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ABSTRACT

Visual orientation detection helps navigation, especially without a reliable mag-
netic compass or GPS. Inspired by the neural mechanisms of the insect brain,
particularly the mushroom body (MB) and the central complex (CX), we propose
FlyOrien—a bio-inspired model for object orientation detection. The model mim-
ics the MB for random feature extraction, sparse coding and associative learning,
while the CX provides multi-clue sensory integration, enabling interpolation for
finer orientation representation. FlyOrien’s biologically plausible learning rule
allows one-shot learning, reducing the need for large datasets and repeated train-
ing. We tested FlyOrien on a dataset containing images labeled with orientations,
which introduce strong interferences because images of the same object have dif-
ferent labels. In this challenging context, FlyOrien achieves competitive perfor-
mance compared to convolutional neural networks (CNNs), significantly reducing
training time and computational resources. It also has the potential for real-world
applications like robotics, where incremental learning is essential.

1 INTRODUCTION

In natural environments, various cues like sun direction, skylight polarization, wind direction, and
landmarks help animals navigate (Heinze, 2017). Most of these cues are perceived visually. Even
simple insects can use visual memory to remember the way home after traversing a route once,
leveraging mechanisms partly explained by the mushroom body (MB) (Ardin et al., 2016); for a
review, see Modi et al. (2020). Their lightweight neural circuits outperform typical artificial neural
networks (ANNs) in remembering orientations. Inspired by this, we investigated these circuits to
develop an architecture and learning rule for retrieving orientation memory from visual signals.

Assuming an observer always faces an object, with a reference direction which could be true north,
there are three orientations: the angle the observer is facing o, the angle the object is facing o′, and
their relative angle o − o′. Knowing any two allows computation of the third. If o and o − o′ are
known, it is an object-orienting problem; if o′ and o − o′ are known, it is an observer-orienting
problem. For simplification, in the object-orienting problem, o is set to 0, and in the observer-
orienting problem, o′ is set to 0. Hence, in our dataset, there is only one number as a label for each
sample, and the two problems are not explicitly distinguished. By discretizing the range from 0◦

to 360◦ to multiple discrete values, the object orientation detection task can be set as a multi-class
classification problem.

There have been many models for finding objects’ orientation in the image plane but not horizontally
on the ground, such as PSC (Yu & Da, 2023), TIOE-Det (Ming et al., 2023), and ReDet (Han
et al., 2021). These works extend traditional object detection using rotated bounding boxes and are
applied in aerial imagery (Xia et al., 2018), scene text (Ma et al., 2018), and industrial inspection
(Wu et al., 2022). These methods typically involve deep networks requiring prolonged training time
and random shuffling of many data samples. For near-ground navigation, landmark objects have
fixed orientations relative to their surroundings, making the horizontal direction more critical than
in-plane rotation.

Insects can remember landmark orientations after a single view without storing image data (Jeffery
et al., 2016). This ability is attributed to sparse coding in neural circuits like the MB (Pearce &
Bouton, 2001). The MB of Drosophila has been closely observed, 3D reconstructed, and its connec-
tome analyzed (Li et al., 2020b), revealing how it processes sensory inputs via projection neurons
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Figure 1: Schematics diagram of the MB and the simplified MB model in FlyOrien. (a) The MB of
a larval fruit fly Drosophila melanogaster, illustrating connections from sensors to the MB output
neurons. (b)The simplified MB model in FlyOrien. The dashed line frames the parts for random
feature extraction. Only weights between this part and “MBONs” are adjust during learning.

(PNs) to Kenyon cells (KCs) in a sparse manner (Hallem & Carlson, 2006; Stevens, 2016; Olsen
et al., 2010). Only a small fraction of KCs fire simultaneously due to inhibitory feedback from the
anterior paired lateral neuron (APL) (Caron et al., 2013), enabling efficient encoding and reducing
interference during learning (Aso et al., 2014). The schematic of the MB is shown in Figure 1a.

Previous models have explored the MB’s role in olfactory associative learning (Wessnitzer et al.,
2007; Smith et al., 2008; Bennett et al., 2021). Computational neuroscience suggests the MB is
crucial for insect navigation, such as visual homing (Webb & Wystrach, 2016). Visual inputs to
the MB come from visual projection neurons (VPNs) and local visual interneurons (Ganguly et al.,
2024; Li et al., 2020a). Models by Ardin et al. (2016) and Zhu et al. (2020) demonstrate how insects
use the MB for navigation by associating visual scenes with familiar directions.

The MB’s architecture has inspired computational models like FlyLSH (Dasgupta et al., 2017) for
Locality Sensitive Hashing, which uses random projections and sparse coding similar to PNs and
KCs (Caron et al., 2013; Baltruschat et al., 2021; Hayashi et al., 2022). The schematic plot of
FlyLSH is presented in the dashed line zone of Figure 1b.

Another essential navigation circuit is the central complex (CX) (Honkanen et al., 2019), which
forms a ring attractor and encodes heading and homing directions (Wu et al., 2016; Zhang, 1996).
The CX integrates multiple directional cues to improve navigation accuracy (Heinze, 2017). Neuron
activities predicted by computational models with ring attractors match biological observations.
The connectome shows extensive connections between MB output neurons (MBONs) and the CX
(Li et al., 2020a), suggesting coordination between familiarity encoding in the MB and continuous
decision-making in the CX.

