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Abstract

The recent advancements in large-scale pre-training techniques have significantly
enhanced the capabilities of vision foundation models, notably the Segment Any-
thing Model (SAM), which can generate precise masks based on point and box
prompts. Recent studies extend SAM to Few-shot Semantic Segmentation (FSS),
focusing on prompt generation for SAM-based automatic semantic segmentation.
However, these methods struggle with selecting suitable prompts, require specific
hyperparameter settings for different scenarios, and experience prolonged one-shot
inference time due to the overuse of SAM, resulting in low efficiency and limited
automation ability. To address these issues, we propose a simple yet effective
approach based on graph analysis. In particular, a Positive-Negative Alignment
module dynamically selects the point prompts for generating masks, especially
uncovering the potential of the background context as the negative reference. An-
other subsequent Point-Mask Clustering module aligns the granularity of masks
and selected points as a directed graph, based on mask coverage over points. These
points are then aggregated by decomposing the weakly connected components
of the directed graph in an efficient manner, constructing distinct natural clusters.
Finally, the positive and overshooting gating, benefiting from graph-based granu-
larity alignment, aggregate high-confident masks and filter out the false-positive
masks for final prediction, without relying on additional hyperparameters and
redundant mask generation. Extensive experimental analysis across tasks including
the standard FSS, One-shot Part Segmentation, and Cross Domain FSS validate the
effectiveness and efficiency of the proposed approach, surpassing state-of-the-art
generalist models with a mIoU of 58.7% on COCO-20i and 35.2% on LVIS-92i.
The project page of this work is: https://andyzaq.github.io/GF-SAM/.

1 Introduction

Previous semantic segmentation methods [1–8], which rely on the pixel-level classification, often
struggle with generalization and overfitting due to limited labeled data. In addition, recent approaches,
such as MaskFormer [9], have shifted the paradigm to mask-based classification, offering a more
flexible approach to improving the segmentation performance by exploiting the consistency and
completeness of generated class-agnostic masks. The Segment Anything Model (SAM) [10] further
marks a significant advancement by utilizing extensive pre-training on huge-scale dataset SA-1B
to achieve more robust, class-agnostic segmentation capabilities. SAM excels in producing precise
masks across various domains using simple prompts such as points, boxes, and coarse masks.
While the boundaries of these masks can closely align with object boundaries, the lack of semantic
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(a) Performance-efficiency comparison of FSS models. The
numbers inside the points represent the numbers of parameters.
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Figure 1: Performance comparisons of our approach against previous state-of-the-art methods
regarding efficiency and generalized capabilities in Few-shot Semantic Segmentation. Figure 1(a)
illustrates our approach’s superior performance in efficiency and effectiveness across various model
sizes. Figure 1(b) demonstrates the generalizability of our approach across different domains.

understanding and the requirement for manual prompts prevent SAM from being used in automatic
semantic segmentation applications.

Recent studies have attempted to automate this process in the Few-shot Semantic Segmentation (FSS),
using a few reference images and a fine-grained external backbone network (e.g., DINOv2 [11])
to guide SAM in segmenting target semantic objects. However, these methods face two main
challenges: achieving suitable points for precise and full coverage of the target object, and handling
the ambiguity of SAM-generated masks, from partial to complete coverage. Specifically, they either
utilize the most similar candidate point prompts for iterative mask generation and refinement [12],
or build a restrictively selected set of point prompts for heuristically weighted mask merging based
on manually designed metrics [13], outperforming both previous specialist methods [14–19] and
generalist methods without SAM [20, 21]. However, these methods overlooked the underlying
relationships between points (derived from fine-grained features) and masks (generated by SAM
in a coarse-grained manner). This oversight led to low efficiency (as indicated in Fig. 1(a)) and
limited automation capabilities. Alignment between these two types of granularity could uncover
the potential of simple decision-making on masks, which can eliminate redundant refinement and
manual hyperparameter selection for complicated metrics.

In this paper, we explicitly explore the relationship between point prompts and corresponding
masks from SAM, and present a simple yet effective parameter-free framework with only one-time
mask generation to segment anything semantically, in a graph-based few-shot manner. We first
introduce a Positive-Negative Alignment (PNA) module to dynamically select point prompts using
foreground and background references from reference images. Unlike existing methods, our approach
combines different granularity by constructing a directed graph according to mask coverage over
points. Then, we perform connectivity analysis on the constructed graph to obtain several weakly
connected components as automatic clustering of point prompts, which bridges points and masks
as well as fine-grained and coarse-grained features. To mitigate the inevitable introduction of false
positives in the PNA module, we further leverage weakly connected component clusters and limited
semantic information in selected points, to more accurately filter and merge masks that mismatch in
different granularities. In particular, our proposed method involves two post-gating based on weakly
connected clusters: the positive gating retains masks capturing a greater proportion of potential target
areas, while the overshooting gating screens out outlier points near object boundary, with coverage
self-consistency consideration.

Extensive experimental analysis on Few-shot Semantic Segmentation demonstrates both the efficiency
and effectiveness of our approach, as shown in Fig. 1(b). We first conduct the experiments on
generalized FSS datasets, including Pascal-5i [22], COCO-20i [23], FSS-1000 [24] and LVIS-92i [13].
Our approach surpasses existing state-of-the-art approaches on these datasets, with 5.8% and 2.2%
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of improvement respectively on more challenging COCO-20i and LVIS-92i. As for the challenging
One-shot Part Segmentation, our approach still exceeds previous methods with 1.6% of mIoU on
both PACO-Part and PASCAL-Part. Furthermore, to demonstrate the ability of our approach across
different domains, we perform an evaluation on several specific datasets, including Deepglobe [25],
ISIC [26], and iSAID-5i [27]. The proposed approach establishes new state-of-the-art performance
on mIoU with 49.5% on Deepglobe, 48.7% on ISIC, and 47.3% on iSAID-5i.

