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Abstract

Meta-compilation schemes help to automatically build Just-in-Time (JIT) compilers from
interpreters by performing a meta-interpretation of the VM interpreter. Generated JIT
compilers face the well-known problem of phase ordering: selecting a good optimisation
sequence to apply to the compiled programs. Manual optimisation lists are hard to maintain
and are one-size-fits-all solutions that assume that a single sequence is equally effective in
all possible programs. Generating such a list automatically is still challenging nowadays.
In this paper, we explore the phase-ordering problem in the case of the meta-compilation
of Pharo VM interpreter primitives. In addition to a manual strategy, we present three
automatic strategies to find good-enough optimisation sequences: a search-based approach,
a predictive approach based on code shape, and an automatically-found fixed list approach.
We compare them altogether by measuring the relative compiled code size and their rate
of convergence. We evaluate this work over 17 of Pharo’s language interpreter primitives.
On average, the predictive strategy gives its optimal result before the rest with 21% fewer
optimisations, the search strategy finds better results in complex cases. This article shows
that automatic approaches seem promising for primitive meta-interpretation.

1 Introduction

Meta-compilation schemes help to automatically build Just-in-Time (JIT) compilers from interpreters (Sec-
tion 2)(Rigo & Pedroni, 2006; Vergu & Visser, 2018). A meta-compiler performs a meta-interpretation of
VM interpreter code to generate JIT compiler code. Such systems use meta-interpretation because they are
implemented as an abstract interpreter interpreting a VM interpreter. The meta in meta-interpreter comes
to the fact that they interpret an interpreter. The automatic generation of JIT compilers from an interpreter
eases programming language implementation extensions: There is no need to be a compiler expert to be able
to extend the JIT compiler. Moreover, we can build VMs for different languages by just providing different
interpreters.

Generated JIT compilers face the well-known problem of phase ordering (Almagor et al., 2003; Ashouri et al.,
2016): selecting a good optimisation sequence to apply to the compiled programs (Section 3). On the other
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hand, manual optimisation lists are hard to maintain and are one-size-fits-all solutions that assume that
a single sequence is equally effective in all possible programs. Generating such a list automatically is still
challenging nowadays. The interrelation between optimisations is hard to predict (Almagor et al., 2003) and
generates a large search space, raising the challenge of guiding the search and its stop condition (Almagor
et al., 2004). Figure 1 illustrates the problem by showing the number of instructions in the meta-compiled
primitiveAdd of Pharo’s VM as optimisations are applied. The figure shows three sets of optimisations:

1. optimisations that reduce the number of instructions,

2. optimisations that in addition to (1), keep the same number of instructions, and

3. optimisations that in addition to (1) and (2), increase the number of instructions.

This example shows that different sequences of optimisations produce different results and that if the search
stops at a local minimum it can prevent the obtention of better results. Existing work identifies the search
space as discrete with many local minima but rare good solutions. Many use machine learning to identify
optimisation sequences e.g., genetic algorithms, predictive algorithms, biased random searches, or neural
networks (Almagor et al., 2004; 2003; Kulkarni & Cavazos, 2012; Ashouri et al., 2016).

Optimisations step
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Figure 1: Trace of primitiveAdd with a search-based approach using the three heuristic levels. It shows the
change in the number of instructions in the IR as selected optimisations are applied for each level of heuristic.

In this paper, we explore the phase-ordering problem in the case of the meta-compilation of Pharo VM
interpreter primitives (Section 4). Until now, the meta-compilation scheme used a hand-written list that
took months of iterated work by compiler developers. This list is hard to maintain and sometimes applies
optimisations without effect in the compiled program. We use three alternative strategies to find good-
enough optimisation sequences: a search-based approach, a predictive approach based on code shape, and an
automatically-found fixed list approach. We compare them with the manual one by measuring the relative
compiled code size and their rate of convergence.

We evaluate this work over 17 of Pharo’s language interpreter primitives (Section 5). We show that all
strategies arrive at the same optimal result for most primitives. On average, the predictive strategy gives
its optimal result before the rest with 21% fewer optimisations. The search strategy finds better results
in complex cases. None of them found an optimisation sequence better than the hand-written version in
complex cases.

2



Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

2 Context: Meta-compilation of primitives

The present work is implemented for Pharo (Ducasse et al., 2017), a dynamically-typed object-oriented
programming language. In the Pharo Virtual Machine (VM), primitive definitions are methods written in
Slang, a subset of Pharo itself, inside an Interpreter class (Miranda et al., 2018).

