
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Multi-Platform Autobidding with and without Predictions
Anonymous Author(s)

Abstract

We study the problem of finding the optimal bidding strategy for an

advertiser in a multi-platform auction setting. The competition on a

platform is captured by a value and a cost function, mapping bidding

strategies to value and cost respectively. We assume a diminishing

returns property, whereby the marginal cost is increasing in value.

The advertiser uses an autobidder that selects a bidding strategy for

each platform, aiming to maximize total value subject to budget and

return-on-spend constraint. The advertiser has no prior information

and learns about the value and cost functions by querying a platform

with a specific bidding strategy. Our goal is to design an algorithm

that finds the optimal bidding strategy with a small number of

queries.

We first present an algorithm that requires 𝑂 (𝑚 log(𝑚𝑛) log𝑛)
queries, where𝑚 is the number of platforms and 𝑛 is the number

of possible bidding strategies in each platform. Moreover, we adopt

the learning-augmented framework and propose an algorithm that

utilizes a (possibly erroneous) prediction of the optimal bidding

strategy.We provide a𝑂 (𝑚 log(𝑚𝜂) log𝜂) query-complexity bound

on our algorithm as a function of the prediction error 𝜂. This guar-

antee gracefully degrades to 𝑂 (𝑚 log(𝑚𝑛) log𝑛). This achieves a
“best-of-both-worlds” scenario: 𝑂 (𝑚) queries when given a correct

prediction, and 𝑂 (𝑚 log(𝑚𝑛) log𝑛) even for an arbitrary incorrect

prediction.

CCS Concepts

•Theory of computation→Design and analysis of algorithms.

Keywords

Autobidding, Multi-Platform Auctions, Algorithms with Predictions

ACM Reference Format:

Anonymous Author(s). 2024. Multi-Platform Autobidding with and without

Predictions. In . ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 Introduction

Online advertisers often advertise across multiple platforms, such as

Amazon, Bing, Google, Meta and TikTok, and face the challenging

task of optimizing their bids across these platforms. The complexity

comes not just from having to select a vector of bidding strategies

(one for each platform), but also from the diversity of auctions used

across platforms and the black-box nature of the detailed auction

rules and the level of competition.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

To deal with the complexity, advertisers are increasingly using

automated bidding agents (aka autobidding) to bid on their be-

half. An autobidder allows an advertiser to specify constraints like

Budget and Return-on-Spend (ROS), and bids on their behalf to

maximize value subject to the constraints. This has led to a lot of

research interest in problems related to autobidding (see Aggarwal

et al. [3] for a recent survey). In particular, the problem of designing

bidding algorithms for the single platform setting is well-studied [1],

including in the online learning setting (see Section 3 of the survey

[3]). However, there is not much work on the problem of bidding

optimally across multiple platforms (see the related work section

for what is known).

In this paper, we study the problem of finding the optimal bidding

strategy in the multi-platform setting. In particular, an advertiser

aims to maximize her total value subject to a global budget and

return-on-spend (ROS) constraint across all platforms. To capture

the black-box nature of auction mechanisms and level of com-

petition, we assume that the advertiser has no prior knowledge

about the mapping from bids to auction outcomes for any platform.

Instead, the advertiser interacts with a platform’s auction by sub-

mitting a bid to the platform and observing the corresponding cost

and value (i.e., the user has “query access” to the mapping). We

propose algorithms that find the optimal bidding strategy in this

setting, and prove worse-case query complexity bounds for them.

While worst-case results offer robustness and broad applicability,

the guarantees they provide can sometimes be overly pessimistic. To

address this, a new framework called "algorithms with predictions"

has recently been introduced. This framework allows algorithms

to incorporate potentially flawed machine-learned predictions as

a guiding tool. The objective is twofold: to achieve improved per-

formance guarantees when the prediction is accurate (a property

known as consistency) and to maintain good worst-case bounds

even when the prediction is completely incorrect (a property called

robustness). This framework provides a natural way to integrate

machine-learned predictions into the design of algorithms while

preserving the essential robustness offered by worst-case analysis.

In this work, we adopt the learning-augmented framework and

explore the role of predictions in bidding strategy optimization.

Specifically, we examine the scenario where the algorithm has ac-

cess to a prediction 𝜇𝜇𝜇 of the optimal bidding strategy, without any

assumption regarding the prediction’s accuracy. We propose algo-

rithms that leverage the untrusted prediction to achieve improved

query complexity bounds, which degrade gracefully based on the

quality of the prediction.

1.1 Our Results

Wemodel the problem of searching for the optimal bidding strategy

as follows: there are𝑚 platforms. For each platform 𝑗 , we are given

a cost function 𝑐 𝑗 and a value function 𝑣 𝑗 , and 𝑛 different bidding

strategies indexed 1 through 𝑛 such that 𝑐 𝑗 (𝜇 𝑗) and 𝑣 𝑗 (𝜇 𝑗) are
respectively the cost incurred by bidding 𝜇 𝑗 on platform 𝑗 , and

the value accrued from this bidding strategy. Our goal is to find

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

a collection 𝜇𝜇𝜇 = (𝜇1, . . . , 𝜇𝑚) such that (a) the ratio of the total

value accrued to the total cost is at least some target threshold,

(b) the total cost is less than the budget, and (c) the total value is

maximized.

We propose a search algorithm, MedianOfMedians, that deter-

mines the exact optimal bidding strategy using𝑂 (𝑚 log(𝑚𝑛) log𝑛)
queries. Our algorithm builds on a characterization of the optimal

bidding strategy in the multi-platform setting, which was first devel-

oped in [4] under continuous strategy space. Intuitively, the optimal

strategy is to keep increasing bid on the platform that currently

offers the highest marginal bang-per-buck (corresponding to the

lowest marginal cost-per-unit-value) until either the budget or the

ROS constraint is about to be violated. In other words, the optimal

strategy aims to equalize the marginal cost-per-unit-value across

all the platforms.

At a high level, the algorithm searches in the space of marginal

costs. Initially, there are up to𝑚𝑛 candidate marginal costs. The

algorithm carefully selects a candidate marginal cost and finds the

corresponding vector of bidding strategies, as defined in Lemma 1,

via Subroutine 2. Based on the outcomes (i.e. cost and value on

each platform) of the corresponding strategy vector, the algorithm

removes a constant fraction of candidate marginals from considera-

tion, and recurses on the residual problem.

We complement this algorithmic result with an Ω(𝑚 log𝑛) lower
bound and anΩ(log𝑚𝑛) lower bound for this problem. TheΩ(log𝑚𝑛)
lower bound reflects the difficulty of identifying the optimal mar-

ginal cost among the𝑚𝑛 possible candidates, while the Ω(𝑚 log𝑛)
bound captures the complexity of determining the corresponding

bidding strategy for that optimal marginal cost. Notably, these are

the two key components of our algorithm, and our upper bound is

the product of these two lower bounds.

Next, we adopt the learning-augmented framework to improve

the worst-case query complexity bound. We propose an algorithm

with access to a prediction 𝜇𝜇𝜇 of the optimal strategy 𝜇𝜇𝜇𝑜 . The al-

gorithm, BranchOutMedianOfMedians, starts with trying to

the find the optimal solution in a small range around the predic-

tions, and expands the search range if the search is unsuccessful.

With the right sequence of expanding ranges, we show that the

algorithm finds the optimal strategy 𝜇𝜇𝜇∗ with 𝑂 (𝑚 log(𝑚𝜂) log𝜂)
queries, where 𝜂 = max𝑗 |𝜇𝜇𝜇∗𝑗 − 𝜇𝜇𝜇 𝑗 | represents the prediction error.

This means that the algorithm requires only 𝑂 (𝑚) queries when
the predictions are accurate; this is the minimum number of queries

needed to implement any bidding strategy. Moreover, since 𝜂 ≤ 𝑛,

the total number of queries never exceeds that of the MedianOf-

Medians algorithm.

1.2 Related Work

Multi-platform mechanism design and autobidding. Previous re-

search has examined the multi-platform auction environment from

both the auctioneer’s and the bidders’ perspectives. Regarding auc-

tion design, Aggarwal et al. [2] analyzes a scenario where a single

platform manages multiple channels, each selling queries via a

second-price auction (SPA) with a reserve price. The authors assess

the costs associated with each channel optimizing its own reserve

price compared to a unified platform policy. Inspired by the Dis-

play Ad market, Paes Leme et al. [32] explores a model in which

multiple platforms vie for profit-maximizing bidders who must use

the same bid across all platforms (which we refer to as a uniform

bid). Their key finding indicates that the first-price auction (FPA)

serves as the optimal auction format for these platforms. On the

bidders’ side, Susan et al. [34] investigates bidding strategies for

utility-maximizing advertisers operating across multiple platforms

while adhering to budget constraints. Meanwhile, Deng et al. [20]

focuses on value-maximizing advertisers and reveals that optimiz-

ing ROS per platform can yield arbitrarily poor results when both

ROS and budget constraints are in play.