Inspired by the MB and CX, we propose FlyOrien, a model for incremental learning of the relative
direction between an observer and an object from side-view images. We also propose biologically
plausible learning rules that enable one-shot and incremental learning, reducing training time and
computational resource requirements. Unlike CNNs, FlyOrien (1) does not have convolutional lay-
ers, (2) employs a wide coding layer with random, untrained weights for sparse coding, and (3) uses
a learning rule minimizing interference during learning.

We demonstrate FlyOrien’s effectiveness on a modified object orientation dataset and a real-world
robotic orientation task. Experiments show that FlyOrien is more efficient than traditional artificial
neural networks, as it only needs a single epoch training to achieve Top-5 accuracy comparable to
CNNs that typically converge after 100 epochs.

The paper is structured as follows: Section 2 introduces the details of the model, and Section 3
presents the experiments, including those with a modified dataset (Section 3.1) and data from a
robot in a real-world environment (Section 3.2).
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2 MODEL

Our model, or FlyOrien, consists of two parts: a simplified MB model with firing-rate neurons and a
modified associative learning rule, and a simplified CX modeled with a modified CANN. The former
can learn the orientation of multiple objects, more specifically, associating a view of an object with
an orientation angle. The latter merges multiple outputs of the former and provides a finer output.
We also proposed a biologically plausible learning rule so that the MB model can learn images by
only looking at them once.

For convenience of application, we simplified the MB and CX for a minimal model functioning in
learning object orientation. It ignores neuron’s morphology, uses firing-rate neuron models instead
of spiking neuron models, ignores dynamics inside neurons, and treats synapses between neurons as
a linear mapping. However, there are still neural dynamics by neuron interactions in the simplified
CX and synaptic plasticities by a biologically plausible learning rule from KCs to MBONs in the
simplified MB.

2.1 SIMPLIFIED MUSHROOM BODY MODEL

The simplified MB has three layers including projection neurons (Figure 1b). The first layer consists
of ”PNs” conveying preprocessed images. The second layer consists of ”KCs” encoding images.
The third layer consists of ”MBONs” outputting the likelihood of angles.

2.1.1 DATA PREPROCESSING

Insect sensory inputs are preprocessed before sending to KCs by PNs. The preprocessing can in-
volve dimension reduction, noise reduction, normalization, and gain control (Gopfert & Robert,
2002). The actual preprocessing of visual signals in insects can be complex. The neural circuits
in the optic lobe play an important role in processing vision in moving (Mauss et al., 2017), then
visual information is projected to the MB by posterior lateral protocerebrum PNs (PLPPNs) (Li et al.,
2020c). Despite this, previous models suggest that the architecture of the mushroom body (MB)
can process and learn from images without the need for complex feature extraction but directly on
pixel-level information(Ardin et al., 2016; Dasgupta et al., 2017).

As a simple approximation to the optic lobe, which adjusts contrast through lateral inhibition, the
first step of our model normalizes inputs. After normalization, the mean pixel intensity of each image
is set to 0. The image is then flattened to allow for the model’s use across different modalities. Given
a dataset (X, y), where X ∈ Rn×d, each row represents a sample x ∈ Rd, n is the number of sample
points, and d is the dimension of a sample point. A sample is shifted by the mean value x̄ of x before
being passed to the PNs:

x̂ = x− x̄, (1)

where x̄ =
∑d

i=0 xi/d, i is an index for the sample dimensions.

2.1.2 NETWORK ARCHITECTURE

FlyOrien uses a simplified PN-KC connection and WTA for encoding samples. The synaptic weights
from PN to KC are noted as a matrix WPK ∈ Rq×d, where q is the number of “KCs”. The elements
of WPK are random and binary, following a Bernoulli distribution, that is, wPKji ∼ Bernoulli(p),
where j is the index of “KC” and p = b/d is the probability of connection and b represents the
expectation of how many “PNs” are connected to a “KC”. In our experiments, b is set to 0.1d so that
p = 0.1. With WPK, the input to “KCs” follows:

z = WPKx̂, (2)

In the MB, the APL neuron induces lateral inhibition on KCs, allowing only the most strongly
activated KCs to become active. FlyOrien approximates this WTA mechanism by keeping top h
activating “KCs” retain their output values, while others are set to zero:

ẑj =

{
zj if zj is one of the h largest entries in zi
0 otherwise (3)

3
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where h directly controls the sparseness of the coding and j is a local index here for which “KC”. In
our experiments, h = 0.05q. After WTA, the output of “KCs” is ẑ = (ẑ1, ẑ2, . . . , ẑj , . . . , ẑq) ∈ Rq .

Since a “KC” that is always active provides little useful information, we implemented a threshold to
disable such “KCs”. The threshold we used is 0.25, meaning that if a “KC” remains active in more
than one-quarter of the images, its output is always 0.

The synaptic weights from “KCs” to “MBONs” are presented as a matrix WKO ∈ Rm×q , where m
is the number of “MBONs”. The activities of “MBONs“ are:

ŷ = WKOẑ, (4)

The activity of each “MBON” is the likelihood of corresponding orientation given data sample x.

2.1.3 LEARNING RULE

The MB is an associative learning center in insects. Associative learning is a type of classic con-
ditioning that associates two stimuli or events. In the context of our model, the two stimuli are an
image sample and the object orientation on the image. From an aspect of view in machine learn-
ing, we can interpret associative learning as supervised learning. Insects can continuously associate
sensory stimuli with valences or behaviors, and the connections between KCs and MBONs play an
important role in this process. In our model, learning occurs solely through adjusting the weights
WKO between these two layers.