Overall, our contributions are summarized as follows:

• We present, to our knowledge, the first graph-based approach for SAM-based few-shot
semantic segmentation, modeling the relationship of SAM-generated masks in an automatic
clustering manner.

• We propose a positive-negative alignment module and a post-gating strategy based on the
weakly connected graph components, enabling a hyperparameter-free pipeline.

• Extensive experimental comparisons and analysis across several datasets over various
settings show the effectiveness and efficiency of the proposed method.

2 Related Work

Few-shot semantic segmentation. Few-shot Semantic Segmentation (FSS) [22] aims to segment the
target object using only a limited number of annotated reference samples for guidance. Previous FSS
methods are mainly categorized into two types, namely the methods based on prototype matching [28–
34] and methods based on pixel-wise matching [35–40]. The methods based on prototype matching,
e.g. PFENet [31], BAM [41], SSP [42], use the Mask Average Pooling operation from SGOne [43]
to generate a prototype as a global representation of the reference features, and compare the target
features with the prototypes. The methods based on pixel-wise matching compute the correlation
of all pixels between target and reference features. Then different methods address the correlations
through distinct mechanisms, such as 4D Convolution (e.g., HSNet [14]) and Transformer (e.g.,
HDMNet [44], AMFormer [45]). Although these specialist models perform significantly on specific
tasks, they are prone to overfitting the training samples and often struggle to adapt to domain shifts.

SAM-based semantic segmentation. Recently, Segment Anything Model (SAM) [10] has shown
remarkable zero-shot class-agnostic segmentation capabilities using prompts like points, boxes, and
coarse masks. However, the coarse-grained feature representation of SAM limits its effectiveness for
fine-grained semantic segmentation tasks. Several approaches have been proposed to extend SAM
for semantic segmentation. For example, Semantic-SAM [46] jointly train the model on SA-1B and
other semantic aware segmentation datasets to enhance granularity. OV-SAM [47] combines SAM
and CLIP [48] for open-vocabulary semantic segmentation. Moreover, some methods introduce SAM
into FSS tasks. PerSAM and PerSAM-F [12] leverage SAM for personalized segmentation with
one-shot guidance. Matcher [13] uses a SAM-based training-free structure, achieving impressive
performance in both FSS and One-shot Part Segmentation. VRP-SAM [49] trains an external Visual
Reference Prompt Encoder to automatically generate prompts from reference images using points,
scribble, box, or masks. However, previous training-free methods struggled to balance performance
and efficiency, often relying on excessive external manual hyperparameters.

3 Preliminaries

Few-shot Semantic Segmentation (FSS) aims to segment target objects in an image with a few
annotated reference images. Consider a scenario where each group of samples contains a target image
xt and a reference image set R = {xr

k, y
r
k}Kk=1 with the size of H ×W , where xr

k and yrk mean
the kth reference image and its corresponding mask. Focusing on the 1-shot case, where K = 1,
it begins with a feature extraction backbone network fB(·), which encodes both xt and xr into
semantic features F t and F r in Rhw×c, where h and w denote the height and width of the feature
maps, and c is the feature dimension. Subsequent few-shot processes utilize these feature maps to
generate a predicted segmentation ỹ ∈ RH×W for xt. This prediction is then compared to the Ground
Truth (GT) yt for evaluation.

The Segment Anything Model (SAM) is a generalized foundation segmentation model adept at
generating precise masks based on varied prompts of points, boxes, and coarse masks. Built around
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Figure 2: Overview of our approach, where the Positive-Negative Alignment module recognizes
the correlation between target features and reference features for point selection, the Point-Mask
Clustering module efficiently clusters the points based on the coverage of corresponding masks, and
Post-Gating filters out the false-positive masks for generating final prediction.

a core architecture that includes an image encoder, a prompt encoder, and a mask decoder, SAM
effectively processes input images xt and prompts P to produce detailed segmentation masks ŷ.
These masks accurately delineate specific objects or regions within the images, based on the guidance
provided by the prompts.

4 Method

Diverging from traditional methods, we use a directed graph to exploit the natural relationships
between points and their corresponding masks, representing fine-grained and coarse-grained features,
respectively. As shown in Fig. 2, our approach mainly comprises the Positive-Negative Align-
ment (PNA) module, Point-Mask Clustering (PMC) module, and Post-Gating strategy. The PNA
module leverages semantic features from the backbone network to sort pixel-wise correlations into
similarity maps, enabling precise point selection. The PMC module then clusters masks based on
these selected points, while Post-Gating strategy refines the selection, enhancing the accuracy and
reliability of the final prediction.

4.1 Positive-Negative Alignment for Point Selection

The PNA module efficiently selects point prompts to balance the number of points and coverage
of target objects. Using the semantic features F r and F t from the reference and target images
respectively (with e.g., DINOv2 [11]), we get the pixel-wise correlation matrix C ∈ Rhw×hw:

C(i, j) = ReLU

(
F t(i) · F r(j)

∥F t(i)∥ · ∥F r(j)∥

)
, (1)

where C(i, j) represents the similarity between the i-th pixel of target features F t(i) and the j-th
pixel of reference features F r(j).