Aggarwal et al. [4] study a similar multi-platform setting with

autobidders under ROI constraints but focus on the auction design

problem from the platform’s perspective. While first-price auctions

are optimal in the absence of competition (Deng et al. [19]), they

show that from the perspective of each separate platform, running

a second-price auction can achieve larger revenue than first-price

auction when there are two competing platforms. They also identify

key factors influencing the platform’s choice of auction formats,

including advertiser sensitivity to auction changes, competition

and relative inefficiency of second-price auctions. In our paper, we

focus on how advertisers can bid optimally in the multi-platform

setting.

Algorithms with predictions. In recent years, the learning-aug-

mented framework has emerged as a prominent paradigm for the

design and analysis of algorithms. For an overview of early contri-

butions, we refer to [31], while [27] offers an up-to-date compilation

of relevant papers in this area. This framework seeks to address

the shortcomings of overly pessimistic worst-case analyses. In the

last five years alone, hundreds of papers have explored traditional

algorithmic challenges through this lens, with notable examples

including online paging [29], scheduling [33], optimization prob-

lems related to covering [12] and knapsack constraints [24], as well

as topics like Nash social welfare maximization [13], the secretary

problem [6, 21, 22], and various graph-related problems [7].

More closely related to our work, the research on learning-aug-

mented mechanisms interacting with strategic agents is recently

initiated by Agrawal et al. [5] and Xu and Lu [35]. This area in-

cludes strategic facility location [5, 14, 25, 35], strategic scheduling

[10, 35], auctions [11, 16, 28, 30, 35], bicriteria mechanism design

(which seeks to optimize both social welfare and revenue) [8], graph

problems with private input [18], metric distortion [15], and equilib-

rium analysis [23, 26]. Recently, Christodoulou et al. [17] revisited

mechanism design challenges by focusing on predictions about the

outcome space rather than the input. While most of these stud-

ies concentrate on the mechanism design problem, our research

emphasizes how predictions can assist agents in identifying op-

timal strategies. For more information on this body of work, we

recommend [9].

2 Preliminaries

We consider the problem of finding the optimal bidding strategy in

a multi-platform auction setting for a value-maximizer with budget

and return on spend (ROS) constraints. There is a set𝑀 consisting

of𝑚 platforms in the market. We assume that for each platform,

the advertiser can pick from 𝑛 different bids (note that this set can

be different for different platforms), indexed by 0, 1, 2, . . . , 𝑛, where

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Multi-Platform Autobidding with and without Predictions Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

bid 0 is used to denote non-participation. Each platform 𝑗 ∈ 𝑀 is

described by a value and a cost function that map bid indices to a

corresponding value and cost, respectively, i.e., 𝑣 𝑗 : {0, 1, . . . , 𝑛} →
R≥0

and 𝑐 𝑗 : {0, 1, . . . , 𝑛} → R≥0
. In other words, when a bidder

chooses to bid according to bid 𝜇 ∈ {0, 1, . . . , 𝑛}, they incur a cost of
𝑐 𝑗 (𝜇) and receive a value of 𝑣 𝑗 (𝜇). We assume that there is a strict

ordering of costs and values by bid index, i.e. 𝑣 𝑗 (𝜇) < 𝑣 𝑗 (𝜇 + 1) and
𝑐 𝑗 (𝜇) < 𝑐 𝑗 (𝜇 + 1) for all 𝜇 ∈ {0, 1, . . . , 𝑛}. We refer to the mapping

from bid to the cost and value of each platform as the landscape of

that platform. In addition, we define the marginal cost of bidding

𝜇 ≥ 1 on platform 𝑗 as

MC𝑗 (𝜇) =
𝑐 𝑗 (𝜇) − 𝑐 𝑗 (𝜇 − 1)
𝑣 𝑗 (𝜇) − 𝑣 𝑗 (𝜇 − 1) , (Marginal Cost)

where 𝑐 (0) = 0 and 𝑣 (0) = 0. We make standard convexity assump-

tion that MC𝑗 is non-decreasing for every platform 𝑗 .

Given the integral strategy set, we expand the bidding space

by also considering the fractional solution between each integral

bid, hence making the strategy space continuous. We use 𝑆 and 𝑆𝑐

to denote the integral and fractional strategy space, respectively.

The cost, value and marginal functions of the continuous bidding

space [0, 𝑛]𝑚 extend the discrete function by linear interpolation.
1

Formally

𝑣 𝑗 (𝜇) = (⌈𝜇⌉ − 𝜇) · 𝑣 𝑗 (⌊𝜇⌋) + (𝜇 − ⌊𝜇⌋) · 𝑣 𝑗 (⌈𝜇⌉),

𝑐 𝑗 (𝜇) = (⌈𝜇⌉ − 𝜇) · 𝑐 𝑗 (⌊𝜇⌋) + (𝜇 − ⌊𝜇⌋) · 𝑐 𝑗 (⌈𝜇⌉),
Consequently, we have that MC𝑗 (𝜇) = MC𝑗 (⌈𝜇⌉).

We note that the problem of finding the optimal integral solu-

tion is NP-hard.
2
The objective of the bidder is therefore to find

an optimal fractional bidding strategy 𝜇𝜇𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑚) where
𝜇 𝑗 ∈ [0, 𝑛] such that she maximizes the total value received by exe-

cuting bidding strategy 𝜇 𝑗 on each platform 𝑗 , subject to a budget

constraint and the ROS constraint across all platforms. Let 𝐵 and 𝑇

be the budget and target ROS of the bidder. We can formulate the

problem as the following program:

max

𝜇𝜇𝜇=(𝜇1,𝜇2 ...,𝜇𝑚)

∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇 𝑗)

𝑠 .𝑡 .
∑
𝑗 ∈𝑀

𝑐 𝑗 (𝜇 𝑗) ≤ 𝑇 ·
∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇 𝑗), (1)∑
𝑗 ∈𝑀

𝑐 𝑗 (𝜇 𝑗) ≤ 𝐵.

throughout the paper, we denote 𝜇𝜇𝜇𝑜 the optimal (fractional) bidding

strategy, and 𝜇𝜇𝜇∗ the floor of it, i.e., 𝜇∗
𝑗
= ⌊𝜇𝑜

𝑗
⌋ for all platform 𝑗 . Note

that 𝜇∗
𝑗
∈ 𝑆 .

We assume that the bidder only knows the set of possible bidding

strategies, but has no information about the platforms’ value and

cost functions. Instead, the bidder can interact with platforms via

bidding queries: the bidder plays strategy 𝜇 on a platform 𝑗 to learn

the value 𝑣 𝑗 (𝜇), the cost 𝑐 𝑗 (𝜇), and the marginal cost MC𝑗 (𝜇)3. Each

1
It can be viewed as bidding randomly between two adjacent bids.

2
It is not hard to see that we can encode any knapsack problem as an instance of our

problem with a budget constraint.

3
When marginal cost is not part of the query output, it is still achievable by querying

both the current and the previous bid, which increases the query complexity by a

constant factor.

such query is costly to the bidder, and the goal is to minimize the

number of queries required to determine the optimal strategy.

Given an instance I and an algorithm ALG, let ALG(I) denote
the number of queries needed to find the optimal strategy for that

instance. Then the query complexity of the algorithm is defined as:

max

I
ALG(I)

The learning-augmented framework. In this work, we adopt the

learning-augmented framework and study how we can further

reduce the query complexity by considering search algorithms that

are equipped with a (potentially erroneous) prediction 𝜇𝜇𝜇 ∈ [0, 𝑛]𝑚
of the optimal fractional bidding strategy 𝜇𝜇𝜇𝑜 (I) = (𝜇𝑜

1
, 𝜇𝑜

2
, . . . , 𝜇𝑜𝑛).

The error of an predictions 𝜂 is defined to be the maximum point-

wise deviation from 𝜇𝜇𝜇𝑜 , formally:

𝜂 (𝜇𝜇𝜇,I) = max

𝑗
|𝜇 𝑗 − 𝜇𝑜𝑗 (I)|

We let the algorithm ALG use both the instance I and the prediction

𝜇𝜇𝜇 as input. We evaluate the performance of such an algorithm using

its robustness, consistency and the query complexity as a function

of the prediction error.

The robustness of an algorithm refers to the worst-case query

complexity of the algorithm given an adversarially chosen, possibly

erroneous, prediction. Mathematically,

robustness(ALG) = max

𝜇̂𝜇𝜇,I
ALG(𝜇𝜇𝜇,I)

The consistency of an algorithm refers to the worst-case query

complexity when the prediction that it is provided with is accurate,

i.e., 𝜇𝜇𝜇 = 𝜇𝜇𝜇∗ (I). Mathematically,

consistency(ALG) = max

𝜇̂𝜇𝜇,I:𝜇̂𝜇𝜇=𝜇𝜇𝜇∗ (I)
ALG(𝜇𝜇𝜇,I) .

Lastly, the query complexity of an algorithm given a prediction

with error 𝜂 ′ is defined to be:

max

𝜇̂𝜇𝜇,I:𝜂 (𝜇̂𝜇𝜇,I) ≤𝜂′
ALG(𝜇𝜇𝜇,I) .

