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ABSTRACT

The remarkable success of reinforcement learning (RL) heavily relies on observing
the reward of every visited state-action pair. In many real world applications,
however, an agent can observe only a score that represents the quality of the whole
trajectory, which is referred to as the trajectory-wise reward. In such a situation,
it is difficult for standard RL methods to well utilize trajectory-wise reward, and
large bias and variance errors can be incurred in policy evaluation. In this work,
we propose a novel offline RL algorithm, called Pessimistic vAlue iteRaTion with
rEward Decomposition (PARTED), which decomposes the trajectory return into
per-step proxy rewards via least-squares-based reward redistribution, and then
performs pessimistic value iteration based on the learned proxy reward. To ensure
the value functions constructed by PARTED are always pessimistic with respect
to the optimal ones, we design a new penalty term to offset the uncertainty of
the proxy reward. For general episodic MDPs with large state space, we show
that PARTED with overparameterized neural network function approximation
achieves an Õ(DeffH

2/
√
N) suboptimality, where H is the length of episode, N

is the total number of samples, and Deff is the effective dimension of the neural
tangent kernel matrix. To further illustrate the result, we show that PARTED
achieves an Õ(dH3/

√
N) suboptimality with linear MDPs, where d is the feature

dimension, which matches with that with neural network function approximation,
when Deff = dH . To the best of our knowledge, PARTED is the first offline RL
algorithm that is provably efficient in general MDP with trajectory-wise reward.

1 INTRODUCTION

Reinforcement learning (RL) aims at searching for an optimal policy in an unknown environment
Sutton & Barto (2018). To achieve this goal, an instantaneous reward is typically required at every
step so that RL algorithms can maximize the cumulative reward of a Markov Decision Process
(MDP). In recent years, RL has achieved remarkable empirical success with a high quality reward
function Mnih et al. (2015); Levine et al. (2016); Silver et al. (2017); Senior et al. (2020); Maei
(2011). However, in many real-world scenarios, instantaneous rewards are hard or impossible to be
obtained. For example, in the autonomous driving task Shalev-Shwartz et al. (2016), it is very costly
and time consuming to score every state-action pair that the agent (car) visits. In contrast, it is fairly
easy to score the entire trajectory after the agent completing the task Chatterji et al. (2021). Therefore,
in practice, it becomes more reasonable to adopt trajectory-wise reward schemes, in which only a
return signal that represents the quality of the entire trajectory is revealed to the agent in the end. In
recent years, trajectory-wise rewards have become prevalent in many real-world applications Gong
et al. (2019); Olivecrona et al. (2017); Lin et al. (2018); Hein et al. (2017); Rahmandad et al. (2009).

Although trajectory-wise rewards are convenient to be obtained, it is often challenging for standard
RL algorithms to utilize such a type of rewards well due to the high bias and variance it can introduce
in the policy evaluation process Arjona-Medina et al. (2019), which leads to unsatisfactory policy
optimization results. To address such an issue, Chatterji et al. (2021); Pacchiano et al. (2021) proposed
to encode the whole trajectory and search for a non-Markovian trajectory-dependent optimal policy
using the contextual bandit method. Although this type of approaches have promising theoretical
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guarantees, they are difficult to be implemented in practice due to the difficulty of searching the large
trajectory-dependent policy space whose dimension increases exponentially with the horizon length.
Another type of approaches widely adopted in practice is called reward redistribution, which learns a
reward function by allocating the trajectory-wise reward to every visited state-action pairs based on
their contributions Arjona-Medina et al. (2019); Liu et al. (2019); Gangwani et al. (2020); Ren et al.
(2021b); Efroni et al. (2021). Since the reward function in reward redistribution is typically learned
via solving a supervised learning problem, such an approach is sample-efficient and can be integrated
into the existing RL frameworks easily. However, most of existing reward redistribution approaches
do not have theoretical performance guarantee. So far, only Efroni et al. (2021) proposes a provably
efficient reward redistribution algorithm, but is only applicable to tabular episodic MDP and requires
both reward and transition kernel to be horizon-independent.

Despite the superior performance of the reward redistribution method, all previous algorithms
considered only the online setting, which are not applicable to many critical domains where offline
sampling is preferred (or can be required), as interactive data collection could be very costly and
risky Shalev-Shwartz et al. (2016); Gottesman et al. (2019). How to design reward redistribution
in offline RL for trajectory-wise rewards is an important but fully unexplored problem. For such
a problem, designing reward redistribution algorithms can be hard due to the insufficient sample
coverage issue Wang et al. (2020a) in offline RL. Further challenges can be encountered when we try
to design provably efficient reward distribution algorithms for general MDPs with large state space
and horizon-dependent rewards and transition kernels, which has not been studied in online setting.

Thus, the goal of this work is to design an offline RL algorithm with reward redistribution for
trajectory-wise rewards, which has provable efficiency guarantee for general episodic MDPs.

1.1 MAIN CONTRIBUTIONS

In this paper, we consider episodic MDP with possibly infinity state space and horizon-dependent
reward function and transition kernel. The trajectory-wise reward adopts a standard sum-form as
considered previously in Han et al. (2021); Zheng et al. (2018); Klissarov & Precup (2020); Oh et al.
(2018); Ren et al. (2021b); Efroni et al. (2021), in which only the summation of rewards over the
visited state-action pairs is revealed at the end of each episode.

We propose a novel Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED) algorithm
for offline RL with trajectory-wise rewards, which incorporates a least-square-based reward redis-
tribution into the pessimistic value iteration (PEVI) algorithm Jin et al. (2021); Yin et al. (2021;
2020; 2022); Yin & Wang (2021b). Differently from the standard PEVI with instantaneous reward,
in which reward and value function can be learned together by solving a single regression problem,
in PARTED, reward need to be learned separately from the value function by training a regression
model to decompose the trajectory return into per-step proxy rewards. In order to capture the reward
and value function for a large state space, we adopt overparameterized neural networks for function
approximation. Moreover, to offset the estimation error of proxy rewards, we design a penalty
function by transfering the uncertainty from the covariance matrix of trajectory features to step-wise
proxy rewards via an "one-block-hot" vector, which is new in the literature.

We show that our proposed new penality term ensures that the value functions constructed by PARTED
are always pessimistic with respect to the optimal ones. Furthermore, with overparameterized neural
network function approximation, we show that PARTED achieves an Õ(DeffH

2/
√
N) suboptimality,

whereH is the length of episode,N is the total number of samples, andDeff is the effective dimension
of neural tangent kernel matrix. To further illustrate our result, we show that PARTED achieves
an Õ(dH3/

√
N) suboptimality in the linear MDP setting, where d is the feature dimension, which

matches that in the neural network function approximation setting when Deff = dH . To the best of
our knowledge, PARTED is the first-known offline RL algorithm that is provably efficient in general
episodic MDPs with trajectory-wise rewards.

1.2 RELATED WORKS

Trajectory-Wise Reward RL. Policy optimization with trajectory-rewards is extremely difficult. A
variety of practical strategies have been proposed to resolve this technical challenge by redistributing
trajectory rewards to step-wise rewards. RUDDER Arjona-Medina et al. (2019) trains a return
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predictor of state-action sequence with LSTM Hochreiter & Schmidhuber (1997), and the reward
at each horizon is then assigned by the difference between the predications of two adjacent sub-
trajectories. Later, Liu et al. (2019) improves RUDDER and utilizes a Transformer Vaswani et al.
(2017) for better reward learning. IRCR Gangwani et al. (2020) assigns the proxy reward of a
state-action pair as the normalized value of trajectory returns that contain the correspondingly state-
action pair. RRD Ren et al. (2021b) learns a proxy reward function by solving a supervised learning
problem together with a Monte-Carlo sampling strategy. Although those methods have achieved great
empirical success, they all lack overall theoretical performance guarantee.

Differently from empirical studies, existing theoretical works of trajectory-wise reward RL are rare
and focus only on the online setting. One line of research assumes trajectory reward being non-
Markovian, and thus focuses on searching for a non-Markovian, trajectory-dependent optimal policy.
Chatterji et al. (2021) assumes that trajectory-wise reward is a binary signal generated by a logistic
classifier with trajectory embedding as the input. In this setting, the policy optimization problem is
reduced to a linear contextual bandit problem in which the trajectory embedding is the contextual
vector. Pacchiano et al. (2021) considers a similar setting as Chatterji et al. (2021) but assumes only
having access to a binary preference score between two trajectories instead of an absolute reward of
a trajectory. Another line of research assumes that the trajectory-wise reward is the summation of
underlying step-wise Markovian rewards. The goal of this line of work is to search for an optimal
Markovian policy. Cohen et al. (2021) adopted a mirror descent approach so that the summation of
rewards alone is sufficient to perform the policy optimization. This approach relies on the on-policy
unbiased sampling of trajectory rewards, and can hardly be extended to the offline setting. Efroni
et al. (2021) proposed to recover the reward by solving a least-squared regression problem that fits
the summation of reward estimation toward the trajectory reward.

To our best knowledge, offline RL with trajectory-wise rewards (where no interaction with the envi-
ronment is allowed) has not been studied before, and our work develops the first-known algorithm for
such a setting with provable sample efficiency guarantee. Further, although our reward redistribution
approach applies the least-square based method, which has also been adopted in Efroni et al. (2021),
our algorithm is designed for general MDPs with possibly infinite state and horizon-dependent
rewards and transition kernels, which is very different from that in Efroni et al. (2021) designed for
tabular MDPs with time-independent rewards and transition kernels.

Offline RL. The major challenge in offline RL is the insufficient sample coverage in the pre-collected
dataset, which arises from the lack of exploration Wang et al. (2020a); Liu et al. (2020). To address
such a challenge, two types of algorithms have been studied: (1) regularized approaches, which
prevent the policy from visiting states and actions that are less covered by the dataset Dadashi et al.
(2021); Fujimoto et al. (2019b;a); Wang et al. (2020b); Fujimoto & Gu (2021); (2) pessimistic
approach, which penalize the estimated values of the less-covered state-action pairs Buckman et al.
(2020); Kumar et al. (2020). So far, a number of provably efficient pessimistic offline RL algorithm
have been proposed in both tabular MDP setting Yin et al. (2020); Shi et al. (2022); Yan et al. (2022);
Li et al. (2022); Yin & Wang (2021a); Ren et al. (2021a); Xie et al. (2021b); Yin & Wang (2021b);
Rashidinejad et al. (2021) and linear MDP setting Jin et al. (2021); Xie et al. (2021a); Zanette
et al. (2021); Wang et al. (2020a); Zanette (2021); Foster et al. (2021); Yin et al. (2022). However,
the efficiency of all those works relies on both the availability of instantaneous reward and special
structures of MDP, which can hardly be satisfied in practical settings. In this work, we take a first
step towards relaxing those two assumptions by proposing PARTED, which is provably efficient in
general episodic MDPs with trajectory-wise rewards.

2 PRELIMINARY AND PROBLEM FORMULATION

2.1 EPISODIC MARKOV DECISION PROCESS

An episodic Markov decision process (MDP) is defined by a tuple (S,A,P, r,H), where S and
A are the state and action spaces, H > 0 is the length of each episode, and P = {Ph}h∈[H] and
r = {rh}h∈[H] are the transition kernel and reward, respectively, where [n] = {1, 2, · · · , n} for
integer n ≥ 1. We assume S is a measurable space of possibly infinite cardinality and A is a finite
set. For each h ∈ [H], Ph(·|s, a) denotes the transition probability when action a is taken at state s at
timestep h, and rh(s, a) ∈ [0, 1] is a random reward that is observed with state-action pair (s, a) at
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timestep h. We denote the mean of the reward as Rh(s, a) = E[rh(s, a)|s, a] for all (s, a) ∈ S ×A.
For any policy π = {πh}h∈[H], we define the state value function V πh (·) : S → R and state-action
value function Qπh(·) : S ×A → R at each timestep h as

V πh (s) = Eπ

[
H∑
t=h

rt(st, at)

∣∣∣∣∣sh = s

]
, Qπh(s, a) = Eπ

[
H∑
t=h

rt(st, at)

∣∣∣∣∣(sh, ah) = (s, a)

]
,

where the expectation Eπ is taken with respect to the randomness of the trajectory induced by policy
π, which is obtained by taking action at ∼ πt(·|st) and transiting to the next state st+1 ∼ Pt(·|st, at)
at timestep t ∈ [H]. At each timestep h ∈ [H], for any f : S → R, we define the transition
operator as (Phf)(s, a) = E [f(sh+1)|(sh, ah) = (s, a)] and the Bellman operator as (Bhf)(s, a) =
Rh(s, a) + (Phf)(s, a). For episodic MDP (S,A,P, r,H), we have

Qπh(s, a) = (BhV πh+1)(s, a), V πh (s) = ⟨Qπh(s, ·), πh(·|s)⟩A, V πH+1(s) = 0,

where ⟨·, ·⟩A denotes the inner product over A. We define the optimal policy π∗ as the policy that
yields the optimal value function, i.e., V π

∗

h (s) = supπ V
π
h (s) for all s ∈ S and h ∈ [H]. For

simplicity, we denote V π
∗

h and Qπ
∗

h as V ∗
h and Q∗

h, respectively. The Bellman optimality equation is
given as follows

Q∗
h(s, a) = (BhV ∗

h )(s, a), V ∗
h (s) = argmax

a∈A
Qπh(s, ·), V ∗

H+1(s) = 0, (1)

The goal of reinforcement learning is to learn the optimal policy π∗. For any fixed π, we define the
performance metric as

SubOpt(π, s) = V ∗
1 (s)− V π1 (s),

which is the suboptimality of the policy π given the initial state s1 = s.

2.2 TRAJECTORY-WISE REWARD AND OFFLINE RL

In the trajectory-wise reward setting, the transition of the environment is still Markovian and the
agent can still observe and interact with the environment instantly as in standard MDPs. However,
unlike standard MDPs in which the agent can receive an instantaneous reward rh(s, a) for every
visited state-action pair x at each timestep h, in the trajectory-wise reward setting, only a reward
that is associated with the whole trajectory can be observed at the end of the episode, i.e., r(τ)
where τ = {(sτ1 , aτ1), · · · , (sτH , aτH)} denotes a trajectory and (sτh, a

τ
h) is the h-th state-action pair in

trajectory τ , which is called "trajectory reward" in the sequel. In this work, we consider the setting in
which the trajectory reward is the summation of the underlying instantaneous reward in the trajectory
of MDP (S,A,P, r,H), i.e., r(τ) =

∑H
h=1 rh(s

τ
h, a

τ
h). We denote the mean of the trajectory reward

as R(τ) = E[r(τ)|τ ] =
∑H
h=1Rh(s

τ
h, a

τ
h). Such a sum-form reward has been commonly considered

in both theoretical Efroni et al. (2021) and empirical studies Han et al. (2021); Zheng et al. (2018);
Klissarov & Precup (2020); Oh et al. (2018); Ren et al. (2021b). It models the situations where the
agent’s goal is captured by a certain metric with additive properties, e.g., the energy cost of a car
during driving, the click rate of advertisements during a time interval, or the distance of a robot’s
running. Such a form of reward can be more general than the standard RL feedback and is expected to
be more common in practical scenarios. Note that RL problems under trajectory-wise rewards is very
challenging, as traditional policy optimization approach typically fails due the obscured feedback
received from the environment, which causes large value function evaluation error Han et al. (2021).

We consider the offline RL setting, in which a learner has access only to a pre-collected dataset D
consisting of N trajectories {τi, r(τi)}N,Hi,h=1 rolled out from some possibly unknown behavior policy
µ, where τi and r(τi) are the i-th trajectory and the observed trajectory reward of τi, respectively.
Given this batch data D with only trajectory-wise rewards and a target accuracy ϵ, our goal is to find
a policy π such that SubOpt(π, s) ≤ ϵ for all s ∈ S.

2.3 OVERPARAMETERIZED NEURAL NETWORK

In this paper, we consider the function approximation setting, in which the state-action value function
is approximated by a two-layer neural network. To simplify the notation, we denote X = S ×A and
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view it as a subset of Rd. We further assign a feature vector x ∈ X to represent a state-action pair
(s, a). Without loss of generality, we assume that ∥x∥2 = 1 for all x ∈ X . We also allow x = 0 to
represent a null state-action pair. We now define a two-layer neural network f(·, b, w) : X → R with
2m neurons and weights (b, w) as

f(x; b, w) =
1√
2m

2m∑
r=1

bj · σ(w⊤
r x), ∀x ∈ X , (2)

where σ(·) : R → R is the activation function, br ∈ R and wr ∈ Rd for all r ∈ [2m], and b =
(b1, · · · , b2m)⊤ ∈ R2m and w = (w⊤

1 , · · · , w⊤
2m)⊤ ∈ R2md. We make the following assumption for

σ(·), which can be satisfied by a number of activation functions such as ReLU and tanh(·).
Assumption 1. For all x ∈ X , we have |σ′(x)| ≤ Cσ < +∞ and σ′(0) = 0.
We initialize b and w via a symmetric initialization scheme Gao et al. (2019); Bai & Lee (2019): for
any 1 ≤ r ≤ m we set b0,r ∼ Unif({−1, 1}) and w0,r ∼ N(0, Id/d), where Id is the identity matrix
in Rd, and for any m + 1 ≤ r ≤ 2m, we set b0,r = −b0,r−m and w0,r = w0,r−m. Under such an
initialization, the initial neural network is a zero function, i.e. f(x; b0, w0) = 0 for all x ∈ X , where
b0 = [b0,1, · · · , b0,2m]⊤ and w0 = [w⊤

0,1, · · · , w⊤
0,2m]⊤ are initialization parameters. During training,

we fix the value of b at its initial value and only optimize w. To simplify the notation, we denote
f(x; b, w) as f(x;w) and ∇wf(x,w) as ϕ(x,w).

Notations. We use Õ(X) to refer to a quality that is upper bounded by X , up to poly-log factors
of d,H,N,m and (1/δ). Furthermore, we use O(X) to refer to a quantity that is upper bounded by
X up to constant multiplicative factors. We use Id as the identity matrix in dimension d. Similarly,
we denote by 0d ∈ Rd as the vector whose components are zeros. For any square matrix M , we let
∥M∥2 denote the operator norm of M . Finally, for any positive definite matrix M ∈ Rd×d and any
vector x ∈ Rd, we define ∥x∥M =

√
x⊤Mx.

3 ALGORITHM

In this section, we propose a Pessimistic vAlue iteRaTion with rEward Decomposition (PARTED)
algorithm based on the neural network function approximation. PARTED shares a similar structure
as that of pessimistic value iteration (PEVI) Jin et al. (2021); Xie et al. (2021b); Yin et al. (2020), but
has a very different design due to trajectory-wise rewards. In PEVI, a pessimistic estimator of the
value function is constructed from the dataset D and the Bellman optimality equation is then iterated
based such an estimator. Since instantaneous rewards are available in PEVI, given a function class G,
PEVI constructs an estimated Bellman backup of value function (B̂hV̂h+1) by solving the following
regression problem for all h ∈ [H] in the backward direction:

(B̂hV̂h+1) = argmin
gh∈G

LhPEVI(gh) =
∑
τ∈D

(
rh(x

τ
h) + V̂h+1(s

τ
h+1)− gh(x

τ
h)
)2

+ λ · Reg(gh). (3)

In eq. (3), V̂h+1(·) is the pessimistic estimator of optimal value function constructed for horizon h+1,
λ > 0 is a regularization parameter and Reg(·) is the regularization function. The optimal state-action
value function can then be estimated as Q̂h(·) = min{(B̂hV̂h+1)(·)− Γh(·), H}+, where −Γh is a
negative penalty used to offset the uncertainty in (B̂hV̂h+1)(·) and guarantee the pessimism of Q̂h.

However, in PARTED (see Algorithm 1) designed for trajectory-wise rewards, since instantaneous
reward rh(·) is not available, we can no longer obtain (B̂hV̂h+1) in the same way as PEVI by solving
the regression problem in eq. (3). To overcome such an issue, in PARTED, we construct two estimators
r̂h and (P̂hV̂h+1) for instantaneous reward rh and transition value function (PhV̂h+1), respectively.
The estimated Bellman backup can then be formulated as (B̂hV̂h+1)(·) = r̂h(·) + (P̂hV̂h+1)(·).
Reward Redistribution. In order to estimate the instantaneous rewards from the trajectory-wise
reward, we use a neural network f(·, θh) given in eq. (2) to represent per-step mean reward Rh(·)
for all h ∈ [H], where θh ∈ R2md is the parameter. We further assume, for simplicity, that all the
neural networks share the same initial weights denoted by θ0 ∈ R2md. We define the following loss
function Lr(·) : R2mdH → R for reward redistribution as

Lr(Θ) =
∑
τ∈D

[∑H
h=1 f(x

τ
h, θh)− r(τ)

]2
+ λ1 ·

∑H
h=1 ∥θh − θ0∥22 , (4)
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Algorithm 1 Neural Pessimistic Value Iteration with Reward Decomposition (PARTED)

Input: Dataset D = {τi, r(τi)}N,Hi,h=1

Initialization: Set V̂H+1 as zero function
Obtain R̂h and Θ̂ according to eq. (5)
for h = H,H − 1, ·, 1 do

Obtain P̂hV̂h+1 and ŵh according to eq. (7)
Obtain Γh(·, Θ̂, ŵh) according to eq. (10)
Obtain Q̂h(·) and V̂h(·) according to eq. (11) and let π̂h(·|s) = argmaxπh

⟨Q̂h(s, ·), πh(·|s)⟩
end for

where Θ = [θ⊤1 , · · · , θ⊤H ]⊤ ∈ R2mdH and λ1 > 0 is a regularization parameter. Then, the per-step
proxy reward R̂h(·) is obtained by solving the following optimization problem

R̂h(·) = f(·, θ̂h), where Θ̂ = argmin
Θ∈R2mdH

Lr(Θ) and Θ̂ = [θ̂⊤1 , · · · , θ̂⊤H ]⊤. (5)

Transition Value Function Estimation. Similarly, we use H neural networks given in eq. (2) with
parameter {wh}h∈[H] to estimate {(PhV̂h+1)(·)}h∈[H], where wh ∈ R2md is the parameter of the
h-th network. Specifically, for each h ∈ [H], we define the loss function Lhv (wh): R2md → R as

Lhv (wh) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− f(xτh, wh)

)2
+ λ2 · ∥wh − w0∥22 , (6)

where λ2 > 0 is a regularization parameter and w0 is the initialization shared by all neural networks.
The estimated transition value function (P̂hV̂h+1)(·) : X → R can be obtained by solving the
following optimization problem

(P̂hV̂h+1)(·) = f(·, ŵh), where ŵh = argminwh∈R2md Lhv (wh). (7)

Penality Term Construction. It remains to construct the penalty term Γh to offset the uncertainties
in R̂h and (P̂hVh+1). First consider the penalty of R̂h(·) for each h ∈ [H]. For any τ ∈ D and
Θ ∈ R2mdH , we define a trajectory feature Φ(τ,Θ) = [ϕ(xτ1 , θ1)

⊤, · · · , ϕ(xτH , θH)⊤]⊤. Based on
Φ(τ,Θ), the trajectory feature covariance matrix Σ(Θ) ∈ R2mdH×2mdH is then defined as

Σ(Θ) = λ1 · I2mdH +
∑
τ∈D Φ(τ,Θ)Φ(τ,Θ)⊤.