Our meta-compiler, called Druid, performs an ahead-of-time meta-compilation of VM interpreter primitives
to generate a JIT compiler template for each of them. The meta-compilation works as a translation process
that takes as input the language interpreter and produces JIT compiler code. Our meta-compilation approach
uses meta-interpretation: it is implemented as an abstract interpreter interpreting the VM interpreter.

Internally, our meta-compiler uses an SSA-form Intermediate Representation (IR), a register-based control
flow graph, where optimisations are applied. Optimisations perform mutations on the IR. We show a diagram
of the architecture in Figure 2.

Druid

Primitive AST

Pharo VM

JIT CompilerInterpreter

Primitives Primitives 

primitive
Add

Meta-interpretation

IR

Meta-compilation

Target AST

gen_primi
tiveAdd

Optimisations

Figure 2: Architecture of the Druid meta-compiler. It receives as input the interpreter primitive definition
AST. It builds an IR where optimisations are applied. Finally, it generates a new primitive definition for
the JIT compiler.

In the end, the resulting IR is transformed into a JIT compiler template. This is a method inside a JIT
compiler class. The template uses abstract registers and operations and, at run time the JIT compiler maps
them to a specific target architecture and generates the expected machine code (Miranda, 2011).

Figure 3 illustrates the interpreter and JIT compiler code for the same primitiveAdd. This primitive performs
the addition of integer objects with an overflow check:

• At the interpreter level, it will pop the last two values on the stack (argument and receiver), check
that they are integer objects, calculate the addition of them, check it does not overflow, and finally
push the result to the stack.

• The JIT compiler is activated when the system detects a hot-spot. It uses the template to generate
machine code. The generated code performs the integer object checks on registers already loaded
with the first argument and receiver values, calculate the addition checking overflow, and move the
result to the expected register.
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1 Interpreter >> primitiveAdd
2 <numberOfArguments: 1>
3

4 | maybeSmallInteger maybeSmallInteger2 result |
5

6 maybeSmallInteger := self stackValue: 0.
7 maybeSmallInteger2 := self stackValue: 1.
8

9 "Check small integer objects"
10 (objectMemory isIntegerObject: maybeSmallInteger)
11 ifFalse: [ ^ self primitiveFail ].
12 (objectMemory isIntegerObject: maybeSmallInteger2)
13 ifFalse: [ ^ self primitiveFail ].
14

15 "Check for overflow"
16 result := self
17 sumSmallInteger: maybeSmallInteger
18 withSmallInteger: maybeSmallInteger2
19 ifOverflow: [ ^ self primitiveFail ].
20

21 self pop: 2 thenPush: result

1 JITCompiler >> gen_primitiveAdd
2 | jump1 jump2 jump3 currentBlock |
3 "Check small integer objects"
4 self TstCq: 1 R: Arg0Reg.
5 jump1 := self JumpZero: 0.
6 self TstCq: 1 R: ReceiverResultReg.
7 jump2 := self JumpZero: 0.
8

9 self MoveR: Arg0Reg R: TempReg.
10 self SubCq: 1 R: TempReg.
11 self MoveR: ReceiverResultReg R: ClassReg.
12 self AddR: ClassReg R: TempReg.
13

14 "Check for overflow"
15 jump3 := self JumpOverflow: 0.
16 self MoveR: TempReg R: ReceiverResultReg.
17 self genPrimReturn.
18

19 "Fallthrough failling primitive"
20 jump1 jmpTarget: self Label.
21 jump2 jmpTarget: self Label.
22 jump3 jmpTarget: self Label.

Figure 3: Interpreter vs. JIT compiler primitive for integer addition. The interpreter definition works with
values on the stack. The JIT compiler uses registers and machine code operations.

In both cases, if any check fails, the primitive fails and the virtual machine falls back to execute a normal
message send routine.

3 Motivation for optimal optimisation sequences

To have an optimised JIT compiler template an optimising meta-compiler is needed. Finding an optimal
optimisation sequence for a program is not trivial because the interrelation between them is hard to pre-
dict (Almagor et al., 2003). Some optimisations open new opportunities to others, so different orders usually
arrive at different results.

Figure 4 shows an example of the compiler phase-ordering problem with three optimisations. One removes
unused code (R), the second performs constant propagation without removing dead code (P) and the third
duplicates basic blocks increasing code size but uncovering optimization opportunities (D). The final number
of instructions in the IR of a primitive depends on the order that they are applied.