3 Characterization of Bidder’s Optimal Bidding

Strategy

In this section, we present a characterization of the optimal bidding

strategy 𝜇𝜇𝜇𝑜 that will be useful in designing the algorithm. To this

end, we first prove a useful lemma about the “ranking” of integral

strategies in 𝑆 . We then argue how an “almost-optimal” integral

solution can be used to determine the optimal fractional solution.

Lemma 1. Given some positive number 𝑘 , and the 𝑛 discrete indices

on each platform, define 𝜇𝜇𝜇𝑘 = (𝜇𝑘
1
, 𝜇𝑘

2
, . . . 𝜇𝑘𝑚) where

𝜇𝑘𝑗 = arg max

𝜇∈{0,1,...,𝑛}
{MC𝑗 (𝜇) ≤ 𝑘},

then there exist a 𝑘∗ such that for any 𝑘 ≤ 𝑘∗, 𝜇𝜇𝜇𝑘 is a feasible solution

for program(1) and for any 𝑘 ′ > 𝑘∗, 𝜇𝜇𝜇𝑘
′
is not feasible.

We first show the following helper lemma. Intuitively, if we

consider the landscape of each platform, and connect each bidding

strategy with a straight line, the landscape would be convex, the

lemma below is simply a property of a convex function. Due to

space limitations, we defer the proof to appendix A.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Lemma 2. For any platform 𝑗 ∈ 𝑀 ,

𝑐 𝑗 (𝜇)
𝑣𝑗 (𝜇) ≤ MC𝑗 (𝜇).

Proof of Lemma 1. let 𝑘 be the smallest 𝑘 with infeasible 𝜇𝜇𝜇𝑘 , if

the infeasibility is due to the budget constraint, then for any 𝑘 ′ ≥ 𝑘

we trivially have that 𝜇𝜇𝜇𝑘
′
violates the budget constraint as well

since 𝜇𝑘
′
𝑗
≥ 𝜇𝑘

𝑗
and the cost functions are monotone.

If the infeasibility is due to the ROS constraint, i.e.,∑
𝑗 ∈𝑀

𝑐 𝑗 (𝜇𝑘𝑗) > 𝑇 ·
∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇𝑘𝑗), (2)

proving the statement is equivalent to proving for any 𝑘 ′ ≥ 𝑘 , 𝜇𝜇𝜇𝑘
′

is also infeasible. To this end, we first show that the maximum

marginals among the 𝜇𝑘
𝑗
is strictly more than 𝑇 , assume for con-

tradiction, that MC𝑗 (𝜇𝑘𝑗) ≤ 𝑇 for all 𝑗 , by lemma 2 we would have

the 𝑐 𝑗 (𝜇𝑘𝑗)/𝑣 𝑗 (𝜇
𝑘
𝑗
) ≤ MC𝑗 (𝜇𝑘𝑗) ≤ 𝑇 , which contradicts with (2). We

therefore have

max

𝑗 ∈𝑀
MC𝑗 (𝜇𝑘𝑗) > 𝑇 (3)

We now inductively prove that for any 𝑘 ′ ≥ 𝑘 , we have 𝜇𝜇𝜇𝑘
′
is

infeasible. Consider increasing 𝑘 ′ starting from 𝑘 , at the beginning

we could have 𝜇𝜇𝜇𝑘
′
= 𝜇𝜇𝜇𝑘 (which is infeasible), consider the first point

𝑘 ′ ≥ 𝑘 such that 𝜇𝜇𝜇𝑘
′
≠ 𝜇𝜇𝜇𝑘 , we know that:

(1) there exist at least one platform 𝑗 ′ such that 𝜇𝑘
′
𝑗 ′ = 𝜇𝑘

𝑗 ′ + 1

(2) MC𝑗 ′ (𝜇𝑘
′
𝑗 ′) > max𝑗 ∈𝑀 MC𝑗 (𝜇𝑘𝑗) > 𝑇,

where the first inequality is by definition of 𝜇𝜇𝜇𝑘
′
and the second

inequality is due to (3). Now consider:∑
𝑗 ∈𝑀

𝑐 𝑗 (𝜇𝑘
′
𝑗) =

∑
𝑗 ∈𝑀

𝑐 𝑗 (𝜇𝑘𝑗) + 𝑐 𝑗 ′ (𝜇
𝑘
𝑗 ′ + 1) − 𝑐 𝑗 ′ (𝜇𝑘𝑗 ′)

> 𝑇 ·
∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇𝑘𝑗) + 𝑐 𝑗 ′ (𝜇
𝑘
𝑗 ′ + 1) − 𝑐 𝑗 ′ (𝜇𝑘𝑗 ′)

> 𝑇 ·
∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇𝑘𝑗) + MC𝑗 ′ (𝜇
𝑘
𝑗 ′ + 1) · (𝑣 𝑗 ′ (𝜇𝑘𝑗 ′ + 1) − 𝑣 𝑗 ′ (𝜇𝑘𝑗 ′)

> 𝑇 ·
∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇𝑘𝑗) +𝑇 · (𝑣 𝑗 ′ (𝜇
𝑘
𝑗 ′ + 1) − 𝑣 𝑗 ′ (𝜇𝑘𝑗 ′)

> 𝑇 ·
∑
𝑗 ∈𝑀

𝑣 𝑗 (𝜇𝑘
′
𝑗)

Inductively apply this argument for each update of 𝜇𝜇𝜇𝑘
′
proves the

statement. □

3.1 The fractional optimal bidding strategy

We present the optimal fractional solution, which at a high level is

achieved by the following greedy process: starting with an initial

budget of 𝐵, we allocate an infinitesimal amount to the platform

currently offering the best value-to-unit-cost ratio (equivalently,

the smallest marginal cost). We continue this process until either

the budget is exhausted or the Return on Spend (ROS) constraint

becomes tight. The bids corresponding to the final cost/value ratio

on each platform form the optimal fractional strategy.

For ease reference, we formally define the feasible 𝜇𝜇𝜇𝑘 with the

largest 𝑘 as the “almost-optimal” integral solution.

Definition 1 (Almost-Optimal Strategy). We say an bidding

strategy 𝜇𝜇𝜇 is almost-optimal if 𝜇𝜇𝜇 = max𝑘

[
𝜇𝜇𝜇𝑘 is feasible

]
.

Essentially, the almost-optimal integral strategy provides a close

lower bound for the optimal fractional solution 𝜇𝜇𝜇𝑜 . Specifically, let

𝜇𝜇𝜇∗ represent the largest feasible 𝜇𝜇𝜇𝑘 ; then, 𝜇𝜇𝜇∗ = ⌊𝜇𝜇𝜇𝑜 ⌋. We present

a subroutine that takes the almost-optimal integral solution 𝜇𝜇𝜇∗

as input and returns the exact fractional optimal bidding strategy

𝜇𝜇𝜇𝑜 by greedily selecting the smallest marginal costs (breaking ties

lexicographically with respect to a fixed ordering of platforms) until

the constraint is tight.

Consider the following equation:∑
𝑗

(𝑥 𝑗 · 𝑐 𝑗 (𝜇∗𝑗) + (1 − 𝑥 𝑗) · 𝑐 𝑗 (𝜇
∗
𝑗 + 1))

=min

𝐵,𝑇 · ©­«
∑
𝑗

(𝑥 𝑗 · 𝑣 𝑗 (𝜇∗𝑗) + (1 − 𝑥 𝑗) · 𝑣 𝑗 (𝜇 ∗𝑗 +1))
ª®¬
 (4)

By definition of 𝜇𝜇𝜇∗, we have the 𝑥 𝑗 ∈ [0, 1] for all platform 𝑗 . In

the case where there are multiple set of solutions, we break ties by

maximizing the 𝑥 𝑗 with lower platform index first.

SUBROUTINE 1: RoundUp

Input: almost-optimal integral solution 𝜇𝜇𝜇∗

1 for 𝑗 ∈ 𝑀 do

2 𝜇 ′
𝑗
← 𝜇∗

𝑗
+ 1

3 𝜇𝑜
𝑗
← 𝜇∗

𝑗

4 query each 𝜇 ′
𝑗
to obtain 𝑣 𝑗 (𝜇 ′𝑗), 𝑐 𝑗 (𝜇

′
𝑗
) and MC𝑗 (𝜇 ′𝑗)

5 re-index the platforms in non-decreasing order of MC𝑗 (𝜇 ′𝑗)
s.t. if 𝑖 ≤ 𝑗 , MC𝑖 (𝜇 ′𝑖) ≤ MC𝑗 (𝜇 ′𝑗)

6 Solve for 𝑥 𝑗 in (4)

7 𝜇𝑜
𝑗
← 𝜇𝑜

𝑗
+ 𝑥 𝑗

8 return 𝜇𝜇𝜇𝑜

Lemma 3 (Optimal Bidding Strategy). Let 𝜇𝜇𝜇∗ be the almost-

optimal integral solution. Then RoundUp (𝜇𝜇𝜇∗) is bidder’s fractional
optimal bidding strategy.