We also define an "one-block-hot" vector Φh(x,Θ) = [0⊤
2md, · · · , ϕ(x, θh)⊤, · · · ,0⊤

2md]
⊤ for all

x ∈ X , where Φh(x,Θ) ∈ R2mdH is a vector in which [Φh(x,Θ)]2md(h−1)+1:2mdh = ϕ(x, θh) and
the rest entries are zero. The penalty term of reward for a given Θ ∈ R2mdH is defined as:

br,h(x,Θ) =
[
Φh(x,Θ)⊤Σ−1(Θ)Φh(x,Θ)

]1/2
, ∀x ∈ X . (8)

Note that the reward penalty term br,h(x,Θ) is new and first proposed in this work. By constructing
br,h(x,Θ) in this way, we can capture the effect of uncertainty caused by solving the trajectory-wise
regression problem in eq. (4), which is contained in the covariance matrix Σ(Θ), on the proxy reward
f(·, θ̂h) at each step h ∈ [H], via the "one-block-hot" vector Φh(·,Θ).

Next, we consider the penalty of (P̂hV̂h+1)(·) for each h ∈ [H]. We define the per-step feature
covariance matrix Λh(wh) ∈ R2md×2md as

Λh(w) = λ2 · I2md +
∑
τ∈D

ϕ(xτh, w)ϕ(x
τ
h, w)

⊤.

Then, the penality term of (P̂hV̂h+1)(·) for a given w ∈ R2md is defined as

bv,h(x,w) =
[
ϕ(x,w)⊤Λh(w)

−1ϕ(x,w)⊤
]1/2

, ∀x ∈ X . (9)

Finally, combining eqs. (8) and (9), the penalty term for B̂hV̂h+1(·) is constructed as

Γh(x,Θ, w) = β1br,h(x,Θ) + β2bv,h(x,w), (10)
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where β1, β2 > 0 are parameters. The estimator of Qh(·) and Vh(·) can then be obtained as

Q̂h(·) = min{R̂h(·) + (P̂hV̂h+1)(·)− Γh(·, Θ̂, ŵh), H}+, V̂h(·) = argmaxa∈A Q̂h(·, ·). (11)
Furthermore, for any h ∈ [H], we denote Vh(x,Rβ1 , Rβ2 , λ1, λ2) as the class of functions that takes
the form V h(·) = maxa∈AQh(·, a), where

Qh(x) =min{⟨ϕ(x, θ0), θ − θ0⟩+ ⟨ϕ(x,w0), w − w0⟩
− β1 ·

√
Φh(x, θ0)⊤Σ−1Φh(x, θ0)− β2 ·

√
ϕ(x,w0)⊤Λ−1ϕ(x,w0), H}+,

in which ∥θ − θ0∥2 ≤ H
√
N/λ1, ∥w − w0∥2 ≤ H

√
N/λ2, β1 ∈ [0, Rβ1 ], β2 ∈ [0, Rβ2 ], ∥Σ∥2 ≥

λ1 and ∥Λ∥2 ≥ λ2. To this end, for any ϵ > 0, we define N v
ϵ,h as the ϵ−covering number of

Vh(x,Rβ1
, Rβ2

, λ1, λ2) with respect to the ℓ∞−norm on X , and we let N v
ϵ = maxh∈[H]{N v

ϵ,h}.

4 MAIN RESULTS

4.1 SUBOPTIMALITY OF PARTED FOR GENERAL MDPS

In the overparameterized scheme, the neural network width 2m is considered to be much larger than
the number of trajectories N and horizon length H . Under such a scheme, the training process of
neural networks can be captured by the framework of neural tangent kernel (NTK) Jacot et al. (2018).
Specifically, conditioning on the realization of w0, we define a kernel K(x, x′) : X × X → R as

K(x, x′) = ⟨ϕ(x,w0), ϕ(x
′, w0)⟩ = 1

2m

∑2m
r=1 σ

′(w⊤
0,rx)σ

′(w⊤
0,rx

′)x⊤x′, ∀(x, x′) ∈ X × X ,
where σ′(·) is the derivative of the action function σ(·). It can be shown that f(·, w) is close to its
linearization at w0 when m is sufficiently large and w is not too far away from w0, i.e.,

f(x,w) ≈ f0(x,w) = f(x,w0) + ⟨ϕ(x,w0), w − w0⟩ = ⟨ϕ(x,w0), w − w0⟩, ∀x ∈ X .
Note that f0(x,w) belongs to a reproducing kernel Hilbert space (RKHS) with kernel K(·, ·). Simi-
larly, consider the sum of H neural networks f(τ,Θ) =

∑H
h=1 f(x

τ
h, θh) with the same initialization

θ0 for each neural network, where τ = [x⊤1 , · · · , x⊤H ]⊤ and Θ = [θ⊤1 , · · · , θ⊤H ]⊤. If θh is not too
far away from θ0 for all h ∈ [H] and m is sufficiently large, it can be shown that the dynamics of
f(τ,Θ) belong to a RKHS with kernel KH defined as KH(τ, τ ′) =

∑H
h=1K(xh, x

′
h). We further

define HK and HKH
as the RKHS induced by K(·, ·) and KH(·, ·), respectively.

Based on the kernel K(·, ·) and KH(·, ·), we define the Gram matrix Kr,Kv,h ∈ RN×N as

Kr = [KH(τi, τj)]i,j∈[N ], and Kv,h = [K(xτih , x
τj
h )]i,j∈[N ].

We further define a function class as follows

FB1,B2 =
{
fℓ(x) =

∫
Rd σ

′(w⊤x) · x⊤ℓ(w)dp(w) : supw ∥ℓ(w)∥2 ≤ B1, supw
∥ℓ(w)∥2

p(w) ≤ B2

}
,

where ℓ : Rd → Rd is a mapping, B1, B2 are positive constants, and p is the density of N(0, Id/d).
We then make the following assumption regarding the expressive power of the above function class.
Assumption 2. We assume that there exist a1, a2, A1, A2 > 0 such that Rh(·) ∈ Fa1,a2 and
(Phf)(·) ∈ FA1,A2

for any f(·) : X → [0, H].

Assumption 2 ensures that both Rh(·) and (PhV̂h+1)(·) can be captured by an infinite width neural
network. Note that Assumption 2 is mild since FB1,B2

is an expressive function class as shown in
Lemma C.1 of Gao et al. (2019). Similar assumptions have also been adopted in many previous
works that consider neural network function approximation Yang et al. (2020); Cai et al. (2019);
Wang et al. (2019); Xu et al. (2021); Qiu et al. (2021). Additionally, we assme that the data collection
process explores the state-action space and trajectory space well. Note that similar assumptions have
also been adopted in Duan et al. (2020); Yin et al. (2022); Jin et al. (2021).
Assumption 3 (Well-Explored Dataset). Suppose the N trajectories in dataset D are independently
and identically induced by a fixed behaviour policy µ. There exist absolute constants Cσ > 0 and
Cς > 0 such that

λmin(M(Θ0)) ≥ Cσ and λmin(mh(w0)) ≥ Cς ∀h ∈ [H],

where
M(Θ0) = Eµ

[
Φ(τ,Θ0)Φ(τ,Θ0)

⊤] and mh(w0) = Eµ
[
ϕ(xτh, w0)ϕ(x

τ
h, w0)

⊤] .
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We can now present the suboptimality of the policy π̂ obtained via Algorithm 1.
Theorem 1. Consider Algorithm 1. Suppose Assumption 1-3 hold. Let λ1 = λ2 = 1 + 1/N ,
β1 = Rβ1

and β2 = Rβ2
, in which Rβ1

and Rβ2
satisfy

Rβ1
≥ H

(
4a22λ1/d+ 2 log det (I +Kr/λ1) + 10 log(NH2)

)1/2
,

Rβ2 ≥ H
(
8A2

2λ2/d+ 4maxh∈[H]{log det (I +Kv,h/λ2)}+ 6Cϵ + 16 log(NH2N v
ϵ )
)1/2

,

where ϵ =
√
λ2CϵH/(2NCϕ), Cϵ ≥ 1 is an adjustable parameter, and Cϕ > 0 is an absolute

constant. In addition, let m be sufficiently large. Then, with probability at least 1− (N2H4)−1, we
have

SubOpt(π̂, s) ≤ Õ
(
Hmax{β1,β2}√

N

)
+ ε1,

where
ε1 = max{β1H5/3, β2H

7/6}Õ
(
N1/12

m1/12

)
+ Õ

(
H17/6N5/3

m1/6

)
.

Theorem 1 shows that Algorithm 1 can find an ϵ-optimal policy with Õ(H2 max{β1, β2}2/ϵ2)
episodes of offline data in the trajectory-wise reward setting up to a function approximation error
ε1, which vanishes as the neural network width 2m increases. Note that the dependence of ε1 on the
network width, which is O(m−1/12), matches that of the approximation error in the previous work
of value iteration algorithm with neural network function approximation Yang et al. (2020).

Discussion of Proof of Theorem 1. Comparing to the analysis of PEVI for linear MDP with
instantaneous reward, which has been extensively studied in offline RL Jin et al. (2021); Yin et al.
(2022; 2021), our analysis needs to address the following two new challenges: (1) In instantaneous
reward setting, both Rh(·) and (PhV̂h+1)(·) can be learned together by solving a single regression
problem in per-step scale. However, in our trajectory-wise reward setting, Rh(·) and (PhV̂h+1)(·)
need to be learned separately by solving two regression problems (eqs. (5) and (7)) in different scales,
i.e., eq. (5) is in trajectory scale and eq. (7) is in per-step scale. In order to apply union concentrations
to bound the Bellman estimation error |(BhV̂h)(·)− (B̂hV̂h)(·)|, we need to develop new techniques
to handle the mismatch between eqs. (5) and (7) in terms of scale. (2) In linear MDP, both Rh(·)
and (PhV̂h+1)(·) can be captured exactly by linear functions. However, in the more general MDP
that we consider, we need to develop new analysis to bound the estimation error that caused by the
insufficient expressive power of neural networks in order to characterize the optimality of θ̂h and ŵh
in eqs. (5) and (7), respectively.

To obtain a more concrete suboptimality bound for Algorithm 1, we impose an assumption on the
spectral structure of kernels KH and K.
Assumption 4 (Finite Spectrum NTK Yang et al. (2020)). Conditioned on the randomness of (b0, w0),
let TKH

and TK be the integral operator induced byKH andK (see Appendix H for definition of TKH

and TK), respectively, and let {ωj}j≥1 and {υj}j≥1 be eigenvalues of TKH
and TK , respectively.

We have ωj = 0 for all j ≥ D1 + 1 and υj = 0 for all υj ≥ D2 + 1, where D1, D2 are positive
integers.

Assumption 4 implies that HKH
and HK are D1-dimensional and D2-dimensional, respectively. For

concrete examples of neural networks that satisfy Assumption 4, please refer to Section B.3 in Yang
et al. (2020). Note that such an assumption is in parallel to the "effective dimension" assumption in
Zhou et al. (2020); Valko et al. (2013).
Corollary 1. Consider Algorithm 1. Suppose Assumption 1-4 hold. Let λ1 = λ2 = 1 + 1/N ,
β1 = Õ(HD1) and β2 = Õ(Hmax{D1, D2}). Then, with probability at least 1− (N2H4)−1, we
have

SubOpt(π̂, s) = Õ
(
DeffH

2/
√
N
)
+ ε2,

where Deff = max{D1, D2} denotes the effective dimension and

ε2 = max
{√

H,max{D1, D2}, H
5/3N19/12

m1/12

}
Õ
(
H13/6N1/12

m1/12

)
.

Corollary 1 states that when β1 and β2 are chosen properly according to the dimension of HKH
and

HK , the suboptimality of the policy π̂ incurred by Algorithm 1 converges to an ϵ-optimal policy with
Õ(D2

effH
4/ϵ2) episodes of offline data up to a function approximation error ε2.

8
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4.2 SUBOPTIMALITY OF PARTED UNDER LINEAR MDPS

In this section, we briefly illustrate our result by instantiating PARTED to simpler linear MDPs with
trajectory-wise rewards. We further provide a detailed treatment of the linear MDP setting with
trajectory-wise rewards in Appendix C.

With an abuse of notation, we define the linear MDP as follows.
Definition 1 (Linear MDP Jin et al. (2020); Yang & Wang (2019)). We say an episodic MDP
(S,A,P, r,H) is a linear MDP with a known feature map ϕ(·) : X → Rd if there exist an unknown
vector w∗

h(s) ∈ Rd over S and an unknown vector θ∗h ∈ Rd such that

Ph(s′|s, a) = ⟨ϕ(s, a), w∗
h(s

′)⟩, Rh(s, a) = ⟨ϕ(s, a), θ∗h⟩, (12)

for all (s, a, s′) ∈ S × A × S at each step h ∈ [H]. Here we assume ∥ϕ(x)∥2 ≤ 1 for all x ∈ X
and max{∥w∗

h(S)∥2 , ∥θ
∗
h∥2} ≤

√
d at each step h ∈ [H], where ∥w∗

h(S)∥2 =
∫
S ∥w∗

h(s)∥2 ds.

In linear MDPs, it has been shown that both reward Rh(·) and transition value function (PhV̂h+1)(·)
are linear functions with respect to ϕ(·) Agarwal et al. (2019); Jin et al. (2020). Thus, with only
trajectory-wise rewards, we can construct the proxy reward R̂h(·) and estimated transition value
function (P̂hV̂h+1)(·) by solving two linear regression problems that take similar forms as eq. (4) and
eq. (6) with feature Φ(τ) = [ϕ(xτ1)

⊤, · · · , ϕ(xτh)]⊤ and ϕ(x), respectively. For a detailed description
of the algorithm, please see Algorithm 2 in Appendix C.1. The following theorem characterizes the
suboptimality of Algorithm 2.
Theorem 2 (Informal). Consider PARTED for linear MDP in Algorithm 2. Under appropriate
hyperparameter setting and dataset coverage assumption, we have SubOpt(π̂, s) ≤ Õ(dH3/

√
N)

holds with high probability.

Note that linear function with feature Φ(τ) and ϕ(x) belongs to RKHS with kernel K ′
H(τ, τ ′) =

⟨Φ(τ),Φ(τ ′)⟩ and K ′(x, x′) = ⟨ϕ(x), ϕ(x′)⟩, respectively. Thus, HK′
H

is dH-dimensional and HK′

is d-dimensional. The suboptimality of PARTED for linear MDP in Theorem 2 will match that in
Corollary 1 if we let D1 = dH and D2 = d (which implies Deff = dH), where the dynamic of
neural networks can be approximately captured by RKHSs HKH

and HK defined in Section 4.1.

To highlight why trajectory-wise reward RL is more challenging than instantaneous reward RL,
we observe that Theorem 2 with trajectory-wise rewards has an additional dependence on the
horizon H , compared to the suboptimality Õ(dH2/

√
N) (Jin et al., 2021, Corollary 4.5) of PEVI for

linear MDP with instantaneous rewards. This additional dependence on H is caused by the reward
redistribution process, in which PARTED needs to solve a trajectory-level regression problem with
feature Φ(τ) ∈ RdH , which inevitably introduces large uncertainty in the regression solution used to
construct the per-step proxy reward.

5 CONCLUSION

In this paper, we propose a novel offline RL algorithm, called PARTED, to handle the episodic RL
problem with trajectory-wise rewards. PARTED uses a least-square-based reward redistribution
method for reward estimation and incorporates a new penalty term to offset the uncertainty of proxy
reward. Under the neural network function approximation, we prove that PARTED achieves an
Õ(DeffH

2/
√
N) suboptimality, which matches the order Õ(dH3/

√
N) of linear MDP (that we

further establish) when the effective dimension satisfies Deff = dH . To the best of our knowledge,
this is the first offline RL algorithm that is provably efficient in general episodic MDP setting with
trajectory-wise rewards. As a future direction, it is interesting to incorporate the randomized return
decomposition in Ren et al. (2021b) to improve the scalability of PARTED in the long horizon
scenario.
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Supplementary Materials

A PROOF FLOW OF THEOREM 1

In this section, we present the main proof flow of Theorem 1. We first decompose the suboptimality
SubOpt(π, s), and then present the two main results of Lemma 1 and Lemma 2 to bound the evaluation
error and summation of penality terms, respectively. The detailed proof of Lemma 1 and Lemma 2
can be found at Appendix D and Appendix E.

We define the evaluation error at each step h ∈ [H] as

δh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a), (13)

where Bh is the Bellman operator defined in Section 2.1 and V̂h and Q̂h are estimation of state- and
state-action value functions, respectively. To proceed the proof, we first decompose the suboptimality
into three parts as follows via the standard technique (see Section A in Jin et al. (2021)).

SubOpt(π, s) = −
H∑
h=1

Eπ
[
δh(sh, ah)

∣∣s1 = s
]
+

H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]

+

H∑
h=1

Eπ∗

[
⟨Q̂h(sh, ·), π∗

h(·|sh)− π̂h(·|sh)⟩
∣∣s1 = s

]
. (14)

In Algorithm 1, the output policy at each horizon π̂h is greedy with respect to the estimated Q-value
Q̂h. Thus, we have

⟨Q̂h(sh, ·), π∗
h(·|sh)− π̂h(·|sh)⟩ ≤ 0, ∀h ∈ [H], ∀sh ∈ S.

According to eq. (14), we have the following holds for the suboptimality of π̂ = {π̂h}Hh=1

SubOpt(π̂, s) = −
H∑
h=1

Eπ̂
[
δh(sh, ah)

∣∣s1 = s
]
+

H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]
. (15)

In the following lemma, we provide the first main technical result for the proof, which bounds the
evaluation error δh(s, a). Recall that we use X to represent the joint state-action space S ×A and
use x to represent a state action pair (s, a).

Lemma 1. Let λ1, λ2 = 1 + 1/N . Suppose Assumption 2 holds. With probability at least 1 −
O(N−2H−4), it holds for all h ∈ [H] and x ∈ X that

−εb ≤ δh(x) ≤ 2
[
β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
, ∀x ∈ X , ∀h ∈ [H],

where

εb = max{β1H2/3, β2H
1/6}O

(
N1/12(logm)1/4

m1/12

)
+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
,

β1 = H

(
4a22λ1
d

+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

,

β2 = H

(
8A2

2λ2
d

+ 4max

{
log det

(
I +

Kv
N,h

λ2

)}
+ 6Cϵ + 16 log(NH2N v

ϵ )

)1/2

,

ϵ =
√
λ2CϵH/(2NCϕ), where Cϵ ≥ 1.

Proof. The main technical development of the proof lies in handling the uncertainty caused by redis-
tributing the trajectory-wise reward via solving a trajectory-level regression problem and analyzing
the dynamics of neural network optimization. The detailed proof is provided in Appendix D.
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Applying Lemma 1 to eq. (15) yields

SubOpt(π̂, s) = −
H∑
h=1

Eπ̂
[
δh(sh, ah)

∣∣s1 = s
]
+

H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]

≤ 3Hεb + 2β1 ·
H∑
h=1

br,h(x, Θ̂) + 2β2 ·
H∑
h=1

bv,h(x, ŵh). (16)

The following lemma captures the second main technical result for the proof, which bounds the
summation of the penalty terms β1 ·

∑H
h=1 br,h(x, Θ̂) + β2 ·

∑H
h=1 bv,h(x, ŵh).

Lemma 2. Suppose Assumption 2&3 hold. We have the following holds with probability 1 −
O(N−2H−4)

β1 ·
H∑
h=1

br,h(x, Θ̂) + β2 ·
H∑
h=1

bv,h(x, ŵh)

≤
(

β1√
Cσ

+
β2√
Cς

) √
2HCϕ√
N

+max{β1H5/3, β2H
7/6} · O

(
N1/12(logm)1/4

m1/12

)
.

Proof. The proof develops new analysis to characterize the summation of the penality term br,h
constructed by trajectory features, which is unique in the trajectory-wise reward setting. The detailed
proof is provided in Appendix E.

Applying Lemma 2 to eq. (16), we have

SubOpt(π̂, s)

≤ 3Hεb +

(
β1√
Cσ

+
β2√
Cς

)
2
√
2HCϕ√
N

+max{β1H5/3, β2H
7/6} · O

(
N1/12(logm)1/4

m1/12

)
≤ 4Hεb +

(
β1√
Cσ

+
β2√
Cς

)
2
√
2HCϕ√
N

, (17)

which completes the proof.