This dependency also implies that one optimisation could be applied multiple times in different moments.
Solving this problem implies generating a large discrete search space with many local minima but few optimal
solutions (Almagor et al., 2004). Guiding the search in this space and deciding when a solution is good enough
is a hard and not intuitive task.

Our research questions are as follow:

• Is there one heuristic that is good enough to optimise our set of primitives?

• How many optimisations are necessary, at least, to arrive at the optimal version of each primitive?
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Figure 4: Optimisation order. Applying the same optimisations in different orders produces different results.

4 Comparing the four approaches

To answer our questions, we developed three different strategies to select the optimisation sequence for a
primitive meta-compilation, that we compared to our pre-existent optimisation list hand-written by compiler
developers (manual strategy). We analysed them by comparing the resulting IR version and optimisation
sequences. The metric to compare IRs and to guide the search is the number of instructions of the Control
Flow Graph. Thus, an IR is better than another if it can perform the same primitive computation with
fewer instructions.

Manual strategy. This is a list of optimisations hand-written by experts based on their experience and
knowledge about how optimisations work. This list took months of iterated work by compiler developers.
Thus it is hard to maintain. This list is fixed, pre-calculated and the same for all primitives in a one-size-
fits-all fashion. As this strategy is not guided nor profiled, there is no way to know when it arrives at its
optimal result. This means that the optimisation list is always applied until the end, without effect in most
cases. We will use this strategy as a baseline to compare evaluation results.

Search strategy. This is a heuristic-based search using a hill climber algorithm that selects an optimisation
that reduces the number of instructions in the IR. It is an automatic approach, no need for optimisations
experts to find a good optimisations sequence. This strategy is configured to find the first, last or best
optimisation in a list. It computes all possible optimisations to the current IR and compares the resulting
IR. Building search heuristics is hard, especially with complex IRs. It increases compilation time since it
has to try many possible options in each stage.

Search-based heuristic
Level Optimisation target Post optimisations
1 Reduce the number of instructions -
2 Propagation and constants folding Dead Code Elimination
3 Code duplication Copy Propagation, SCCP, Dead Code Elimi-

nation and Clean Control Flow

Table 1: Different search-based heuristics. Each level describes the optimisation target and the post-
optimisations to be selected by the hill climber algorithm.

The heuristic is based on a hill-climber algorithm with three levels of search presented in Table 1. In
our approach, if there exist optimisations that do not improve the IR removing instructions but open new
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opportunities to others, they are selected. In the end, if the algorithm does not find any optimisation at any
level, then the search is finished and a Null optimisation is selected. A Null optimisation does not perform
any change on the IR, it is not necessary to continue the search, thus it has arrived at its optimal result.

At level 1, it searches for optimisations that improve the IR for our metric. Only optimisations that reduce
the number of instructions are selected here. If it does not find any optimisation, because no one can reduce
instructions in the current state, the next configured levels are used.

At level 2, it searches for an optimisation that improves the IR for our metric after applying the opti-
misation and removing dead code. This allows the algorithm to select optimisations that do not remove
instructions but left unused instructions, such as constant propagation and folding. When it does not find
any optimisation, the next configured levels are used.

Level 3 takes into account optimisations that produce code duplication. As these optimisations increase the
number of instructions, we consider the IR after copy propagation and folding and dead code elimination.
This allows the selection of optimisations that duplicate code but open other opportunities.

Figure 1 shows the effect of each different level. Optimisations selected by level 1 always reduce the number
of instructions. Optimisations selected by level 2 keep the same number of instructions but they decrease
later. Optimisations selected by level 3 increase the number of instructions, where the graph move from 20
to 44 instructions (more than 100%), but at the end, the IR finishes with fewer instructions, in our example
with 10 instructions (50% less). The stable value at the end represents the number of instructions of the
program after applying all optimisations.

Predictive strategy. This strategy computes a list of possible optimisations based on IR form. It is an
automatic approach that does not try every optimisation: the shape of the IR selects the corresponding
optimisation to be applied. Table 2 shows the conditions for each optimisation that the IR should satisfy.

At first, this strategy evaluates the incoming IR and creates a list of possible optimisations. It applies all of
them in any order. Once finished, it recomputes the list of possible optimisations using the current IR and
repeats. This strategy ends when the list of possible optimisations to apply does not improve the current
IR, or when the total number of optimisations arrives at a configurable limit.