Proof. We prove optimality of 𝜇𝜇𝜇 ′ = RoundUp (𝜇𝜇𝜇∗) by contradic-
tion. Assume there exist another solution 𝜇𝜇𝜇𝑎 that is optimal with

a value strictly higher than 𝜇𝜇𝜇 ′. If 𝜇𝜇𝜇𝑎 obtains a better value than 𝜇𝜇𝜇 ′,
there must be at least one platform 𝑗 such that 𝜇𝑎

𝑗
> 𝜇 ′

𝑗
. Conse-

quently, there must be some other platform 𝑖 , such that 𝜇𝑎
𝑗
< 𝜇 ′

𝑗
,

since the constraints are tight of solution 𝜇𝜇𝜇 ′ by definition of the

RoundUp algorithm and 𝜇𝜇𝜇𝑎 is feasible by assumption.

we first argue that MC𝑗 (𝜇𝑎𝑗) > MC𝑖 (𝜇 ′𝑖). To see this, first note that
MC𝑗 (𝜇𝑎𝑗) ≥ MC𝑖 (⌊𝜇 ′𝑖 ⌋), since otherwise by definition of 𝜇𝜇𝜇𝑘 we have:

𝜇 ′𝑗 = arg max

𝜇
[MC𝑗 (𝜇) ≤ 𝑘] ≥ arg max

𝜇
[MC𝑗 (𝜇) ≤ MC𝑖 (⌊𝜇 ′𝑖 ⌋)] ≥ ⌈𝜇

𝑎
𝑗 ⌉,

where the last inequality is since MC(𝜇) = MC(⌈𝜇⌉) for any 𝜇, this

contradicting with the assumption that 𝜇 ′
𝑗
< 𝜇𝑎

𝑗
. By the greedy

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Multi-Platform Autobidding with and without Predictions Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

natural, with a similar contradiction argument we can show that

MC𝑗 (𝜇𝑎𝑗) > MC𝑖 (𝜇 ′𝑖), we then have:

MC𝑗 (𝜇𝑎𝑗) > MC𝑖 (𝜇 ′𝑖) > MC𝑖 (𝜇𝑎𝑖), (5)

where the last inequality is due to the assumption that 𝜇 ′
𝑖
≥ 𝜇𝑎

𝑖
and

the monotonicity of MC functions.

Platform 𝑖

𝜇𝑎
𝑖

𝜇 ′
𝑖

Platform 𝑗

𝜇 ′
𝑗

𝜇𝑎
𝑗

𝜇𝑎
𝑖
< 𝜇 ′

𝑖

𝜇 ′
𝑗
< 𝜇𝑎

𝑗

Now we argue that 𝜇𝜇𝜇𝑎 can be further improved by an exchange

argument, contradicting with the assumption that 𝜇𝜇𝜇𝑎 is optimal.

Consider again the bidding strategy 𝜇𝜇𝜇𝑎 , consider reduce 𝜇𝑎
𝑗
by some

𝜖 amount, and increase on 𝜇𝑎
𝑖
by the corresponding amount until

the constraints are tight again, since MC𝑗 (𝜇𝑎𝑗) ≥ MC𝑖 (𝜇𝑎𝑖), the “bang
per buck” for the exchange portion strictly increases, contradicting

with the assumption that 𝜇𝜇𝜇𝑎 is optimal. □

4 The Median of the Medians Algorithm

In this section, with the help of the characterization in the previous

section, we present an algorithm with a worst-case query com-

plexity of𝑂 (𝑚 log(𝑚𝑛) log𝑛). Note that if our feasible region were

downward-closed, there would be a straightforward algorithm to

solve the problem: We could perform a high-dimensional binary

search in the bidding space, cutting down the whole strategy space

by a constant fraction each time we query a particular strategy.

This would lead to𝑚 · log(𝑛𝑚) =𝑚2
log𝑛 queries (since querying

one vector of strategies requires submitting a bidding strategy on

each of the𝑚 platforms). Unfortunately, in the example below we

show that our feasible region is not necessarily downward-closed.

Example 1. Consider a simple example with two platforms, 1

and 2, both having the following cost and value functions:

𝑐1 (𝜇) = 𝜇 𝑣1 (𝜇) =
8

3

𝜇;

𝑐2 (𝜇) = 𝜇 𝑣2 (𝜇) = 𝜇.

Suppose the constraints are 𝐵 = 10 and 𝑇 = 1

2
. First, observe that

𝜇1 = 3

2
and 𝜇2 = 1 is a feasible solution since:

2 ·
(

3

2

+ 1

)
=

8

3

· 3

2

+ 1.

However, if we reduce 𝜇1 to 1, we get:

2 · (1 + 1) > 8

3

+ 1,

indicating that the updated bidding strategy is no longer feasible.

Therefore, the feasible region is not downward-closed.

Without a downward-closed feasible region, it is unclear which

bidding strategy to try or how the search algorithm should proceed

to minimize the number of attempts. To address this, we leverage

the structure of integral bidding strategies shown in previous sec-

tion and focus on identifying the 𝑘 values corresponding to the

maximum feasible 𝜇𝜇𝜇𝑘 first. The potential 𝑘 values are the set of mar-

ginal costs across all platforms (there are𝑚𝑛 of them). We utilize

the “median of medians” idea to ensure that we eliminate a constant

fraction of marginal cost options with each round of probing.

First, given the characterization of the optimal solution, we pro-

vide two subroutines that are useful for our algorithm. We first

provide a subroutine named MatchingMC, that given a 𝑘 , finds

the 𝜇𝜇𝜇𝑘 vector via binary search on each platform. We show that

the query complexity of this subroutine is 𝑂 (𝑚 log𝑛). Whenever

we call the subroutine, we would make sure that the MC𝑗 (ℓ𝑗) ≤ 𝑘 ,

i.e., there is at least one strategy in the search range that is feasi-

ble. Due to space limitations, we defer the following two proofs to

appendix B

SUBROUTINE 2: MatchingMC

Input: search range [ℓ𝑗 , 𝑟 𝑗] of each 𝑗 , the target MC 𝑘

1 for 𝑗 ∈ 𝑀 do

2 while 𝜇𝑘
𝑗
= NULL do

3 𝜇 𝑗 ←
ℓ𝑗+𝑟 𝑗

2
for all 𝑗 ∈ 𝑀 // Binary search on each

platform

4 if MC𝑗 (𝜇 𝑗) ≤ 𝑘 then ℓ𝑗 ← 𝜇 𝑗

5 if MC𝑗 (𝜇 𝑗) > 𝑘 then 𝑟 𝑗 ← 𝜇 𝑗 − 1

6 if 𝑟 𝑗 ≤ ℓ𝑗 then 𝜇𝑘
𝑗
← ℓ𝑗

7 return 𝜇𝜇𝜇𝑘 = (𝜇𝑘
1
, 𝜇𝑘

2
, . . . , 𝜇𝑘𝑚)

Lemma 4. Given some 𝑘 ≥ 0, MatchingMC outputs the corre-

sponding 𝜇𝜇𝜇𝑘 with at most 𝑂 (𝑚 log max𝑗 (𝑟 𝑗 − ℓ𝑗)) queries.

We now provide a subroutine that check if a given integral bid-

ding profile 𝜇𝜇𝜇 is the almost-optimal solution (defined in Definition 1)

or not. In addition, the subroutine can also check if a bidding profile

is in the form of 𝜇𝜇𝜇𝑘 for some 𝑘 (defined in Lemma 1). The worst-case

query complexity is 𝑂 (𝑚).

Lemma 5. Given a bidding profile 𝜇𝜇𝜇, the subroutine OptCheck

determines if the given 𝜇𝜇𝜇 is INFEASIBLE, NOT 𝜇𝜇𝜇𝑘 , NOT-OPTIMAL or

ALMOST-OPTIMAL with at most 𝑂 (𝑚) queries.

We are now ready to present our algorithm, MedianOfMedi-

ans. This algorithm finds the almost-optimal integral solution by

searching within the marginal cost space and then converts this

almost-optimal integral solution to the optimal fractional solution

using the RoundUp procedure. The search process is inspired by

the median-of-medians algorithm. In each iteration, we first iden-

tify the median marginal cost for each platform, and then select

the median that most evenly splits the space, i.e., ensuring that the

number of marginals weakly smaller than this median is equal to

the number of marginals weakly larger than it.