We applied two variations of Hebbian rule (Hebb, 1949) for updating WKO, which are referred to as
Method 1 and 2, respectively. Method 1 treats learning as a progress to converge and adjusts a weight
multiple times, while Method 2 treats the learning as an instant progress and a weight can only be
adjusted once. In both methods, all weights between ”KCs” and the ”MBONs” are initialized to 0.
During training, when an image x and a label y is provided, x is sparsely coded by the “KCs” as ẑ,
and y is presented by corresponding “MBONs” in a one-hot manner.

With a method 1, for each x and y, every activating “KC” and the “MBON” connects according to
the activity of the “KC”:

wKOkj =

{
αkj(ẑj − wKOkj) + wKOkj if “MBON” k is the label and “KC” j actives,
wKOkj otherwise. (5)

where wKOkj is the weight from jth “KC” to kth “MBON”, αkj is the learning rate, which typically
starts from 1 and decays according to the rule αkj = (1− 10−4)αkj if the corresponding synapse is
updated. Please note that weights from inactivating “KCs” are not updated. Learning ends when all
images are looped once.

Different from Method 1, Method 2 updates WKO in a binary manner. More specifically, for each x
and y, weights between activating ”KCs” and the corresponding ”MBON” are set to 1.

wKOkj =

{
1 if “MBON” k is the label and “KC” j actives,
wKOkj otherwise. (6)

Hence, there is no mechanism to weaken weights in Method 2. In other words, there is no forgetting
on a synaptic level.

The output of the above half model is the likelihood of multi-class labels. This part of the model
was evaluated in the experiment with and without the second half.

2.2 CANN WITH MULTIPLE INPUTS

Unlike a typical multi-class classification dataset where there are no correlations between labels, our
dataset exhibits correlations between labels, allowing outputs from “MBONs” to be interpolated for
finer orientation resolution. As reviewed in the introduction, in insects, multiple MBONs nerves to
the fan-shaped body in the CX. As CANN has been proved to be a simplified model of CX, we built
the second half of FlyOrien by modifying CANN to receive multiple outputs from “MBONs”(Fig
2).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

......

0°

5°
10°

15°20°25°
30°

40°

35°

... ...
... ...

0°

10°
20°

30°

40°

... ...... ...
MB output neuron

Direction neuron
Globle inhibitory neuron

Connection from "MB" to CANN 
Lateral excitatory connection

Excitatory connection

Inhibitory connection

Neuron activity in a direction matching an MBON

Neuron activity in an interpolated direction 

Distribution of excitatory connections from a neuron

Figure 2: In our model, the continuous Attractor Neural Network (CANN) is functional as a lower-
pass spatial filter and interpolator of the “MB” outputs. The “MB” outputs are fed to corresponding
neurons in the CANN, which has neurons representing finer directions. The neurons, their lateral
exhortatory connections, and global inhibitory connections form a ring attractor together.

The CANN for CX describes a ring attractor by multiple interconnected neurons. Every neuron is
allocated with an orientation, stimulates neurons nearby and inhibits all neurons. Their input dy-
namics is denoted as U(o, t) and described based on the orientation o instead explicitly by neurons:

τ
∂U(o, t)

∂t
= −U(o, t) + ρ

∫
x′
J(o, o′)r(o′, t)dx′ + Iext(o, t) (7)

Where τ is the time constant for the population dynamics, which is on the order of 1ms (Gutkin
et al., 2003), ρ = h/(2π) is the neural density and h is the number that orientation is discretized,
Iext(o, t) is the input to the neuron at o at time t. J(o, o′) = J0√

2πa
exp(−|o− o′|2/2a2) presents

the excitatory connections from the neuron at o′ to the neuron at o, where a = 0.1 is the half-width
of the range of excitatory connections. r(o, t) is the firing rate of neurons:

r(o, t) =
U(o, t)2

1 + kρ
∫
U(o′, t)2do′

(8)

where k = 0.1 is the degree of the inhibition. The contribution of inhibitory connection is achieved
indirectly through the divisive normalization in equation 8.

The output of the simplified MB model is fed to the CANN by the term Iext(o, t), where o cor-
responds to the labels of “MBONs”. As shown in Fig 2, there are more neurons in CANN than
MBONs for finer directions, and each MBON outputs to a corresponding neuron for the same di-
rection. Thus with the dynamics of CANN, CANN can integrate information from multiple outputs
from the “MBONs”, and predict finer orientations.

Thus, we can add more neurons in CANN to interpolate for a finer resolution output. The model is
implemented with Python and attached in supplementary material.

3 EXPERIMENTS

We tested the model on a dataset for object orientation learning and a dataset from a robot for real-
world evaluation. There are two types of tasks: retrieval and prediction. Please note the retrieval
task tests the ability of the models to associate images with their corresponding orientations, thus the
same images are presented in the test. Computation is conducted on a desktop workstation with the
12th Gen Intel ® Core ™i7-12700 Processor, 32GB RAM, and the NVIDIA® GeForce RTX ™3090.
We compared our model with typical convolutional neural networks (CNNs) in object orientation
retrieving and prediction, and our model trained on CPU can even achieve better performance 7 to
45 times faster in training time than CNNs trained in GPU.

3.1 OBJECT ORIENTATIONS LEARNING IN COIL DATASET

Our model was evaluated on a dataset modified from COIL-100 dataset (Nene et al., 1996) along
with baseline models. The original dataset contains 100 objects captured at 72 different orientations

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Example samples from COIL-100-O (Top) and COIL-100-AS (Bottom).

and in total 7200 images which are labeled with the object. The size of the original image is 128×
128, for each of the images, there are 128 × 128 × 3 = 49152 channels of values as the image is
RGB colored. We modified the dataset by associating the images with object orientation instead of
the object. Thus, different objects can associated with the same label, while the same objects are
labeled differently, and there is strong interference while a model is trained on this modified dataset.

