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Deep Federated Recommendation System
Anonymous Author(s)

ABSTRACT
With the rapid development of deep learning algorithms in recent
years, intelligent systems now play an intrinsic role in most of
today’s industries. Consequently, there is high demand in deep-
learning based applications which seek patterns in the user data to
maximize the user experience and minimize the costs of a company.
One such application is recommendation systems, which allow
companies to market specific products directly to individuals that
have the highest probability of being interested in the said product.
In recent years we have seen a shift from primitive recommendation
algorithms, such as collaborative filtering and matrix factorization
to more complex deep learning approaches, which are capable
of more effectively processing large volumes of data, while also
exhibiting better performance. Such recommendation systems are
employed by industry giants from virtually every field, such as
digital marketing, streaming, video game industry and many more.
However, with the increase in volumes of data, the concern for
privacy also increases, and recently we have seen many cases where
companies fail to protect the data of their consumers. In this report
we propose a deep learning-based recommendation system that
provides recommendations to a user based on their previous activity.
To account for the increasing concern of data privacy, we will be
employing a federated learning approach, using which we prevent
users from directly sending their data to the server, avoiding any
risk of it being intercepted by third parties.

ACM Reference Format:
Anonymous Author(s). 2024. Deep Federated Recommendation System. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Machine learning has drawn a lot of attention as it is a very effec-

tive business strategy, demonstrated by certain influential tech giant
companies and their success with it. The recommender systems
(RS) are arguably one of the more popular applications of machine
learning, used by Google, Facebook, Amazon, and Netflix to expand
their businesses. Although traditional recommendation approaches,
such as collaborative or content-based filtering have shown excel-
lent results for RS, nowadays the vast majority of companies utilize
neural network-based approaches capable of analyzing larger vol-
umes of data and thus producing more accurate recommendations.
Neural collaborative filtering is arguably one of the most popu-
lar approaches that are driven by deep learning [1]. Apart from
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their increased efficiency, neural-based RS has another great advan-
tage over their classical counterparts - they allow the utilization of
federated learning algorithms to ensure data privacy [2].

Data is often regarded as one of the most valuable resources
of the 21st century. In contrast with other valuable resources, the
value of data is not in its scarcity, but rather in its utility. As the
methods and algorithms for analyzing the data increase, so does
the utility and thus the value of the data. However, with increased
value comes an increased demand for privacy. In recent years there
have been many cases where even the large corporations are found
to be not handling or storing sensitive client data properly, often
leading to it leaking to third parties. To mitigate this, researchers
and engineers propose various techniques to increase data privacy,
with federated learning being one such approach.

Federated learning enables training of machine learning mod-
els on user data without having to handle it directly at a centralized
location. Instead of uploading the data to a server, the user down-
loads the machine learning model, trains it on their data locally,
and then uploads the model back to the server, where together
with other models it gets aggregated through a federated averag-
ing algorithm. This federated learning technique was proposed by
Mcmahan et. al. [2] and remains to be the state-of-the-art approach.

Neural collaborative filtering and its derivative model architec-
tures are regarded as current state-of-the-art approach for RS. For
instance, a similar architecture is utilized by Facebook for their
DLRM (deep learning recommendation system), which utilizes the
combination of multi-layer perceptron (MLP) and matrix factoriza-
tion provided as user/item embedding layers.

With the rise in demand for recommendation systems in many
industries such as streaming, online marketing, digital entertain-
ment, and many others (where user data could be quite sensitive),
we believe that recommendation systems can greatly benefit from
approaches that focus on data privacy, such as federated learning.
Although there already are quite a few publications involving feder-
ated recommendation systems, the area of research is quite new and
there are not many open-source projects available for experimenta-
tion. In our project we demonstrate a recommendation system that
can be trained using federated training process.

2 NEURAL COLLABORATIVE FILTERING
2.1 Model Architecture

Neural collaborative filtering (NCF) is a recommendation system
architecture proposed by He et. al. [1]. The model fuses multi-layer
perceptron with a generalized matrix factorization model as it can
be seen in Figure 1. Users and items are represented in terms of
embedding vectors, for GMF layer they are combined through dot
product, and for MLP layer they are combined through concatena-
tion. The outputs of GMF and MLP layers are then concatenated
and fed through the final, output layer (or layers depending on
model configuration). In their paper researchers use MLP of depth
4 as their output layer.
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Figure 1: NCF model architecture

Since NCF is used to model user-item interactions, the target
values in the training data are given as vector containing binary
values, therefore binary cross-entropy is used as the loss function.

2.2 Dataset
The authors of the paper use Movielens and Pinterest datasets

to train and evaluate their model. Since our implementation uses
NCF model, we will also utilize the two aforementioned datasets to
benchmark our implementation. The characteristics of the datasets
are provided the Table 1.