B PROOF OF COROLLARY 1

To provide a concrete bound for SubOpt(π̂, s) defined in eq. (17), we first need to bound the penalty
coefficients β1, β2 under Assumption 4. Recalling the properties of β1, β2 in Theorem 1, we have

H

(
4a22λ1
d

+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

≤ Rβ1 = β1, (18)

H

(
8A2

2λ2
d

+ 4 max
h∈[H]

{
log det

(
I +

Kv
N,h

λ2

)}
+ 6Cϵ + 16 log(NH2N v

ϵ )

)1/2

≤ Rβ2
= β2.

(19)

Recall that we use X to represent the joint state-action space S × A and use x to represent a state
action pair (s, a). We define the maximal information gain associated with RHKS with kernels Kr

N
and Kv

N,h as follows

ΓKr
N
(N,λ1) = sup

D⊂Dτ

{1/2 · log det(I2dmH + λ−1
1 ·Kr

N )}, (20)

ΓKv
N,h

(N,λ2) = sup
D⊂Dx

{1/2 · log det(I2dm + λ−1
2 ·Kv

N,h)}, (21)

where Dx and Dτ are discrete subsets of state-action pair x ∈ X and trajectory τ ∈ X × · · · × X
with cardinality no more than N , respectively. Applying Lemma 9 in Appendix H and Assumption 4,
we have

ΓKr
N
(N,λ1) ≤ CK1 ·D1 · logN and ΓKv

N,h
(N,λ2) ≤ CK2 ·D2 · logN, (22)
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where CK1
, CK2

are absolute constants. Recall that N v
ϵ,h is the cardinality of the function class.

Next, we proceed to bound the term N v
ϵ = maxh∈[H]{N v

ϵ,h}.

Vh(x,Rθ, Rw, Rβ1 , Rβ2 , λ1, λ2) =
{
max
a∈A

{Qh(s, a, θ, w, β1, β2,Σ,Λ)} : S → [0, H]

with ∥θ − θ0∥2 ≤ Rθ, ∥w − w0∥2 ≤ Rw, β1 ∈ [0, Rβ1 ], β2 ∈ [0, Rβ2 ], ∥Σ∥2 ≥ λ1, ∥Λ∥2 ≥ λ2

}
,

where Rθ = H
√
N/λ1, Rw = H

√
N/λ2, and

Qh(x, θ, w, β1, β2,Σ,Λ) = min{⟨ϕ(x, θ0), θ − θ0⟩+ ⟨ϕ(x,w0), w − w0⟩

− β1 ·
√
Φh(x, θ0)⊤Σ−1Φh(x, θ0)− β2 ·

√
ϕ(x,w0)⊤Λ−1ϕ(x,w0), H}+.

Note that∣∣∣∣max
a∈A

{Qh(s, a, θ, w, β1, β2,Σ,Λ)} −max
a∈A

{Qh(s, a, θ′, w′, β′
1, β

′
2,Σ

′,Λ′)}
∣∣∣∣

≤ max
a∈A

∣∣Qh(s, a, θ, w, β1, β2,Σ,Λ)−Qh(s, a, θ
′, w′, β′

1, β
′
2,Σ

′,Λ′)
∣∣

(i)

≤ max
a∈A

|⟨ϕ(x, θ0), θ − θ′⟩|+max
a∈A

|⟨ϕ(x,w0), w − w′⟩|

+max
a∈A

∣∣∣∣(β1 − β′
1) ·
√
Φh(x, θ0)⊤Σ−1Φh(x, θ0)

∣∣∣∣
+max

a∈A

∣∣∣∣β′
1 ·
[√

Φh(x, θ0)⊤Σ−1Φh(x, θ0)−
√

Φh(x, θ0)⊤Σ′−1Φh(x, θ0)

]∣∣∣∣
+max

a∈A

∣∣∣∣(β2 − β′
2) ·
√
ϕ(x,w0)⊤Λ−1ϕ(x,w0)

∣∣∣∣
+max

a∈A

∣∣∣∣β′
2 ·
[√

ϕ(x,w0)⊤Λ−1ϕ(x,w0)−
√
ϕ(x,w0)⊤Λ′−1ϕ(x,w0)

]∣∣∣∣
(ii)

≤ max
a∈A

|⟨Φh(x,Θ0),Θ−Θ′⟩|+max
a∈A

|⟨ϕ(x,w0), w − w′⟩|+ Cϕ√
λ1

|β1 − β′
1|+

Cϕ√
λ2

|β2 − β′
2|

+Rβ1
max
a∈A

|∥Φh(x, θ0)∥Σ−1 − ∥Φh(x, θ0)∥Σ′−1 |

+Rβ2
max
a∈A

|∥ϕ(x,w0)∥Λ−1 − ∥ϕ(x,w0)∥Λ′−1 | , (23)

where (i) follows from contractive properties of operators min{·, H}+ and maxa∈A{·} and the
triangle inequality, and (ii) follows from the fact that ∥ϕ(x,w0)∥2 , ∥Φh(x, θ0)∥2 ≤ Cϕ.

Following arguments similar to those in the proof of Corollaries 4.8, Corollaries 4.4 and Section D.1
in Yang et al. (2020), we have the followings hold for terms in the right hand side of eq. (23)

|⟨Φh(x,Θ0),Θ−Θ′⟩| = |g1(x)− g2(x)| where ∥gi∥HKH
≤ Rg = 2H

√
ΓKr

N
(N,λ1) ∀i ∈ {1, 2},

(24)

|⟨ϕ(x,w0), w − w′⟩| = |h1(x)− h2(x)| where ∥hi∥HK
≤ Rh = 2H

√
ΓKv

N,h
(N,λ2) ∀i ∈ {1, 2},

(25)
|∥Φh(x, θ0)∥Σ−1 − ∥Φh(x, θ0)∥Σ′−1 | = |∥Ψ(x)∥Ω − ∥Ψ(x)∥Ω′ | ,
|∥ϕ(x,w0)∥Λ−1 − ∥ϕ(x,w0)∥Λ′−1 | = |∥ψ(x)∥Υ − ∥ψ(x)∥Υ′ | ,

where g1(·), g2(·) are two functions in RKHS HKH
, h1(·), h2(·) are two functions in RKHS HK ,

Ψ(·) and ψ(·) are feature mappings of RKHSs HKH
and HK , respectively, Ω,Ω′ : HKH

→ HKH
are

self-adjoint operators with eigenvalues bounded in [0, 1/λ1], and Υ,Υ′ : HK → HK are self-adjoint
operators with eigenvalues bounded in [0, 1/λ2]. We define the following two function classes

F1 = {∥Ψ(·)∥Ω : ∥Ω∥2 ≤ 1/λ1}, (26)
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and

F2 = {∥ψ(·)∥Υ : ∥Υ∥2 ≤ 1/λ2}. (27)

For any ϵ > 0, we denote N (ϵ,H, R) as the ϵ-covering of {f ∈ H : ∥f∥H ≤ R}, denote
N (ϵ,F1, λ1) as the ϵ-covering number of F1 in eq. (26), denote N (ϵ,F2, λ2) as the ϵ-covering
number of F2 in eq. (27), and denote N (ϵ, R) as the ϵ-covering number of the interval [0, R] with
respect to the Euclidean distance. Note that eq. (23) implies

N v
ϵ,h ≤ N (ϵ/6,HKH

m
, Rg) · N (ϵ/6,HKm , Rh) · N (ϵ/(6Cϕ), Rβ1) · N (ϵ/(6Cϕ), Rβ2)

· N (ϵ/(6Rβ1
),F1, λ1) · N (ϵ/(6Rβ2

),F2, λ2). (28)

Based on Corollary 4.1.13 in Vershynin (2018), we have the followings hold for N (ϵ/(6Cϕ), Rβ1
)

and N (ϵ/(6Cϕ), Rβ2
), respectively

N (ϵ/(6Cϕ), Rβ1
) ≤ 1 + 12CϕRβ1

/ϵ and N (ϵ/(6Cϕ), Rβ2
) ≤ 1 + 12CϕRβ2

/ϵ. (29)

Moreover, as shown in Lemma D.2 and Lemma D.3 in Yang et al. (2020), under the finite spectrum
NTK assumption in Assumption 4, we have the followings hold

logN (ϵ/6,HKH
m
, Rg) ≤ C1 ·D1 · [log(6Rg/ϵ) + C2], (30)

logN (ϵ/6,HKm
, Rh) ≤ C3 ·D2 · [log(6Rh/ϵ) + C4], (31)

logN (ϵ/(6Rβ1),F1, λ1) ≤ C5 ·D2
1 · [log(6Rβ1/ϵ) + C6], (32)

logN (ϵ/(6Rβ2
),F2, λ2) ≤ C7 ·D2

2 · [log(6Rβ2
/ϵ) + C8]. (33)

where Ci (i ∈ {1, · · · , 8}) are absolute constants that do not rely on N , H or ϵ. Then, substituting
eq. (29)-(33) into eq. (28), we have

logN v
ϵ,h ≤ N (ϵ/6,HKH

m
, Rg) +N (ϵ/6,HKm

, Rh) +N (ϵ/(6Cϕ), Rβ1
) +N (ϵ/(6Cϕ), Rβ2

)

+N (ϵ/(6Rβ1),F1, λ1) +N (ϵ/(6Rβ2),F2, λ2)

≤ log(1 + 12CϕRβ1
/ϵ) + log(1 + 12CϕRβ2

/ϵ) + C1D1[log(6Rg/ϵ) + C2]

+ C3D2[log(6Rh/ϵ) + C4] + C5D
2
1[log(6Rβ1

/ϵ) + C6] + C7D
2
2[log(6Rβ2

/ϵ) + C8],
(34)

We next proceed to show that there exists an absolute constant Rβ1
> 0 such that eq. (18) holds.

Substituting eq. (22) to eq. (18), we can obtain

L.H.S of eq. (18) ≤ H

(
4a22λ1
d

+ 4CK1
D1 logN + 10 log(NH2)

)1/2

.

If we let

Rβ1
= Cβ1

H
√
D1 log(NH2), (35)

in which Cβ1
is a sufficiently large constant, then we have the following holds

L.H.S of eq. (18) ≤ Rβ1
.

Note that eq. (34) directly implies that

logN v
ϵ = max

h∈[H]
{logN v

ϵ,h}

≤ log(1 + 12CϕRβ1/ϵ) + log(1 + 12CϕRβ2/ϵ) + C1D1[log(6Rg/ϵ) + C2]

+ C3D2[log(6Rh/ϵ) + C4] + C5D
2
1[log(6Rβ1

/ϵ) + C6] + C7D
2
2[log(6Rβ2

/ϵ) + C8]

(i)

≤ C ′
1D

2
1 log(Rβ1

/ϵ) + C ′
2D

2
2 log(Rβ2

/ϵ) + C ′
3D1 log(H

√
D1/ϵ) + C ′

4D2 log(H
√
D2/ϵ)

(ii)

≤ C ′′
1D

2
1 log(NH

2
√
D1/ϵ) + C ′

2D
2
2 log(Rβ2/ϵ) + C ′

3D1 log(H
√
D1/ϵ)

+ C ′
4D2 log(H

√
D2/ϵ), (36)

where in (i) we let C ′
1, C

′
2, C

′
3 and C ′

4 be sufficiently large absolute constants, in (ii) we use eq. (35)
and let C ′′

1 be sufficiently large. Then, we proceed to show that there exists an absolute constant
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Rβ2
> 0 such that eq. (19) holds. Using eq. (22) and eq. (36), the left hand side of eq. (19) can be

bounded as follows

L.H.S of eq. (19)

≤ H
(8A2

2λ2
d

+ 8CK2 ·D2 · logN + 20 log(NH2) + 6Cϵ + 16 logN v
ϵ

)1/2
(i)

≤ HCβ2,1

√
D2 log(NH2) +HCβ2,2

√
logN v

ϵ +HCβ2,3

√
Cϵ

≤ HCβ2,1

√
D2 log(NH2) +HCβ2,2

[
D1

√
C ′′

1 log(NH2
√
D1/ϵ) +D2

√
C ′

2 log(Rβ2
/ϵ)

+

√
C ′

3D1 log(H
√
D1/ϵ) +

√
C ′

4D2 log(H
√
D2/ϵ)

]
+HCβ2,3

√
Cϵ.

where (i) follows from the fact that
√
a+ b ≤

√
a+

√
b and Cβ2,1, Cβ2,2 and Cβ2,3 are sufficiently

large constants. Clearly, if we let

Rβ2 = Cβ2Hmax{D1, D2} log(NH2 max{D1, D2}/ϵ), (37)

where Cβ2
is a sufficiently large absolute constant, then we have

L.H.S of eq. (19) ≤ Rβ2
. (38)

Finally, substituting the value of Rβ1
in eq. (35) and value of Rβ2

in eq. (37) into eq. (17) and letting
Cϵ = max{D1, D2}2 (which implies ϵ =

√
λ2 max{D1, D2}H/(2NCϕ)), we have

SubOpt(π̂, s)

≤
(

β1√
Cσ

+
β2√
Cς

)
2
√
2HCϕ√
N

+ 4Hεb

≤ max{Rβ1
, Rβ2

}O
(
H√
N

)
+max{Rβ1

H5/3, Rβ2
H7/6}O

(
N1/12(logm)1/4

m1/12

)
+O

(
H23/6N5/3

√
log(N2H5m)

m1/6

)

≤ O
(
H2 max{D1, D2}√

N
log

(
NH2 max{D1, D2}

ϵ

))
+max

{√
H,max{D1, D2}

}
O
(
H13/6N1/12(logm)1/4

m1/12
log
(
N2H2

))
+O

(
H23/6N5/3

√
log(N2H5m)

m1/6

)
(i)

≤ O
(
H2 max{D1, D2}√

N
log
(
2CϕN

2H
))

+max

{√
H,max{D1, D2},

H5/3N19/12

m1/12

}
O
(
H13/6N1/12(logm)1/4

m1/12
log
(
N2H5m

))
,

where (i) follows from the definition of ϵ and the fact that λ2 ≥ 1.

C LINEAR MDP WITH TRAJECTORY-WISE REWARD

In this section, we present the full details of our study on the offline RL in the linear MDP setting
with trajectory-wise rewards.

C.1 LINEAR MDP AND ALGORITHM

We define the linear MDP Jin et al. (2020) as follows, where the transition kernel and expected reward
function are linear in a feature map. We use X to represent the joint state-action space S × A and
use x to represent a state action pair.
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Algorithm 2 Linear Pessimistic Value Iteration with Reward Decomposition (PARTED)

Input: Dataset D = {τi, r(τi)}N,Hi,h=1

Initialization: Set V̂H+1 as zero function
Obtain R̂h and Θ̂ according to eq. (41)
for h = H,H − 1, ·, 1 do

Obtain P̂hV̂h+1 and ŵh according to eq. (43)
Obtain Γh(·) according to eq. (46)
Q̂h(·) = min{R̂h(·) + P̂hV̂h+1(·)− Γh(·), H − h+ 1}+
π̂h(·|s) = argmaxπh

⟨Q̂h(s, ·), πh(·|s)⟩
V̂h(·) = ⟨Q̂h(·, ·), π̂h(·|·)⟩A

end for

Definition 2 (Linear MDP). We say an episodic MDP (S,A,P, r,H) is a linear MDP with a known
feature map ϕ(·) : X → Rd if there exist an unknown vector w∗

h(s) ∈ Rd over S and an unknown
vector θ∗h ∈ Rd such that

Ph(s′|s, a) = ⟨ϕ(s, a), w∗
h(s

′)⟩, Rh(s, a) = ⟨ϕ(s, a), θ∗h⟩, (39)

for all (s, a, s′) ∈ S ×A×S at each step h ∈ [H]. Here we assume ∥ϕ(x)∥2 ≤ 1 for all x ∈ X and
max{∥w∗

h(S)∥2 , ∥θ
∗
h∥2} ≤

√
d at each step h ∈ [H], where with an abuse of notation, we define

∥w∗
h(S)∥2 =

∫
S ∥w∗

h(s)∥2 ds.

We present our PARTED algorithm for linear MDPs with trajectory-wise rewards in Algorithm 2.
Note that Algorithm 2 shares a structure similar to that of Algorithm 1. Specifically, we estimate each
Rh(·) for all h ∈ [H] using a linear function ⟨ϕ(s, a), θh⟩, where θh ∈ Rd is a learnable parameter.
We define the vector Θ = [θ⊤1 , · · · , θ⊤H ] ∈ RdH and the loss function Lr : RdH → R for reward
learning as

Lr(Θ) =
∑
τ∈D

[
H∑
h=1

⟨ϕ(xτh), θh⟩ − r(τ)

]2
+ λ1 ·

H∑
h=1

∥θh − θ0∥22 , (40)

where λ1 > 0 is a regularization parameter. We then define R̂h(·) as

R̂h(·) = ⟨ϕ(·), θ̂h⟩, where Θ̂ = argmin
Θ∈R2dmH

Lr(Θ) and Θ̂ = [θ̂⊤1 , · · · , θ̂⊤H ]⊤. (41)

Similarly, we also use linear function ⟨ϕ(s, a), wh⟩ to estimate transition value functions
{(PhV̂h+1)(·, ·)}h∈[H] for all h ∈ [H], where wh ∈ Rd is a learnable parameter. For each h ∈ [H],
we define the loss function Lhv (wh): Rd → R as

Lhv (wh) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− ⟨ϕ(xτh), wh⟩

)2
+ λ2 · ∥wh − w0∥22 , (42)

where λ2 > 0 is a regularization parameter. We then define (P̂hV̂h+1)(·) : X → R as

(P̂hV̂h+1)(·) = ⟨ϕ(·), ŵh⟩, where ŵh = argmin
wh∈Rd

Lhv (wh). (43)

It remains to construct the penalty term Γh. We first consider the penalty term that is used to offset
the uncertainty raised from estimating the reward Rh(·) for each h ∈ [H]. We define the vectors
Φh(x) = [0⊤

d , · · · , ϕ(x)⊤, · · · ,0⊤
d ]

⊤ ∈ RdH and Φ(τ) = [ϕ(xτ1), · · · , ϕ(xτH)] ∈ RdH , where
Φh(x) ∈ RdH is a vector in which [Φh(x)]d(h−1)+1:dh = ϕ(x) and the rest entries are all zero. We
define a matrix Σ(Θ) ∈ RdH×dH as

Σ = λ1 · IdH +
∑
τ∈D

Φ(τ)Φ(τ)⊤.
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The penalty term br,h of the estimated reward is then defined as

br,h(x) =
[
Φh(x)

⊤Σ−1Φh(x)
]1/2

, ∀x ∈ X . (44)

Next, we consider the penalty term that is used to offset the uncertainty raised from estimating the
transition value function (PhV̂h+1)(·) for each h ∈ [H]. We define a matrix Λh ∈ Rd×d as

Λh = λ2 · Id +
∑
τ∈D

ϕ(xτh)ϕ(x
τ
h)

⊤.

The penality term bv,h of the estimated transition value function is then defined as

bv,h(x) =
[
ϕ(x)⊤Λ−1

h ϕ(x)⊤
]1/2

, ∀x ∈ X . (45)

Finally, the penalty term for the estimated Bellman operation B̂hV̂h+1(·) is obtained as

Γh(x) = β1br,h(x) + β2bv,h(x), (46)

where β1, β2 > 0 are constant factors.

C.2 MAIN RESULT

We consider the following dataset coverage assumption so that we can explicitly bound the subop-
timality of Algorithm 2. Note that the following assumption has also been considered in Jin et al.
(2021).

Assumption 5 (Well-Explored Dataset). Suppose the N trajectories in dataset D are independent
and identically induced by a fixed behaviour policy µ. There exist absolute constants Cσ > 0 and
Cς > 0 such that

λmin(M(Θ0)) ≥ Cσ and λmin(mh(w0)) ≥ Cς ∀h ∈ [H],

where

M = Eµ
[
Φ(τ)Φ(τ)⊤

]
and mh(w0) = Eµ

[
ϕ(xτh)ϕ(x

τ
h)

⊤] .
We provide a formal statement of Theorem 2 as follows, which characterizes the suboptimality of
Algorithm 2.

Theorem 3 (Formal Statement of Theorem 2). Consider Algorithm 2. Let λ1 = λ2 = 1 and
β1 = O(H

√
dH log(N/δ)) and β2 = O(dH2

√
log(dH3N5/2/δ)). Then, with probability at least

1− δ, we have

SubOpt(π̂, s) ≤ O

(
dH3

√
N

√
log

(
dH3N5/2

δ

))
.

C.3 PROOF FLOW OF THEOREM 2

In this section, we present the main proof flow of Theorem 2. Our main development is Lemma 3,
the proof of which is presented in Appendix F.

Recalling the suboptimality of π̂ = {π̂h}Hh=1 in eq. (15), we have

SubOpt(π̂, s) = −
H∑
h=1

Eπ̂
[
δh(sh, ah)

∣∣s1 = s
]
+

H∑
h=1

Eπ∗
[
δh(sh, ah)

∣∣s1 = s
]
,

where δh(·) is the evaluation error defined as

δh(s, a) = (BhV̂h+1)(s, a)− Q̂h(s, a).

To characterize the suboptimality SubOpt(π̂, s), we provide the following lemma to bound δh(·) in
the linear MDP setting.
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Lemma 3. Let λ1, λ2 = 1, and let β1 = Cβ1
H
√
dH log(N/δ) and β2 =

Cβ2dH
2
√

log(dH3N5/2/δ), where Cβ1 , Cβ2 are two absolute constants. Suppose Assumption 2
holds. With probability at least 1− δ/2, it holds for all h ∈ [H] and (s, a) ∈ S ×A that

0 ≤ δh(x) ≤ 2 [β1 · br,h(x) + β2 · bv,h(x)] , ∀x ∈ X , ∀h ∈ [H].

Proof. The main technical development here lies in handling additional challenges caused by the
reward redistribution of trajectory-wise rewards, which are not present in linear MDPs with instanta-
neous rewards Jin et al. (2021). The detailed proof is provided in Appendix F.