Because there is no correlation between samples with the same label in this dataset, cross-validation
is unsuitable for this task. This is a key distinction from typical datasets. In most classification
tasks, samples with the same label share similar features, allowing for knowledge generalization
across those samples. However, this is not the case in our dataset. Since samples with the same label
are not correlated, cross-validation, which typically evaluates generalization within samples of the
same label, becomes less meaningful. As we will show later, both baseline models and our proposed
model have achieved near-zero accuracy with cross-validation (Figure A3, Table A6).

We divided this dataset into two groups according to whether the object is axisymmetric and
without a textured pattern, resulting in COIL-100-Ordinary(COIL-100-O) group and COIL-100-
Axisymmetric(COIL-100-AS) group. For COIL-100-O, the objects are not axisymmetric or have
clear textured patterns. For COIL-100-AS, the objects are axisymmetric without views of a clear
textured pattern. In COIL-100-AS, different views of the same object are so similar that human
eyes cannot even distinguish them. We present views of two objects (Figure 3), the first row is from
COIL-100-O, and the second row is from COIL-100-AS.

3.1.1 RETRIEVAL TASK BY THE SIMPLIFIED MB

The first experiment on COIL is the retrieval of object orientation. This experiment does not dis-
criminate between the training set and the testing set. Instead, the model should retrieve the angle
of objects in the previously viewed image. It is conceptually simple, but because the same object
shares the same features but has different labels for orientation, there is interference when a typical
ANN learns the orientations. The Top-5 criterion is applied to retrieval accuracy. That is, if the
correct label is in the Top-5 predicted labels by a model, this model predicts correctly.
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Figure 4: Accuracy with dif-
ferent number of KCs.

In training, the learning rules proposed in Section 2.1.3 were ap-
plied to our model. With the learning rule, our model only loops
through the dataset once. Differently, baseline models were trained
for 200 epochs. They were optimized with the Adam optimizer im-
plemented in PyTorch with default parameters. The loss function
for gradient descent was cross entropy provided by PyTorch with
default parameters.

More KCs, more accurate. We evaluated the influence of the
number of active KCs on retrieval accuracy. As the number of
KCs increases, the accuracy of our methods improves across both
datasets, approaching convergence when the number of KCs is
close to 10,000 (Figure 4).

Retrieval accuracy of the simplified MB As our model’s performance converges around 10,000
KCs, we used models with 10,240 KCs for comparison with the baselines. This choice is in favor of
common multiples of powers of 2 and 10 and also aligns with biological plausibility (Abdelrahman
et al., 2021). Figure A1 and A2 show the Top-5 active MBONs for every object in an example
orientation in COIL. The first column is an example orientation, the second column is the corre-
sponding Top-5 MBONs with weights learned by method 1, and the third column shows the results
from method 2. FlyOrien achieves more than 90% accuracy across both datasets in retrieving the
orientation of a viewed object after a single learning instance.
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(a) Accuracy on COIL-100-O. (b) Loss on COIL-100-O. (c) Accuracy on COIL-100-ax. (d) Loss on COIL-100-ax.

Figure 5: Accuracy and loss in the retrieval task on COIL-100-O and COIL-100-ax.

Baselines take much longer training time for the same performance. We compared the accu-
racy, training time, and incremental learning ability of our two methods with CNNs like AlexNet
(Krizhevsky et al., 2012), GoogleNet (Szegedy et al., 2015), VGG16(Simonyan & Zisserman, 2014),
ResNet50 (He et al., 2016), as illustrated in Table 1. The accuracy and loss change of increasing
epochs for the baselines is shown in Figure 5. In Figure 5a and 5c, our methods are displayed as
horizontal lines because they only need to be learned once. Other models take 1.6 to 80.6 times
longer for a similar performance. Please note that we did not accelerate our model on GPU.

Table 1: Retrieval accuracy (%) and training time (s) of the simplified MB and baselines.

Method Platform COIL-100-O COIL-100-AS
Acc Time Acc Time

Method 1 CPU 92.93 112 97.65 47
Method 2 CPU 91.26 61 97.86 47
AlexNet GPU 97.77 873 86.22 131

GoogleNet GPU 92.77 1845 35.01 273
VGG16 GPU 97.91 10390 71.05 1537

ResNet50 GPU 97.92 4317 95.30 639
MobileNet GPU 99.89 947 79.81 166
Shufflenet GPU 99.51 1651 83.55 289

Incremental learning ability We trained FlyOrien incrementally and calculated accuracy on previ-
ously trained objects to assess the model’s incremental learning ability. Specifically, after training on
all images of an object, we evaluate the model’s accuracy on every object that has been learned. The
results, shown in Appendix Figures A4 to A5, indicate that our model can acquire new knowledge
without forgetting previously learned knowledge, even for axisymmetric objects that are challenging
for humans. Appendix Figure A6 shows the results in the dimension of time along with results by
baseline models in an incremental learning setup. It demonstrates that while all baseline models
experience catastrophic forgetting over 10 iterations of optimization, our model is nearly unaffected
by the trained order of samples.