To minimize hyperparameter reliance, we leverage background features typically overlooked in FSS,
indicated by the negative mask yr̃ = ¬yr of the reference image. According to yr and yr̃, we
divide C into C+ and C− in Rhw×hw for foreground and background features, respectively. We then
introduce two positive similarity maps in mean and max aspects respectively:

S+
mean(i) =

∑hw
j=1 C

+(i, j)∑hw
j=1 I(yr)j

, S+
max(i) = max(C+(i)), (2)
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where I resizes yr to the same resolution as F r and then flatten it into a vector, max(·) finds the
maximum value in the i-th row of C+. The mean positive similarity map S+

mean ∈ Rhw captures
global similarity towards the reference object but may blur distinct internal features, reducing accuracy
for complex objects. In contrast, the max positive similarity map S+

max ∈ Rhw focuses on the most
similar regions, enhancing recall but also increasing noise. To maintain distinctiveness while reducing
noise, we introduce the mixture similarity map S+

mix = S+
mean ⊙ S+

max using the Hadamard product.
This method boosts target region distinctiveness by merging the strengths of both maps, while
diminishing noise through the more stable global similarity.

To select prompt points, we also use the mean negative similarity map S−
mean, which reflects

background similarity, noting that similar objects typically share higher background similarity values.
We then align S+

mix and S−
mean by min-max normalizationM to get:

Sp(i) =M(S+
mix)(i) · 1{M(S+

mix)(i)>M(S−
mean)(i)}, (3)

where Sp ∈ Rhw is the filtered map for point selection, and 1{·} is 1 if the condition is true and 0
otherwise. Although we minimize false negatives, noise points remain. To select suitable points from
Sp without hyperparameters, we define the sum of elements in Sp as the number N of points to be
selected. We then pick the N highest-value points from Sp as the point prompt set P = {Pl}Nl=1.

4.2 Point-Mask Clustering with Graph Connectivity

We utilize point prompts from P to generate masks with SAM. Each point Pl in P corresponds
to a unique mask ŷl ∈ RH×W . As our point selection strategy prioritizes the coverage of objects,
false-negative masks are unavoidable. Moreover, mask coverage can vary significantly within the
same region, ranging from partial to full object coverage. This necessitates understanding the internal
relationships among coarse-grained masks and points from fine-grained feature comparison to ensure
those covering the same target are accurately gathered.

To address this, we design the Point-Mask Clustering (PMC) module, which clusters points and their
corresponding masks based on mask coverage over points. Following the principles of efficiency
and automation, the PMC module is based on a directed graph G = (V,E) with the vertex vl in
V representing point Pl and its corresponding mask ŷl. Edges in E are established based on mask
coverage over other points; an edge el,m exists if mask ŷl covers points Pm (with m ̸= l). Specifically,
we do not establish edges for masks covering their corresponding points to avoid creating loops.

The graph G is a directed simple graph, allowing us to cluster vertices by identifying weakly connected
components. This clustering process is hyperparameter-free, ensuring that every pair of vertices
u, v ∈ V within the same component has a directed path between them. Each weakly connected
component encompasses a set of points P̂p (with P = {P̂p}) that are all covered by the union of their
masks in M̂p, where p indexes the clusters.

The advanced SAM plays a crucial role in maintaining the precision of the generated masks. The
precision of high-quality masks typically ensures non-overlapping between masks and prompting
points of adjacent regions, especially those of different categories. This is the precondition for the
efficacy of our PMC module, as even slight errors could significantly impact the clustering accuracy.

4.3 Post-Gating on Weakly Connected Components

Our PNA module, while efficient in selecting points, inadvertently includes false positives, as detailed
in Sec. 4.1. To mitigate this, we further develop two gating strategies targeting distinct types of false
positives based on clusters formed from weakly connected components.

Positive gating. Despite the method in Sec. 4.1 diminishing the noise points outside the target
region, there are still a few remaining noise points. These issues may have minimal impact on
traditional segmentation methods, but under the SAM framework, masks derived from these noise
points can significantly degrade accuracy. Moreover, some clusters of masks may extend beyond
their intended target regions due to inaccuracies in SAM-generated masks or because the targeted
object is part of a larger entity. Thus, we propose a Positive Gating strategy to address these issues.

This strategy prioritizes mask effectiveness by assessing whether a mask contains more positive than
negative pixels, thereby facilitating a specialized designed mask growth for final prediction. The
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Figure 3: Illustration of the Overshooting Gating strategy. The outer ring of points in the second
image indicates the most similar cluster of corresponding points, i.e., points with different outside
and inside colors do not satisfy the self-consistency.

focus of mask growth is to enhance coverage of the target area rather than multiple objects, while
minimizing background inclusion. Firstly, this method utilizes a parameter-free gating mechanism
that discriminates between pixel polarities, based on the positive and negative similarity maps, S+

mean
and S−

mean, as described in Sec. 4.1. To achieve this, we utilize S+
mean and S−

mean, along with the
median of S+

mean (i.e., the midpoint between the maximum and minimum values of S+
mean), to

constructs the polarity map R̄ as follows:

R̄(i) =

{
1, S+

mean(i)× S+
mean(i) > smid × S−

mean(i),

−1, else.
(4)

Then, using the polarity map R̄, we calculate the number of positive pixels of the lth mask as follows:

s+l =

hw∑
i=1

R̄(i)⊙ I(ŷl)(i), (5)

where I resizes and flattens ŷl to the feature map dimensions. Subsequently, for each cluster M̂p of
weakly connected components, we sort the masks according to the ratio of positive pixel numbers
to their areas. The indices of these sorted masks are denoted by Q. We then initialize a blank
pseudo mask ÿp ∈ RH×W and a set of positive points P+. Following this, we apply a Mask Growth
algorithm as outlined in Sec. A.1 and Alg. 1 for maintaining positive masks. This algorithm iteratively
evaluates whether the region of ŷq outside the pseudo mask ÿp is positive, updates ÿp with the
identified positive mask, and adds its corresponding point into P+.