Applying Lemma 3 to eq. (15), we can obtain

SubOpt(π̂, s) ≤ 2β1 ·
H∑
h=1

br,h(x) + 2β2 ·
H∑
h=1

bv,h(x). (47)

Then, following steps similar to those in Appendix E, we have the followings hold with probability at
least 1− δ/2

br,h(x) ≤
C ′
√
N

and bv,h(x) ≤
C ′′
√
N
, (48)

where C ′ and C ′′ are absolute constants dependent only on Cσ , Cς and log(1/δ). Then, substituting
eq. (48) into eq. (47), we have the following holds with probability 1− δ

SubOpt(π̂, s) ≤ 2Cβ1
H2
√
dH log(N/δ) · C ′

√
N

+ 2Cβ2
dH3

√
log(dH3N5/2/δ) · C

′′
√
N

≤ O

(
dH3

√
N

√
log

(
dH3N5/2

δ

))
,

which completes the proof.

D PROOF OF LEMMA 1

Recall that in Section 2.3 we let (b0, w0) be the initial value of network parameters obtained via the
symmetric initialization scheme, which makes f(·;w0) a zero function. We denote (B̂hV̂h+1)(·) =
R̂h(·) + (P̂hV̂h+1)(·) as the estimator of Bellman operator (BhV̂h+1)(·) = Rh(·) + (PhV̂h+1)(·).
To prove Lemma 1, we show that (B̂hV̂h+1)(·) − β1br,h(·, Θ̂) − β2bv,h(·, ŵ) is approximately a
pessimistic estimator of (BhV̂h+1)(·) up to a function approximation error. We consider m to be
sufficiently large such that m ≥ NH2.

D.1 UNCERTAINTY OF ESTIMATED REWARD R̂h(·)

In this step, we aim to bound the estimation error
∣∣∣R̂h(·)−Rh(·)

∣∣∣. Since Θ̂ is the global minimizer
of the loss function Lr defined in eq. (4), we have

Lr(Θ̂) =
∑
τ∈D

[
H∑
h=1

f(xτh, θ̂h)− r(τ)

]2
+ λ1 ·

H∑
h=1

∥∥∥θ̂h − θ0

∥∥∥2
2

≤ Lr(Θ0) =
∑
τ∈D

[
H∑
h=1

f(xτh, θ0)− r(τ)

]2
(i)
=
∑
τ∈D

[r(τ)]
2

(ii)

≤ NH2, (49)

where (i) follows from the fact that f(x, θ0) = 0 for all x ∈ X and (ii) follows from the fact that
r(τ) ≤ H for any trajectory τ and we have total N trajectories in the offlline sample set D. We
define the vector Θ0 = [θ⊤0 , · · · , θ⊤0 ]⊤ ∈ R2mdH . Note that eq. (49) implies∥∥∥θ̂h − θ0

∥∥∥2
2
≤
∥∥∥Θ̂−Θ0

∥∥∥2
2
=

H∑
h=1

∥∥∥θ̂h − θ0

∥∥∥2
2
≤ NH2/λ1, ∀h ∈ [H]. (50)
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Hence, each θ̂h belongs to the Euclidean ball Bθ = {θ ∈ R2md : ∥θ − θ0∥2 ≤ H
√
N/λ1}.

Since the radius of Bθ does not depend on m, when m is sufficient large it can be shown that f(·, θ)
is close to its linearization at θ0, i.e.,

f(·, θ) ≈ ⟨ϕ(·, θ0), θ − θ0⟩, ∀θ ∈ Bθ,
where ϕ(·, θ) = ∇θf(·, θ). Furthermore, according to Assumption 2, there exists a function ℓa1,a2 :
Rd → Rd such that the mean of the true reward function Rh(·) = E[rh(·)] satisfies

Rh(x) =

∫
Rd

σ′(θ⊤x) · x⊤ℓr(θ)dp(θ), (51)

where supθ ∥ℓr(θ)∥2 ≤ a1, supθ(∥ℓr(θ)∥2 /p(θ)) ≤ a2 and p is the density of the distribution
N(0, Id/d). We then proceed to bound the difference between R̂h(·) and Rh(·).
Step I. In the first step, we show that with high probability the mean of the true reward Rh(·) can
be well-approximated by a linear function with the feature vector ϕ(·, θ0). Lemma 4 in Appendix G
implies that that Rh(·) in eq. (51) can be well-approximated by a finite-width neural network, i.e.,
with probability at least 1−N−2H−4 over the randomness of initialization θ0, for all h ∈ [H], there
exists a function R̃h(·) : X → R satisfying

sup
x∈X

∣∣∣R̃h(x)−Rh(x)
∣∣∣ ≤ 2(Lσa2 + C2

σa
2
2)
√

log(N2H5)√
m

, (52)

where R̃h(·) can be written as

R̃h(x) =
1√
m

m∑
r=1

σ′(θ⊤0,rx) · x⊤ℓr,

where ∥ℓr∥2 ≤ a2/
√
dm for all r ∈ [m] and θ0 = [θ0,1, · · · , θ0,m] is generated via the symmetric

initialization scheme. We next proceed to show that there exists a vector θ̃h ∈ R2md such that
R̃h(·) = ⟨ϕ(·, θ0), θ̃h − θ0⟩. Let θ̃h = [θ̃⊤h,1, · · · .θ̃⊤h,2m]⊤, in which θ̃⊤h,r = θ0,r + b0,r · ℓr/

√
2 for

all r ∈ {1, · · · ,m} and θ̃⊤h,r = θ0,r + b0,r · ℓr−m/
√
2 for all r ∈ {m+ 1, · · · , 2m}. Then, we have

R̃h(x) =
1√
2m

m∑
r=1

√
2(b0,r)

2 · σ′(θ⊤0,rx) · x⊤ℓr

=
1√
2m

m∑
r=1

1√
2
(b0,r)

2 · σ′(θ⊤0,rx) · x⊤ℓr +
1√
2m

m∑
r=1

1√
2
(b0,r)

2 · σ′(θ⊤0,rx) · x⊤ℓr−m

=
1√
2m

2m∑
r=1

b0,r · σ′(θ⊤0,rx) · x⊤(θ̃h,r − θ0,r)

= ϕ(x, θ0)
⊤(θ̃h − θ0). (53)

Thus, the true mean rewardRh(·) is approximately linear with the feature ϕ(·, θ0). Since θ̃h,r−θ0,r =
b0,r · ℓr/

√
2 or b0,r · ℓr−m/

√
2, we have∥∥∥θ̃h − θ0

∥∥∥
2
≤ a2

√
2dm.

Step II. In this step, we show that R̂h(·) learned by neural network in Algorithm 1 can be well-
approximated by its counterpart learned by a linear function with feature ϕ(·, θ0).
Consider the following least-square loss function

L̄r(Θ) =
∑
τ∈D

[
H∑
h=1

⟨ϕ(xτh, θ0), θh − θ0⟩ − r(τ)

]2
+ λ1 ·

H∑
h=1

∥θh − θ0∥22

=
∑
τ∈D

[⟨Φ(τ,Θ0),Θ−Θ0⟩ − r(τ)]
2
+ λ1 · ∥Θ−Θ0∥22 .
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The global minimizer of L̄r(Θ) is defined as

Θ = argmin
Θ∈R2dmH

L̄r(θ) and Θ = [θ̄⊤1 , · · · , θ̄⊤H ]⊤. (54)

We define Rh(·) = ⟨ϕ(·, θ0), θ̄h − θ0⟩ for all h ∈ [H]. We then proceed to bound the term∣∣∣R̂h(x)−Rh(x)
∣∣∣ as follows∣∣∣R̂h(x)−Rh(x)

∣∣∣ = ∣∣∣f(x, θ̂h)− ⟨ϕ(x, θ0), θ̄h − θ0⟩
∣∣∣

=
∣∣∣f(x, θ̂h)− ⟨Φh(x,Θ0),Θ−Θ0⟩

∣∣∣
=
∣∣∣f(x, θ̂h)− ⟨Φh(x,Θ0), Θ̂−Θ0⟩+ ⟨Φh(x,Θ0), Θ̂−Θ⟩

∣∣∣
≤
∣∣∣f(x, θ̂h)− ⟨Φh(x,Θ0), Θ̂−Θ0⟩

∣∣∣+ ∣∣∣⟨Φh(x,Θ0), Θ̂−Θ⟩
∣∣∣

=
∣∣∣f(x, θ̂h)− ⟨ϕh(x, θ0), θ̂h − θ0⟩

∣∣∣+ ∣∣∣⟨Φh(x,Θ0), Θ̂−Θ⟩
∣∣∣

≤
∣∣∣f(x, θ̂h)− ⟨ϕh(x, θ0), θ̂h − θ0⟩

∣∣∣+ ∥Φh(x,Θ0)∥2
∥∥∥Θ̂−Θ

∥∥∥
2

=
∣∣∣f(x, θ̂h)− ⟨ϕh(x, θ0), θ̂h − θ0⟩

∣∣∣︸ ︷︷ ︸
(i)

+ ∥ϕ(x, θ0)∥2
∥∥∥Θ̂−Θ

∥∥∥
2︸ ︷︷ ︸

(ii)

.

According to Lemma 5 and the fact that
∥∥∥θ̂h − θ0

∥∥∥
2
≤ H

√
N/λ1, we have the followings hold with

probability at least 1−N−2H−4

(i) ≤ O

(
Cϕ

(
N2H4

λ21
√
m

)1/3√
logm

)
, (55)

(ii) ≤ Cϕ

∥∥∥Θ̂−Θ
∥∥∥
2
. (56)

We then proceed to bound the term
∥∥∥Θ̂−Θ

∥∥∥
2
. Consider the minimization problem defined in eq. (5)

and eq. (54). By the first order optimality condition, we have

λ1

(
Θ̂−Θ0

)
=
∑
τ∈D

(
r(τ)−

H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂) (57)

λ1
(
Θ−Θ0

)
=
∑
τ∈D

(
r(τ)− ⟨Φ(τ,Θ0),Θ−Θ0⟩

)
Φ(τ,Θ0). (58)

Note that eq. (58) implies

Σ(Θ0)
(
Θ−Θ0

)
=
∑
τ∈D

r(τ)Φ(τ,Θ0). (59)

Adding the term
∑
τ∈D⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0) on both sides of eq. (57) yields

Σ(Θ0)
(
Θ̂−Θ0

)
=
∑
τ∈D

r(τ)Φ(τ, Θ̂)

+
∑
τ∈D

[
⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

]
. (60)

Then, subtracting eq. (59) from eq. (60), we can obtain

Σ(Θ0)(Θ̂−Θ) =
∑
τ∈D

r(τ)
(
Φ(τ, Θ̂)− Φ(τ,Θ0)

)

+
∑
τ∈D

[
⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

]
, (61)
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which implies

∥∥∥Σ(Θ0)(Θ̂−Θ)
∥∥∥
2
≤
∑
τ∈D

r(τ)

√√√√ H∑
h=1

∥∥∥ϕ(xτh, θ0)− ϕ(xτh, θ̂h)
∥∥∥2
2

+
∑
τ∈D

∥∥∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥∥∥
2

.

(62)

To bound the term
∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(∑H
h=1 f(x

τ
h, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥
2
, we proceed as

follows

⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

= ⟨Φ(τ,Θ0), Θ̂−Θ0⟩(Φ(τ,Θ0)− Φ(τ, Θ̂))−

(
⟨Φ(τ,Θ0), Θ̂−Θ0⟩ −

H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

= ⟨Φ(τ,Θ0), Θ̂−Θ0⟩(Φ(τ,Θ0)− Φ(τ, Θ̂))−

[
H∑
h=1

(
⟨ϕ(xτh, θ0), θ̂h − θ0h⟩ − f(xτh, θ̂h)

)]
Φ(τ, Θ̂),

which implies ∥∥∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥∥∥
2

≤ ∥Φ(τ,Θ0)∥2
∥∥∥Θ̂−Θ0

∥∥∥
2

∥∥∥Φ(τ,Θ0)− Φ(τ, Θ̂)
∥∥∥
2

+

[
H∑
h=1

∣∣∣⟨ϕ(xτh, θ0), θ̂h − θ0h⟩ − f(xτh, θ̂h)
∣∣∣] ∥∥∥Φ(τ, Θ̂)

∥∥∥
2
,

=

√√√√ H∑
h=1

∥ϕ(xτh, θ0h)∥
2

2

∥∥∥Θ̂−Θ0

∥∥∥
2

√√√√ H∑
h=1

∥∥∥ϕ(xτh, θ0)− ϕ(xτh, θ̂h)
∥∥∥2
2

+

[
H∑
h=1

∣∣∣⟨ϕ(xτh, θ0), θ̂h − θ0h⟩ − f(xτh, θ̂h)
∣∣∣]
√√√√ H∑
h=1

∥∥∥ϕ(xτh, θ̂h)∥∥∥2
2
, (63)

where the last equality follows from the fact that ∥Φ(τ,Θ)∥22 =
∑H
h=1 ∥ϕ(xτh, θh)∥

2
2 for any Θ ∈

R2mdH . According to Lemma 5 and the fact that
∥∥∥θ̂h − θ0

∥∥∥
2
≤ H

√
N/λ1, we have the followings

hold with probability at least 1−N−2H−4 for all h ∈ [H] and τ ∈ D

∥ϕ(xτh, θ0)∥2 ≤ Cϕ and
∥∥∥ϕ(xτh, θ̂h)∥∥∥

2
≤ Cϕ, (64)

∥∥∥ϕ(xτh, θ0)− ϕ(xτh, θ̂h)
∥∥∥
2
≤ O

Cϕ(H√N/λ1√
m

)1/3√
logm

 , (65)

∣∣∣⟨ϕ(xτh, θ0), θ̂h − θ0⟩ − f(xτh, θ̂h)
∣∣∣ ≤ O

(
Cϕ

(
H4N2/λ21√

m

)1/3√
logm

)
. (66)

Substituting eq. (64), eq. (65) and eq. (66) into eq. (63), we have∥∥∥∥∥⟨Φ(τ,Θ0), Θ̂−Θ0⟩Φ(τ,Θ0)−

(
H∑
h=1

f(xτh, θ̂h)

)
Φ(τ, Θ̂)

∥∥∥∥∥
2
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≤ (H2
√
N/λ1)O

C2
ϕ

(
H
√
N/λ1√
m

)1/3√
logm

+O

(
C2
ϕH

3/2

(
H4N2/λ21√

m

)1/3√
logm

)

≤ O

(
C2
ϕH

17/6N2/3
√
log(m)

m1/6λ
2/3
1

)
. (67)

Then, substituting eq. (67) into eq. (62), we have the following holds with probability at least
1−N−2H−4∥∥∥Σ(Θ0)(Θ̂−Θ)

∥∥∥
2

≤ NH ·
√
H · O

Cϕ(H√N/λ1√
m

)1/3√
logm

+N · O

(
C2
ϕH

17/6N2/3
√
log(m)

m1/6λ
2/3
1

)

≤ O

(
C2
ϕH

17/6N5/3
√
log(m)

m1/6λ
2/3
1

)
,

where we use the fact that r(τ) ≤ H . We then proceed to bound the term
∥∥∥Θ̂−Θ0

∥∥∥
2

as follows∥∥∥Θ̂−Θ
∥∥∥
2
=
∥∥∥Σ−1(Θ0)Σ(Θ0)(Θ̂−Θ)

∥∥∥
2

≤
∥∥Σ−1(Θ0)

∥∥
2

∥∥∥Σ(Θ0)(Θ̂−Θ)
∥∥∥
2

≤ λ−1
1

∥∥∥Σ(Θ0)(Θ̂−Θ)
∥∥∥
2

≤ O

(
C2
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
. (68)

Substituting eq. (68) into eq. (56), we can bound (ii) as follows

(ii) ≤ O

(
C3
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
. (69)

Taking summation of the upper bounds of (i) in eq. (55) and (ii) in eq. (69), we have∣∣∣R̂h(x)−Rh(x)
∣∣∣ ≤ (i) + (ii)

≤ O

(
Cϕ

(
N2H4

λ21
√
m

)1/3√
logm

)
+O

(
C3
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)

≤ O

(
C3
ϕH

17/6N5/3
√

log(m)

m1/6λ
5/3
1

)
. (70)

Step III. In this step, we show that the bonus term br,h(·, Θ̂) in Algorithm 1 can be well approximated
by br,h(·,Θ0). According to the definition of br,h(·,Θ), we have∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)

∣∣∣
=

∣∣∣∣[Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)
]1/2

−
[
Φh(x,Θ0)

⊤Σ−1(Θ0)Φh(x,Θ0)
]1/2∣∣∣∣

≤
∣∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)− Φh(x,Θ0)

⊤Σ−1(Θ0)Φh(x,Θ0)
∣∣∣1/2 , (71)

where the last inequality follows from the fact that
∣∣√x−√

y
∣∣ ≤ √

|x− y|. We then proceed to

bound the term
∣∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)− Φh(x,Θ0)

⊤Σ−1(Θ0)Φh(x,Θ0)
∣∣∣ as follows∣∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)− Φh(x,Θ0)

⊤Σ−1(Θ0)Φh(x,Θ0)
∣∣∣
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=
∣∣∣[Φh(x, Θ̂)− Φh(x,Θ0)]

⊤Σ−1(Θ̂)Φh(x, Θ̂)
∣∣∣+ ∣∣∣Φh(x,Θ0)

⊤(Σ−1(Θ̂)− Σ−1(Θ0))Φh(x, Θ̂)
∣∣∣

+
∣∣∣Φh(x,Θ0)

⊤Σ−1(Θ0)(Φh(x, Θ̂)− Φh(x,Θ0))
∣∣∣

≤ [Φh(x, Θ̂)− Φh(x,Θ0)]
⊤Σ−1(Θ̂)Φh(x, Θ̂) +

∣∣∣Φh(x,Θ0)
⊤(Σ−1(Θ̂)− Σ−1(Θ0))Φh(x, Θ̂)

∣∣∣
+
∣∣∣Φh(x,Θ0)

⊤Σ−1(Θ0)(Φh(x, Θ̂)− Φh(x,Θ0))
∣∣∣

≤
∥∥∥Φh(x, Θ̂)− Φh(x,Θ0)

∥∥∥
2

∥∥∥Σ−1(Θ̂)
∥∥∥
2

∥∥∥Φh(x, Θ̂)
∥∥∥
2

+ ∥Φh(x,Θ0)∥2
∥∥∥Σ−1(Θ̂)− Σ−1(Θ0)

∥∥∥
2

∥∥∥Φh(x, Θ̂)
∥∥∥
2

+ ∥Φh(x,Θ0)∥2
∥∥Σ−1(Θ0)

∥∥
2

∥∥∥Φh(x, Θ̂)− Φh(x,Θ0)
∥∥∥
2

=
∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)

∥∥∥
2

∥∥∥Σ−1(Θ̂)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2
∥∥∥Σ−1(Θ̂)(Σ(Θ̂)− Σ(Θ0))Σ

−1(Θ0)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2
∥∥Σ−1(Θ0)

∥∥
2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥
2

≤
∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)

∥∥∥
2

∥∥∥Σ−1(Θ̂)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2
∥∥∥Σ−1(Θ̂)

∥∥∥
2

∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥
2

∥∥Σ−1(Θ0)
∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+ ∥ϕ(x, θ0)∥2
∥∥Σ−1(Θ0)

∥∥
2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥
2

≤ 1

λ1

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2
+

1

λ21
∥ϕ(x, θ0)∥2

∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+
1

λ1
∥ϕ(x, θ0)∥2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥
2
, (72)

where the last inequality follows from the fact that ∥Σ(Θ)∥2 ≥ λ1 for any Θ ∈ R2mdH . For
Σ(Θ̂)− Σ(Θ0), we have

Σ(Θ̂)− Σ(Θ0) =
∑
τ∈D

[
Φ(τ, Θ̂)Φ(τ, Θ̂)⊤ − Φ(τ,Θ0)Φ(τ,Θ0)

⊤
]

=
∑
τ∈D

[
Φ(τ, Θ̂)(Φ(τ, Θ̂)− Φ(τ,Θ0))

⊤ + (Φ(τ, Θ̂)− Φ(τ,Θ0))Φ(τ,Θ0)
⊤
]
,

which implies∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥
2

≤
∑
τ∈D

[∥∥∥Φ(τ, Θ̂)
∥∥∥
2

∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)
∥∥∥
2
+
∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)

∥∥∥
2
∥Φ(τ,Θ0)∥2

]
. (73)

By definition of Φ(τ,Θ), we have the followings hold for any Θ, Θ̃ ∈ R2mdH

∥∥∥Φ(τ, Θ̂)
∥∥∥
2
=

√√√√∑
h∈[H]

∥∥∥ϕ(xτh, θ̂h)∥∥∥2
2
, (74)

∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)
∥∥∥
2
=

√√√√∑
h∈[H]

∥∥∥ϕ(xτh, θh)− ϕ(xτh, θ̃h)
∥∥∥2
2
. (75)

Applying Lemma 5 to eq. (74) and eq. (75), we have the followings hold with probability at least
1−N−2H−4 ∥∥∥Φ(τ, Θ̂)

∥∥∥
2
≤ Cϕ

√
H,
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∥∥∥Φ(τ, Θ̂)− Φ(τ,Θ0)
∥∥∥
2
≤ O

(
CϕH

5/6N1/6
√
logm

m1/6λ
1/6
1

)
.