3.1.2 PREDICTION ACCURACY OF THE SIMPLIFIED MB AND CX

The first half of FlyOrien outputs label likelihoods in a multi-class classification setup. However,
for real-world applications, we aim for more precise predictions. This experiment evaluates the
capability of the full FlyOrien model, combined with CANN, to predict orientations with a finer
resolution than that used in training. For ease of evaluation, we divided the data based on object
orientations, with 72 evenly distributed orientations, alternating between the training and testing
sets.

For a fair comparison, we also integrated the baseline models with CANN, resulting in two setups:
models with and without CANN. In the first setup, without CANN, orientations in the testing set
cannot be predicted directly, so the adjacent angle is used as the correct prediction criterion. In
the second setup, although the baseline models only predict orientations in the testing set, with
CANN, the orientations in the training set can be predicted, so the Top-5 criterion for multi-class
classification is applied. It is important to note that the evaluation criteria differ between these two
setups, and comparisons are valid only within the same setup.

7
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With the first setup and Method 2, the simplified MB in our model outperforms baselines (Table 2,
second and third rows). The accuracy of the simplified MB is 95.34% on the testing set while the
best baseline is AlexNet with 91.28% accuracy. With the second setup and Method 2, the simplified
MB with CANN, or the full FlyOrien model, has the highest training accuracy 98.95%, while not
best for testing accuracy, 66.57%. A possible reason is that the simplified MB tends to output a
bimodal distribution, and there is a second set of large likelihood peaks on the opposite side of the
orientation, which moves the peak of CANN away from the correct orientation.

Table 2: Accuracy (%) of FlyOrien and four baselines.

Model Original Model Original Model + CANN
Training Testing Training Testing

Simplified MB 98.86 95.34 98.95 66.57
AlexNet 92.27 91.28 83.88 20.34

GoogleNet 11.59 2.78 3.35 5.56
VGG16 94.41 90.84 90.33 81.45

ResNet50 94.06 90.94 85.82 81.96
MobileNet 95.09 94.44 78.21 77.56
Shufflenet 71.37 79.06 55.77 54.49

We also evaluated the training accuracy and testing accuracy of our model and baseline models on
the COIL-100-O dataset with altered contrast in images. For more details, see Section A.2.5.

3.2 DETECTION ACCURACY ON REAL OBJECTS COLLECTED BY A QUADRUPED ROBOT

Figure 6: A quadruped
robot looks at a land-
mark.

To simulate an animal finding directions, two experiments were conducted
on a quadruped robot. In experiment 1, the robot finds a familiar object
or landmark in the environment and makes an angle judgment around the
landmark 360°. In the second experiment, in the empty scene with no suit-
able objects or landmarks to be surrounded, the angle is according to its
own orientation. Each sample collected a total of 360 images, with each
image size of 128 x 128 pixels. Compared with the test of re-designed
datasets, the angle interval of the testing set of this experiment has changed
from 10° to 1°, which is more dense and more consistent with the random-
ness of the angle and position of the robot in the real scene.

Object’s orientation by vision from robot

In this experiment, a robot motion control and image sampling algorithm
was designed to realize the robot sampling from different angles during
the 360° rotation around the object (Figure6). The robot rotates around an object, taking one photo
per degree with its head camera, for a total of 360 photos. The binocular fisheye cameras on the
robot’s head have a 180◦ field of view. Through the official camera calibration algorithm built into
the robot, the corrected photos are transmitted in real time during the sampling process. The image
from both the left and right eyes is 800×928. We will extract the image from the left eye for use in
the subsequent experiment, compressing it to 128×128.

Figure 7: Sampled images of a cup, a foam box, and a plant at 0°, 90°, 180°, and 270° (Top: original
view from the robot, Bottom: cropped view on objects for orientation.)

The photos of every ten degrees are selected as the training data set, the rest are taken as the testing
set, and the nearest ten degrees are taken as the label for the accuracy test. Cups, foam boxes, and

8
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Figure 8: Sampling images of lab1, lab2, and corridor at 0°, 90°, 180°, and 270°

plants were sampled and tested for accuracy. The uncropped data sets were also tested (Figure7).
It can be observed that the robot’s Top-5 object orientation accuracy is over 96%, and the Top-2
accuracy is over 80% (Table 3). The performance remains relatively stable on the dense testing set
with 1◦ intervals.

Table 3: Accuracy of network trained with a single data set.

Object cup foam box plant cup (in scene) foam box (in scene) plant (in scene)
acc(Top-2) 80.56 82.93 83.33 88.89 87.83 91.11
acc(Top-5) 97.78 97.56 96.67 98.89 97.72 98.89

Robot’s orientation by vision to the environment

In this experiment, the robot can rotate in circles only by setting rotational speed. The robot was
made to rotate itself once for sampling in three different scenes: lab 1, lab 2, and corridor(Fig.8).
The sampling method is the same as in the previous experiment. The robot achieved an orientation
accuracy of over 96% when choosing Top-5 activated MBONs, and over 80% when choosing Top-2
activated MBONs (Table 4). The performance remains relatively stable on the dense testing set with
1◦ intervals.

Scene lab1 lab2 corridor
acc(Top-2) 91.41 87.52 83.17
acc(Top-5) 98.53 99.31 93.32

Table 4: Accuracy on a single dataset

Original Method dataset 1 dataset 2 dataset 3
acc(Top-2) 77.31 79.72 79.14
acc(Top-5) 96.00 88.98 95.13

Table 5: Accuracy on a complex situation

Training network testing on complex data sets

The six image datasets from the Object’s orientation experiments were combined into Dataset 1.
The three image datasets from the Robot’s orientation experiments were combined into Dataset 2.
Finally, Dataset 1 and Dataset 2 were merged into Dataset 3 to test the neural network’s stability in
long-term learning. By comparing Table5 with Tables 3 and 4, and by comparing Dataset 3 with
Dataset 1 and Dataset 2, it can be observed that the accuracy of neural network was not significantly
affected by the change in the data set from single to complex. This indicates that the neural network
has good stability for long-term learning.