Overshooting gating. The fine-grained semantic features from f(·) are reliable for locating target
objects, yet the point coverage of the target areas varies, leading to both under-coverage and over-
coverage. SAM effectively addresses under-coverage; however, over-coverage, which extends beyond
target boundaries, often produces false-positive masks. These overshooting points, while semantically
similar to the target areas in F t, typically derive masks that cover areas outside the target, resulting in
a mismatch of representations between the granularity of points and masks. Thus, these points cannot
be clustered with points inside the target areas.

Hence, we devise an overshooting gating strategy with consideration of self-consistency to eliminate
overshooting points and their associated masks. As shown in Fig. 3, We assess the similarity between
the features of each point Pl and the union mask ŷp ∈ RH×W from each mask cluster M̂p. The
similarity computation for estimating self-consistency is performed as follows:

ssc(l, p) =

∑hw
i=1 Sim(F t(Pl), (F

t ⊙ I(ŷp))(i))∑hw
i=1 I(ŷp) · dist(l, p)

, (6)

where Sim(·, ·) refers to the correlation calculation mentioned in Eq. 1. We introduce an external
function dist(·, ·) to measure the distance in F t between each point Pl and the nearest selected point
in P̂p. This measure helps confine comparison to neighboring clusters, minimizing interference from
other instances. We then identify the cluster most similar to the points and retain those in the point
set P sc that are more similar to their respective clusters.
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Table 1: Performance on Few-shot Semantic Segmentation datasets of Pascal-5i, COCO-20i, FSS-
1000, and LVIS-92i. Gray means the in-domain trained results. The best results are shown in bold.

Methods Pascal-5i COCO-20i FSS-1000 LVIS-92i

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

specialist model
HSNet [14][CVPR21] 66.2 70.4 41.2 49.5 86.5 88.5 17.4 22.9

VAT [50][ECCV22] 67.9 72.0 41.3 47.9 90.3 90.8 18.5 22.7
HDMNet [44][CVPR23] 69.4 71.8 50.0 56.0 - - - -

AMFormer [45][NeurIPS23] 70.7 73.6 51.0 57.3 - - - -

generalist model
PerSAM [12][ICLR24] 43.1 - 23.0 - 71.2 - 11.5 -

PerSAM-F [12][ICLR24] 48.5 - 23.5 - 75.6 - 12.3 -
Matcher [13][ICLR24] 68.1 74.0 52.7 60.7 87.0 89.6 33.0 40.0

VRP-SAM [49][CVPR24] 71.9 - 53.9 - - - - -
Ours 72.1 82.6 58.7 66.8 88.0 88.9 35.2 44.2

Table 2: Performance on One-shot Part Segmentation datasets and Cross Domain Few-shot Semantic
Segmentation datasets. The best results are shown in bold.

Methods
One-shot Part Seg. Cross Domain FSS

PASCAL-Part PACO-Part Deepglobe ISIC iSAID-5i

1-shot 1-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

specialist model
HSNet [14][CVPR21] 32.4 22.6 29.7 35.1 31.2 35.1 34.1 40.4

DRA [51][CVPR24] - - 41.3 50.1 40.8 48.9 - -
FRINet [52][TGRS23] - - - - - - 42.6 44.5

generalist model
PerSAM [12][ICLR24] 32.5 22.5 31.4 - 23.9 - 19.2 -

PerSAM-F [12][ICLR24] 32.9 22.7 35.0 - 23.6 - 20.3 -
Matcher [13][ICLR24] 42.9 34.7 48.1 50.9 38.6 35.0 33.3 34.3

Ours 44.5 36.3 49.5 57.7 48.7 55.2 47.1 52.4

Mask Merging. Finally, we obtain two distinct sets of points, namely P+ and P sc. We then union
the masks corresponding to points that are common to both P+ and P sc. The merged masks form
the final prediction, denoted as ỹ.

5 Experimental Results

5.1 Datasets

To illustrate the Few-shot Semantic Segmentation ability and generalization capacity, we conduct
three types of sub-tasks, i.e. standard Few-shot Semantic Segmentation, One-shot Part Segmentation,
and Cross Domain Few-shot Semantic Segmentation. The datasets for these tasks are as follows:

Pascal-5i, COCO-20i, FSS-1000, and LVIS-92i are standard FSS datasets. Pascal-5i [22] is based on
the Pascal VOC 2012 [53] and SDS [54]. The 20 classes are separated into 4 folds of 5 classes. COCO-
20i [23] is an 80-class dataset from MSCOCO [55], which has 4 folds with each fold containing 20
classes. FSS-1000 [24] contains 1000 classes. The training, validation, and testing folds contain
520, 240, and 240 classes, respectively. LVIS-92i [13] is more challenging for evaluating generalist
models, which select 920 classes with more than 2 images and divide these classes into 10 folds.

