0,1) 3 upconv 128 128 (4,2,1,1)

4a linear 128 20 4 conv 128 71 (1,1,0,1)

4b linear 128 20

classification accuracy in subsets with 2 and 3 modalities compared to that of all benchmark models. Finally, Fig. 9

shows samples of modalities that are conditionally generated on representations of the prior distribution (top row), and on

representations of the consensus distribution q(z|X = 3) (bottom row).
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Figure 8. Classification accuracy of a linear classifier trained with latent representations for all subsets Xk ∈ P(X), averaged over equal

cardinality subsets.

Table 6. Optimal parameters for all models in the classification on MNIST-SVHN-Text data.

MVAE MMVAE mmJSD MoPoE-VAE MVTCAE MMVAE+ CoDE-VAE

β 5 0.1 5 10 20 5 5

ρ 0.4

D.4. POLYMNIST

Data and training details: the PolyMNIST dataset is built upon MNIST by varying the original background. A random

28x28 crop from 5 different images is used as the background to form a 5-modality dataset. Links to the images are

provided in (Sutter et al., 2021), where the dataset was first introduced. Note that we keep the same order in the links of

the images to define modality m0, m1, etc. Training and test sets have 60,000 and 10,000 images, respectively. We use the

Adam optimizer with default values and a learning rate of 0.001 to train CoDE-VAE models using mixed-precision. Since

all modalities have the same dimension, it is not necessary to scale the decoders in this case, but the entropy term is again

scaled by 1,000. The architectures of the encoder and decoder are shown in Table 8, which are similar to the architectures

in (Sutter et al., 2021) and not in (Daunhawer et al., 2022). We assume Laplace likelihoods. The dimensionality of the

latent representations is set to 512 as in (Sutter et al., 2021; Daunhawer et al., 2022; Palumbo et al., 2023).

The results in Fig. 4 are based on all 5 modalities of the PolyMNIST data, while the results in Fig. 3 and in Fig. 6 show
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Figure 9. Random generation of digits corresponding to the MNIST, SVHN, and Text modalities. The decoders are conditioned on

representations from the prior (top row) and the consensus q(z|X = 3) distribution.
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Figure 10. Classification accuracy of a linear classifier trained with latent representations for all subsets Xk ∈ P(X), averaged over

equal cardinality subsets.

Table 7. Optimal parameters for all models in the classification on PolyMNIST data.

MVAE MMVAE mmJSD MoPoE-VAE MVTCAE MMVAE+ CoDE-VAE

β 1 1 1 1 5 1 5

ρ 0.4

FID scores obtained by the CoDE-VAE model trained with 2, 3, 4, and 5 modalities, i.e. we train our proposed model with

four versions of the data depending on the number of modalities considered, which we ordered as follows:

• 2 modalities→ {m0, m1}
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Figure 11. Random generation of digits for all modalities. The decoders are conditioned on representations from the prior (top row) and

the consensus distribution q(z|X = 5).

• 3 modalities→ {m0, m1, m2}

• 4 modalities→ {m0, m1, m2, m3}

• 5 modalities→ {m0, m1, m2, m3, m4}

Given that we cross-validate β, ρ, and π (for the ablation experiments) we trained 120 different configurations assuming 2,

3, 4, and 5 modalities, i.e. 480 experiments that we run 3 different times each. Following a similar approach to (Daunhawer

et al., 2022), we compared the quality of the generative model choosing the architecture with the smallest FID scores.

Classification and qualitative results: Classification results are shown in Fig. 10 where standard deviations are omitted

as they are smaller than 0.01 for all models. We observe a similar trend as in the classification results for the MNIST-

SVHN-Text data. Models using MoE are not able to learn extra information that is useful for classification as the number

of modalities increases. Note that our results for the mmJSD model do not agree with those presented in (Huang et al.,

2022) that show increasing accuracy similar to that of MVTCAE. Such a trend is not common in models using MoE and,

therefore, we believe that they are wrong. The MVTCAE model achieves a perfect classification accuracy for subsets with

4 and 5 models, followed by MoPoE, CoDE-VAE and MVAE.