4 DISCUSSION AND CONCLUSION

Inspired by the neural circuits of insects, particularly the MB and CX, we proposed FlyOrien, a
bio-inspired model for incremental learning of object orientation. The model mimics the MB’s
sparse coding and associative learning while utilizing the CX to integrate multiple sensory inputs
to refine orientation detection. FlyOrien is designed to learn object orientations efficiently after a
single exposure, and because it mimics the sparse coding of MB, it has the potential to generalize
to multimodal inputs, such as posture, olfactory, and directional cues, which will be investigated in
further research.

FlyOrien was tested on open-source datasets and real-world robotic tasks, demonstrating strong
performance in estimating object orientations and handling ego motion in complex scenes. Its ability
to learn incrementally, without large datasets or extensive training, highlights its suitability for real-
time applications.

Without relying on convolutional layers, FlyOrien learns object orientation efficiently without catas-
trophic forgetting, benefiting from its large number of pattern detectors and sparse coding. For in-
stance, samples in COIL-100-AS with the same label are very similar, so subtle features, such as
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specific patterns, are crucial for orientation detection, but CNNs are not optimized for this. CNNs
generalize by learning from fewer images and using shared weights to capture relationships between
local features. Convolutional kernels in the first layer detect low-level features, but this generaliza-
tion can overshadow rare or unique patterns, risking them being forgotten. In contrast, MB-like ar-
chitectures excel at identifying these subtle features and preventing forgetting by maintaining fixed
connections after learning. In our model, many “KCs,” each connected to only a few pixels, act as
specialized pattern detectors. Unlike CNNs, which apply the same filters across regions, FlyOrien
uses more filters simultaneously, detecting intricate details in a single pass. This key difference
enables FlyOrien to perform better and learn faster in our tasks.

While FlyOrien offers significant benefits, it is sensitive to pixel-level changes, affecting perfor-
mance when objects deform or lighting varies. Addressing these limitations is a key area for future
research, particularly by incorporating the optic lobe which is crucial for dynamic vision processing.
Extending the CX model to a two-dimensional CANN could also improve navigation in complex,
unmapped environments, enhancing FlyOrien’s robustness for more sophisticated spatial tasks.

FlyOrien’s lightweight design, free from GPU dependence, allows it to run effectively on small
devices like drones and robots, making it ideal for resource-constrained tasks like object tracking,
navigation, and surveillance, where low power consumption and computational efficiency are criti-
cal.

In practical applications, FlyOrien presents minimal risks. Its use in autonomous robots can improve
navigation and object recognition without needing extensive computational resources. However, en-
suring transparency and human oversight in deployment is crucial. When used for navigation or
surveillance in public spaces, it’s important to respect privacy and operate within ethical guidelines.
FlyOrien’s efficiency on small robots makes it ideal for search and rescue, environmental monitor-
ing, and industrial automation. With safeguards in place, FlyOrien can positively contribute to these
fields without significant risks.
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A APPENDIX

A.1 ALGORITHM

A.1.1 ALGORITHM FOR DATA PREPROCESSING AND NETWORK ARCHITECTURE

Algorithm 1 Data Preprocessing and Network Architecture in the simplified MB

1: Input: Dataset (X, y) where X ∈ Rn×d

2: Output: Activation of “MBONs” ẑ for labels’ likelihood
3: Initialize weights WPK ∈ Rq×d, wPKji ∼ Bernoulli(p)
4: Initialize “KCs” activation mask: v = 1
5: Initialize weights WKO ∈ Rm×q

6: // Step 1: Normalize Inputs
7: for each sample x ∈ X do
8: Compute mean x̄ = 1

d

∑d
j=1 xj

9: Shift the sample: x̂ = x− x̄
10: end for
11: for each sample x ∈ X do
12: // Step 2: Activation and outputs of “KCs”
13: Compute “KCs” activation: z = WPKx̂
14: Keep top h activating KCs, whose indexes are entries of u
15: for each j ∈ u do
16: if zj is one of the h largest entries in z then
17: ẑj = zjvj
18: else
19: ẑj = 0
20: end if
21: end for
22: // Step 3: Optionally disable over-activating “KCs”
23: for each j ∈ u do
24: if KC j response to more than 1/4 samples then
25: vj = 0
26: end if
27: end for
28: // Step 4: Activation and outputs of “MBONs”
29: Compute “MBONs” activities: ŷ = WKOẑ
30: // Step 5: Learning Rule
31: Method 1: Hebbian Learning with continuous Weights
32: for each active KC j do
33: if k is the label y then
34: Update weights: wKOkj ← α(ẑj − wKOkj) + wKOkj

35: end if
36: end for
37: Decay learning rate: α← (1− 10−4)α
38: Method 2: Hebbian Learning with Binary Weights
39: for each active KC j do
40: if k is the label y then
41: Set weight: wKOkj ← 1
42: end if
43: end for
44: end for
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A.2 EXPERIMENTS