PASCAL-Part and PACO-Part [13] are One-shot Part Segmentation datasets. PASCAL-Part [56, 57]
contains 56 different object parts in 4 superclasses. PACO-Part is built based on the PACO dataset [58],
which has 456 object part classes. The 303 classes with at least 2 samples in PACO-Part are divided
into four folds following Matcher [13].

Deepglobe, ISIC2018, and iSAID-5i are Cross Domain FSS datasets. The Deepglobe [25] contains
satellite images of geographic categories including urban, agriculture, rangeland, forest, water, and
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Table 3: Ablation study of Point Selection.
S+
mean S+

max S−
mean Top N mIoU

✓ ✓ ✓ 53.1
✓ ✓ ✓ 54.1

✓ ✓ ✓ 56.4
✓ ✓ ✓ 51.5
✓ ✓ ✓ ✓ 58.7

Table 4: Ablation study of PMC and Post-Gating.
PG OG COCO-20i LVIS-92i

Strong Weak Strong Weak

44.0 24.2
✓ 57.1 34.3

✓ 57.1 33.9
✓ ✓ 56.7 35.2
✓ ✓ 58.7 35.2
k-means++ 57.5 34.0

Table 5: Ablation study of positive gating on each
cluster. M.G. represents the Mask Growth algorithm.

Strategies M.G. COCO-20i PASCAL-Part

Sum 55.3 39.1
✓ 58.6 44.3

Num 57.1 42.2
✓ 58.7 44.5

Table 6: Ablation on the strategies of Self-
Consistency measurement.

Strategies mIoU ∆

None 57.1 0.0
Point Sim. 56.7 -0.4
MAP Sim. 57.7 +0.6

Mean Sim. W/o dist 49.1 -8.0
Mean Sim. (Ours) 58.7 +1.6

barren. The ISIC2018 [26] is a skin lesion analysis dataset with three classes. The iSAID-5i [27]
evenly split 3 folds for 15 classes based on the remote sensing dataset iSAID [59].

5.2 Implementation Details

Following the settings of PerSAM [12] and Matcher [13] for a fair comparison, we use DINOv2 [11]
with a ViT-L/14 [60] as our feature extraction backbone, and SAM [10] with ViT-H as the mask
generator. The input image sizes are set to 518×518 for DINOv2 and 1024×1024 for SAM following
Matcher [13]. Except for the default hyperparameters of SAM and DINOv2, our approach does not
have any external hyperparameter. We apply the mean Intersection over Union (mIoU) metric for
evaluating the performance. All experiments are conducted on a single NVIDIA RTX2080Ti.

5.3 Comparison with State-Of-The-Arts

Comparison on the standard FSS datasets. We compared our approach with other state-of-the-art
specialist and generalist models. As shown in Tab. 1, our approach achieves 72.1% mIoU on the
Pascal-5i dataset and 58.7% mIoU on COCO-20i dataset, which surpasses all previous specialist and
generalist state-of-the-art models. Our approach reaches 35.2% mIoU in the more challenging dataset
of LVIS-92i, with 2.2% of improvement compared to the previous training-free method Matcher. The
performance remains competitive on the FSS-1000 compared with specialist models. The 5-shot
result of Pascal-5i, COCO-20i, and LVIS-92i further extends the lead, which shows that our approach
can effectively handle the few-shot scenario.

Comparison on the One-shot Part Segmentation datasets. The One-shot Part Segmentation tasks
evaluate the ability to fetch the target part from the whole object. The results in Tab. 2 show that our
approach achieves the mIoU of 44.5% and 36.3% on both datasets of PASCAL-Part and PACO-Part,
respectively. Our approach outperforms the state-of-the-art generalist model Matcher with 1.6% on
both datasets. Given that Matcher employs specific hyperparameters to enhance part segmentation,
our superior performance demonstrates the adaptability of our approach across both object and part
segmentation contexts.

Comparison on the Cross Domain FSS datasets. The Cross Domain FSS tasks validate the
performance on different domains. Our approach achieves state-of-the-art performance in datasets
of Deepglobe, ISIC, and iSAID-5i among other specialist domain models and generalist models.
Especially within the context of the skin lesion analysis dataset ISIC and remote sensing dataset
iSAID-5i, our approach outperforms Matcher by margins of 10.1% and 13.8% respectively.
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Figure 4: Qualitative analysis of Matcher, Baseline, B+PG, B+PG+OG. B, PG, and OG respectively
represent Baseline, Positive Gating, and Overshooting Gating. Masks in ref. image are shown in blue.

5.4 Ablation Study

Point selection. We evaluate the impact of various similarity maps and the parameter-free selection
of top N points on performance, as detailed in Sec. 4.1. As shown in Tab. 3, using either S+

mean or
S+
max alone leads to a performance drop of up to 5.6% compared to using both. This decline is due

to the inherent limitations of S+
mean and S+

max discussed in Sec 4.1. Additionally, the evaluation
confirms that picking the top-N points based on similarity, which is parameter-free and requires no
additional settings, simplifies the process and increases accuracy by 2.1%.

Clustering method. We compare our PMC module using weakly connected components with the
PMC module using strong connected components, which provides finer clustering results. According
to our experiment results in Tab. 4, the clusters from weakly connected components provide better
performance on COCO-20i and LVIS-92i for both gating, as these clusters of masks have ideal
coverage of the objects. Simply filtering the masks without clustering-based gating can only achieve
44.0% mIoU on COCO-20i and 24.2% mIoU on LVIS-92i, which is significantly lower than the
performance achieved with clustering-based gating. Furthermore, our dynamic hyperparameter-free
clustering method outperforms the k-means++ with 1.2% on both datasets. Note that k of k-means++
is set to 10 following Matcher [13].