Fig. 11 shows samples of all 5 modalities that are conditionally generated on representations of the prior distribution (top

row), and on representations of the consensus distribution q(z|X = 5) (bottom row). In Fig. 12, we show random generated

digits corresponding to modality 1 (top row) and modality 2 (bottom row), as a function of the number of modalities in

the dataset, i.e. the first column shows generated images with a CoDE-VAE model trained with 2 modalities, while the

last column shows images generated with a model trained with 5 modalities. Finally, Fig. 13 shows the average coherence

and classification accuracy as a function of correlation ρ, obtained with CoDE-VAE models trained with 2, 3, 4, and 5

modalities. The average is calculated over all subsets in each case, i.e. 3, 7, 15, and 31 subsets, respectively. In all

cases, the coherence and classification is higher when the correlation between experts is taken into account, except when

CoDE-VAE is trained with 5 modalities.

Finally, Fig. 14 shows random generations of the modality m0 by unimodal VAE (top row) and CoDE-VAE, which

were used to calculate the FID scores in Section 4.2 Generative quality gap. The generations of both models are visually

indistinguishable.

D.5. CUB

Data and training details: the CUB data used in this research are composed of two modalities: bird images and 10

different detailed descriptions for each image. Therefore, there are in total 117,880 pairs of image-captions, where 88,550

are used for model training and 29,330 for testing. This bi-modal version of the CUB dataset has been used in (Shi et al.,

2019; Daunhawer et al., 2022; Palumbo et al., 2023). However, (Shi et al., 2019) uses a simplified version that replaces

bird images with ResNet embeddings. The architectures for the encoder and decoder caption modality are in Table 14, and
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Figure 12. Random generation of digits in modality m0 (top row) and modality m1 (bottom row). The first column shows images

of digits generated with a CoDE-VAE model trained with 2 modalities. Similarly, the second, third, and last columns show images

generated by CoDE-VAE trained with 3, 4, and 5 modalities.

Table 8. PolyMNIST encoder and decoder layers. The last column for each model specifies the kernel size, stride, padding, and dilation.

All layers are 2D convolutional (conv) and upconvolutional (upconv) in the encoder and decoder, respectively, with ReLU activations.

Finally, the number of input and output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 3 32 (3,2,1,1) 1 linear 512 2048

2 conv 32 64 (3,2,1,1) 2 upconv 2048 64 (3,2,0,1)

3 conv 64 128 (3,2,1,1) 3 upconv 64 32 (3,2,1,1)

4a linear 128 512 4 upconv 32 3 (3,2,1,1)

4b linear 128 512
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Figure 13. Average coherence and classification accuracy as a function of correlation ρ, obtained with CoDE-VAE models trained with

2, 3, 4, and 5 modalities. The average is calculated over all subsets in each case, i.e. 3, 7, 15, and 31 subsets, respectively.

for the image modality please see the released code. The dimensionality of the latent space is set to 64 as in (Daunhawer

et al., 2022; Palumbo et al., 2023) and the weights to scale the decoders are 0.0026, and 1.0 for the image and caption

modalities, respectively.

We follow the approach introduced in (Palumbo et al., 2023) to calculate the conditional coherence. First, we construct

the following caption “this bird is completely <color>”, where color is any color in {white, yellow, red, blue, green, gray,
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(a) Unconditional generation of modality m0 by VAE. (b) Conditional generation of modality m0 by VAE.

(c) Unconditional generation of modality m0 by CoDE-VAE. (d) Conditional generation of modality m0 by CoDE-VAE.

Figure 14. The top row shows random generations by unimodal VAE, while the bottom row corresponds to generations by CoDE-VAE.