A.2.1 TOP-5 ACTIVE MBONS FOR THE WHOLE DATASET

45 45, 30, 40, 25, 215 45, 30, 25, 40, 215

30 30, 35, 25, 20, 40 30, 35, 40, 20, 25

115 115, 110, 145, 255, 180 115, 145, 150, 110, 255

75 75, 80, 70, 310, 85 75, 80, 310, 70, 85

225 225, 45, 40, 220, 35 225, 40, 45, 35, 220

Original 

angle

Top5 active 

MBONs(method1)

Top5 active 

MBONs(method2)
Object

310 310, 315, 320, 120, 305 310, 315, 320, 120, 305

255 255,265,260,270,275 255,265,275,260,160

220 220,215,225,230,210 220,215,225,230,210

50 50,55,45,65,60 50,55,65,45,40

165 165,185,195,160,170 165,185,195,170,160

Original 

angle

Top5 active 

MBONs(method1)

Top5 active 

MBONs(method2)
Object

25 25, 20, 10,15, 30 425, 20, 10, 15, 35

80 80, 75, 85, 90, 70 80, 75, 85, 90, 95

160 160, 165, 155, 185, 150 160, 150, 155, 165, 185

165 165, 190, 170, 160, 195 165, 190, 170, 160, 200

130 130, 135, 140, 125, 120 130, 135, 125, 140, 120

230 230, 255, 250, 225, 0 125, 215, 225, 230, 250

190 190, 195, 200, 180, 205 190, 195, 200, 180, 170

170 170, 165, 160, 175, 155 170, 165, 160, 145, 155

25 20, 15, 25, 30, 10 20, 15, 25, 30, 10

215 215, 210, 50, 220, 90 210, 215, 290, 230, 265

220 220, 215, 225, 230, 210 220, 215, 225, 230, 210

205 205, 245, 215, 70, 220 205, 215, 245, 200, 220

60 60, 65, 55, 40, 15 60, 65, 55, 40, 15

45 45, 40, 50, 35, 30 45, 40, 50, 35, 55

170 170,175, 165, 180, 185 170, 175, 165, 180, 185

25 25, 10, 30, 20, 5 25, 10, 30, 20, 5

190 190, 185, 195, 210, 175 185, 190, 205, 210, 195

155 155, 175, 160, 145, 170 155, 175, 145, 170, 160

25 25, 10, 30, 5, 20 25, 10, 30, 20, 5

145 145, 150, 140, 135, 130 145, 150, 140, 320, 130

15 15, 10, 5, 20, 0 15, 10, 5, 20, 0

210 210, 205, 200, 215, 195 210, 205, 200, 195, 215

175 175, 170, 180, 165, 160 175, 180, 170, 165, 185

260 260, 265, 250, 255, 280 260, 250, 265, 285, 290

0 0, 5, 10, 50, 15 0, 5, 10, 15, 50

55 55, 60, 70, 85, 80 55, 60, 70, 85, 40

125 125, 120, 115, 130, 135 125, 120, 115, 130, 135

185 185, 180, 190, 165, 175 185, 180, 190, 165, 175

170 170, 175, 165, 180, 0 170, 175, 165, 180, 185

35 35, 20, 30, 25, 40 35, 20, 25, 30, 15

210 210, 200, 215, 190, 195 210, 200, 190, 215, 195

310 310, 305, 315, 300, 295 310, 305, 315, 295, 300

285 285, 280, 290, 265, 275 285, 280, 290, 275, 240

145 145, 130, 135, 175, 140 145, 135, 130, 90, 140

355 355, 0, 350, 15, 0 355, 350, 0, 10, 15

80 80, 85, 100, 75, 90 80, 85, 100, 75, 90

45 45, 35, 40, 50, 10 45, 35, 40, 10, 50

15 15, 20, 10, 5, 25 15, 20, 10, 5, 25

80 80, 75, 85, 70, 45 80, 75, 85, 70, 45

150 150, 155, 5, 160, 25 150, 155, 185, 25, 160

10 10, 25, 20, 15, 5 10, 20, 15, 25, 5

35 35, 20, 315, 30, 15 35, 15, 25, 30, 20

340 340, 345, 290, 95, 90 345, 340, 290, 350, 285

305 305, 275, 295, 290, 300 305, 275, 310, 300, 295

70 70, 65, 75, 90, 95 70, 75, 65, 90, 80

130 130, 140, 270, 105, 110 130, 140, 135, 230, 125

325 325, 315, 275, 330, 335 325, 315, 275, 350, 335

295 295, 205, 225, 325, 245 295, 205,325, 330, 225

260 250, 255, 75, 235, 265 260, 255, 75, 265, 235

15 15, 20, 10, 5, 25 15, 20, 10, 5, 25

Figure A1: Top-5 active MBONs and the original orientations for all objects(Part1).
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205° 205, 210, 215, 200,25 205, 210, 215, 200, 195