Next, we use MatchingMC to determine the corresponding

bidding profile 𝜇𝜇𝜇𝑘 with the median-of-the-medians marginal as

the 𝑘-value, and apply OptCheck to evaluate the quality of the

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

SUBROUTINE 3: OptCheck

Input: some bidding strategy 𝜇𝜇𝜇

1 query each platform 𝑗 strategy 𝜇 𝑗 , obtain 𝑣 𝑗 (𝜇 𝑗), 𝑐 𝑗 (𝜇 𝑗) and
MC𝑗 (𝜇 𝑗)

2 if 𝜇𝜇𝜇 is infeasible then return INFEASIBLE

3 𝚥 ← arg max𝑗 [MC𝑗 (𝜇 𝑗)]
4 𝑘 ← MC𝚥 (𝜇 𝚥)
5 for 𝑗 ∈ 𝑀 do

6 𝜇 ′
𝑗
← 𝜇 𝑗 + 1 // Check the next MC value for platform 𝑗

7 query 𝜇 ′
𝑗
on platform 𝑗 obtain 𝑣 𝑗 (𝜇 ′𝑗), 𝑐 𝑗 (𝜇

′
𝑗
) and

MC𝑗 (𝜇 ′𝑗)
8 if MC𝑗 (𝜇 ′𝑗) ≤ 𝑘 for any 𝑗 ≠ 𝚥 then

9 return NOT-𝜇𝜇𝜇𝑘 // 𝜇𝜇𝜇 is not 𝜇𝜇𝜇𝑘 for some 𝑘

10 𝑗∗ ← arg min𝑗 (MC𝑗 (𝜇 ′𝑗)) // find the minimum among the next

points

11 𝜇 𝑗∗ ← 𝜇 ′
𝑗∗

12 if 𝜇𝜇𝜇 is infeasible // the updated 𝜇𝜇𝜇 is not feasible

13 then return ALMOST-OPTIMAL

14 else return NOT-OPTIMAL

bidding profile 𝜇𝜇𝜇𝑘 . Based on the result from OptCheck(𝜇𝜇𝜇𝑘), we can

eliminate a constant fraction of the remaining candidates for the

optimal marginal costs. This process is repeated iteratively until

we find an almost-optimal solution. Finally, we apply the RoundUp

procedure to obtain the fractional optimal solution. For a formal

description, please refer to Algorithm 1.

ALGORITHM 1:MedianOfMedians

1 Initialize: ℓ𝑗 ← 1, 𝑟 𝑗 ← 𝑛 for all 𝑗 ∈ 𝑀
2 while TRUE do

3 𝜇 𝑗 ←
ℓ𝑗+𝑟 𝑗

2
for all 𝑗 ∈ 𝑀

4 query each platform 𝑗 strategy 𝜇 𝑗 , obtain 𝑣 𝑗 (𝜇 𝑗), 𝑐 𝑗 (𝜇 𝑗)
and MC𝑗 (𝜇 𝑗)

5 rank the platforms in non-decreasing order of 𝜇 𝑗 s.t. if

𝑖 ≤ 𝑗 , 𝜇𝑖 ≤ 𝜇 𝑗

6 𝑗∗ ← min𝑗 (|
∑
𝑖≤ 𝑗 (𝑟𝑖 − ℓ𝑖) −

∑
𝑖≥ 𝑗 (𝑟𝑖 − ℓ𝑖) |) // find the

𝑗∗ that equally split the search space

7 𝜇𝜇𝜇∗ ← MatchingMC([1, 𝑛] for all 𝑗, MC𝑗∗ (𝜇 𝑗∗))
8 if OptCheck(𝜇𝜇𝜇∗) = INFEASIBLE then
9 𝑟 𝑗 ← 𝜇 𝑗 − 1 for all 𝑗 ≥ 𝑗∗ // reduce the search space

10 else if OptCheck(𝜇𝜇𝜇∗) = NOT-OPTIMAL then

11 ℓ𝑗 ← 𝜇 𝑗 + 1 for all 𝑗 ≤ 𝑗∗

12 else if OptCheck(𝜇𝜇𝜇∗) = ALMOST-OPTIMAL then

13 return RoundUp(𝜇𝜇𝜇∗)

In the rest of the section, we prove the correctness and query

complexity of the algorithm.

Theorem 2. Given any instance I, the MedianOfMedians al-

gorithm finds the fractional optimal bidding strategy with at most

𝑂 (𝑚 log𝑚𝑛 log𝑛) queries.

increasing median marginal cost

Figure 1: Illustration of one round of MedianOfMedians.

Each column represents the current search region of a plat-

form. The vertical arrow indicates the increasing direction

of 𝜇 in each platform. The platforms are ranked by the me-

dianmarginals as described in the algorithm. The grey point

represents the queried 𝑘 value. If 𝜇𝜇𝜇𝑘 is infeasible, all strate-

gies in the shaded round rectangle are removed; otherwise,

all strategies in the non-shaded one are removed.

Proof. We first prove the correctness of the algorithm. By Lemma 3

we know that the almost-optimal integral bidding strategy corre-

spond to 𝜇𝜇𝜇𝑘
∗
where 𝑘∗ is the maximum 𝑘 such that 𝜇𝜇𝜇𝑘 is feasible. We

prove the correctness of the algorithm by first showing that during

the execution of the algorithm, there always exist some 𝜇 ∈ [ℓ𝑗 , 𝑟 𝑗],
of which the 𝜇𝜇𝜇MC𝑗 (𝜇) = 𝜇𝜇𝜇𝑘

∗
. In other words, the algorithm can

not eliminate the critical marginal cost MC𝑗 (𝜇) that corresponds to
𝜇𝜇𝜇𝑘
∗
. Consider the possible updates of ℓ𝑗 and 𝑟 𝑗 for each platform

𝑗 , i.e., Line 9 and Line 11. First consider any iteration such that

OptCheck(𝜇𝜇𝜇∗) = INFEASIBLE, and for all platforms 𝑗 ≥ 𝑗∗ w.r.t
to the ranking defined in Line 5, we have MC𝑗 (𝜇 𝑗) ≥ MC𝑗∗ (𝜇 𝑗∗). By
monotonicity, for any 𝜇 ≥ 𝜇 𝑗 on platform 𝑗 we have:

MC𝑗 (𝜇) ≥ MC𝑗 (𝜇 𝑗) ≥ MC𝑗∗ (𝜇 𝑗∗),
By Lemma 1, since OptCheck(𝜇𝜇𝜇∗) = INFEASIBLE, we would also

have 𝜇𝜇𝜇MC𝑗 (𝜇) is infeasible for 𝜇 ≥ 𝜇 𝑗 for platforms 𝑗 ≥ 𝑗∗. Therefore,
Line 9 does not remove any 𝜇 of which 𝜇𝜇𝜇MC𝑗 (𝜇) = 𝜇𝜇𝜇𝑘

∗
.

Next consider any iteration such that OptCheck(𝜇𝜇𝜇∗) = NOT-OPTIMAL,
and for all platforms 𝑗 ≤ 𝑗∗ w.r.t to the ranking defined in Line 5, we
have MC𝑗 (𝜇 𝑗) ≤ MC𝑗∗ (𝜇 𝑗∗). Again by monotonicity, for any 𝜇 ≤ 𝜇 𝑗
on platform 𝑗 we have:

MC𝑗 (𝜇) ≤ MC𝑗 (𝜇 𝑗) ≤ MC𝑗∗ (𝜇 𝑗∗),

By Lemma 1, sinceOptCheck(𝜇𝜇𝜇∗) = NOT-OPTIMAL, we have 𝜇𝜇𝜇MC𝑗 (𝜇)

is also feasible and not optimal for 𝜇 ≤ 𝜇 𝑗 for platforms 𝑗 ≤ 𝑗∗.
Therefore Line 11 does not remove any 𝜇 of which 𝜇𝜇𝜇MC𝑗 (𝜇) = 𝜇𝜇𝜇𝑘

∗

as well. In addition, it is easy to see that 𝜇𝜇𝜇MC𝑗 (𝜇) = 𝜇𝜇𝜇𝑘
∗
for some

platform 𝑗 and some strategy 𝜇. (let MC𝑗 (𝜇) = arg max(MC𝑗 (𝜇𝑘
∗

𝑗
))).

And since the set of bids is finite and getting strictly smaller in each

round, the algorithm will eventually terminate with the almost-

optimal integral bidding solution 𝜇𝜇𝜇𝑘
∗
, after which applying RoundUp

would give us the fractional optimal solution.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Multi-Platform Autobidding with and without Predictions Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

We now prove the query complexity of the algorithm. In par-

ticular, we argue that the while loop would iterate no more then

𝑂 (log(𝑚𝑛)) times. Together with the 𝑂 (𝑚 log𝑛) query complex-

ity of MatchingMC this would show that the query complex-

ity of the algorithm is 𝑂 (𝑚 log(𝑚𝑛) log𝑛). First note that there

are in total 𝑚 · 𝑛 possible marginal costs (MC𝑗 (𝜇) for all 𝑗 and
𝜇). By definition of 𝑗∗, and 𝜇 𝑗 for each platform 𝑗 , we have that

min(|{MC𝑖 (𝜇) : 𝑖 ≤ 𝑗∗ and 𝜇 ≤ 𝜇𝑖 }|, |{MC𝑖 (𝜇) : 𝑖 ≥ 𝑗∗ and 𝜇 ≥
𝜇𝑖 }|) ≥

∑
𝑗 (𝑟 𝑗−ℓ𝑗)

4
− min𝑗 (𝑟 𝑗 − ℓ𝑗) = 𝑂 (∑𝑗 (𝑟 𝑗 − ℓ𝑗)). Since we re-

move a constant fraction of choices in each round, the number

of queries is no more then 𝑂 (log𝑚𝑛). Lastly note that RoundUp

makes at most𝑚 queries, making the total queries needed for Me-

dianOfMedians 𝑂 (𝑚 log(𝑚𝑛) log𝑛). □

5 Lower Bounds on Query Complexity

In this section, we provide some lower bounds on query complexity.