The conditional generations by CoDE-VAE are based on the full subsets.

brown, black}. Then, for each of the eight captions, we generate ten images (eighty in total). Finally, we count the number

of pixels that are within the boundaries of hue, saturation, and value (HSV) colors in Table 13, and an image is said to be

coherent if any of the two classes of the highest pixel count is the same as the color in the initial caption. Note that we use

the library cv2 and the method cvtColor to obtain the HSV values of the generated images.

Qualitative results: Fig. 15 shows the generated images for the coherent test previously explained. The row at the top

shows the captions that are used to generate the image modality. On the otter hand, Fig. 16 shows images generated from

original images in the CUB test sets, which are in the first row. Both grid of plots show that the generated images are able

to capture the details in the modality that they are conditioned on. Finally, Fig. 17 shows generated images from original

captions in the test set.

E. Additional Experiments

Section 4 presents the main relevant benchmark models and the results against which the performance of these models

should be compared. However, for completeness, this section analyses the performance of CoDE-VAE on the real and

challenging bi-modal CelebA data (Sutter et al., 2020), and compares the generative quality and generative coherence of

CoDE-VAE with that of the clustering multimodal VAE (CMVAE) model introduced in (Palumbo et al., 2024). Although

the contribution of the CMVAE model is relevant to the field of multimodal VAEs, its line of research is orthogonal to

CoDE-VAE, as CMVAE leverages clustering structures in the latent space by introducing a flexible prior distribution based

on a mixture model and uses diffusion decoders.
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Figure 15. Caption-to-image generation used in the coherence test.

Figure 16. Image-to-image generation. Original images in the first

row.

Figure 17. Caption-to-image generation for the captions in the first row.

E.1. CELEBA

We test the performance of CoDe-VAE and MMVAE+ on the bi-modal CelebA data, which are composed of images and

text descriptions for each image. The description modality is based on 40 attributes that describe each image and is fixed

at 256 characters. For images with shorter descriptions, the remaining spaces are filled with a “*” character. The train

and set sets have 162,560 and 19,712 observations, respectively. We train the CoDE-VAE model with default values in

the Adam optimizer and a learning rate of 0.0001, using mixed precision and assuming a Laplace likelihood for the image

modality and a categorical likelihood for the text modality. Furthermore, we assume ρ = 0.6, β = 1, and a latent space

with 32 dimensions. For MMVAE+, we assume β = 1 and both modality-specific and common latent variables have 16

dimensions each. Hence, the decoders in both models generate modalities based on 32 dimensions. The architectures for

the encoder and decoder are based on residual networks (He et al., 2016) and are shown in Tables 9 and 10.

Table 11 shows the performance of CoDE-VAE and MMVAE+ in terms of generative quality, generative coherence, and

classification accuracy. CoDE-VAE achieves better generative quality and classification accuracy even when the ρ param-

eter was not cross-validated. Fig. 18 shows some random faces, which are conditionally generated on representations of

the prior distribution (left plot) and on representations of the consensus distribution q(z|X = 2) (right panel). Note that

some of the images conditionally generated on the consensus distribution q(z|X = 2), have not only sharper faces, but also

sharper backgrounds. On the other hand, the top row of Figure 19 shows faces conditionally generated on representations
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Table 9. CelebA encoder and decoder layers for images. The last column for each model specifies the kernel size, stride, padding,

and dilation. Layers are 2D convolutional (conv), upconvolutional (upconv), residual blocks (res), and upconvolutional residual blocks

(res upconv), with ReLU activations. Finally, the number of input and output dimensions in each layer is shown in the columns #F.In

and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 3 128 (3,2,1,1) 1 linear 32 640

2 res 128 256 (4,2,1,1) 2 res upconv 640 512 (4,1,0,1)

3 res 256 384 (4,2,1,1) 3 res upconv 512 384 (4,1,1,1)

4 res 384 512 (4,2,1,1) 4 res upconv 384 256 (4,1,1,1)