150 150, 170, 155, 165, 100 150, 155, 175, 135, 165

210 210, 215, 220, 270, 285 210, 215, 220, 230,225

170
170, 165, 175, 190,

180
170, 175, 165, 190, 180

45 45, 40, 50, 35, 30 45, 40, 50, 35, 30

230 230, 235, 220, 205, 225 230, 235, 220, 205, 225

205 205, 200, 210, 190, 215 205, 200, 210, 190, 215

65 65, 70, 60, 80, 55 65, 60, 55, 70, 80

10 10, 15, 20, 25, 5 10, 15, 20, 25, 5

180 180, 185, 190, 170, 140 180, 185, 190, 170, 140

25 25, 20, 30, 55, 10 25, 20, 30, 10,5

135 135, 140, 145, 130, 160 135, 140, 145, 130, 160

160 160, 165, 175, 170, 155 160, 165, 175, 155, 170

130 130, 125, 310,320, 135 130, 125, 310, 320, 315

25 25, 20, 15, 35, 30 25, 20, 15, 35, 30

175 175, 165, 120, 185,0 175, 120, 165, 180, 220

40 40, 45, 35, 50, 25 40, 45, 50, 35, 25

5 5, 0, 10, 15, 355 5, 0, 10, 15, 20

115 115, 110, 105, 120, 125 115, 110, 120, 105, 125

170 170, 165, 160, 175, 185 170, 160, 165, 175, 185

45 45, 70, 60, 65, 40 45, 40, 55, 60, 65

115 115, 110, 120, 110, 130 115, 120, 110, 130, 320

195 195, 200, 190, 15, 345 195, 200, 190, 15, 345

150 150, 145, 175, 160, 155 150, 145, 185, 170, 175

120 120, 135, 130, 125, 140 120, 130, 135, 125, 155

315 315, 285, 280, 310, 290 315, 285, 320, 310, 290

175 175, 180, 170, 190, 185 175, 170, 180, 190, 185

170 170, 185, 145, 155, 180 170, 185, 145, 180, 155

220 220, 215, 180, 185, 195 220, 215, 180, 250, 185

90 95, 100, 80, 85, 60 95, 100, 85, 80, 75

35 35, 30, 25, 40, 45 35, 30, 25, 40, 45

185 185, 190, 180, 195, 175 185, 190, 180, 175, 195

100 100, 95, 90, 115, 110 100, 95, 90, 115, 110

40 40, 45, 25, 30, 35 40, 45, 30, 25, 35

70 70, 75, 80, 55, 35 70, 75, 55, 80, 45

315 315, 305, 285, 240, 295 315, 305, 325, 310, 320

175 175, 180, 170, 165, 185 175, 180, 170, 165, 185

85 85, 90, 100, 105, 95 85, 90, 100, 105, 70

50 50, 35, 25, 20, 45 50, 35, 45, 25, 20

180 180, 185, 190, 175, 200 180, 185, 190, 175, 195

Figure A2: Top 5 active MBONs and the original orientations for all objects(Part2).

We show all objects at an example orientation in Figure A1 and A2. The first column is the actual
orientation of the object, the second column is top 5 active MBONs found by method 1, the third
cloumn is method 2.
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A.2.2 CROSS-VALIDATION

Model Best accuracy on testing set Best accuracy on training set
AlexNet 0.00 92.37

GoogleNet 0.00 87.32
VGG16 0.00 97.36

ResNet50 0.00 96.53

Table A6: Cross-validation on our modified dataset results in 0 testing accuracy.

(a) Accuracy on training set. (b) Accuracy on testing set.

(c) Loss on training set. (d) Loss on testing set.

Figure A3: Cross-validation on our modified dataset results in 0 testing accuracy.
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A.2.3 INCREMENTAL LEARNING ABILITY

From Figure A4 to Figure A5, we show the accuracy change of learned objects when learning new
objects using FlyOrien. Both method 1 and method 2 can keep good memory of old objects, thus
have good incremental learning ability.
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(a) Accuracy with Method 1
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(b) Accuracy with Method 2

Figure A4: Accuracy of specific objects in COIL-100-O during incremental learning. Each row
represents the index of the object being trained on, and each column represents the index of the
object being retrieved. (a) Accuracy using Method 1. (b) Accuracy using Method 2. Results are
shown for the first 29 objects only.

In Figure A6, we show the first four objects’ accuracy change when learning new objects. We train
and test the object in sequence. For deep neural networks, it lost memory of old objects when
learning new objects. In contrast, FlyOrien performs well in this situation.
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(a) Accuracy using Method 1
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Figure A5: Accuracy of specific objects in COIL-100-AS during incremental learning. Each row
represents the index of the object being trained on, and each column represents the index of the
object being retrieved. (a) Accuracy using Method 1. (b) Accuracy using Method 2. Results are
shown for the first 12 objects only.
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(a) Object 1
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(b) Object 2
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(c) Object 3
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(d) Object 4

Figure A6: Accuracy of the first four objects for incremental learning.
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A.2.4 ACCURACY FOR UNFAMILIAR ORIENTATIONS

(a) accuracy of train set (b) accuracy of testing set
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(c) Histogram of FlyOrien+CANN on COIL-100-O
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(d) Histogram of FlyOrien+CANN on COIL-100-
AS

Figure A7: Accuracy of train set and testing set. FlyOrien’s accuracy can reach a high level in
one-shot learning, without longtime training like other baselines

A.2.5 ACCURACY WITH CONTRAST CHANGES

Table A7: Accuracy(%) and training time(s) of our methods and four baselines when the image
contrast changes on COIL-100-O.

Method 1 Method 2 AlexNet GoogleNet VGG16 ResNet50
Device CPU GPU

Training accuracy 92.93 91.26 90.45 85.60 96.30 96.18
Test accuracy 74.01 73.96 76.55 23.00 64.21 57.95

Difference 18.92 17.30 13.90 62.60 32.09 38.23
Training time 157.83 78.26 870.68 1850.24 10255.02 4300.81

In this task, the training set consists of original images, while the testing set contains images with
modified contrast. The significant drop in test accuracy compared to training accuracy suggests
overfitting. GoogleNet, VGG16, and ResNet50 exhibited more overfitting compared to our model,
while AlexNet demonstrated less overfitting. Therefore, both our model and AlexNet displayed
greater robustness in handling contrast changes.
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