Positive gating. Our approach compares the number of positive points and negative points in
Ŝ+ (Num) to judge whether the mask is positive. We conduct experiments for the strategy of
comparing the sum of positive and negative values (Sum). The results in Tab. 5 demonstrate the Num
strategy yields better performance, as comparing the number of pixels mitigates the influence of a
few excessively high similarity values. Furthermore, the utilization of the Mask Growth algorithm
improves both FSS and Part Segmentation performance by carefully retaining the positive regions.
However, it weakens the improvement of Num due to their similar effects.

Overshooting gating. Our Overshooting gating aims to filter out the overshooting points closely
neighboring to target regions, thus having a less remarkable improvement of 1.6% compared to
Positive Gating, as shown in Tab. 6. This performance still surpasses the mean similarity of com-
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paring points with regions of clustered points (Point Sim.) or the prototypes from Masked Average
Pooling [43] with union masks (MAP Sim.). More importantly, the distance function avoids the
gating from 9.6% of performance decline. It ensures each cluster only affects its neighboring points.

5.5 Qualitative Analysis

Here we present the qualitative results of Matcher, Baseline (1st row in Tab. 4), Baseline+PG (2nd

row in Tab. 4) and our approach in Fig. 4. The bipartite matching of Matcher has a negative influence
when the areas of the target object in reference and target images have significant differences, as
shown in the 1st and 3rd rows. The positive gating with clustering filters out the noise masks in the 3rd

row, while the Overshooting Gating further removes the masks belonging to overshooting points in
the 2nd and 4th rows. More qualitative analyses please refer to the appendix.

6 Conclusion

In this paper, we proposed an efficient, training-free SAM-based FSS approach that requires no
external hyperparameters. As an automatic SAM-based semantic segmentation pipeline, our approach
balanced candidate points and object coverage in the Positive-Negative Alignment (PNA) module,
then used SAM-generated masks in the Point-Mask Clustering (PMC) module to enhance Post Gating.
Extensive experiments validated the superior performance of our approach, advancing semantic
segmentation without extensive parameter tuning or training.
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A Appendix / supplemental material

A.1 More Details for Mask Growth Algorithm

We mention the Mask Growth algorithm in Sec. 4.3. The Mask Growth algorithm is designed for
each cluster of masks M̂weak,p. The details of the algorithm are shown in Alg. 1. We first initialize
an empty set P+ and a blank pseudo mask ÿp. Then, we start an iterative process and get the current
mask ŷq based on the sorted sequence of indices Q. The parts of the current mask ŷq overlapping
with ÿp are removed. We compute the positive value s+q of the remaining parts. If s+q is positive,
the mask ŷq is updated into the ÿp and its corresponding point Pq is added into P+. As soon as the
iterative process finishes, the set of positive points P+ is established.

Algorithm 1 Mask Growth for each cluster

Input: M̂p, ÿp, Q, P+

for n = 1 to |Q| do
q ← Q(n)

ŷq ← M̂p(q)
ŷq = ŷq& ∼ ÿp
s+q ←

∑hw
i=1 Ŝ

+(i)⊙ I(ŷq)(i)
if s+q > 0 then

Add Pq to P+.
ÿp = ŷq ∨ ÿp

end if
end for

Output: P+

A.2 Limitations

Our approach has impressive performance on Few-shot Semantic Segmentation tasks. However, due
to the resolution of features F t from DINOv2 not aligning with the required resolution for prompting
the SAM, we directly map the coordinates of points in F t to coordinates for prompting. This results
in coordinate bias for small objects, as the gap between neighboring points can reach approximately
28 pixels. Our future work will focus on locating small objects.

A.3 Societal Impacts

As a completely automatic SAM-based few-shot semantic segmentation approach without external
hyperparameters, our method is capable of handling various scenarios of semantic segmentation, as
demonstrated by our extensive experiments. The efficiency and generalizability of our method ensure
a wide range of applications. Furthermore, since our training-free method is constructed upon the
widely used open-source foundation models, we have not identified the negative societal impact to
date.

A.4 Details of Current SAM-based FSS Methods

Our approach aims to address several issues present in previous SAM-based FSS methods to achieve
an automatic SAM-based model. These issues include the requirement of excessive external hy-
perparameters, overusing the mask generator of SAM, prolonged inference times, etc. The Tab. 7
shows the difference between our approach and previous SAM-based FSS methods. Fig. 5 shows
the difference in using SAM as the mask generator between our approach and previous methods.
Fig. 5(a) presents the iterative refinement of PerSAM, which involves generating masks from SAM
3 times. Fig. 5(b) exhibits that Matcher introduces an external Automatic Mask Generator, which
automatically prompts for generating all mask proposals in the image. Our approach in Fig. 5(c) only
utilizes the standard Mask Generator of SAM and generates the masks with our prompts only once.
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Table 7: Details of the current SAM-based FSS methods.