Predictive strategy conditions
Optimisation IR Condition
Branch Collapse If there is a conditional jump without an inlined condition
Clean Control Flow If there is a simple jump to a block with a unique predecessor
Copy Propagation If there is a copy instruction
Dead Block Elimination If there is a block without predecessors
Dead Branch Elimination If there is a dead branch
Dead Code Elimination If an instruction (with a result computation) has no users
Dead Edge Splitting If there is a dead path
Failure Code Tail Duplication If the exit primitive block has more than one predecessor
Phi Simplication If there is a phi
Redundant Copy Elimination If there is a copy between same physical register
SCCP If an instruction lattice results in a constant value (a constant

folding success)

Table 2: Predictive strategy IR conditions for each optimisation.

Automatically-found fixed list strategy. This strategy uses a fixed list of optimisations automatically
generated by the previous search strategy. We selected the largest generated optimisation list and evaluate
it with all primitives. As it is based on a fixed list, this strategy applies all optimisations until the end,
similarly to themanual strategy. This strategy does not need optimisation experts to find a good optimisation
sequence, making it a cheap strategy that is calculated once and reused for many cases.
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5 Evaluation

Currently, our meta-compiler supports the meta-compilation of the 17 primitives listed in Table 3. Table 4
shows all implemented optimisations with a small description and opportunities that it opens.

Primitives
Name Description
primitiveAdd Small integers addition with overflow check
primitiveSubtract Small integers subtraction with overflow check
primitiveMultiply Small integers multiplication with overflow check
primitiveLessThan Small integers comparison
primitiveGreaterThan Small integers comparison
primitiveLessOrEqual Small integers comparison
primitiveGreaterOrEqual Small integers comparison
primitiveEqual Small integers comparison
primitiveNotEqual Small integers comparison
primitiveDivide Machine integers division
primitiveQuo Machine integers quotient
primitiveBitXor Bits xor
primitiveBitShift Bits shift
primitiveFail Failing primitive
primitiveMod Small integers quotient with overflow check
primitiveDiv Small integers division with overflow check
primitiveAt Array access with bound check

Table 3: Pharo VM interpreter primitives supported by our meta-compiler.

The search-based strategy we use is always the level 3 heuristic in three different versions: the first, the last
and the best result that improves the metric. We applied all strategies to all supported primitives tracing
the number of instructions after each optimisation, similar to Figure 1.

5.1 Optimal IR

For each strategy, we show the number of instructions after applying all optimisations. This number refers
to the minimum number of instructions found by the strategy for each primitive. We see that all strategies
arrive at the same number of instructions for all simple primitives. For complex primitives, small integer
division and quotient and array access, all strategies arrive at an IR with more instructions than the manual
approach. Figure 5 shows the number of instructions relative to the manual strategy for each primitive.

Out of the three variants of the search strategy, the Best configuration achieves better results, having on
average 14% more instructions than the manual strategy. We will consider only this configuration in the
rest of this paper.

Predictive and automatically-found fixed list strategies finish with 22% and 26% more instructions than
manual strategy on average, respectively. It demonstrates that our heuristics are good enough for most
supported primitives, they arrive at the same result, but they have problems taking decisions over complex
scenarios.

5.2 Optimisation list

We measure how many optimisations were performed by each strategy to arrive at their optimal number
of instructions in each trace, as illustrated in Figure 6. On average, Best search and automatically-found
fixed list strategies arrive at each optimal IR by applying the same number of optimisations as the manual
strategy. The predictive strategy arrives at its optimal IR with 21% fewer optimisations than the manual
strategy. We identify that the manual strategy converges faster in the case of simple integer operations, this
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Optimisations
Name Description Open opportunities
Branch Collapse Inline conditions in conditional jumps Dead path analysis
Clean Control Flow Merge instructions in consecutive

blocks to avoid unnecessary jumps
Better local analysis

Copy Propagation Replace copy instructions in operands
by real value

Better dependency analysis and
possible unused code

Dead Block Elimina-
tion

Remove inaccessible blocks -

Dead Branch Elimina-
tion

Remove branches with only dead paths Better propagations

Dead Code Elimina-
tion

Remove unused instructions -

Dead Edge Splitting Duplicate blocks with dead and not-
dead paths

Create branches with only dead
paths

Failure Code Tail Du-
plication

Tail duplicate block with resulted code Divide fail and success paths

Phi Simplication Replace one operand phis with copy in-
struction

Better propagations

Redundant Copy
Elimination

Remove copies of form x := x -

SCCP Performs constants folding and propa-
gation

Better dependency analysis and
possible unused code

Table 4: Optimisations implemented in our meta-compiler. For each optimisation, we present a description
and possible opportunities that it opens to other optimisations.

is probably because the optimisation list was created based on these primitives. In the cases of complex
primitives, where not all strategies arrive at the same IR, we have different results.