5 res 512 640 (4,2,1,1) 5 res upconv 256 128 (4,1,1,1)

6a linear 640 32 6 upconv 128 3 (3,2,1,1)

6b linear 640 32

Table 10. CelebA encoder and decoder layers for text descriptions. The last column for each model specifies the kernel size, stride,

padding, and dilation. Layers are 1D convolutional (conv), upconvolutional (upconv), residual blocks (res), and upconvolutional residual

blocks (res upconv), with ReLU activations. Finally, the number of input and output dimensions in each layer is shown in the columns

#F.In and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 conv 71 128 (4,2,1,1) 1 linear 32 640

2 res 128 256 (4,2,1,1) 2 res upconv 640 640 (4,1,0,1)

3 res 256 384 (4,2,1,1) 3 res upconv 640 640 (4,2,1,1)

4 res 384 512 (4,2,1,1) 4 res upconv 640 512 (4,2,1,1)

5 res 512 640 (4,2,1,1) 5 res upconv 512 384 (4,2,1,1)

6 res 640 640 (4,2,1,1) 5 res upconv 384 256 (4,2,1,1)

7 res 640 640 (4,2,0,1) 5 res upconv 256 128 (4,2,1,1)

8a linear 640 32 6 upconv 128 71 (4,2,1,1)

8b linear 640 32

Table 11. Model performance of CoDE-VAE and MMVAE+ on the CelebA data.

CoDE-VAE MMVAE+

Conditional FID (↓) 92.11 ±0.61 97.30 ±0.40

Unconditional FID (↓) 87.41 ±0.36 96.91 ±0.42

Conditional Coherence (↑) 0.38 ±0.001 0.46 ±0.001

Unconditional Coherence (↑) 0.23 ±0.003 0.31 ±0.030

Classification (↑) 0.38 ±0.002 0.37 ±0.003

of the expert distribution q(z|Xtext). Note that some attributes, such as gender, smile, 5 o’clock shadow, are relatively easy

to capture in the generated face. The bottom row of Figure 19 shows faces conditionally generated on representations of

the consensus distribution q(z|X = 2). For both cases, we added the text modality that describes the face attributes.

E.2. POLYMNIST

We follow the same experimental setup as in Section 4.2 and compare the generative quality and generative coherence of all

models, including CMVAE, which is shown in Fig. 20. CMVAE achieves significantly higher performance in unconditional

coherence, as it uses a flexible prior distribution composed of a mixture model (one component for each cluster in the latent

space). Such a prior distribution is certainly more informative compared to the non-informative isotropic Gaussian used in

CoDE-VAE and most of benchmark models. However, CoDE-VAE achieves about the same performance in conditional

coherence and conditional FID scores. Interestingly, despite its more complex architecture, CMVAE is not able to achieve

significantly better unconditional and conditional FID scores.
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Figure 18. Random generation of faces. The decoder is conditioned on representations from the prior (left plot) and the consensus

q(z|X = 2) distribution (right plot).

Figure 19. Conditionally generated faces on representations of the expert distribution q(z|Xtext) (top row) and the consensus distribution

q(z|X = 2) (bottom row), where we added the text modality that describes the face attributes.

F. Effect of weights π and correlation ρ

We train the CoDE-VAE model using equal weights π and assuming ρ = 0 (Baseline), and learning the weights π and

cross validating ρ ∈ [0.2, 0.4, 0.6, 0.8] (Optimal), to assess its effect on unconditional coherence and log-likelihoods across

different β values. Fig. 21 shows that for all β values, but β = 1, the Optimal models achieve higher coherence, higher

log-likelihood, or both, relative to the Baseline models when using the PolyMNIST data. For β = 1, the coherence of the

Baseline model is slightly higher, but the Optimal model has higher likelihood.
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Figure 20. Trade-off between generative coherence (↑) and generative quality (↓) for β ∈ [1, 2.5, 5] on the PolyMNIST dataset.
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Figure 21. Effect of learning the πk weights and cross-validating ρ ∈ [0.2, 0.4, 0.6, 0.8] across different β values, which are annotated

at the top-right of the scatters.