Substituting the above two inequalities into eq. (73) yields∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥
2
≤ O

(
C2
ϕH

4/3N1/6
√
logm

m1/6λ
1/6
1

)
. (76)

Finally, combining eq. (76) and eq. (181) and eq. (182) in Lemma 5, we can bound the right hand
side of eq. (72) as∣∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)− Φh(x,Θ)⊤Σ−1(Θ)Φh(x,Θ)

∣∣∣
≤ 1

λ1

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2
+

1

λ21
∥ϕ(x, θ0)∥2

∥∥∥Σ(Θ̂)− Σ(Θ0)
∥∥∥
2

∥∥∥ϕ(x, θ̂h)∥∥∥
2

+
1

λ1
∥ϕ(x, θ0)∥2

∥∥∥ϕ(x, θ̂h)− ϕ(x, θ0)
∥∥∥
2

≤ O

(
C2
ϕH

1/3N1/6
√
logm

m1/6λ
7/6
1

)
+O

(
C4
ϕH

4/3N1/6
√
logm

m1/6λ
13/6
1

)

= O

(
C4
ϕH

4/3N1/6
√
logm

m1/6λ
13/6
1

)
. (77)

Substituting eq. (77) into eq. (71), we have the following holds with probability at least 1−N−2H−4∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)
∣∣∣

≤
∣∣∣Φh(x, Θ̂)⊤Σ−1(Θ̂)Φh(x, Θ̂)− Φh(x,Θ0)

⊤Σ−1(Θ0)Φh(x,Θ0)
∣∣∣1/2

≤ O

(
C2
ϕH

2/3N1/12(logm)1/4

m1/12λ
13/12
1

)
. (78)

Step IV. In Steps I and II, we show that the mean of the real rewardRh(·) can be well approximated by
a linear function R̃h(·) with feature ϕ(·, θ0) and our learned reward R̂h(·) can be well approximated
by a linear function Rh(·) with feature ϕ(·, θ0). In this step, we want to show that the reward
estimation error

∣∣∣R̂h(·)−Rh(·)
∣∣∣ is approximately β1 · br.h(x,Θ0) with an approximately chosen β1.

Recall that R̃h(·) = ⟨ϕ(·, θ0), θ̃h − θ0⟩ and Rh(·) = ⟨ϕ(·, θ0), θ̄h − θ0⟩. Considering the difference
between Rh(·) and R̃h(·), we have

Rh(x)− R̃h(x) = ⟨ϕ(x, θ0), θ̄h − θ̃h⟩ = ⟨Φh(x,Θ0),Θ− Θ̃⟩, (79)

where the last equality follows from the definition of Φh(·,Θ). By eq. (59), we have

Θ−Θ0 = Σ(Θ0)
−1
∑
τ∈D

r(τ)Φ(τ,Θ0). (80)

By the definition of Σ(Θ), we have

Θ̃−Θ0 = Σ(Θ0)
−1

[
λ1

(
Θ̃−Θ0

)
+

(∑
τ∈D

Φ(τ,Θ0)Φ(τ,Θ0)
⊤

)(
Θ̃−Θ0

)]
. (81)

Subtracting eq. (81) from eq. (80), we have

Θ− Θ̃ = −λ1Σ(Θ0)
−1
(
Θ̃−Θ0

)
+Σ(Θ0)

−1
∑
τ∈D

Φ(τ,Θ0)
[
r(τ)− ⟨Φ(τ,Θ0), Θ̃−Θ0⟩

]
.

(82)
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Taking inter product of both sides of eq. (82) with vector Φh(x,Θ0) and using the fact that R(τ) =∑
h∈[H]Rh(x

τ
h) and ⟨Φ(τ,Θ0), Θ̃−Θ0⟩ =

∑
h∈[H]⟨ϕ(xτh, θ0), θ̃h − θ0⟩, we have

⟨Φh(x,Θ0),Θ− Θ̃⟩

= −λ1Φh(x,Θ0)
⊤Σ(Θ0)

−1/2Σ(Θ0)
−1/2

(
Θ̃−Θ0

)
+Φh(x,Θ0)

⊤Σ(Θ0)
−1/2Σ(Θ0)

−1/2

(∑
τ∈D

Φ(τ,Θ0) (r(τ)−R(τ))

)

+Φh(x,Θ0)
⊤Σ(Θ0)

−1/2Σ(Θ0)
−1/2

∑
τ∈D

Φ(τ,Θ0)

 ∑
h∈[H]

(
Rh(x

τ
h)− ⟨ϕ(xτh, θ0), θ̃h − θ0⟩

) .

(83)

Recall that R̃h(xτh) = ⟨ϕ(xτh, θ0), θ̃h − θ0⟩, and eq. (83) implies that∣∣∣⟨Φh(x,Θ0),Θ− Θ̃⟩
∣∣∣

≤
√
λ1

∥∥∥Φh(x,Θ0)
⊤Σ(Θ0)

−1/2
∥∥∥
2

∥∥∥Θ̃−Θ0

∥∥∥
2

+
∥∥∥Φh(x,Θ0)

⊤Σ(Θ0)
−1/2

∥∥∥
2

∥∥∥∥∥∑
τ∈D

Φ(τ,Θ0)ε(τ)

∥∥∥∥∥
Σ(Θ0)−1

+
1√
λ1

∥∥∥Φh(x,Θ0)
⊤Σ(Θ0)

−1/2
∥∥∥
2

∑
τ∈D

∥Φ(τ,Θ0)∥2
∑
h∈[H]

∣∣∣Rh(xτh)− R̃h(x
τ
h)
∣∣∣
 , (84)

where we denote ϵ(τ) = r(τ) − R(τ) and use the fact that
∥∥Σ(Θ)−1/2

∥∥
2
≤ 1/

√
λ1 for any

Θ ∈ R2mdH . By the definition of Θ̃ in Step I, we have∥∥∥Θ̃−Θ
∥∥∥
2
=

√√√√ ∑
h∈[H],r∈[m]

∥∥∥θ̃h,r − θ0h,r

∥∥∥2
2

=

√ ∑
h∈[H],r∈[m]

∥ℓr∥22

≤ r2
√
H/d. (85)

By Lemma 5 and eq. (52), we have the followings hold with probability at least 1−N−2H−4

∥Φ(τ,Θ0)∥2 ≤ Cϕ
√
H, (86)∣∣∣Rh(xτh)− R̃h(x

τ
h)
∣∣∣ ≤ 2(Lσa2 + C2

σa
2
2)
√

logN2H5

√
m

. (87)

Substituting eq. (85), eq. (86) and eq. (87) into eq. (84) and using the fact that br,h(x,Θ0) =∥∥Φh(x,Θ0)
⊤Σ(Θ0)

−1/2
∥∥
2
, we have∣∣∣⟨Φh(x,Θ0),Θ− Θ̃⟩

∣∣∣
≤

a2√λ1H

d
+

2(Lσa2 + C2
σa

2
2)CϕNH

3/2
√
logHN√

λ1m
+

∥∥∥∥∥∑
τ∈D

Φ(τ,Θ0)ε(τ)

∥∥∥∥∥
Σ(Θ0)−1

 br,h(x,Θ0).

(88)
Given that the events in eq. (86) and eq. (87) occur, applying eq. (199) in Lemma 8, we have the
following holds with probability at least 1−N−2H−4∥∥∥∥∥∑

τ∈D
Φ(τ,Θ0)ε(τ)

∥∥∥∥∥
2

Σ(Θ0)−1
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≤ H2 log det(I +Kr
N/λ1) +H2N(λ1 − 1) + 4H2 log(NH2), (89)

where Kr
N ∈ RN×N is the Gram matrix defined as

Kr
N = [KH(τi, τj)]i,j∈[N ] ∈ RN×N .

Combining eq. (88) and eq. (89) and letting λ1 = 1 +N−1 and m be sufficiently large such that

2(Lσa2 + C2
σa

2
2)CϕNH

3/2
√
logHN√

λ1m
≤ a2

√
λ1H

d
,

we have the following holds with probability at least 1−N−2H−2∣∣∣⟨Φh(x,Θ0),Θ− Θ̃⟩
∣∣∣

≤

(
2a2

√
λ1H

d
+

√
H2 log det

(
I +

Kr
N

λ1

)
+H2 + 4H2 log(NH2)

)
br,h(x,Θ0)

≤ H

(
4a22λ1
d

+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

︸ ︷︷ ︸
β1

br,h(x,Θ0), (90)

where in the last inequality we use the fact that a + b ≤
√
2(a2 + b2). Substituting eq. (90) into

eq. (79), we have the following holds with probability at least 1−N−2H−4∣∣∣Rh(x)− R̃h(x)
∣∣∣ ≤ β1 · br,h(x,Θ0), (91)

where

β1 = H

(
4a22λ1
d

+ 2 log det

(
I +

Kr
N

λ1

)
+ 10 log(NH2)

)1/2

.

Next, we proceed to bound the reward estimation error
∣∣∣Rh(x)− R̂h(x)

∣∣∣. By the triangle inequality,
we have∣∣∣Rh(x)− R̂h(x)

∣∣∣ = ∣∣∣Rh(x)− R̃h(x) + R̃h(x)−Rh(x) +Rh(x)− R̂h(x)
∣∣∣

≤
∣∣∣Rh(x)− R̃h(x)

∣∣∣+ ∣∣∣R̃h(x)−Rh(x)
∣∣∣+ ∣∣∣Rh(x)− R̂h(x)

∣∣∣
(i)

≤
2(Lσa2 + C2

σa
2
2)
√
log(HN)√

m
+O

(
C3
ϕH

17/6N5/3
√
log(m)

m1/6λ
5/3
1

)
+ β1 · br,h(x,Θ0)

(ii)

≤ O

(
H17/6N5/3

√
log(m)

m1/6

)
+ β1 · br,h(x,Θ0). (92)

where (i) follows from eq. (52) and eq. (70) and (ii) follows from the fact that λ1 = 1 + 1/N and
Lσ, Cσ, a2, Cϕ = O(1).

D.2 UNCERTAINTY OF ESTIMATED TRANSITION VALUE FUNCTION (P̂hV̂h+1)(·)

In this subsection, we aim to bound the estimation error of the transition value function∣∣∣(P̂hV̂ )(·)− (PhV̂ )(·)
∣∣∣. For each h ∈ [H], since ŵh is the global minimizer of the loss function

Lhv (wh) defined in eq. (6), we have

Lhv (ŵh) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− f(xτh, ŵh)

)2
+ λ2 · ∥ŵh − w0∥22
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≤ Lhv (ŵ0) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− f(xτh, w0)

)2 (i)
=
∑
τ∈D

(
V̂h+1(s

τ
h+1)

)2 (ii)

≤ NH2, (93)

where (i) follows from the fact that f(x,w0) = 0 for all x ∈ X and (ii) follows from the fact that
V̂h(s) ≤ H for any h ∈ [H], s ∈ S, and |D| = N . Note that eq. (93) implies

∥ŵh − w0∥22 ≤ NH2/λ2, ∀h ∈ [H]. (94)

Hence, each ŵh belongs to the Euclidean ball Bw = {w ∈ R2md : ∥w − w0∥2 ≤ H
√
N/λ2}, where

λ2 does not depend on the network width m. Since the radius of Bw does not depend on m, when m
is sufficient large, it can be shown that f(·, w) is close to its linearization at w0, i.e.,

f(·, w) ≈ ⟨ϕ(·, w0), w − w0⟩, ∀w ∈ Bθ,

where ϕ(·, w) = ∇wf(·, w). Furthermore, according to Assumption 2, there exists a function
ℓA1,A2

: Rd → Rd such that (PhV̂h+1)(·) satisfies

(PhV̂h+1)(x) =

∫
Rd

σ′(θ⊤x) · x⊤ℓv(w)dp(w), (95)

where supw ∥ℓv(w)∥2 ≤ A1, supw(∥ℓv(w)∥2 /p(w)) ≤ A2 and p is the density of N(0, Id/d). We
then proceed to bound the difference between (P̂hV̂ )(·) and (PhV̂ )(·).

Step I. In the first step, we show that the transition value function (PhV̂h+1)(·) can be well-
approximated by a linear function with the feature vector ϕ(·, θ0). Lemma 4 in Appendix G implies
that with probability at least 1−N−2H−4 over the randomness of initialization w0, for all h ∈ [H],
there exists a function (P̃hV̂h+1)(·) : X → R satisfying

sup
x∈X

∣∣∣(P̃hV̂h+1)(x)− (PhV̂h+1)(x)
∣∣∣ ≤ 2(LσA2 + C2

σA
2
2)
√
log(N2H5)√

m
, (96)

where (P̃hV̂h+1)(·) is a finite-width neural network which can be written as

(P̃hV̂h+1)(x) =
1√
m

m∑
r=1

σ′(w⊤
0,rx) · x⊤ℓvr ,

where ∥ℓvr∥2 ≤ A2/
√
dm for all r ∈ [m] and w0 = [w0,1, · · · , w0,m] is generated via the symmetric

initialization scheme. Following steps similar to those in eq. (53), we can show that there exists a
vector w̃h ∈ R2md such that

(P̃hV̂h+1)(·) = ⟨ϕ(·, w0), w̃h − w0⟩,

where w̃h = [w̃⊤
h,1, · · · .w̃⊤

h,2m]⊤, in which w̃⊤
h,r = w0,r + b0,r · ℓvr/

√
2 for all r ∈ {1, · · · ,m}

and w̃⊤
h,r = w0,r + b0,r · ℓvr−m/

√
2 for all r ∈ {m+ 1, · · · , 2m}. Moreover, since w̃h,r − w0,r =

b0,r · ℓvr/
√
2 or b0,r · ℓvr−m/

√
2, we have

∥w̃h − w0∥2 ≤ A2

√
2dm.

Step II. In the second step, we show that with high probability, the estimation of the transition value
function (P̂hV̂h+1)(·) in Algorithm 1 can be well-approximated by its counterpart learned with a
linear function with the feature ϕ(·, θ0).
Consider the following least-square loss function

L̄hv (wh) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− ⟨ϕ(xτh, w0), wh − w0⟩

)2
+ λ2 · ∥wh − w0∥22 . (97)

The global minimizer of L̄hv (wh) is defined as

wh = argmin
w∈R2dm

L̄hv (w). (98)
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We define (PhV̂h+1)(·) = ⟨ϕ(·, w0), wh − w0⟩ for all h ∈ [H]. Then, in a manner similar to the
construction of Q̂h(·) in Algorithm 1, we combine Rh(·) in eq. (54), br,h(·,Θ0), PhV̂h+1(·) and
bv,h(·, w0) to construct Qh(·) : X → R as

Qh(·) = min{Rh(·) + (PhV̂h+1)(·)− β1 · br,h(·,Θ0)− β2 · bv,h(·, w0), H}+. (99)

Moreover, we define the estimated optimal state value function as

V h(·) = max
a∈A

Qh(·, a). (100)

We then proceed to bound the estimation error
∣∣∣(P̂hV̂h+1)(x)− PhV̂h+1)(x)

∣∣∣ as follows∣∣∣(P̂hV̂h+1)(x)− PhV̂h+1)(x)
∣∣∣ = |f(x, ŵh)− ⟨ϕ(x,w0), wh − w0⟩|

= |f(x, ŵh)− ⟨ϕ(x,w0), ŵh − w0⟩ − ⟨ϕ(·, w0), ŵh − wh⟩|
≤ |f(x, ŵh)− ⟨ϕ(x,w0), ŵh − w0⟩|+ |⟨ϕ(·, w0), ŵh − wh⟩|
≤ |f(x, ŵh)− ⟨ϕ(·, w0), ŵh − w0⟩|︸ ︷︷ ︸

(i)

+ ∥ϕ(x,w0)∥2 ∥ŵh − wh∥2︸ ︷︷ ︸
(ii)

.

We then bound the term (i) and term (ii) in the above inequality. According to Lemma 5 and the fact
that ∥ŵh − w0∥2 ≤ H

√
N/λ2, we have the followings hold with probability at least 1−N−2H−4

(i) ≤ O

(
Cϕ

(
N2H4

λ22
√
m

)1/3√
logm

)
, (101)

(ii) ≤ Cϕ ∥ŵh − wh∥2 . (102)

We then proceed to bound ∥ŵh − wh∥2. Consider the minimization problem defined in eq. (5) and
eq. (54). By the first order optimality condition, we have

λ2 (ŵh − w0) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− f(xτh, ŵh)

)
ϕ(xτh, ŵh) (103)

λ2 (wh − w0) =
∑
τ∈D

(
V̂h+1(s

τ
h+1)− ⟨ϕ(xτh, w0), wh − w0⟩

)
ϕ(xτh, w0). (104)

Note that eq. (104) implies

Λh(w0) (wh − w0) =
∑
τ∈D

V̂h+1(s
τ
h+1)ϕ(x

τ
h, w0). (105)

Adding the term
∑
τ∈D⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0) on both sides of eq. (103) yields

Λh(w0) (ŵh − w0) =
∑
τ∈D

V̂h+1(s
τ
h+1)ϕ(x

τ
h, ŵh)

+
∑
τ∈D

[⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)] . (106)

Then, by subtracting eq. (105) from eq. (106), we have

Λh(w0)(ŵh − wh) =
∑
τ∈D

V̂h+1(s
τ
h+1) (ϕ(x

τ
h, ŵh)− ϕ(xτh, w0))

+
∑
τ∈D

[⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)] , (107)

which implies

∥Λh(w0)(ŵh − wh)∥2 =
∑
τ∈D

V̂h+1(s
τ
h+1) ∥ϕ(xτh, ŵh)− ϕ(xτh, w0)∥2

+
∑
τ∈D

∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)∥2 .

(108)
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To bound the term ∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)∥2, we proceed as fol-

lows

⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)

= ⟨ϕ(xτh, w0), ŵh − w0⟩(ϕ(xτh, w0)− ϕ(xτh, ŵh))− (⟨ϕ(xτh, w0), ŵh − w0⟩ − f(xτh, ŵh))ϕ(x
τ
h, ŵh)

which implies

∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)∥2

≤ ∥ϕ(xτh, w0)∥2 ∥ŵh − w0∥2 ∥ϕ(x
τ
h, w0)− ϕ(xτh, ŵh)∥2

+ |⟨ϕ(xτh, w0), ŵh − w0⟩ − f(xτh, ŵh)| ∥ϕ(xτh, ŵh)∥2 . (109)

According to Lemma 5 and the fact that ∥ŵh − w0∥2 ≤ H
√
N/λ2, we have the followings hold for

all h ∈ [H] and τ ∈ D with probability at least 1−N−2H−4

∥ϕ(xτh, w0)∥2 ≤ Cϕ and ∥ϕ(xτh, ŵh)∥2 ≤ Cϕ, (110)

∥ϕ(xτh, w0)− ϕ(xτh, ŵh)∥2 ≤ O

Cϕ(H√N/λ2√
m

)1/3√
logm

 , (111)

|⟨ϕ(xτh, w0), ŵh − w0⟩ − f(xτh, ŵh)| ≤ O

(
Cϕ

(
H4N2/λ22√

m

)1/3√
logm

)
. (112)

Substituting eq. (110), eq. (111) and eq. (112) into eq. (109), we can obtain

∥⟨ϕ(xτh, w0), ŵh − w0⟩ϕ(xτh, w0)− f(xτh, ŵh)ϕ(x
τ
h, ŵh)∥2

≤ (H
√
N/λ2)O

C2
ϕ

(
H
√
N/λ2√
m

)1/3√
logm

+O

(
C2
ϕ

(
H4N2/λ22√

m

)1/3√
logm

)

≤ O

(
C2
ϕH

4/3N2/3
√

log(m)

m1/6λ
2/3
2

)
. (113)

Substituting eq. (113) into eq. (108), we have the following holds with probability at least 1 −
N−2H−4

∥Λh(w0)(ŵh − wh)∥2

≤ NH · O

Cϕ(H√N/λ2√
m

)1/3√
logm

+N · O

(
C2
ϕH

4/3N2/3
√

log(m)

m1/6λ
2/3
2

)

≤ O

(
C2
ϕH

4/3N5/3
√
log(m)

m1/6λ
2/3
2

)
(114)

where we use the fact that V̂h+1(s) ≤ H for any s ∈ S. We then proceed to bound ∥ŵh − wh∥2 as
follows

∥ŵh − wh∥2 =
∥∥Λ−1(w0)Λ(w0)(ŵh − wh)

∥∥
2

≤
∥∥Λ−1(w0)

∥∥
2
∥Λ(w0)(ŵh − wh)∥2

≤ 1

λ2
· O

(
C2
ϕH

4/3N5/3
√
log(m)

m1/6λ
2/3
2

)

≤ O

(
C2
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
. (115)

Substituting eq. (115) into eq. (102) yields

(ii) ≤ O

(
C3
ϕH

4/3N5/3
√

log(m)

m1/6λ
5/3
2

)
. (116)
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Taking summation of the upper bounds of (i) in eq. (101) and (ii) in eq. (116), respectively, we have
the following holds for all x ∈ X with probability at least 1−N−2H−4∣∣∣(P̂hV̂h+1)(x)− PhV̂h+1)(x)

∣∣∣ ≤ (i) + (ii)

≤ O

(
Cϕ

(
N2H4

λ22
√
m

)1/3√
logm

)
+O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)

≤ O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
. (117)

Step III. In this step, we show that the bonus term bv,h(·, ŵh) in Algorithm 1 can be well approxi-
mated by bv,h(·, w0). By the definition of bv,h(·, w), we have

|bv,h(x, ŵh)− bv,h(x,w0)|

=
∣∣∣[ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)

]1/2 − [ϕh(x,w0)
⊤Λ−1(w0)ϕh(x,w0)

]1/2∣∣∣
≤
∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)− ϕh(x,w0)

⊤Λ−1(w0)ϕh(x,w0)
∣∣1/2 , (118)

where the last inequality follows from the fact that
∣∣√x−√

y
∣∣ ≤√|x− y|. Following steps similar

to those in eq. (72), we can obtain∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)− ϕh(x,w0)
⊤Λ−1(w0)ϕh(x,w0)

∣∣
≤ ∥ϕ(x, ŵh)− ϕ(x,w0)∥2

∥∥Λ−1(ŵh)
∥∥
2
∥ϕ(x, ŵh)∥2

+ ∥ϕ(x,w0)∥2
∥∥Λ−1(ŵh)

∥∥
2
∥Λ(ŵh)− Λ(w0)∥2

∥∥Λ−1(w0)
∥∥
2
∥ϕ(x, ŵh)∥2

+ ∥ϕ(x,w0)∥2
∥∥Λ−1(w0)

∥∥
2
∥ϕ(x, ŵh)− ϕ(x,w0)∥2

≤ 1

λ2
∥ϕ(x, ŵh)− ϕ(x,w0)∥2 ∥ϕ(x, ŵh)∥2 +

1

λ22
∥ϕ(x,w0)∥2 ∥Λ(ŵh)− Λ(w0)∥2 ∥ϕ(x, ŵh)∥2

+
1

λ2
∥ϕ(x,w0)∥2 ∥ϕ(x, ŵh)− ϕ(x,w0)∥2 , (119)

where the last inequality follows from the fact that ∥Λ(w)∥2 ≥ λ2 for any w ∈ R2md. For
Λ(ŵ)− Λ(w0), by following steps similar to those in eq. (73), we can obtain

∥Λ(ŵh)− Λ(w0)∥2
≤
∑
τ∈D

[∥ϕ(xτh, ŵh)∥2 ∥ϕ(x
τ
h, ŵh)− ϕ(xτh, w0)∥2 + ∥ϕ(xτh, ŵh)− ϕ(xτh, w0)∥2 ∥ϕ(x

τ
h, w0)∥2] .