Methods PerSAM PerSAM-F Matcher VRP-SAM Ours

Training-free ✓ ✓ ✓
External-hyperparameters-free ✓ ✓

Once mask generation ✓ ✓
Inference speed (s/img) 1.43 16.5 12.7 N/A 1.88

COCO-20i mIoU 23.0 23.5 52.7 53.9 58.7

(a) (b) (c)

Figure 5: Comparison of the pipeline between the previous methods and our approach. (a) Per-
SAM [12] iteratively uses the Mask Generator to refine the mask. (b) Matcher [13] introduced an
external Automatic Mask Generator [10] with automatic prompting to excessively generate masks
from the whole image. (c) The effectiveness of the PMC module and Post-Gating ensures that our
approach uses Mask Generator with our prompts only once.

A.5 Discussion of SAM

A.5.1 Features from ViT Encoder of SAM

Previous state-of-the-art generalist FSS methods [] use DINOv2 or ResNet-50, instead of the default
ViT encoder of SAM, for fine-grained features. We visualize the representative samples of Pascal-5i

in Fig. 6. The 3rd column of maps represents the self-similarity of the F t
SAM . We introduce the 3× 3

average pooling for F t
SAM followed by computing the cosine similarity between the pooled features

and F t
SAM . The maps illustrate that F t

SAM can accurately identify the regions of objects within the
image, where the features within each object region are nearly identical, while features between
neighboring different objects are distinct.

Although the characteristics of F t
SAM ensure the generation of high-quality masks, the coarse-grained

features are not suitable for locating the objects, as shown in the 4th column. The similarity between
F t
SAM and F r

SAM cannot effectively distinguish the target object well compared to S+
mean from

DINOv2. Therefore, we follow the previous methods using DINOv2 for fine-grained features.

A.5.2 Masks analysis for Point-Mask Clustering

Our Point-Mask Clustering module introduces a parameter-free clustering method by constructing a
graph of coverage. The effectiveness of the method primarily relies on the high-quality masks, whose
boundaries mostly align with the object boundaries. We roughly analyze the coverage of masks
generated from the points in the ground truth foreground region using 4000 samples from Pascal-5i.
In particular, we get the union of masks from the foreground points as ŷfore, and visualize three
distributions, including the distribution of IoU between ŷfore and union of masks from background
points ŷback in Fig. 7, the ratio between the number of background points and all points covered by the
ŷfore in Fig. 8, the number of background points covered by ŷfore in Fig. 9. The distribution charts
demonstrate that most of the samples have acceptable coverage on the error points for Point-Mask
Clustering. Given the limited precision of ground truth annotations, the analysis is for reference only.
The effectiveness of our Point-Mask Clustering is validated in our ablation study in Tab. 4.
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Figure 6: Analysis of the features from default ViT encoder of SAM.
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Figure 7: The distribution of IoU between masks from foreground points and from background
points.

A.6 Additional Experiment Results.

A.6.1 Performance of Different Foundation Model Sizes

Tab. 8 shows the experiment results of our approach with different scales of SAM and DINOv2. Com-
pared to the previous training-free method Matcher, our approach still achieves a better performance
with SAM-Large and DINOv2-Base. The fair comparison with SAM-Huge and DINOv2-Large
further demonstrates the effectiveness of our approach.

A.6.2 Detailed Results of Evaluation Datasets

We present the detailed results on different Few-shot Semantic Segmentation datasets, including
Pascal-5i in Tab. 9, COCO-20i in Tab. 10, LVIS-92i in Tab. 11, PASCAL-Part and PACO-Part in
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Figure 8: The distribution of the ratio between the number of background points and all points
covered by the masks from foreground points.
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Figure 9: The distribution of the number of background points covered by the masks from foreground
points.

Tab. 12, iSAID-5i in Tab. 13. The results show that our approach has remarkable performance in each
fold of the datasets, demonstrating its generalized effectiveness in various scenarios.

A.6.3 Multiple Random Seeds Experiment

Previous state-of-the-art methods, including both specialist methods and generalist methods, typically
do not conduct multiple random seed experiments to evaluate the robustness. To demonstrate the
robustness of our approach, we randomly set 5 different random seeds and conducted the experiments
on the datasets that were not fully evaluated in the standard evaluation. As shown in Fig. 10, despite
variations in random seeds, our approach consistently exhibits better performance compared to
previous methods that were not evaluated with random seeds.

A.7 Additional Ablation Study

A.7.1 Ablation Study of Pivots for Positive Gating

We apply both smid and S−
mean as the pivots for Positive Gating in Sec. 4.3, aiming to leverage both

the pivots from the S+
mean itself and the negative similarity. As shown in Tab. 14, combining these

two pivots for Positive Gating yields a significant improvement compared to using only one pivot.
Moreover, the combination method of × shows a 0.3% mIoU enhancement compared to +.
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Table 8: Evaluation of our approach with different sizes of SAM and DINOv2.

Methods SAM DINOv2 Params. COCO-20i FSS-1000 LVIS-92i

Matcher huge large 945M 52.7 87.0 31.4

Ours

base base 180M 53.7 85.6 31.1
large base 399M 55.5 87.5 31.7
large large 617M 58.0 87.8 35.1
huge large 945M 58.7 88.0 35.2

Table 9: Detail results of Pascal-5i.

Methods Pascal-5i 1-shot Pascal-5i 5-shot
fold0 fold1 fold2 fold3 mean fold0 fold1 fold2 fold3 mean

AMFormer 71.3 76.7 70.7 63.9 70.7 74.4 78.5 74.3 67.2 73.6
Matcher 67.7 70.7 66.9 67.0 68.1 71.4 77.5 74.1 72.8 74.0

Ours 71.1 75.7 69.2 73.3 72.1 81.5 86.3 79.7 82.9 82.6

Table 10: Detail results of COCO-20i.