Dataset Interactions Users Items

Movielens 1,000,209 6,040 3,706
Pinterest 1,500,809 55,187 9,916

3 EVALUATION METRICS
In their paper the authors use hit ratio and normalized discounted

cumulative gain as the metrics for evaluating their model.
Hit ratio (HR) is a metric that indicates if a test item is presented

in a list of top k recommendations for a given user. Larger values of
hit ratio indicate better performance of a recommendation system.

Normalized discounted cumulative gain (NDCG) is a metric that
indicates the relevance of the recommendation generated by the
system. It is calculated using formula:

𝑁𝐷𝐶𝐺𝑘 = 1
𝑁

∑𝑘
𝑖

ln(2)
ln(𝑖+2)

Where k is number of top recommendations we use to check
relevance for, i indicates the rank of the item in top-k list, N is the
total number of test items. For evaluating the federated model, we
will be using the same two metrics and comparing our results with
the authors‘.

4 FEDERATED LEARNING

Figure 2: Training process algorithm

As mentioned in the introduction, federated learning is first
and foremost a privacy feature, which prevents malicious users
from obtaining sensitive client data even if the compromise the

2
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application server. Privacy is ensured by the fact that users never
directly send their personal data to the server. Instead, the modeling
on user data is done by following procedure:

(1) user downloads the deep learning model on their device
(2) the model is trained locally on device
(3) the model is sent to server through secure, encrypted chan-

nel
(4) server aggregates the states of models across different users

At no point during this process does user send their data to the
server or share it with any other clients in the system. The aggre-
gation of models’ states can be done through different algorithms,
with the most popular and straightforward one being federated
averaging (FedAvg), which also happens to be the method we will
be employing in our project. This is depicted in Figure 2

Federated learning was first proposed by Google researchers
McMahan et. al [2]. Google has also developed a framework for
training and deploying federated deep learning models as a part of
their Tensorflow framework, called Tensorflow Federated (TFF).

Due to the rise in concerns for the data privacy, there has been
quite extensive research done in the field of federated learning in
recent years, including in the context of federated recommendation
systems [3][4][6]. For instance, Liang et. al. propose federated RS
which trains the model by averaging the user data, given in terms
of product ratings, and then randomly sampling from it during
training [4]. Others, like Dogra et. al., propose a more sophisti-
cated system, capable of providing state-of-the-art performance at
a decreased memory usage [3]. Other researchers raise a question
about cyber-attacks which could specifically target federated sys-
tems. Duan et. al. demonstrate how a malicious user could poison
the federated learning system by injecting it with falsified user
data [5]. Chen et. al. propose a federated learning approach that
provides better recommendations based on the geolocation of the
user [6]. They achieve this by clustering the users based on their
product preference and training a model by also considering the
geographical location of the user.

While federated learning is an impressive approach for ensur-
ing data privacy, it introduces some additional concerns when it
comes to training the models. One possible concern, as was men-
tioned in the previous section, is malicious users injecting falsified
data into the system. But there are also other challenges with the
training process, not related to malicious users deliberately hinder-
ing the system’s performance.

One such challenge is increasing the accuracy of federated mod-
els. Federated neural networks are trained on data that is distributed
across different users. Since the distribution is not guaranteed to
be uniform, it is difficult for the model to fully capture the data
representation [12]. This is especially prevalent if the training is
done on a small subset of randomly sampled users. To tackle this
problem, we use a sampling strategy that will be discussed in the
following chapter.

5 IMPLEMENTATION AND CODE DESIGN
Our implementation consists of two parts – first a module, called

Federeco, which contains the implementation of NCF algorithm,
a function to evaluate the model and train it through federated

learning. Second part acts as a driver of the module, it simulates
the interaction between server and a client.

5.1 Server and Client
Other files outside of federeco module simulate the interaction
between user and the server. Main driver of the simulator is sever.py
file which performs following actions: (i) Loads training datasets;
(ii) Initializes Client objects and sets them up with training data;
(iii) Launches federated training process; (iv) Evaluates the trained
model; (v) Generates recommendations for users.

Client class defines the user of the application. Clients must be
set-up with a unique identifier, initialized with their respective
item vector and must implement train method that accepts server
model as a parameter and trains it locally on client’s item vector.
The federeco module defines abstract Client class that serves as a
template.

5.2 Training Process
Federated training process consists of several steps. First, we sample
n clients from dataset, then train sampled clients on their own
dataset for e epochs. Next, we collect the weights of the models
trained locally by clients. Then, aggregate weights through FedAvg.
Finally, we repeat the steps E times.

5.3 Client Sampling
In practice, due to limited bandwidth, federated learning systems
often initiate training process on a small subset of total clients.
This part is simulated in part 1 from the list given above. However,
during implementation it was discovered that random sampling
was not the best strategy for training a federated model. The main
issue is that when sampling from the list of clients with length L
and subset size of S, if the values of S, L are too small, not all clients
will be sampled from the list by the end of training process. This
problem is known as coupon problem in probability theory.