We show that any algorithm needs to have a query complexity of

Ω(𝑚 log𝑛) even if it knows the optimalmarginal cost𝑘 .We also pro-

vide a lower bound of Ω(log𝑚𝑛) for finding the optimal marginal

cost 𝑘 even when the algorithm is given a single-query black-box

oracle for MatchingMC. Note that our algorithm MedianOfMedi-

ans finds the optimal solution essentially by searching for the op-

timal marginal cost using 𝑂 (log𝑚𝑛) calls to MatchingMC which

itself costs (𝑚 log𝑛) queries, and the query complexity upper bound

is in fact the product of the two aforementioned lower bounds. This

suggests that improving the query complexity upper bound further

would require an algorithm that does not treat MatchingMC as

a black-box. Due to space limitations, we defer the proofs in this

section to Appendix C.

Theorem 3. Any algorithm needs Ω(𝑚 log𝑛) queries to find the
optimal bidding strategy, even if it knows the value 𝑘 for which 𝜇𝜇𝜇𝑘 is

the almost-optimal integral bidding strategy.

Theorem 4. Any algorithm needs Ω(log(𝑚𝑛)) queries to find the
optimal bidding strategy, even if it has access to a black-box oracle of

MatchingMC that uses a single query.

6 Learning-Augmented Algorithms

In this section we aim to design searching algorithm that utilize a

(possibility erroneous) prediction 𝜇𝜇𝜇 regarding the actual optimal

fractional strategy 𝜇𝜇𝜇𝑜 . The error of the prediction is measured by

its distance to the optimal solution in the ℓ-infinity norm, i.e.

𝜂 = max

𝑗
|𝜇 𝑗 − 𝜇𝑜𝑗 |. (6)

We show the following algorithm, modified from MedianOfMedi-

ans, achieves a query complexity of 𝑂 (𝑚 log𝑚𝜂 log𝜂), note that
since 𝜂 ≤ 𝑛, this guarantee matches the query complexity of Medi-

anOfMedians even if the prediction is arbitrarily wrong.

The algorithm begins by checking whether the floor of the pre-

dicted bidding strategy, ⌊𝜇 𝑗 ⌋, for all 𝑗 , is ALMOST-OPTIMAL using

OptCheck. If it is, the algorithm applies RoundUp and returns the

optimal solution. If not, the algorithm assumes the error is small

and attempts to search for the optimal solution within a restricted

range around the predicted strategy 𝜇 𝑗 on each platform, following

a similar approach to the MedianOfMedians algorithm.

If the optimal solution is still not found, the search range is

expanded, and the search is repeated. This process continues until

a almost-optimal solution is identified. By progressively expanding

the search range as the square of the previous range, we show that

the query complexity is at most𝑂 (𝑚 log(𝑚𝜂) log𝜂). Please refer to
Algorithm 2 for a formal description.

ALGORITHM 2: BranchOutMedianOfMedians

1 Initialize: ℓ𝑗 ← 𝜇 𝑗 , 𝑟 𝑗 ← 𝜇 𝑗 for all 𝑗 ∈ 𝑀
2 𝜇𝜇𝜇 ← ⌊𝜇𝜇𝜇⌋
3 if OptCheck(𝜇𝜇𝜇) == ALMOST-OPTIMAL then return

RoundUp(𝜇𝜇𝜇)

4 𝑖 ← 0 // initialize the counter for doubling process

5 while TRUE do

6 ℓ𝑗 ← 𝜇 𝑗 − 2
2
𝑖
, 𝑟 𝑗 ← 𝜇 𝑗 + 2

2
𝑖
for all 𝑗 ∈ 𝑀

7 range-indicator← TRUE // assume range is correct

8 while range-indicator == TRUE do

9 𝜇 𝑗 ←
ℓ𝑗+𝑟 𝑗

2
for all 𝑗 ∈ 𝑀

10 query each platform 𝑗 strategy 𝜇 𝑗 , obtain 𝑣 𝑗 (𝜇 𝑗),
𝑐 𝑗 (𝜇 𝑗) and MC𝑗 (𝜇 𝑗)

11 rank the platforms in non-decreasing order of 𝜇 𝑗 s.t.

if 𝑖 ≤ 𝑗 , 𝜇𝑖 ≤ 𝜇 𝑗

12 𝑗∗ ← min𝑗 (|
∑
𝑖≤ 𝑗 (𝑟𝑖 − ℓ𝑖) −

∑
𝑖≥ 𝑗 (𝑟𝑖 − ℓ𝑖) |) // find

the 𝑗∗ that equally split the search space

13 𝑘 ← MC𝑗∗ (𝜇 𝑗∗)
14

15 if there exist a MC𝑗 (𝜇 𝑗 − 2
2
𝑖) > 𝑘 then

16 ℓ𝑗 ← 𝜇 𝑗 + 1 for 𝑗 ≤ 𝑗∗ // 𝑘 is too small

17

18 else

19 𝜇𝜇𝜇𝑘 ← MatchingMC([𝜇 𝑗 − 2
2
𝑖
, 𝜇 𝑗 + 2

2
𝑖] ∀𝑗, 𝑘)

20 if OptCheck(𝜇𝜇𝜇𝑘)) == NOT-𝜇𝜇𝜇𝑘 then

21 𝑟 𝑗 ← 𝜇 𝑗 − 1 for all 𝑗 ≥ 𝑗∗ // 𝑘 is too large

22

23 else if OptCheck(𝜇𝜇𝜇𝑘) == INFEASIBLE then

24 𝑟 𝑗 ← 𝜇 𝑗 − 1 for all 𝑗 ≥ 𝑗∗ // 𝑘 is too large

25

26 else if OptCheck(𝜇𝜇𝜇𝑘) == ALMOST-OPTIMAL

then

27 return RoundUp(𝜇𝜇𝜇𝑘)

28

29 else

// OptCheck(𝜇𝜇𝜇𝑘) == NOT-OPTIMAL

30 ℓ𝑗 ← 𝜇 𝑗 + 1 for all 𝑗 ≤ 𝑗∗ // 𝑘 is too small

31

32 if there exist a platform with ℓ𝑗 > 𝑟 𝑗 then

33 range-indicator← FALSE // search in the given

range is complete

34 𝑖 ← 𝑖 + 1 // update the search range

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Theorem 5. Given any instance I, and predicted optimal bidding

strategy 𝜇𝜇𝜇 such that the error of the 𝜇𝜇𝜇 is 𝜂, the BranchOutMedianOf-

Medians algorithm finds the optimal bidding strategy with at most

𝑂 (𝑚 log𝑚𝜂 log𝜂) queries.

Proof. We first argue the correctness of the algorithm. Let 𝜂

denote the error of the prediction as defined in (6), and let 𝑖∗ be the
smallest 𝑖 such that 2

2
𝑖 ≥ (𝜂 + 1). We will show that the algorithm

does not terminate in any round 𝑖 < 𝑖∗. Let 𝜇𝜇𝜇∗ represent the almost-

optimal integral bidding strategy. When 𝑖 < 𝑖∗, there exists at least
one platform 𝑗 such that 𝜇∗

𝑗
∉ [ℓ𝑗 , 𝑟 𝑗] at the beginning of the 𝑖∗-th

iteration of the outer while loop. By the correctness of OptCheck

and since the algorithm only searches within the range [ℓ𝑗 , 𝑟 𝑗], it
cannot return a solution in earlier rounds.

Next, we argue that the algorithm will terminate in round 𝑖∗

with the optimal solution. Since 2
2
𝑖∗ ≥ (𝜂 + 1), we know that

𝜇∗
𝑗
∈ [ℓ𝑗 , 𝑟 𝑗] for all 𝑗 at the start of the 𝑖∗-th iteration of the outer

while loop. Now, consider the search process during this round. As

in the proof of Theorem 2, we show correctness by proving that

during the execution of the 𝑖∗-th iteration, there always exists some

𝜇 ∈ [ℓ𝑗 , 𝑟 𝑗] such that 𝜇MC𝑗 (𝜇) = 𝜇𝜇𝜇∗. Considering all possible updates
to ℓ𝑗 and 𝑟 𝑗 for each platform, we will now show that none of these

updates eliminate any such 𝜇 values.

First, in Line 16, the algorithm encounters a platform 𝑗 where

MC𝑗 (𝜇 𝑗 − 2
2
𝑖∗) > 𝑘 , meaning the current candidate marginal cost 𝑘

is smaller than the marginal cost of the smallest strategy within the

current search range for that platform. Since 𝜇∗
𝑗
∈ [𝜇 𝑗 − 2

2
𝑖∗
, 𝜇 𝑗 +

2
2
𝑖∗] for all platforms and 𝜇𝜇𝜇∗ = 𝜇𝜇𝜇𝑘 for some 𝑘 , this implies that

the current marginal cost candidate 𝑘 , as well as all marginal costs

weakly smaller than 𝑘 , cannot correspond to the optimal marginal

cost 𝜇𝜇𝜇∗. These marginal costs (and their corresponding strategies)

are thus eliminated from the search range.