Table 12. Effect of edge case correlated modalities, assuming ρ = 0 and ρ = 0.9, on generative quality measured by FID scores (↓).

0% 25% 95%

ρ = 0.0 29.00 31.27 48.22

ρ = 0.9 26.12 29.90 53.68

Table 15 shows the generative coherence, generative quality, and classification accuracy as a function of ρ on the MNIST-

SVHN-Text dataset. All values are calculated at β = 20. All metrics show a significant improvement for ρ > 0.

Edge case correlated modalities: To better understand the behavior of CoDE-VAE, we use the modality m1 in PolyM-

NIST in the following way. We apply three different levels of noise to the modality m1: 0 %, 25%, and 95%. Then,

we paired the noisy version with the original modality m1 to obtain a bi-modal data. For each of these data, we train

CoDE-VAE assuming ρ = 0 and ρ = 0.9 and generate the non-noisy version of m1. When CoDE-VAE is trained with the

data with 0% noise, both modalities are the same and we expect that the model assuming ρ = 0.9 will have relatively high

generative quality. On the other hand, when CoDE-VAE is trained with the data with 95% noise, the modalities are uncor-

related and using ρ = 0 is expected to have relatively high generative quality. Table 12 shows that CoDE-VAE correctly

captures the dependency between experts distributions through the ρ parameter.
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Table 13. HSV color boundaries used in the coherence test of the CUB data.

White Yellow Blue Red

lower bound [0,0,120] [25,50,70] [90,50,70] [0,50,70] [159,50,70]

upper bound [180,18,255] [35,255,255] [158,255,255] [15,255,255] [180,255,255]

Green Gray Brown Black

lower bound [36,50,70] [0,0,50] [24,255,255] [0,0,0]

upper bound [89,255,255] [180,18,120] [16,50,70] [180,255,50]

Table 14. Encoder and decoder layers for captions in the CUB data. The last column for each model specifies the kernel size, stride,

padding, and dilation. Layers are dense with linar activations (linear), 2D convolutional (conv), and upconvolutional (upconv) with ReLU

activations. Finally, the number of input and output dimensions in each layer is shown in the columns #F.In and #F.Out, respectively.

Encoder Decoder

Layer Type #F.In #F.Out Spec. Layer Type #F.In #F.Out Spec.

1 linear 1590 128 1 upconv 64 512 (4,1,0,1)

2 conv 128 32 (4,2,1,1) 2 upconv 512 256 ((1,4),(1,2),1,1)

3 conv 32 64 (4,2,1,1) 3 upconv 256 256 (3,1,1,1)

4 conv 64 128 (4,2,1,1) 4 upconv 256 128 ((1,4),(1,2),1,1)

5 conv 128 256 ((1,4),(1,2),1,1) 5 upconv 128 128 (3,1,1,1)

6 conv 256 512 ((1,4),(1,2),1,1) 5 upconv 128 64 (4,2,1,1)

7a conv 512 64 (4,1,0,1) 6 upconv 64 32 (4,2,1,1)

7b conv 512 64 (4,1,0,1) 7 upconv 32 1 (4,2,1,1)

8 linear 1 1590

Table 15. Comparison of generative coherence, generative quality, and classification accuracy as a function of ρ on the MNIST-SVHN-

Text dataset.

Coherence ↑ FID ↓
ρ Unconditional Conditional Unconditional Conditional Classification ↑

0.0 0.52 0.70 78.2 95.3 0.88

0.2 0.53 0.78 77.5 87.4 0.93

0.4 0.51 0.82 76.7 83.6 0.95

0.6 0.55 0.81 79.4 87.0 0.95

0.8 0.54 0.77 77.0 91.2 0.95
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