It is important to note that this analysis is good to compare the rate of convergence of each strategy, but
it does not answer which strategy will finish before. Remember that manual and automatically-found fixed
list strategies must apply all optimisations until the end, while search and predictive strategies have to test
many possible options in each state.

5.3 Results

We found that all strategies arrive at the same optimal IR in most primitives compilation. For those simple
cases, Predictive and Best Search strategies achieve the optimal IR with 21% fewer optimisations than the
manual strategy, on average. In complex cases, the best search strategy arrives at IRs with 14% more
instructions than the manual strategy, on average. It is the closest strategy to the manual approach, taking
a similar number of optimisations to arrive at the optimal IR.

The best search and predictive strategies calculate the next optimisation(s) based on the current IR state.
These strategies add a searching time to the optimisation time. This is a trade-off between automatic
optimisation selection and fixed optimisation list.

The automatically-found fixed list strategy is the cheapest option measured by avoiding search time without
manual selection by the developers. For complex primitives, it arrives with 26% more instructions than the
manual strategy, on average, but it keeps the same rate of convergence. The manual strategy arrived at
better optimal results, but it is also the hardest to maintain.
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Figure 5: Number of instructions by strategy after applying all selected optimisations compare to manual
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Figure 6: Number of optimisations to arrive at its optimal version. Lower is better.

6 Related work

Cooper et al. describe the problem of building a well-ordered list of optimisations in optimising compil-
ers (Cooper et al., 2002). They identify the search space as discrete with many local minima but rare good
solutions. They suggest solutions based on genetic algorithms, predictive algorithms, or biased random
searches to improve a simple hill climber (Almagor et al., 2004). Kulkarni et al. explain how to improve the
search time of optimisation sequences using genetic algorithms (Kulkarni et al., 2005).
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Kulkarni and Cavazos describe some issues to solve the phase-ordering problem using genetic algorithms and
propose a neuro-evolution technique to construct heuristics based on neural networks (Kulkarni & Cavazos,
2012). The survey (Ashouri et al., 2018) is a good description of state-of-the-art techniques to solve these
issues using Machine Learning. Most of the work in this area is based on machine learning techniques.

Ashouri et al. propose a predictive trained model for speedup predictions based on a greedy Depth First
Search heuristic (Ashouri et al., 2016). It can select the next-best optimisation improving the default LLVM-
generated code by 2%.

Guo et al. developed an optimisation-specific search heuristic, based on specific knowledge about optimisa-
tions, and compares it with other generic searches (Guo et al., 2010). Their work is close to the one presented
here.

Other research explores feedback-driven searches. Some use strategies to explore the optimisation space
based on iterative compilation and many optimised versions of the same code (Triantafyllis et al., 2003).
Others explore a profile-based approach based on an execution profiler (Chang et al., 1991).

7 Conclusion

In this paper, we compared four different strategies to select the list of optimisations to apply in a meta-
compiler of primitive methods: manual, best search, predictive and automatically-found fixed list. We mea-
sured the number of instructions for each optimised IR and the number of optimisations necessary to arrive
at it by each strategy.

We found that all strategies arrive at the same IR in most primitive compilations. On average, the automatic
predictive strategy achieves its optimal IR with 21% fewer optimisations than the manual strategy built by
compiler developers. In complex cases, on average, the best search strategy arrives at IRs with 14% more
instructions than the manual strategy.

We have shown that good-enough compiled code for Pharo’s primitives can be achieved by automatically
selecting optimisations. Searching time is the trade-off between automatic searches and a fixed optimisation
list maintained by compiler developers. But long-time analysis is not a big problem for this work, as it is an
ahead-of-time task. We can search for a good solution without time constraints. We want to work in better
heuristics for new search-based approaches.

As we are looking to increase the number of supported primitives and implemented optimisations, we are
interested in an automatic approach to applying the optimisations. The next primitives will be more complex
than the current ones, and we will need to implement new optimisations for them. With an automatic
approach, VM developers will be free of maintaining the current manual list of optimisations for the meta-
compiler, which is less trivial to understand in each development iteration.

Correlations between the number of instructions and the number of optimisations expose the presence of
primitives with similar behaviour, thus similar IR. It suggests that a clustering-based approach (Martins
et al., 2014) will allow reusing one optimisation sequence for many primitives. Maybe a mix of our predictive
and best search strategies can be an option also.
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