Methods COCO-20i 1-shot COCO-20i 5-shot
fold0 fold1 fold2 fold3 mean fold0 fold1 fold2 fold3 mean

AMFormer 44.9 55.8 52.7 50.6 51.0 52.0 61.9 57.4 57.9 57.3
Matcher 52.7 53.5 52.6 52.1 52.7 60.1 62.7 60.9 59.2 60.7

Ours 56.6 61.4 59.6 57.1 58.7 67.1 69.4 66.0 64.8 66.8

Table 11: Detail results of LVIS-92i.

Methods LVIS-92i 1-shot
fold0 fold1 fold2 fold3 fold4 fold5 fold6 fold7 fold8 fold9 mean

Matcher 31.4 30.9 33.7 38.1 30.5 32.5 35.9 34.2 33.0 29.7 31.4
Ours 30.9 37.9 37.1 39.6 31.2 36.4 39.1 35.7 32.3 31.5 35.2

Methods LVIS-92i 5-shot
fold0 fold1 fold2 fold3 fold4 fold5 fold6 fold7 fold8 fold9 mean

Matcher 37.0 36.6 47.3 39.1 37.1 41.8 42.7 37.7 37.9 43.3 40.0
Ours 42.1 38.4 50.0 42.5 42.0 46.5 46.4 41.5 43.7 48.4 44.2

Table 12: Detail results of PASCAL-Part and PACO-Part.

Methods PASCAL-Part PACO-Part
animals indoor person vehicles mean fold0 fold1 fold2 fold3 mean

HSNet 21.2 53.0 20.2 35.1 32.4 20.8 21.3 25.5 22.6 22.6
Matcher 37.1 56.3 32.4 45.7 42.9 32.7 35.6 36.5 34.1 34.7

Ours 33.2 59.6 35.2 50.1 44.5 33.4 34.9 39.7 37.0 36.3

Table 13: Detail results of iSAID-5i.

Methods iSAID-5i 1-shot iSAID-5i 5-shot
fold0 fold1 fold2 mean fold0 fold1 fold2 mean

FRINet 46.5 36.9 43.9 42.6 48.9 38.1 46.5 44.5
Matcher 37.3 23.8 38.8 33.3 38.3 24.0 40.6 34.3

Ours 53.4 36.8 51.2 47.1 59.3 39.9 58.0 52.4
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Figure 10: Results of our approach in multiple random seeds experiment. The bars in the chart
represent the result under the previous standard evaluation. The error bar depicts the boundaries of
our performance.

Table 14: Ablation study of pivots and combination operations in Positive Gating.

Pivots Combination COCO-20i
smid S−

mean

✓ 44.5
✓ 51.0

✓ ✓ + 56.8
✓ ✓ × 57.1

Table 15: Ablation study of different strategies for Positive Gating of the masks.

Strategies COCO-20i LVIS-92i PASCAL-Part PACO-Part

Union 59.4 36.1 40.1 31.6
Mask Growth 58.7 35.2 44.5 36.3

A.7.2 Ablation Study of Other Strategies for Positive Gating

In Sec. 4.3 and Sec. A.1, we introduce the Mask Growth algorithm as our strategy for judging
whether the mask is positive. We compare the strategy to separately judging each mask in Tab. 5 and
judging the union mask of each cluster in Tab. 15. While simply judging the union mask shows better
performance on COCO-20i and LVIS-92i that require complete coverage of objects, its performance
on One-shot Part Segmentation has a significant decline. Considering the generalizability of our
approach, we select the Mask Growth algorithm as our strategy.

A.8 Additional Qualitative Analysis

We conduct additional qualitative analysis to better present the result of our approach. Fig. 11 further
compare the Matcher, Baseline, B+PJ, and B+PJ+OJ (Ours) following Sec. 5.5. Fig. 12 illustrate the
intermediate contents in the Post Gating. Moreover, we provide additional visualization results of
standard FSS in Fig. 13, One-shot Part Segmentation in Fig. 14, and Cross Domain FSS in Fig. 15.
These qualitative results demonstrate the effectiveness of our approach. Notably, some of the results
are even better than the corresponding annotations.
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Figure 11: More Qualitative results on COCO-20i for comparison among Matcher, Baseline, B+PG,
B+PG+OG.
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Figure 12: Qualitative analysis of the contents in gating. Different colors of points in the images
in column “Clusters" represent different clusters. The green points in images in columns “PG" and
“OG" denote the points satisfying the gating criteria, while the red points denote those not satisfying.
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Figure 13: Qualitative analysis of the results on Pascal-5i, FSS-1000, and LVIS-92i.
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Figure 14: Qualitative analysis of the results on PASCAL-Part and PACO-Part.
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Figure 15: Qualitative analysis of the results on Deepglobe and iSAID-5i.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims made in the abstract and the last two paragraphs of the
introduction accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not introduce theory assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Our code and instructions are included in the supplementary material. The
data we use for the experiments are all from open-access datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our paper specifies all the test details for our training-free approach in the
section of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We set 5 random seeds to evaluate the large datasets and evaluate all samples
of the small datasets in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computer resources are described in Implementation Details of the experiment
section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss both potential positive societal impacts and negative societal
impacts of our work in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The existing assets used in our paper, i.e., SAM and DINOv2, are released on
GitHub under Apache License 2.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our new assets introduced in the paper are well documented in the supplemen-
tary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no crowdsourcing and research with human subjects in our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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