(120)

Applying Lemma 5 to eq. (120), we have the followings hold with probability at least 1−N−2H−4

∥ϕ(xτh, ŵh)∥2 ≤ Cϕ,

∥ϕ(xτh, ŵh)− ϕ(xτh, w0)∥2 ≤ O

(
CϕH

1/3N1/6
√
logm

m1/6λ
1/6
2

)
.

Substituting the above two inequalities into eq. (73) yields

∥Λ(ŵh)− Λ(w0)∥2 ≤ O

(
C2
ϕH

1/3N1/6
√
logm

m1/6λ
1/6
2

)
. (121)

Finally, combining eq. (121) and eq. (181) and eq. (182) in Lemma 5, the right hand side of eq. (119)
can be bounded by∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)− ϕh(x,w0)

⊤Λ−1(w0)ϕh(x,w0)
∣∣

≤ 1

λ2
∥ϕ(x, ŵh)− ϕ(x,w0)∥2 ∥ϕ(x, ŵh)∥2 +

1

λ22
∥ϕ(x,w0)∥2 ∥Λ(ŵh)− Λ(w0)∥2 ∥ϕ(x, ŵh)∥2
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+
1

λ2
∥ϕ(x,w0)∥2 ∥ϕ(x, ŵh)− ϕ(x,w0)∥2

≤ O

(
C2
ϕH

1/3N1/6
√
logm

m1/6λ
7/6
2

)
+O

(
C4
ϕH

1/3N1/6
√
logm

m1/6λ
13/6
2

)
.

By eq. (118), we have the following holds with probability at least 1−N−2H−4

|bv,h(x, ŵh)− bv,h(x,w0)|

≤
∣∣ϕh(x, ŵh)⊤Λ−1(ŵh)ϕh(x, ŵh)− ϕh(x,w0)

⊤Λ−1(w0)ϕh(x,w0)
∣∣1/2

≤ O

(
C2
ϕH

1/6N1/12(logm)1/4

m1/12λ
13/12
2

)
. (122)

Step IV. In Steps I and II, we show that (PhV̂h+1)(·) can be well approximated by a linear function
(P̃hV̂h+1)(·) with the feature ϕ(·, θ0), and (P̂hV̂h+1)(·) can be well approximated by a linear function
(PhV̂h+1)(·) with the feature ϕ(·, θ0). In this step, we want to show that the difference between
(PhV̂h+1)(·) and (P̂hV̂h+1)(·) is approximately β2 · bv.h(x,Θ0) with an approximately chosen β2.

Recall that (P̃hV̂h+1)(·) = ⟨ϕ(·, w0), w̃h − w0⟩ and (PhV̂h+1)(·) = ⟨ϕ(·, w0), w̄h − w0⟩. Consider
the difference between (PhV̂h+1)(·) and (P̃hV̂h+1)(·). We have

(PhV̂h+1)(x)− (P̃hV̂h+1)(x) = ⟨ϕ(x,w0), w̄h − w̃h⟩, (123)

By eq. (104), we have

w − w0 = Λ(w0)
−1
∑
τ∈D

V̂h+1(s
τ
h+1)ϕ(x

τ
h, w0). (124)

By the definition of Λ(w), we have

w̃ − w0 = Λ(w0)
−1

[
λ2 (w̃ − w0) +

(∑
τ∈D

ϕ(xτh, w0)ϕ(x
τ
h, w0)

⊤

)
(w̃ − w0)

]
. (125)

Subtracting eq. (125) from eq. (124), we have

w − w̃ = −λ2Λ(w0)
−1 (w̃ − w0) + Λ(w0)

−1
∑
τ∈D

ϕ(xτh, w0)
[
V̂h+1(s

τ
h+1)− ⟨ϕ(xτh, w0), w̃ − w0⟩

]
.

(126)

Taking inter product of both sides of eq. (126) with vector ϕ(xτh, w0) and using the fact that
(P̃hV̂h+1)(s

τ
h+1) = ⟨ϕ(xτh, w0), w̃h − w0⟩, we have

⟨ϕh(xτh, w0), w − w̃⟩
= −λ2ϕh(xτh, w0)

⊤Λ(w0)
−1/2Λ(w0)

−1/2 (w̃ − w0)

+ ϕh(x
τ
h, w0)

⊤Λ(w0)
−1/2Λ(w0)

−1/2

(∑
τ∈D

ϕ(xτh, w0)
(
V̂h+1(s

τ
h+1)− (PhV̂h+1)(x

τ
h)
))

+ ϕh(x,w0)
⊤Λ(w0)

−1/2Λ(w0)
−1/2

(∑
τ∈D

ϕ(xτh, w0)
(
(PhV̂h+1)(s

τ
h+1)− ⟨ϕ(xτh, w0), w̃h − w0⟩

))
= −λ2ϕh(xτh, w0)

⊤Λ(w0)
−1/2Λ(w0)

−1/2 (w̃ − w0)

+ ϕh(x
τ
h, w0)

⊤Λ(w0)
−1/2Λ(w0)

−1/2

(∑
τ∈D

ϕ(xτh, w0)
(
V h+1(s

τ
h+1)− (PhV h+1)(x

τ
h)
))

+ ϕh(x
τ
h, w0)

⊤Λ(w0)
−1/2Λ(w0)

−1/2

(∑
τ∈D

ϕ(xτh, w0)
(
∆Vh+1(s

τ
h+1)− (Ph∆Vh+1)(x

τ
h)
))
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+ ϕh(x,w0)
⊤Λ(w0)

−1/2Λ(w0)
−1/2

(∑
τ∈D

ϕ(xτh, w0)
(
(PhV̂h+1)(x

τ
h)− (P̃hV̂h+1)(x

τ
h)
))

,

(127)

where in the last equality we denote ∆Vh(s) := V̂h(s) − V h(s). By the definition of V̂h(·) in
Algorithm 1 and V h(·) in eq. (100), we have∣∣∣V̂h(x)− V h(x)

∣∣∣
≤ sup
x∈X

∣∣∣Q̂h(x)−Qh(x)
∣∣∣

≤
∣∣∣f(x, θ̂h)− ⟨ϕ(x, θ0), θ̄h − θ0⟩

∣∣∣+ |f(x, ŵh)− ⟨ϕ(x,w0), wh − w0⟩|

+ β1

∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)
∣∣∣+ β2 |bv,h(x, ŵ)− bv,h(x,w0)|

(i)

≤ O

(
Cϕ

(
H4N2/λ21√

m

)1/3√
logm

)
+O

(
Cϕ

(
H4N2/λ22√

m

)1/3√
logm

)

+ β1 · O

(
C2
ϕN

1/12(logm)1/4

m1/12λ
13/12
1

)
+ β2 · O

(
C2
ϕH

1/6N1/12(logm)1/4

m1/12λ
13/12
2

)
(ii)

≤ O

(
Cϕ

(
H4N2

√
m

)1/3√
logm

)
+max{H2/3β1, H

1/6β2} · O

(
C2
ϕN

1/12(logm)1/4

m1/12

)
,

(128)

where (i) follows from eq. (183) in Lemma 5, eq. (78) and eq. (122), and (ii) follows from the fact
that λ1, λ2 > 1. Denoting

εv = O

(
Cϕ

(
H4N2

√
m

)1/3√
logm

)
+max{H2/3β1, H

1/6β2} · O

(
C2
ϕN

1/12(logm)1/4

m1/12

)
,

we then have the following holds for all h ∈ [H] and s ∈ S
|∆Vh(s)| ≤ εv.

Equation (127) together with eq. (128) imply

|⟨ϕh(xτh, w0), w − w̃⟩|

≤
√
λ2

∥∥∥ϕh(xτh, w0)
⊤Λ(w0)

−1/2
∥∥∥
2
∥w̃ − w0∥2

+
∥∥∥ϕh(xτh, w0)

⊤Λ(w0)
−1/2

∥∥∥
2

∥∥∥∥∥∑
τ∈D

ϕ(xτh, w0)εv(x
τ
h)

∥∥∥∥∥
Λ(w0)−1

+
2εv√
λ2

∥∥∥ϕh(xτh, w0)
⊤Λ(w0)

−1/2
∥∥∥
2

∑
τ∈D

∥ϕ(xτh, w0)∥2

+
1√
λ2

∥∥∥ϕh(xτh, w0)
⊤Λ(w0)

−1/2
∥∥∥
2

(∑
τ∈D

∥ϕ(xτh, w0)∥2
∣∣∣(PhV̂h+1)(x

τ
h)− (P̃hV̂h+1)(x

τ
h)
∣∣∣) ,
(129)

where we denote εv(xτh) := V h+1(s
τ
h+1) − (PhV h+1)(x

τ
h) and use the fact that

∥∥Λ(w)−1/2
∥∥
2
≤

1/
√
λ2 for any w ∈ R2md. By the definition of w̃ in Step I, we have

∥w̃ − w0∥2 = ∥ℓv∥2 ≤ A2

√
H/d. (130)

By Lemma 5 and eq. (52), we have the followings hold with probability at least 1−N−2H−4 over
the randomness of initialization w0

∥ϕ(xτh, w0)∥2 ≤ Cϕ, (131)
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∣∣∣(PhV̂h+1)(x
τ
h)− (P̃hV̂h+1)(x

τ
h)
∣∣∣ ≤ 2(LσA2 + C2

σA
2
2)
√
logN2H5

√
m

. (132)

Substituting eq. (130), eq. (131) and eq. (132) into eq. (129) and using the fact that bv,h(x,w0) =∥∥ϕh(x,w0)
⊤Λ(w0)

−1/2
∥∥
2
, we have

|⟨ϕh(xτh, w0), w − w̃⟩| ≤

(
A2

√
λ2H

d
+

2(LσA2 + C2
σA

2
2)CϕNH

3/2
√
logHN√

λ2m

+

∥∥∥∥∥∑
τ∈D

ϕ(xτh, w0)εv(x
τ
h)

∥∥∥∥∥
Λ(w0)−1

)
bv,h(x

τ
h, w0). (133)

Given that the events in eq. (131) and eq. (132) occur, applying eq. (198) in Lemma 8, we have the
following holds with probability at least 1−N−2H−4∥∥∥∥∥∑

τ∈D
ϕ(xτh, w0)εv(x

τ
h)

∥∥∥∥∥
2

Λ(w0)−1

≤ 2H2 log det(I +Kv
N,h/λ2) + 2H2N(λ2 − 1) + 4H2 log(N v

ϵ,h/δ) + 8N2C2
ϕϵ

2/λ2, (134)

where Kv
N,h ∈ RN×N is the Gram matrix defined as

Kv
N,h = [K(xτih , x

τj
h )]i,j∈[N ] ∈ RN×N ,

and N v
ϵ,h is the cardinality of the following function class

Vh(x,Rθ, Rw, Rβ1
, Rβ2

, λ1, λ2) = {max
a∈A

{Qh(s, a)} : S → [0, H]

with ∥θ∥2 ≤ Rθ, ∥w∥2 ≤ Rw, β1 ∈ [0, Rβ1 ], β2 ∈ [0, Rβ2 ], ∥Σ∥2 ≥ λ1, ∥Λ∥2 ≥ λ2},

where Rθ = H
√
N/λ1, Rw = H

√
N/λ2 and

Qh(x) = min{⟨ϕ(x, θ0), θ − θ0⟩+ ⟨ϕ(x,w0), w − w0⟩

− β1 ·
√

Φh(x, θ0)⊤Σ−1Φh(x, θ0)− β2 ·
√
ϕ(x,w0)⊤Λ−1ϕ(x,w0), H}+.

Combining eq. (133) and eq. (134), defining N v
ϵ = maxh∈[H]{N v

ϵ,h} and letting

ϵ =
√
λ2CϵH/(2NCϕ) where Cϵ ≥ 1 and λ2 = 1 +N−1, (135)

and m be sufficiently large such that

2(LσA2 + C2
σA

2
2)CϕNH

3/2
√
logHN√

λ2m
≤ A2

√
λ2H

d
,

we have the following holds with probability at least 1−N−2H−4

|⟨ϕh(xτh, w0), w − w̃⟩|

≤

(
2A2

√
λ2H

d
+

√
2H2 log det

(
I +

Kv
N,h

λ2

)
+ 3CϵH2 + 8H2 log(NH2N v

ϵ )

)
bv,h(x,w0)

≤ H

(
8A2

2λ2
d

+ 4 max
h∈[H]

{
log det

(
I +

Kv
N,h

λ2

)}
+ 6Cϵ + 16 log(NH2N v

ϵ )

)1/2

︸ ︷︷ ︸
β2

bv,h(x,w0),

(136)

where in the last inequality we use the fact that a+ b ≤
√
2(a2 + b2). Substituting eq. (136) into

eq. (123), we conclude that the following holds with probability at least 1−N−2H−4∣∣∣(PhV̂h+1)(x)− (P̃hV̂h+1)(x)
∣∣∣ ≤ β2 · bv,h(x,w0), (137)
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where

β2 = H

(
8A2

2λ2
d

+ 4 max
h∈[H]

{
log det

(
I +

Kv
N,h

λ2

)}
+ 22 log(NH2N v

ϵ )

)1/2

.

Next, we proceed to bound the term
∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)

∣∣∣. By the triangle inequality, we
have∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)

∣∣∣
=
∣∣∣(PhV̂h+1)(x)− (P̃hV̂h+1)(x) + (P̃hV̂h+1)(x)− (PhV̂h+1)(x) + (PhV̂h+1)(x)− (P̂hV̂h+1)(x)

∣∣∣
≤
∣∣∣(PhV̂h+1)(x)− (P̃hV̂h+1)(x)

∣∣∣+ ∣∣∣(P̃hV̂h+1)(x)− (PhV̂h+1)(x)
∣∣∣+ ∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)

∣∣∣
(i)

≤
2(LσA2 + C2

σA
2
2)
√
log(N2H5)√

m
+ β2 · bv,h(x,w0) +O

(
C3
ϕH

4/3N5/3
√
log(m)

m1/6λ
5/3
2

)
(ii)

≤ O

(
H4/3N5/3

√
log(N2H5m)

m1/6

)
+ β2 · bv,h(x,w0), (138)

where (i) follows from eq. (96), eq. (117) and eq. (137) and (ii) follows from the fact that λ2 =
1 + 1/N and Lσ, Cσ, A2, Cϕ = O(1).

D.3 UPPER AND LOWER BOUNDS ON EVALUATE ERROR δh(·)

By definition, we have the following holds with probability 1− 2N−2H−4∣∣∣(B̂hV̂h+1)(x)− (BhV̂h+1)(x)
∣∣∣

=
∣∣∣R̂h(x) + (P̂hV̂h+1)(x)−Rh(x)− (PhV̂h+1)(x)

∣∣∣
≤
∣∣∣R̂h(x)−Rh(x)

∣∣∣+ ∣∣∣(P̂hV̂h+1)(x)− (PhV̂h+1)(x)
∣∣∣

(i)

≤ β1 · br,h(x,Θ0) + β2 · bv,h(x,w0) +O

(
H4/3N5/3

√
log(N2H5m)

m1/6

)

+O

(
H17/6N5/3

√
log(m)

m1/6

)

≤ β1 · br,h(x,Θ0) + β2 · bv,h(x,w0) +O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
, (139)

where (i) follows from eq. (92) and eq. (139). Moreover, by the triangle inequality, eq. (78) and
eq. (122), we have the following holds with probability 1− 2N−2H−4

β1 · br,h(x,Θ0) + β2 · bv,h(x,w0)

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵ) + β1 ·
∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)

∣∣∣
+ β2 · |br,h(x, ŵ)− br,h(x,w0)|

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh)

+ β1 · O

(
C2
ϕH

2/3N1/12(logm)1/4

m1/12λ
13/12
1

)
+ β2 · O

(
C2
ϕH

1/6N1/12(logm)1/4

m1/12λ
13/12
2

)
(i)

≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + max{β1H2/3, β2H
1/6}O

(
N1/12(logm)1/4

m1/12

)
, (140)

where (i) follows from the fact that λ1 = λ2 = 1+ 1/N and Cϕ = O(1). Substituting eq. (140) into
eq. (139), we can obtain∣∣∣(B̂hV̂h+1)(x)− (BhV̂h+1)(x)

∣∣∣
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≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh)

+ max{β1H2/3, β2H
1/6}O

(
N1/12(logm)1/4

m1/12

)
+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
.

Denoting

εb = max{β1H2/3, β2H
1/6}O

(
N1/12(logm)1/4

m1/12

)
+O

(
H17/6N5/3

√
log(N2H5m)

m1/6

)
,

we have ∣∣∣(B̂hV̂h+1)(x)− (BhV̂h+1)(x)
∣∣∣ ≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb. (141)

Up to this point, we characterize the uncertainty of (B̂hV̂h+1)(·). Next, we proceed to bound the
suboptimality of Algorithm 1. Recalling the construction of Q̂h(x) in Algorithm 1, we have

Q̂h(·) = min{(B̂hV̂h+1)(·)− β1 · br,h(·, Θ̂)− β2 · bv,h(·, ŵh), H}+.

If (B̂hV̂h+1)(x) < β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh), we have

Q̂h(·) = 0.

Note that V̂h+1(·) is nonnegative. Recalling the definition of δh(x) in eq. (13), we have

δh(x) = (BhV̂h+1)(x)− Q̂h(x) = (BhV̂h+1)(x) > 0.

Otherwise, if (B̂hV̂h+1)(x) > β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh), we have

Q̂h(x) = min{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh), H}+

≤ (B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh),

which implies that

δh(x) ≥ (BhV̂h+1)(x)−
[
(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh)

]
=
[
(BhV̂h+1)(x)− (B̂hV̂h+1)(x)

]
+ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh).

Note that eq. (141) implies the followings hold with probability 1− 2N−2H−4

(BhV̂h+1)(x)− (B̂hV̂h+1)(x) ≥ −β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh)− εb. (142)

(BhV̂h+1)(x)− (B̂hV̂h+1)(x) ≤ β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb. (143)

As a result, we have the following holds with probability 1− 2N−2H−4

δh(x) ≥ −εb. (144)

It remains to establish the upper bound of δh(x). Considering the event in eq. (143) occurs, we have

(B̂hV̂h+1)(·)− β1 · br,h(·, Θ̂)− β2 · bv,h(·, ŵh)

≤
[
(BhV̂h+1)(x) + β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
− β1 · br,h(·, Θ̂)− β2 · bv,h(·, ŵh)

= (BhV̂h+1)(x) + εb ≤ H + εb,

where the last inequality follows from the fact that Rh(x) ≤ 1 and V̂h+1(s) ≤ H for all x ∈ X and
s ∈ S. Hence, we have

Q̂h(x) = min{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh), H}+

≥ min{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh)− εb, H}+

= max{(B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh)− εb, 0}
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≥ (B̂hV̂h+1)(x)− β1 · br,h(x, Θ̂)− β2 · bv,h(x, ŵh)− εb, (145)

which by definition of δh(x) implies

δh(x) = (BhV̂h+1)(x)− Q̂h(x)

≤ (BhV̂h+1)(x)− (B̂hV̂h+1)(x) + β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

≤ 2
[
β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
, (146)

where the last inequality follows from eq. (143). Combining eq. (144) and eq. (146), with probability
1− 2N−2H−4, we have

−εb ≤ δh(x) ≤ 2
[
β1 · br,h(x, Θ̂) + β2 · bv,h(x, ŵh) + εb

]
, ∀x ∈ X , ∀h ∈ [H],

which completes the proof.