In Line 21, the algorithm is in the case where OptCheck(𝜇𝜇𝜇𝑘) ==
NOT − 𝜇𝜇𝜇𝑘 , indicating that 𝜇𝜇𝜇𝑘 is not optimal. This implies that there

exists a platform 𝑗 such that: 1. 𝜇𝑘
𝑗
= 𝜇 𝑗 + 2

2
𝑖∗
, i.e., the largest

strategy, and 2. for the same platform 𝑗 , MC𝑗 (𝜇 𝑗 + 2
2
𝑖∗ + 1) ≤ 𝑘 . This

means that 𝑘 , along with all marginal costs weakly greater than

𝑘 , exceeds the optimal marginal cost corresponding to 𝜇𝜇𝜇∗. These
marginal costs (and their corresponding strategies) are therefore

eliminated from the search range.

The remaining cases are handled in the same way as discussed

in Theorem 2. In Line 24, when 𝜇𝜇𝜇𝑘 is infeasible, we eliminate all

marginal costs weakly greater than the current one being tested.

In Line 30, when 𝜇𝜇𝜇𝑘 is not optimal, we eliminate all marginal costs

weakly smaller than the current one. Finally, in Line 27, once we

find 𝜇𝜇𝜇∗, we use RoundUp to obtain the optimal fractional strategy.

We now prove the query complexity of the algorithm. Let 𝑖∗

be the value of 𝑖 when the algorithm terminates. First, we have

𝑖∗ ≤ 𝜂2
, where 𝜂 is the error of the prediction as defined in (6).

By Lemma 4, we know that the MatchingMC operation in itera-

tion 𝑖 takes𝑚 log 2
2
𝑖
time. Additionally, by Theorem 2, the while

loop within this iteration will run log(𝑚2
2
𝑖) times. Since all other

subroutines take 𝑂 (𝑚) queries, and the size of the search range

is squared at each step, the algorithm terminates when the search

space is weakly larger than 𝑛.

log log 𝑖∗∑
𝑖=0

𝑚 log(𝑚 · 22
𝑖

) · log 2
2
𝑖

=

log log 𝑖∗∑
𝑖=0

𝑚(log𝑚 + 2
𝑖)2𝑖

=𝑚(log𝑚 + 2
log log 𝑖∗+1) · 2log log 𝑖∗+1

=𝑚(log𝑚 + 2 log 𝑖∗) · 2 log 𝑖∗

≤𝑚(log𝑚 + 2 log(𝜂)2) · 2 log(𝜂)2

=𝑚(log𝑚 + 4 log(𝜂)) · 2 log(𝜂)
=𝑂 (𝑚 log(𝑚𝜂) log𝜂) □

As a corollary, we also achieved "best-of-both-worlds" results in

terms of consistency and robustness. Specifically, if the provided

prediction is correct (or even "almost correct," i.e., ⌊𝜇𝜇𝜇⌋ = ⌊𝜇𝜇𝜇𝑜 ⌋), only
2𝑚 queries are required (note that even checking that a bidding

profile is feasible requires 𝑚 queries). Since 𝜂 ≤ 𝑛 by definition,

the total number of queries will never exceed 𝑂 (𝑚 log(𝑚𝑛) log𝑛),
which matches the query complexity of MedianOfMedians. For-

mally,

Corollary 1. The BranchOutMedianOfMedians algorithm is

2𝑚-consistent and 𝑂 (𝑚 log𝑚𝑛 log𝑛) robust, where the robustness
matches the query complexity of MedianOfMedians.

7 Conclusion

In this work, we addressed the challenge of finding the optimal

bidding strategy for advertisers operating in a multi-platform auc-

tion environment with low query complexity. Our approach models

competition within each platform through value and cost functions

that map various bidding strategies to their respective outcomes.

We introduced an efficient algorithm that achieves this goal with a

query complexity of 𝑂 (𝑚 log(𝑚𝑛) log𝑛), where𝑚 represents the

number of platforms and 𝑛 denotes the number of potential bidding

strategies available on each platform.

To further enhance efficiency, we incorporated the learning-

augmented framework, proposing an algorithm that leverages a

potentially flawed prediction of the optimal bidding strategy. Our

results provide a query complexity bound that degrades gracefully,

achieving 𝑂 (𝑚) queries when accurate predictions are available

and𝑂 (𝑚 log(𝑚𝑛) log𝑛) even with completely incorrect predictions.

This flexibility exemplifies a “best-of-both-world” scenario, provid-

ing advertisers with different options to effectively navigate the

complexities of multi-platform bidding with minimal queries.

We believe that autobidding in multi-platform auction settings is

understudied, and many intriguing questions remain unanswered.

One immediate question for exploration is closing the gap between

the upper and lower bounds established in our work, which would

necessitate different tools and ideas. Additionally, it would be in-

teresting to analyze the dynamics of the market if all the bidders

adopted the approach presented in this study in determining their

bidding strategies.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Multi-Platform Autobidding with and without Predictions Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] G. Aggarwal, A. Badanidiyuru, and A. Mehta. Autobidding with constraints. In

I. Caragiannis, V. S. Mirrokni, and E. Nikolova, editors,Web and Internet Economics

- 15th International Conference, WINE 2019, New York, NY, USA, December 10-12,

2019, Proceedings, volume 11920 of Lecture Notes in Computer Science, pages 17–30.

Springer, 2019. doi: 10.1007/978-3-030-35389-6_2. URL https://doi.org/10.1007/

978-3-030-35389-6_2.

[2] G. Aggarwal, A. Perlroth, and J. Zhao. Multi-channel auction design in the

autobidding world. In Proceedings of the 24th ACM Conference on Economics

and Computation, EC ’23, page 21, New York, NY, USA, 2023. Association for

Computing Machinery. ISBN 9798400701047. doi: 10.1145/3580507.3597707. URL

https://doi.org/10.1145/3580507.3597707.

[3] G. Aggarwal, A. Badanidiyuru, S. R. Balseiro, K. Bhawalkar, Y. Deng, Z. Feng,

G. Goel, C. Liaw, H. Lu, M. Mahdian, J. Mao, A. Mehta, V. Mirrokni, R. P. Leme,

A. Perlroth, G. Piliouras, J. Schneider, A. Schvartzman, B. Sivan, K. Spendlove,

Y. Teng, D. Wang, H. Zhang, M. Zhao, W. Zhu, and S. Zuo. Auto-bidding and

auctions in online advertising: A survey. SIGecom Exch., 22(1):159–183, Oct. 2024.

doi: 10.1145/3699824.3699838. URL https://doi.org/10.1145/3699824.3699838.

[4] G. Aggarwal, A. Perlroth, A. Schvartzman, and M. Zhao. Platform competition

in the autobidding world. arXiv preprint arXiv:2405.02699, 2024.

[5] P. Agrawal, E. Balkanski, V. Gkatzelis, T. Ou, and X. Tan. Learning-augmented

mechanism design: Leveraging predictions for facility location. In EC ’22: The

23rd ACM Conference on Economics and Computation, Boulder, CO, USA, July 11 -

15, 2022, pages 497–528. ACM, 2022.

[6] A. Antoniadis, T. Gouleakis, P. Kleer, and P. Kolev. Secretary and online matching

problems with machine learned advice. Discret. Optim., 48(Part 2):100778, 2023.

[7] Y. Azar, D. Panigrahi, and N. Touitou. Online graph algorithms with predic-

tions. Proceedings of the Thirty-Third Annual ACM-SIAM Symposium on Discrete

Algorithms, 2022.

[8] M.-F. Balcan, S. Prasad, and T. Sandholm. Bicriteria multidimensional mechanism

design with side information. In Proceedings of the 37th International Conference

on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024.

Curran Associates Inc.

[9] E. Balkanksi, V. Gkatzelis, and X. Tan. Mechanism design with predictions: An

annotated reading list. SIGecom Exchanges, 21(1):54–57, 2023.

[10] E. Balkanski, V. Gkatzelis, and X. Tan. Strategyproof scheduling with predictions.

In Y. T. Kalai, editor, 14th Innovations in Theoretical Computer Science Conference,

ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251

of LIPIcs, pages 11:1–11:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2023. doi: 10.4230/LIPIcs.ITCS.2023.11. URL https://doi.org/10.4230/LIPIcs.ITCS.

2023.11.

[11] E. Balkanski, V. Gkatzelis, X. Tan, and C. Zhu. Online mechanism design with

predictions. CoRR, abs/2310.02879, 2023. URL https://doi.org/10.48550/arXiv.2310.

02879.

[12] É. Bamas, A. Maggiori, and O. Svensson. The primal-dual method for learning

augmented algorithms. In Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,

December 6-12, 2020, virtual, 2020.

[13] S. Banerjee, V. Gkatzelis, A. Gorokh, and B. Jin. Online nash social welfare

maximization with predictions. In Proceedings of the 2022 ACM-SIAM Symposium

on Discrete Algorithms, SODA 2022. SIAM, 2022.

[14] Z. Barak, A. Gupta, and I. Talgam-Cohen. MAC advice for facility location

mechanism design. CoRR, abs/2403.12181, 2024. doi: 10.48550/ARXIV.2403.12181.

URL https://doi.org/10.48550/arXiv.2403.12181.

[15] B. Berger, M. Feldman, V. Gkatzelis, and X. Tan. Optimal metric distortion with

predictions. CoRR, abs/2307.07495, 2023.