During the fine-tuning of the model, it was noticed that when
sampling the list of 6040 users with sample size of 50, approximately
25% of clients were not being sampled when training over 500
epochs. One way to ensure that all clients will be sampled (with
some confidence c) is to increase the sample size and number of
training epochs. However, the sample size is constrained by the
bandwidth of the system, while increasing the number of epochs
can lead to model being overfit and skewed towards samples that it
sees most often.

To guarantee that the sampling of users is uniform, instead of
randomly sampling, we create a queue from the total list of users.
During each round of federated training, we take n number of users
from the start of the queue, initiate training process for these n
users, and append them at the end of the queue. This operation is
equivalent to rotating the list left with shift size of n. The number
of times model sees the data from a single client can be changed by
tuning parameters e and E.

6 IMPLEMENTATION DETAILS
We construct NCF model depicted in Figure 1 with following pa-
rameters: for MF layer we use latent dimension of 16, for MLP we

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: FedNCF training loss; FedNCF performance across different epochs

use hidden layers with following number of nodes: 64, 32, 16, 8.
Federated NCF also introduces two additional parameters:

(1) n - indicates number of sampled users during a single train-
ing round

(2) e - number of epochs for local training of sampled clients

Due to bandwidth limitations in federated learning, it is not
feasible to train the server model on all clients in the system at
once, therefore a subset of clients is chosen for single training round.
During each global training epoch, we pick n number of clients to
train locally for e epochs. Optimal values for n and e are provided
in next section.

During data preprocessing, we sample the data in such way that
we have 4 negative samples per each positive sample for every
unique client ID in the dataset. We train federated NCF for 400
epochs with batch size of 64. AdamW [13] was used as an optimizer
with learning rate of 0.001. Binary cross-entropy function was used
to calculate loss.

The model is implemented in PyTorch framework, but Tensor-
flow implementation is also available on project’s GitHub repository
under tensorflow branch. Training and evaluation were done on
NVIDIA GeForce GTX 1060 GPU.

7 EVALUATION METHODOLOGY
For evaluating FedNCF model we use same metrics as He et. al. use
for validation, namely hit rate and normalized discounted cumula-
tive gain [1].

Both metrics are measured with respect to top 10 recommen-
dations. Model evaluation was done across different number of
epochs, as well as for different values of n and e.

Figure 3 depicts mean binary cross entropy loss across the clients
sampled during each global training epoch. As illustrated, the train-
ing loss steadily decreases during first 400 epochs, however, training
model further resulted in diminishing results, therefore we set num-
ber of training epochs to 400 during our further evaluations.

In their paper, He et. al. mention that after certain number of
training epochs, they noticed that although the loss kept decreasing,
the model’s recommendation quality worsened. To verify this is
not the case with our training process, we also measure the model’s

accuracy on test data across different epochs. As depicted on Fig-
ure 3, model’s performance steadily increases for first few hundred
epochs, with the curve flattens at around 400 epochs, confirming
that the model does not in fact overfit and that 400 epochs is a valid
number for global training epochs.

We also test model’s performance with respect to the two new
parameters introduced by federated training process: n and e. Figure
3 depicts the change in HR and NCDG for different values of n and
e.

Figure 4: FedNCF performance w.r.t. different values of n and
e

As we can see in Figure 4, parameter n has negligible effect on
model’s accuracy. It does however affect the time and bandwidth
requirements of the training process. Smaller values of n translate
to larger number of iterations needed for convergence, while larger
values of n require more bandwidth. The fact that model’s perfor-
mance is not dependent on parameter n is quite expected, since it
does not change the number of times the data of each client gets
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fed through the model. Sample size only affects number of times
weight aggregation happens on the server side, which seems to
have no effect on the recommendation quality of the model.

However, parameter e does affect model’s performance, this is
especially evident for smaller numbers of global epochs. For 400
epochs however, it seems that 3 local training epochs is the most
optimal value. Larger values of e are likely to cause overfitting,
while also increasing the training time.

8 CONCLUSION
In this report we have demonstrated that NCF-based recommenda-
tion system can be trained through federated averaging technique
with minimal loss in model’s performance. We have also shown
what effect the newly introduced hyperparameters have on the per-
formance of the model. We hope that our project can serve as a solid
baseline with anyone who wishes to experiment with federated
recommendation systems or federated learning in general.

One drawback that FedNCF has is that it’s a static model, once
trained, it becomes impossible to generate recommendations for
new users or add any new items to the system [14]. This is true
for any recommendation system that utilizes matrix factorization,
including original NCF implementation. However, there are some
existing techniques that allow us to online-update the parameters of
the MF layer and introduce new users/items to the system [14][15].
Same concepts can also be applied to federated NCF as well.
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