E PROOF OF LEMMA 2

For
∑H
h=1 br,h(x, Θ̂), we have the following holds with probability 1−N−2H−4

H∑
h=1

br,h(x, Θ̂) ≤
H∑
h=1

br,h(x,Θ0) +

H∑
h=1

∣∣∣br,h(x, Θ̂)− br,h(x,Θ0)
∣∣∣

(i)

≤
H∑
h=1

br,h(x,Θ0) +O
(
H5/3N1/12(logm)1/4

m1/12

)
, (147)

where (i) follows from eq. (78). We next proceed to bound the term
∑H
h=1 br,h(x,Θ0). Recall

that in Assumption 3 we define M(Θ0) = Eµ
[
Φ(τ,Θ0)Φ(τ,Θ0)

⊤]. For all τ ∈ D, we define the
following random matrix M̂(Θ0)

M̂(Θ0) =
∑
τ∈D

Aτ (Θ0), where Aτ (Θ0) = Φ(τ,Θ0)Φ(τ,Θ0)
⊤ −M(Θ0). (148)

Note that eq. (64) implies ∥Φ(τ,Θ0)∥2 ≤ Cϕ
√
H . By Jensen’s inequality, we have∥∥M(Θ0)

∥∥
2
≤ Eµ

[∥∥Φ(τ,Θ0)Φ(τ,Θ0)
⊤∥∥

2

]
≤ C2

ϕH. (149)

For any vector v ∈ R2mdH with ∥v∥2 = 1, we have

∥Aτ (Θ0)v∥2 ≤
∥∥Φ(τ,Θ0)Φ(τ,Θ0)

⊤v
∥∥
2
+
∥∥M(Θ0)v

∥∥
2

≤
∥∥Φ(τ,Θ0)Φ(τ,Θ0)

⊤∥∥
2
∥v∥2 +

∥∥M(Θ0)
∥∥
2
∥v∥2

≤ 2C2
ϕH ∥v∥2 = 2C2

ϕH,

which implies

∥Aτ (Θ0)∥2 ≤ 2C2
ϕH and

∥∥Aτ (Θ0)Aτ (Θ0)
⊤∥∥

2
≤ ∥Aτ (Θ0)∥2

∥∥Aτ (Θ0)
⊤∥∥

2
≤ 4C4

ϕH
2. (150)

Since {Aτ (Θ0)}τ∈D are i.i.d. and E[Aτ (Θ0)] = 0 for all τ , we have∥∥∥Eµ[M̂(Θ0)M̂(Θ0)
⊤]
∥∥∥
2
=

∥∥∥∥∥∑
τ∈D

Eµ
[
Aτ (Θ0)Aτ (Θ0)

⊤]∥∥∥∥∥
2

= N ·
∥∥Eµ [Aτ1(Θ0)Aτ1(Θ0)

⊤]∥∥
2

(i)

≤ N · Eµ
[∥∥Aτ1(Θ0)Aτ1(Θ0)

⊤∥∥
2

]
≤ 4C4

ϕH
2N,

where (i) follows from Jensen’s inequality. Similarly, we can also obtain∥∥∥Eµ[M̂(Θ0)
⊤M̂(Θ0)]

∥∥∥
2
≤ 4C4

ϕH
2N.
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Applying Lemma 10 to M̂(Θ0), for any fixed h ∈ [H] and any ξ1 > 0, we have

P
(∥∥∥M̂(Θ0)

∥∥∥
2
≥ ξ1

)
≤ 4mdH · exp

(
− ξ21/2

4C4
ϕH

2N + 2C2
ϕH/3 · ξ1

)
.

For any δ1 ∈ (0, 1), let

ξ1 = C2
ϕH

√
10N log

(
4mdH

δ1

)
and N ≥ 40

9
log

(
4mdH

δ1

)
.

Then, we have

P
(∥∥∥M̂(Θ0)

∥∥∥
2
≥ ξ1

)
≤ 4mdH · exp

(
− ξ21/2

4C4
ϕH

2N + 2C2
ϕH/3 · ξ1

)

≤ 4mdH · exp

(
− ξ21
10C4

ϕH
2N

)
= δ1,

which implies that the following holds with probability at least 1 − δ1 taken with respect to the
randomness of D ∥∥∥M̂(Θ0)/N

∥∥∥
2
=

∥∥∥∥∥ 1

N

∑
τ∈D

Φ(τ,Θ0)Φ(τ,Θ0)
⊤ −M(Θ0)

∥∥∥∥∥
2

≤ C2
ϕH

√
10

N
log

(
4mdH

δ1

)
. (151)

By the definition of Σ(Θ0), we have

M̂(Θ0) = (Σ(Θ0)− λ1 · I2mdH)−N ·M(Θ0). (152)

By Assumption 3, there exists an absolute constant Cσ > 0 such that λmin(M(Θ0)) ≥ Cσ, which
implies that

∥∥M(Θ0)
−1
∥∥
2
≤ 1/Cσ . Letting N be sufficiently large such that

N ≥ max

{
40C4

ϕH
2

C2
σ

,
40

9

}
log

(
4mdH

δ1

)
and combining eq. (151) and eq. (152), we have

λmin(Σ(Θ0)/N) = λmin(M(Θ0) + M̂(Θ0)/N + λ1/N · I2mdH)

≥ λmin(M(Θ0))−
∥∥∥M̂(Θ0)/N

∥∥∥
2

≥ Cσ − C2
ϕH

√
10

N
log

(
4mdH

δ

)
≥ Cσ/2.

Hence, the following holds with probability 1− δ1 with respect to randomness of D∥∥Σ(Θ0)
−1
∥∥
2
≤ (N · λmin(Σ(Θ0)/N))−1 ≤ 2

NCσ
,

which implies the following holds for all x ∈ X and h ∈ [H]

br,h(x,Θ0) =
√
Φh(x,Θ0)⊤Σ−1(Θ0)Φh(x,Θ0)

≤ ∥Φh(x,Θ0)∥2 ·
∥∥Σ−1(Θ0)

∥∥1/2
2

≤
√
2Cϕ√
Cσ

√
N
, (153)
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where we use the fact that ∥Φh(x,Θ0)∥2 = ∥ϕ(xτh, θ0)∥2 ≤ Cϕ. Substituting eq. (153) into eq. (147),
we have

H∑
h=1

br,h(x, Θ̂) ≤
√
2HCϕ√
Cσ

√
N

+O
(
H5/3N1/12(logm)1/4

m1/12

)
. (154)

Next, we proceed to bound the term
∑H
h=1 bv,h(x, ŵh). According to eq. (122), we have the following

holds with probability at least 1−N−2H−4

H∑
h=1

bv,h(x, ŵh) ≤
H∑
h=1

bv,h(x,w0) +

H∑
h=1

|bv,h(x, ŵh)− bv,h(x,w0)|

(i)

≤
H∑
h=1

bv,h(x,w0) +O
(
H7/6N1/12(logm)1/4

m1/12

)
. (155)

We then proceed to bound the summation of the penalty terms
∑H
h=1 bv,h(x,w0). Recall that in

Assumption 3 we define mh(w0) = Eµ
[
ϕ(xτh, w0)ϕ(x

τ
h, w0)

⊤]. For all h ∈ [H] and τ ∈ D, we
define the following random matrix m̂(w0)

m̂h(w0) =
∑
τ∈D

Bτh(w0), where Bτh(w0) = ϕ(xτh, w0)ϕ(x
τ
h, w0)

⊤ −mh(w0). (156)

Note that eq. (64) implies ∥ϕ(xτh, w0)∥2 ≤ Cϕ. By Jensen’s inequality, we have

∥mh(w0)∥2 ≤ Eµ
[∥∥ϕ(xτh, w0)ϕ(x

τ
h, w0)

⊤∥∥
2

]
≤ C2

ϕ. (157)

For any vector v ∈ R2md with ∥v∥2 = 1, we have

∥Bτh(w0)v∥2 ≤
∥∥ϕ(xτh, w0)ϕ(x

τ
h, w0)

⊤v
∥∥
2
+ ∥mh(w0)v∥2

≤
∥∥ϕ(xτh, w0)ϕ(x

τ
h, w0)

⊤∥∥
2
∥v∥2 + ∥mh(w0)∥2 ∥v∥2

≤ 2C2
ϕ ∥v∥2 = 2C2

ϕ,

which implies

∥Bτh(w0)∥2 ≤ 2C2
ϕ and

∥∥Bτh(w0)B
τ
h(w0)

⊤∥∥
2
≤ ∥Bτh(w0)∥2

∥∥Bτh(w0)
⊤∥∥

2
≤ 4C4

ϕ. (158)

Since {Bτh(w0)}τ∈D are i.i.d. and E[Bτh(w0)] = 0 for all τ , we have

∥∥Eµ[mh(w0)mh(w0)
⊤]
∥∥
2
=

∥∥∥∥∥∑
τ∈D

Eµ
[
Bτh(w0)B

τ
h(w0)

⊤]∥∥∥∥∥
2

= N ·
∥∥Eµ [Bτ1h (w0)B

τ1
h (w0)

⊤]∥∥
2

(i)

≤ N · Eµ
[∥∥Bτ1h (w0)B

τ1
h (w0)

⊤∥∥
2

]
≤ 4C4

ϕN,

where (i) follows from Jensen’s inequality. Similarly, we can also obtain∥∥Eµ[mh(w0)
⊤mh(w0)]

∥∥
2
≤ 4C4

ϕN.

Applying Lemma 10 to m̂h(w0), for any fixed h ∈ [H] and any ξ2 > 0, we have

P (∥m̂h(w0)∥2 ≥ ξ2) ≤ 4md · exp

(
− ξ22/2

4C4
ϕN + 2C2

ϕ/3 · ξ2

)
.

For any δ2 ∈ (0, 1), let

ξ2 = C2
ϕ

√
10N log

(
4mdH

δ2

)
and N ≥ 40

9
log

(
4mdH

δ2

)
.
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Then, we have

P (∥m̂h(w0)∥2 ≥ ξ2) ≤ 4md · exp

(
− ξ22/2

4C4
ϕN + 2C2

ϕ/3 · ξ2

)

≤ 4md · exp

(
− ξ22
10C4

ϕN

)
=
δ2
H
,

which implies that we have the following holds with probability at least 1− δ2/H taken with respect
to the randomness of D

∥m̂h(w0)/N∥2 =

∥∥∥∥∥ 1

N

∑
τ∈D

ϕ(xτh, w0)ϕ(x
τ
h, w0)

⊤ −mh(w0)

∥∥∥∥∥
2

≤ C2
ϕ

√
10

N
log

(
4mdH

δ2

)
. (159)

By the definition of Λh(w0), we have

m̂h(w0) = (Λh(w0)− λ2 · I2md)−N ·mh(w0). (160)

By Assumption 3, there exists an absolute constant Cς > 0 such that λmin(mh(Θ0)) ≥ Cς , which
implies that

∥∥m(w0)
−1
∥∥
2
≤ 1/Cς . Letting N be sufficiently large such that

N ≥ max

{
40C4

ϕ

C2
ς

,
40

9

}
log

(
4mdH

δ2

)
and combining eq. (159) and eq. (160), we have

λmin(Λh(w0)/N) = λmin(m(w0) + m̂(w0)/N + λ1/N · I2md)
≥ λmin(m(w0))− ∥m̂(w0)/N∥2

≥ Cς − C2
ϕH

√
10

N
log

(
4mdH

δ2

)
≥ Cς/2.

Hence, the following holds with probability 1− δ2/H with respect to randomness of D∥∥Λh(w0)
−1
∥∥
2
≤ (N · λmin(Λh(w0)/N))−1 ≤ 2

NCς
. (161)

Taking union bound of eq. (161) over [H], we have the following holds for all x ∈ X and h ∈ [H]
with probability 1− δ2

bv,h(x,w0) =
√
ϕh(x,w0)⊤Λ

−1
h (w0)ϕh(x,w0)

≤ ∥ϕh(x,w0)∥2 ·
∥∥Λh(w0)

−1
∥∥1/2
2

≤
√
2Cϕ√
Cς

√
N
, (162)

where we use the fact that ∥ϕ(xτh, θ0)∥2 ≤ Cϕ. Substituting eq. (162) into eq. (155), we have
H∑
h=1

bv,h(x, ŵ) ≤
√
2HCϕ√
Cς

√
N

+O
(
H7/6N1/12(logm)1/4

m1/12

)
. (163)

Finally, letting δ1 = N−2H−4/2 and δ2 = N−2H−4/2 and combining eq. (154) and eq. (163), we
have the following holds with probability 1−N−2H−4

β1 ·
H∑
h=1

br,h(x, Θ̂) + β2 ·
H∑
h=1

bv,h(x, ŵ)

≤
(

β1√
Cσ

+
β2√
Cς

) √
2HCϕ√
N

+max{β1H5/3, β2H
7/6} · O

(
N1/12(logm)1/4

m1/12

)
,

which completes the proof.
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F PROOF OF LEMMA 3

Similarly to the proof of Lemma 1, we first bound the uncertainty of the estimated reward R̂h(·) in
eq. (41) and then bound the uncertainty of the estimated transition value function (P̂hV̂h+1)(·) in
eq. (43).

F.1 UNCERTAINTY OF ESTIMATED REWARD R̂h(·)

Following steps similar to those in the proof of Lemma B.1 in Jin et al. (2021), we can obtain

∥Θ∗∥2 ≤ H
√
dH and

∥∥∥Θ̂∥∥∥
2
≤ H

√
dHN/λ1. (164)

For simplicity, we denote r(τ) =
∑
h∈[H] r(x

τ
h), R(τ) =

∑
h∈[H]R(x

τ
h) and ε(τ) = R(τ)− r(τ).

Consider the estimation error Rh(·)− R̂h(·). We have

Rh(x)− R̂h(x)

= ⟨ϕ(x), θ∗h − θ̂h⟩
= ⟨Φh(x),Θ∗ − Θ̂⟩

= ⟨Φh(x),Θ∗⟩ − Φh(x)
⊤Σ−1

(∑
τ∈D

Φ(τ)r(τ)

)

= ⟨Φh(x),Θ∗⟩ − Φh(x)
⊤Σ−1

(∑
τ∈D

Φ(τ)Φ(τ)⊤Θ∗

)
+Φh(x)

⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)

= ⟨Φh(x),Θ∗⟩ − Φh(x)
⊤Σ−1 (Σ− λ1 · IdH)Θ∗ +Φh(x)

⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)

= −λ1 · Φh(x)⊤Σ−1Θ∗ +Φh(x)
⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)
. (165)

Applying the triangle inequality to eq. (165), we have∣∣∣Rh(x)− R̂h(x)
∣∣∣ ≤ λ1 ·

∣∣Φh(x)⊤Σ−1Θ∗∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣Φh(x)⊤Σ−1

(∑
τ∈D

Φ(τ)ε(τ)

)∣∣∣∣∣︸ ︷︷ ︸
(ii)

. (166)

We then proceed to bound (i) and (ii) separately. For (i), we have

(i) = λ1 ·
∣∣∣Φh(x)⊤Σ−1/2Σ−1/2Θ∗

∣∣∣ ≤ λ1 ∥Φh(x)∥Σ−1 ∥Θ∗∥Σ−1

(i.1)

≤ H
√
dHλ1 ∥Φh(x)∥Σ−1 ,

(167)

where (i.1) follows from eq. (164) and the following inequality

∥Θ∗∥Σ−1 =
√
Θ∗⊤Σ−1Θ∗ ≤

∥∥Σ−1
∥∥1/2
2

∥Θ∗∥2 ≤ H
√
dH/λ1.

For (ii), we have

(ii) =

∣∣∣∣∣Φh(x)⊤Σ−1/2Σ−1/2

(∑
τ∈D

Φ(τ)ε(τ)

)∣∣∣∣∣ ≤
∥∥∥∥∥∑
τ∈D

Φ(τ)ε(τ)

∥∥∥∥∥
Σ−1︸ ︷︷ ︸

(iii)

· ∥Φh(x)∥Σ−1 . (168)

Following steps similar to those in eq. (90) and Lemma B.2 in Jin et al. (2021), we have the following
holds with probability at least 1− δ

(iii) ≤ H ·
√
2 log(1/δ) + dH · log(1 +N/λ1),
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which implies

(ii) ≤ H
√
2 log(1/δ) + dH · log(1 +N/λ1) · ∥Φh(x)∥Σ−1 . (169)

Recalling that br,h(x) = ∥Φh(x)∥Σ−1 and substituting eq. (169) and eq. (167) into eq. (166), we can
obtain ∣∣∣Rh(x)− R̂h(x)

∣∣∣ ≤ Rβ1
· br,h(x), (170)

where Rβ1 is an absolute constant satisfying

Rβ1
≥ H

(√
dHλ1 +

√
2 log(1/δ) + dH · log(1 +N/λ1)

)
.

Letting λ1 = 1 and Cβ1 > 0 be a sufficiently large constant, we can verify that Rβ1 =

Cβ1H
√
dH log(N/δ) satisfies the above inequality.

F.2 UNCERTAINTY OF ESTIMATED TRANSITION VALUE FUNCTION (P̂hV̂h+1)(·)

Following steps similar to those in the proof of Lemma B.1 in Jin et al. (2021), we can obtain

∥w∗∥2 ≤ H
√
d and ∥ŵ∥2 ≤ H

√
dN/λ2. (171)

Consider the estimation error (PhV̂h+1)(·) − (P̂hV̂h+1)(·). For simplicity, we define εv(x) =

(PhV̂h+1)(x) − (P̂hV̂h+1)(x) for all x ∈ X . Following steps similar to those in eq. (165), we can
obtain

(PhV̂h+1)(x)− (P̂hV̂h+1)(x)

≤ −λ2 · ϕ(x)⊤Λ−1
h w∗

h + ϕ(x)⊤Λ−1
h

(∑
τ∈D

ϕ(xτh)εv(x
τ
h)

)
. (172)

Applying the triangle inequality to eq. (172), we have∣∣∣(PhV̂h+1)(x)− (P̂hV̂h+1)(x)
∣∣∣

≤ λ2 ·
∣∣ϕ(x)⊤Λ−1

h w∗
h

∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣ϕ(x)⊤Λ−1
h

(∑
τ∈D

ϕ(xτh)εv(x
τ
h)

)∣∣∣∣∣︸ ︷︷ ︸
(ii)

. (173)

Following steps similar to those in eq. (166), we can obtain

(i) ≤ H
√
dλ2 ∥ϕ(x)∥Λ−1

h
. (174)

For (ii), we have

(ii) =

∣∣∣∣∣ϕ(x)⊤Λ−1/2
h Λ

−1/2
h

(∑
τ∈D

ϕ(xτh)εv(x
τ
h)

)∣∣∣∣∣ ≤
∥∥∥∥∥∑
τ∈D

ϕ(xτh)εv(x
τ
h)

∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(iii)

∥ϕ(x)∥Λ−1
h
. (175)

We then proceed to upper bound the term (iii). Following steps similar to those in eq. (134) and
Lemma B.2 in Jin et al. (2021), we have the following holds with probability at least 1− δ

(iii) ≤ 2H ·
√
log(H · N v

ϵ,h/δ) + d · log(1 +N/λ2) + 8ϵ2N/λ2 · ∥ϕ(x)∥Λ−1
h
,

≤ Rβ2
∥ϕ(x)∥Λ−1

h
(176)

where Rβ2
is an absolute constant satisfying

Rβ2
≥ 2H ·

√
log(H · N v

ϵ,h/δ) + d · log(1 +N/λ2) + 8ϵ2N2/λ2, (177)
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and N v
ϵ,h is the cardinality of the following function class

Vh(x,Rθ, Rw, Rβ1 , Rβ2 , λ1, λ2) = {max
a∈A

{Qh(s, a)} : S → [0, H]

with ∥Θ∥2 ≤ Rθ, ∥w∥2 ≤ Rw, β1 ∈ [0, Rβ1
], β2 ∈ [0, Rβ2

], ∥Σ∥2 ≥ λ1, ∥Λ∥2 ≥ λ2},

where Rθ = H
√
dHN/λ1, Rw = H

√
dN/λ2 and

Qh(x) = min{⟨Φh(x),Θ⟩+ ⟨ϕ(x), w⟩

− β1 ·
√
Φh(x)⊤Σ−1Φh(x)− β2 ·

√
ϕ(x)⊤Λ−1ϕ(x), H − h+ 1}+.

Then, following steps similar to those in Appendix B, we have∣∣∣∣max
a∈A

{Qh(s, a, θ, w, β1, β2,Σ,Λ)} −max
a∈A

{Qh(s, a, θ′, w′, β′
1, β

′
2,Σ

′,Λ′)}
∣∣∣∣

≤ max
a∈A

|⟨Φh(x),Θ−Θ′⟩|+max
a∈A

|⟨ϕ(x), w − w′⟩|+ 1√
λ1

|β1 − β′
1|+

1√
λ2

|β2 − β′
2|

+Rβ1
max
a∈A

|∥Φh(x)∥Σ−1 − ∥Φh(x)∥Σ′−1 |+Rβ2
max
a∈A

|∥ϕ(x)∥Λ−1 − ∥ϕ(x)∥Λ′−1 |

(i)

≤ ∥Θ−Θ′∥2 + ∥w − w′∥2 + |β1 − β′
1|+ |β2 − β′

2|

+Rβ1

√
∥Σ−1 − Σ′−1∥F +Rβ2

√
∥Λ−1 − Λ′−1∥F , (178)

where (i) follows from the fact that ∥ϕ(x)∥2 ≤ 1 and λ1, λ2 ≥ 1. Following arguments similar to
those used to obtain eq. (34) and applying Lemma 8.6 in Agarwal et al. (2019), we have

logN v
ϵ,h

(i)

≤ N (ϵ/6,RdH , Rθ) +N (ϵ/6,Rd, Rw) +N (ϵ/6, Rβ1
) +N (ϵ/6, Rβ2

)

+N (ϵ2/(36R2
β1
),F ,

√
dH/λ1) +N (ϵ2/(36R2

β2
),F ,

√
d/λ2)

(ii)

≤ dH log(1 + 12Rθ/ϵ) + d log(1 + 12Rw/ϵ) + log(1 + 12Rβ1
/ϵ) + log(1 + 12Rβ2

/ϵ)

+ d2H2 log(1 + 36R2
β1

√
dH/ϵ2) + d2 log(1 + 36R2

β2

√
d/ϵ2)

(iii)

≤ dH log(1 + 12H
√
dHN/ϵ) + d log(1 + 12H

√
dN/ϵ)

+ log(1 + 12Cβ1
H
√
dH log(N/δ)/ϵ) + log(1 + 12Rβ2

/ϵ)

+ d2H2 log(1 + 36C2
β1
dH3

√
dH log(N/δ)/ϵ2) + d2 log(1 + 36R2

β2

√
d/ϵ2)

(iv)

≲ C1d
2H2 log(d3/2H7/2N1/2/ϵ2) + C2d

2 log(R2
β2

√
d/ϵ2), (179)

where in (i) we use N (ϵ,Rd, B) to denote the ϵ-covering of ball with radius B in the space Rd,
N (ϵ, B) to denote the ϵ-covering of interval [0, B], and N (ϵ,F , B) to denote the ϵ-covering of the
function class F = {M : ∥M∥F ≤ B}, (ii) follows from Lemma. 8.6 in Agarwal et al. (2019), (iii)
follows from the definition of Rθ, Rw and Rβ1 , and in (iv) we let C1 and C2 be sufficiently large
and waive the log(log(·)) term.

Substituting eq. (179) into eq. (176), we can obtain

2H ·
√
log(H · N v

ϵ,h/δ) + d · log(1 +N/λ2) + 8ϵ2N/λ2

≤ 2H ·
(√

log(H/δ) +
√
logN v

ϵ,h +
√
d · log(1 +N) +

√
8ϵ2N2

)
≤ 2H ·

(√
log(H/δ) +

√
C1d2H2 log(d3/2H7/2N1/2/ϵ2) +

√
C2d2 log(R2

β2

√
d/ϵ2)

+
√
d · log(1 +N) +

√
8ϵ2N2

)
. (180)

Letting ϵ = (dH)1/4/N , we can see that when Rβ2
= Cβ2

dH2
√

log(dH3N5/2/δ), where Cβ2
is a

sufficiently large constant, we have
Rβ2 ≥ R.H.S of eq. (180),

which satisfies the inequality in eq. (177).
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F.3 UPPER AND LOWER BOUNDS ON EVALUATION ERROR δh(·)

Using the properties that we obtained from Appendix F.1 & F.2 and following steps similar to those
in Appendix D.3, we can obtain

0 ≤ δh(x) ≤ 2 [β1 · br,h(x) + β2 · bv,h(x)] , ∀x ∈ X , ∀h ∈ [H],

where β1 = Rβ1
= Cβ1

H
√
dH log(N/δ) and Rβ2

= Cβ2
dH2

√
log(dH3N5/2/δ).

G SUPPORTING LEMMAS FOR OVERPARAMETERIZED NEURAL NETWORKS

The following lemma shows that an infinite-width neural network can be well-approximated by a
finite-width neural network.
Lemma 4 (Approximation by Finite Sum). Let g(x) =

∫
Rd σ

′(w⊤x)x⊤ℓ(w)dp(w) ∈ Fg1,g2 . Then
for any ϵ > 0, with probability at least 1 − ϵ over w1, · · · , wm drawn i.i.d. from N(0, Id/d),
there exist ℓ1, · · · , ℓm where ℓi ∈ Rd and ∥ℓi∥2 ≤ g2/

√
dm for all i ∈ [m] such that the function

ĝ(x) = (1/
√
m)
∑m
i=1 σ

′(w⊤
i x)x

⊤ℓi satisfies

sup
x

|g(x)− ĝ(x)| ≤ 2Lσg2√
m

+

√
2C2

σg
2
2√

m

√
log

(
1

δ

)
with probability at least 1− δ.

Proof. The proof of Lemma 4 follows from the proof of Proposition C.1 in Gao et al. (2019) with
some modifications. In Lemma 4 we consider a different distribution of wi and upper bound on ∥ℓi∥2
from those in Gao et al. (2019). First, we define the following random variable

a(w1, · · · , wm) = sup
x

|g(x)− ĝ(x)| .

Then, we proceed to show that a(·) is robust to the perturbation of one of its arguments. Let
ℓi = ℓ(wi)/(

√
dmp(wi)). For w1, · · · , wm and w̃i (1 ≤ i ≤ m), we have

|a(w1, · · · , wm)− a(w1, · · · , w̃i, · · · , wm)|

=
1√
dm

∣∣σ′(w⊤
i x)x

⊤ℓi − σ′(w̃⊤
i x)x

⊤ℓi
∣∣

=
1√
dm

∣∣∣∣σ′(w⊤
i x)x

⊤ℓ(wi)

p(wi)
− σ′(w̃⊤

i x)x
⊤ℓ(w̃i)

p(w̃i)

∣∣∣∣
≤ 1√

dm
sup
x∈X

∣∣∣∣σ′(w⊤
i x)x

⊤ℓ(wi)

p(wi)
− σ′(w̃⊤

i x)x
⊤ℓ(w̃i)

p(w̃i)

∣∣∣∣
≤ 1√

dm
sup
x∈X

(∣∣∣∣σ′(w⊤
i x)x

⊤ℓ(wi)

p(wi)

∣∣∣∣+ ∣∣∣∣σ′(w̃⊤
i x)x

⊤ℓ(w̃i)

p(w̃i)

∣∣∣∣)
≤ 1√

dm
sup
x∈X

(∥∥σ′(w⊤
i x)x

∥∥
2

∥∥∥∥ ℓ(wi)p(wi)

∥∥∥∥
2

+
∥∥σ′(w̃⊤

i x)x
∥∥
2

∥∥∥∥ ℓ(w̃i)p(w̃i)

∥∥∥∥
2

)
≤ 2Cσg2√

dm
= ζ,

where the last inequality follows from the facts that ∥x∥2 = 1, |σ′(·)| ≤ Cσ and
supx ∥ℓ(w)/p(w)∥2 ≤ g2. Then, we proceed to bound the expectation of a(·). Note that our
choice of ℓi ensures that

√
d · Ew1,··· ,wm

ĝh(·) = g(·). By symmetrization, we have

Ea =
√
d · E sup

x∈X
|ĝ(x)− Eĝ(x)|

≤ 2
√
d√
m

· Ew,ε sup
x∈X

∣∣∣∣∣
m∑
i=1

εiσ
′(w⊤

i x)x
⊤ℓi

∣∣∣∣∣ ,
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where {εi}i∈[m] are a sequence of Rademacher random variables. Since
∣∣x⊤ℓi∣∣ ≤ ∥ℓi∥2 ≤ g2/

√
m

and σ′(·) is Lσ-Lipschitz, we have that the function b(·) = σ′(·)x⊤ℓi is (Lσg2/
√
m)-Lipschitz. We

then proceed as follows

Ea ≤ 2
√
d√
m

· Ew,ε sup
x∈X

∣∣∣∣∣
m∑
i=1

εiσ
′(w⊤

i x)x
⊤ℓi

∣∣∣∣∣
(i)

≤ 2
√
dLσg2
m

· Ew,ε sup
x∈X

∣∣∣∣∣∣
(

m∑
i=1

εiwi

)⊤

x

∣∣∣∣∣∣
(ii)

≤ 2
√
dLσg2
m

· Ew

∥∥∥∥∥
m∑
i=1

εiwi

∥∥∥∥∥
2

(iii)

≤ 2
√
dLσg2√
m

·
√

Ew∼N(0,Id/d) ∥w∥
2
2

=
2Lσg2√
m

,

where (i) follows from Talagrand’s Lemma (Lemma 5.7) in Mohri et al. (2018), (ii) follows from
the fact that ∥x∥2 = 1 for all x ∈ X and Cauchy-Schwartz inequality and (iii) follows from Jensen’s
inequality. Then, applying McDiarmid’s inequality, we can obtain

P

(
a ≥ 2Lσg2√

m
+ ϵ

)
≤ P(a ≥ Ea+ ϵ) ≤ exp

(
− 2ϵ2

mζ2

)
= exp

(
− mϵ2

2C2
σg

2
2

)
.

Letting ϵ =
√
2C2

σg
2
2√

m

√
log
(
1
δ

)
, we have

P

(
a ≥ 2Lσg2√

m
+

√
2C2

σg
2
2√

m

√
log

(
1

δ

))
≤ δ,

which completes the proof.

The following lemma bounds the perturbed gradient and value of local linearization of overparam-
eterized neural networks around the initialization, which is provided as Lemma C.2 in Yang et al.
(2020).
Lemma 5. Consider the overparameterized neural network defined in Section 2.3. Consider any fixed
input x ∈ X . Let R ≤ c

√
m/(logm)3 for some sufficiently small constant c. Then, with probability

at least 1 −m−2 over the random initialization, we have for any w ∈ B(w0, R), where B(w0, R)
denotes the Euclidean ball centred at w0 with radius R, the followings hold

∥ϕ(x,w)∥2 ≤ Cϕ, (181)

∥ϕ(x,w)− ϕ(x,w0)∥2 ≤ O

(
Cϕ

(
R√
m

)1/3√
logm

)
, (182)

∣∣f(x,w)− ⟨ϕ(x,w0)
⊤(w − w0)⟩

∣∣ ≤ O

(
Cϕ

(
R4

√
m

)1/3√
logm

)
, (183)

where Cϕ = O(1) is a constant independent from m and d.

Proof. Please see Lemma C.2 in Yang et al. (2020) for a detailed proof, which is based on Lemma
F.1, F.2 in Cai et al. (2019), Lemma A.5, A.6 in Gao et al. (2019) and Theorem 1 in Allen-Zhu et al.
(2019).

H SUPPORTING LEMMAS FOR RKHS

In this section, we provide some useful lemmas for general RKHS. Consider a variable space X .
Given a mapping ϕ(·) : X → Rd, we can assign a feature vector ϕ(x) ∈ Rd for each x ∈ X . We
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further define a kernel function K(·, ·) : X × X → R as K(x, x′) = ϕ(x)⊤ϕ(x′) for any x, x′ ∈ X .
Let H be a RKHS defined on X with the kernel function K(·, ·). Let ⟨·, ·⟩H : H × H → R and
∥·∥H : H → R denote the inner product and RKHS norm on H, respectively. Since H is a RKHS,
there exists a feature mapping ψ(·) : X → H, such that f(x) = ⟨f(·), ψ(x)⟩H for all f ∈ H and
all x ∈ X . Moreover, for any x, x′ ∈ X we have K(x, x′) = ⟨ψ(x), ψ(x′)⟩H. Without loss of
generality, we further assume ∥ϕ(x)∥2 ≤ Cϕ and ∥ψ(x)∥H ≤ Cψ for all x ∈ X .

Let L2(X ) be the space of square-integrable functions on X with respect to the Lebesgue measure and
let ⟨·, ·⟩L2 be the inner product on L2(X ). The kernel function K(·, ·) induces an integral operator
TK : L2(X ) → L2(X ) defined as

TKf(z) =

∫
X
K(x, x′) · f(x′)dx′, ∀f ∈ L2(X ). (184)

Consider the kernel function K(·, ·) of the RHKS H. Let {xi}∞i=1 ⊂ X be a discrete time stochastic
process that is adapted to a filtration {Ft}∞i=0, i.e., xi is Fi−1 measurable for all i ≥ 1. We define the
Gram matrix KN ∈ RN×N and function kN (·) : X → RN as

KN = [K(xi, xj)]i,j∈[N ] ∈ RN×N , kN (x) = [K(x1, x), · · · ,K(xN , x)]
⊤ ∈ RN . (185)

Note that KN and kN (x) can also be expressed as

KN = ΦΦ⊤ = ΨΨ⊤ ∈ RN×N , and kN (x) = Φϕ(x) = Ψψ(x) ∈ RN×1,

where Φ = [ϕ(x1), · · · , ϕ(xN )]⊤ ∈ RN×d and Ψ = [ψ(x1), · · · , ψ(xN )]⊤ ∈ RN×∞. Given a
regularization parameter λ > 1, we define the matrix ΩN based on Φ and an operator ΥN in RKHS
H based on Ψ as

ΩN = Φ⊤Φ+ λ · Id, and ΥN = Ψ⊤Ψ+ λ · IH. (186)

We next provide some fundamental properties for the RKHS H.

Lemma 6. For any x ∈ X , considering KN , kN (·), ΩN and ΥN defined in eq. (185) and eq. (186),
we have the followings hold

Φ⊤(KN + IN )−1 = Ω−1
N Φ⊤, (187)

Ψ⊤(KN + IN )−1 = Υ−1
N Ψ⊤, (188)

ϕ(x)⊤Ω−1
N ϕ(x)

(i)
=

1

λ

[
K(x, x)− kN (x)⊤(KN + λ · IN )−1kN (x)

] (ii)
= ψ(x)⊤Υ−1

N ψ(x). (189)

Proof. The result in Lemma 6 can be obtained from steps spread out in Yang et al. (2020). We
provide a detailed proof here for completeness.

We first proceed to prove eq. (187) and (i) in eq. (189). According to the definition of ΣN , we have

ΩNΦ⊤ = Φ⊤ΦΦ⊤ + λΦ⊤ = Φ⊤(ΦΦ⊤ + λIN ) = Φ⊤(KN + IN ).

Multiplying Ω−1
N on both sides of the above equality yields

Φ⊤ = Ω−1
N Φ⊤(KN + IN ),

which implies eq. (187) as follows

Φ⊤(KN + IN )−1 = Ω−1
N Φ⊤. (190)

We next proceed as follows

ϕ(x) = Ω−1
N ΩNϕ(x)

= Ω−1
N (Φ⊤Φ+ λ · Id)ϕ(x)

= (Ω−1
N Φ⊤)Φϕ(x) + λΩ−1

N ϕ(x)

(i)
= Φ⊤(KN + IN )−1Φϕ(x) + λΩ−1

N ϕ(x), (191)
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where (i) follows from eq. (190). Taking inter product with ϕ(x) on both sides of eq. (191) yields

K(x, x) = ϕ(x)⊤ϕ(x) = ϕ(x)⊤Φ⊤(KN + IN )−1Φϕ(x) + λϕ(x)⊤Ω−1
N ϕ(x)

= kN (x)⊤(KN + IN )−1kN (x) + λϕ(x)⊤Ω−1
N ϕ(x),

which implies

ϕ(x)⊤Ω−1
N ϕ(x) =

1

λ

[
K(x, x)− kN (x)⊤(KN + IN )−1kN (x)

]
. (192)

We next proceed to prove eq. (188) and (ii) in eq. (189). According to the definition of ΥN , we have

ΥNΨ⊤ = Ψ⊤ΨΨ⊤ + λΨ⊤ = Ψ⊤(ΨΨ⊤ + IN ) = Ψ⊤(KN + IN ). (193)

Multiplying Υ−1
N on both sides of the above equality yields

Ψ⊤ = Υ−1
N Ψ⊤(KN + IN ),

which further implies eq. (188) as follows

Ψ⊤(KN + IN )−1 = Υ−1
N Ψ⊤. (194)

We next proceed as follows

ψ(x) = Υ−1
N ΥNψ(x)

= Υ−1
N (Ψ⊤Ψ+ λ · IH)ψ(x)

= (Υ−1
N Ψ⊤)Ψψ(x) + λΥ−1

N ψ(x)

(i)
= Ψ⊤(KN + IN )−1Ψψ(x) + λΥ−1

N ψ(x), (195)

where (i) follows from eq. (194). Taking inter product with ψ(x) on both sides of eq. (195) yields

K(x, x) = ⟨ψ(x), ψ(x)⟩H = ψ(x)⊤Ψ⊤(KN + IN )−1Ψψ(x) + λψ(x)⊤Υ−1
N ψ(x)

= kN (x)⊤(KN + IN )−1kN (x) + λψ(x)⊤Υ−1
N ψ(x),

which implies

ψ(x)⊤Υ−1
N ψ(x) =

1

λ

[
K(x, x)− kN (x)⊤(KN + IN )−1kN (x)

]
. (196)

Combining eq. (193) and eq. (196) completes the proof.

The following two lemmas characterize the concentration property of self-normalized processes.
Lemma 7 (Concentration of Self-Normalized Process in RKHS Chowdhury & Gopalan (2017)).
Let {εi}∞i=1 be a real-valued stochastic process such that (i) ϵi ∈ Ft and (ii) ϵi is zero-mean and
σ-sub-Gaussian conditioned on Fi−1 satisfying

E [εi|Fi−1] = 0, E
[
eκεi ≤ eκ

2σ2/2|Fi−1

]
, ∀κ ∈ R. (197)

Moreover, for any t ≥ 2, let EN = [ε1, · · · , εN−1]
⊤ ∈ RN−1. For any η > 0 and any δ ∈ (0, 1),

with probability at least 1− δ, we have the following holds simultaneously for all N ≥ 1:

E⊤
N

[
(KN + η · IN−1)

−1 + IN−1

]−1
EN ≤ σ2 · log det[(1 + η) · IN+1 +KN ] + 2σ2 · log(1/δ).

Moreover, if KN is positive definite for all N ≥ 2 with probability one, then the above inequality
also holds with η = 0.

Lemma 8. Let G ⊂ {G : X → [0, Cg]} be a class of bounded functions on X . Let Gϵ ⊂ G be the
minimal ϵ-cover of G such that Nϵ = |Gϵ|. Then for any δ ∈ (0, 1), with probability at least 1− δ,
we have

sup
G∈G

∥∥∥∥∥
N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N
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≤ 2C2
g log det(I +KN/λ) + 2C2

gN(λ− 1) + 4C2
g log(Nϵ/δ) + 8N2C2

ϕϵ
2/λ. (198)

Moreover, if G(·) does not depend on {xi}i∈[N ], we have∥∥∥∥∥
N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ C2
g log det(I +KN/λ) + C2

gN(λ− 1) + 2C2
g log(1/δ). (199)

Proof. The proof is adapted but different from the proof of Lemma E.2 in Yang et al. (2020). We first
proceed to prove eq. (198) and will show that eq. (199) can be obtained as a by-product of proving
eq. (198). For any G ∈ G, there exists a function G′ in Gϵ such that supx∈X |G(x)−G′(x)| ≤ ϵ.
Denote ∆G(x) = G(x)−G′(x). We have the following holds∥∥∥∥∥

N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ 2

∥∥∥∥∥
N∑
i=1

ϕ(xi) (G
′(xi)− E [G′(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

+ 2

∥∥∥∥∥
N∑
i=1

ϕ(xi) (∆G(xi)− E [∆G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

.

(200)

For the second term on the right hand side of eq. (200), we have∥∥∥∥∥
N∑
i=1

ϕ(xi) (∆G(xi)− E [∆G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ N2C2
ϕ · (2ϵ)2/λ = 4N2C2

ϕϵ
2/λ. (201)

To bound the first term on the right hand side of eq. (200), we apply Lemma 5 to G′(xi) −
E [G′(xi)|Fi−1]. We fix G′ ∈ G and let εi = G′(xi) − E [G′(xi)|Fi−1] and EN =
[ε1, · · · , εN−1]

⊤ ∈ RN−1. Using this notation, we have∥∥∥∥∥
N∑
i=1

ϕ(xi) (G
′(xi)− E [G′(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

=

∥∥∥∥∥
N∑
i=1

ϕ(xi)εi

∥∥∥∥∥
2

Ω−1
N

=
∥∥Φ⊤EN

∥∥
Ω−1

N

= E⊤
NΦΩ−1

N Φ⊤EN
(i)
= E⊤

NΦΦ⊤(KN + λIN )−1EN = E⊤
NKN (KN + λIN )−1EN

(ii)

≤ E⊤
N (KN + (λ− 1)IN )(KN + λIN )−1EN

= E⊤
N (KN + (λ− 1)IN )[IN + (KN + (λ− 1)IN )]−1EN

= E⊤
N [(KN + (λ− 1)IN )−1 + IN ]EN (202)

where (i) follows from eq. (187) in Lemma 6 and (ii) follows from the fact that λ > 1 and
KN + λIN is positive definite. Note that each entry of EN is bounded by Cg in absolute value.
Applying Lemma 7 to eq. (202) and taking a union bound over Gϵ, for any 0 < δ < 1, we have the
following holds with probability at least 1− δ

sup
G′∈Gϵ

∥∥∥∥∥
N∑
i=1

ϕ(xi) (G
′(xi)− E [G′(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ C2
g log det[(1 + η)I +KN ] + 2C2

g log(Nϵ/δ). (203)

Moreover, note that (1 + η)I +KN = [I + (1 + η)−1KN ][(1 + η)I], which implies

log det[(1 + η)I +KN ] = log det[I + (1 + η)−1KN ] +N log(1 + η)

≤ log det[I + (1 + η)−1KN ] +Nη. (204)
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Combining eq. (200), eq. (201), eq. (202), eq. (203) and eq. (204) and letting η = λ− 1, we have the
following holds with probability 1− δ∥∥∥∥∥

N∑
i=1

ϕ(xi) (G(xi)− E [G(xi)|Fi−1])

∥∥∥∥∥
2

Ω−1
N

≤ 2C2
g log det(I +KN/λ) + 2C2

gN(λ− 1) + 4C2
g log(Nϵ/δ) + 8N2C2

ϕϵ
2/λ,

which completes the proof of eq. (198). To prove eq. (199) we do not need to go through the "ϵ-cover"
argument since G(·) is independent from {xi}i∈N . We can directly apply Lemma 7 and then follow
steps similar to those in eq. (204) to obtain eq. (199).

For any integer N and λ > 0, we define the maximal information gain associated with the RKHS H
as

ΓK(N,λ) = sup
D⊂X

{1/2 · log det(Id + λ−1 ·KN )},

where the supremum is taken over all discrete subset D of X with the cardinality no more than N .
Lemma 9 (Finite Spectrum/Effective Dimension Property). Let {σj}j≥1 be the eigenvalues of TK
defined in eq. (184) in the descending order. Let λ ∈ [c1, c2] with c1 and c2 being absolute constants.
If σj = 0 for all j ≥ D+1, whereD is a positive integer. Then, we have ΓK(N,λ) = CK ·D · logN ,
where CK is an absolute constant that depends on C1, C2, c1, c2 and Cϕ.

Proof. See the proof of Lemma D.5 in Yang et al. (2020) for a detailed proof.

I OTHER USEFUL LEMMAS

Lemma 10 (Matrix Bernstein Inequality Tropp (2015)). Suppose that {Ai}Ni=1 are independent and
centered random matrices in Rd1×d2 , that is, E[Ai] = 0 for all i ∈ [N ]. Also, suppose ∥Ai∥2 ≤ CA
for all i ∈ [n]. Let Z =

∑N
i=1Ai and

v(Z) = max
{∥∥E [ZZ⊤]∥∥

2
,
∥∥E [Z⊤Z

]∥∥
2

}
.

For all ξ ≥ 0, we have

P(∥Z∥2 ≥ ξ) ≤ (d1 + d2) · exp
(
− ξ2/2

v(Z) + CA/3 · ξ

)
.

Proof. See Theorem 1.6.2 in Tropp (2015) for a detailed proof.
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