[16] I. Caragiannis and G. Kalantzis. Randomized learning-augmented auctions with

revenue guarantees. arXiv preprint arXiv:2401.13384, 2024.

[17] G. Christodoulou, A. Sgouritsa, and I. Vlachos. Mechanism design augmented

with output advice. arXiv preprint arXiv:2406.14165, 2024.

[18] R. Colini-Baldeschi, S. Klumper, G. Schäfer, and A. Tsikiridis. To trust or not

to trust: Assignment mechanisms with predictions in the private graph model.

CoRR, abs/2403.03725, 2024.

[19] Y. Deng, J. Mao, V. Mirrokni, and S. Zuo. Towards efficient auctions in an auto-

bidding world. In Proceedings of the Web Conference 2021, pages 3965–3973,

2021.

[20] Y. Deng, N. Golrezaei, P. Jaillet, J. C. N. Liang, and V. Mirrokni. Multi-channel au-

tobidding with budget and roi constraints. In Proceedings of the 40th International

Conference on Machine Learning, ICML’23. JMLR.org, 2023.

[21] P. Dütting, S. Lattanzi, R. P. Leme, and S. Vassilvitskii. Secretaries with advice. In

P. Biró, S. Chawla, and F. Echenique, editors, EC ’21: The 22nd ACM Conference on

Economics and Computation, Budapest, Hungary, July 18-23, 2021, pages 409–429.

ACM, 2021.

[22] K. Fujii and Y. Yoshida. The secretary problem with predictions. CoRR,

abs/2306.08340, 2023.

[23] V. Gkatzelis, K. Kollias, A. Sgouritsa, and X. Tan. Improved price of anarchy

via predictions. In Proceedings of the 23rd ACM Conference on Economics and

Computation, pages 529–557, 2022.

[24] S. Im, R. Kumar, M. M. Qaem, and M. Purohit. Online knapsack with frequency

predictions. In Advances in Neural Information Processing Systems 34: Annual

Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December

6-14, 2021, virtual, pages 2733–2743, 2021.

[25] G. Istrate and C. Bonchis. Mechanism design with predictions for obnoxious

facility location. CoRR, abs/2212.09521, 2022.

[26] G. Istrate, C. Bonchis, and V. Bogdan. Equilibria in multiagent online problems

with predictions. CoRR, abs/2405.11873, 2024.

[27] A. Lindermayr and N. Megow. Alps, 2024. URL https://algorithms-with-

predictions.github.io/.

[28] P. Lu, Z. Wan, and J. Zhang. Competitive auctions with imperfect predictions.

CoRR, abs/2309.15414, 2023.

[29] T. Lykouris and S. Vassilvtskii. Competitive caching with machine learned advice.

In International Conference on Machine Learning, pages 3296–3305. PMLR, 2018.

[30] A. M. Medina and S. Vassilvitskii. Revenue optimization with approximate

bid predictions. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,

R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 30: Annual Conference on Neural Infor-

mation Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,

pages 1858–1866, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

884d79963bd8bc0ae9b13a1aa71add73-Abstract.html.

[31] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. Commun.

ACM, 65(7):33–35, 2022.

[32] R. Paes Leme, B. Sivan, and Y. Teng. Why do competitive markets converge

to first-price auctions? In Proceedings of The Web Conference 2020, WWW ’20,

page 596–605, New York, NY, USA, 2020. Association for Computing Machinery.

ISBN 9781450370233. doi: 10.1145/3366423.3380142. URL https://doi.org/10.1145/

3366423.3380142.

[33] M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ML

predictions. In Advances in Neural Information Processing Systems 31: Annual

Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December

3-8, 2018, Montréal, Canada, pages 9684–9693, 2018.

[34] F. Susan, N. Golrezaei, and O. Schrijvers. Multi-platform budget management in

ad markets with non-ic auctions. arXiv preprint arXiv:2306.07352, 2023.

[35] C. Xu and P. Lu. Mechanism design with predictions. In L. D. Raedt, editor, Pro-

ceedings of the Thirty-First International Joint Conference on Artificial Intelligence,

IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 571–577. ijcai.org, 2022.

A Proof of Lemma 2

Proof. For presentation purpose, we drop the subscript 𝑗 in this

prove as it should hold for any platform. We define 𝑐 (0)/𝑣 (0) =
0 We prove the statement via induction. First consider the base

case for 𝜇 = 1, we have 𝑐 (1)/𝑣 (1) ≥ 0 = 𝑐 (0)/𝑣 (0) since both

the cost and the value functions weakly increase w.r.t 𝜇, we also

have 𝑐 (1)/𝑣 (1) = 𝑐 (1)−𝑐 (0)
𝑣 (1)−𝑣 (0) = MC(1) by definition. The base case is

therefore established.

Let
𝑐 (𝜇)
𝑣 (𝜇) = 𝑋𝜇 . Assume, for induction, that 𝑋𝜇′ ≤ MC(𝜇 ′) for any

𝜇 ′ < 𝜇. We first show 𝑋𝜇−1 ≤ 𝑋𝜇 holds for 𝜇 ≥ 2. Consider

𝑐 (𝜇) = 𝑋𝜇 · 𝑣 (𝜇)
𝑐 (𝜇) − 𝑐 (𝜇 − 1) = 𝑋𝜇 · 𝑣 (𝜇) − 𝑐 (𝜇 − 1)

MC(𝜇) · (𝑣 (𝜇) − 𝑣 (𝜇 − 1)) = 𝑋𝜇 · 𝑣 (𝜇) − 𝑐 (𝜇 − 1)
MC(𝜇 − 1) · (𝑣 (𝜇) − 𝑣 (𝜇 − 1)) = 𝑋𝜇 · 𝑣 (𝜇) − 𝑐 (𝜇 − 1)

𝑋𝜇−1 · (𝑣 (𝜇) − 𝑣 (𝜇 − 1)) ≤ 𝑋𝜇 · 𝑣 (𝜇) − 𝑐 (𝜇 − 1)
𝑋𝜇−1 · (𝑣 (𝜇) − 𝑣 (𝜇 − 1)) ≤ 𝑋𝜇 · 𝑣 (𝜇) − 𝑋𝜇−1 · 𝑣 (𝜇 − 1)

𝑋𝜇−1 · 𝑣 (𝜇) ≤ 𝑋𝜇 · 𝑣 (𝜇)
𝑋𝜇−1 ≤ 𝑋𝜇 ,

where the third equality is by definition of MC, the forth equality

is by monotoncity of MC, and the first inequality is by induction

hypothesis MC(𝜇 − 1) ≥ 𝑋𝜇−1. In addition, consider the same set of

equation again:

𝑐 (𝜇) = 𝑋𝜇 · 𝑣 (𝜇)
𝑐 (𝜇) − 𝑐 (𝜇 − 1) = 𝑋𝜇 · 𝑣 (𝜇) − 𝑐 (𝜇 − 1)

9

https://doi.org/10.1007/978-3-030-35389-6_2
https://doi.org/10.1007/978-3-030-35389-6_2
https://doi.org/10.1145/3580507.3597707
https://doi.org/10.1145/3699824.3699838
https://doi.org/10.4230/LIPIcs.ITCS.2023.11
https://doi.org/10.4230/LIPIcs.ITCS.2023.11
https://doi.org/10.48550/arXiv.2310.02879
https://doi.org/10.48550/arXiv.2310.02879
https://doi.org/10.48550/arXiv.2403.12181
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://proceedings.neurips.cc/paper/2017/hash/884d79963bd8bc0ae9b13a1aa71add73-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/884d79963bd8bc0ae9b13a1aa71add73-Abstract.html
https://doi.org/10.1145/3366423.3380142
https://doi.org/10.1145/3366423.3380142

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

𝑐 (𝜇) − 𝑐 (𝜇 − 1) = 𝑋𝜇 · 𝑣 (𝜇) − 𝑋𝜇−1 · 𝑣 (𝜇 − 1)
𝑐 (𝜇) − 𝑐 (𝜇 − 1) ≥ 𝑋𝜇 · 𝑣 (𝜇) − 𝑋𝜇 · 𝑣 (𝜇 − 1)

MC(𝜇) · (𝑣 (𝜇) − 𝑣 (𝜇 − 1)) ≥ 𝑋𝜇 · (𝑣 (𝜇) − 𝑣 (𝜇 − 1))
MC(𝜇) ≥ 𝑋𝜇

where as the first inequality is due to 𝑋𝜇−1 ≤ 𝑋𝜇 , we therefore

have MC(𝜇) ≥ 𝑋𝜇 , hence proved. □

B Missing Proofs from Section 4

B.1 Proof of Lemma 4

Proof. The algorithm performs binary search on each platform

to find the maximum 𝜇 such that MC𝑗 (𝜇) ≤ 𝑘 , since binary search

checks𝑂 (log(𝑟 𝑗 − ℓ𝑗)) number of choice of 𝜇 on each platform and

there are𝑚 platforms, the query complexity is 𝑂 (𝑚 log max𝑗 (𝑟 𝑗 −
ℓ𝑗)).

We now prove the correctness of the algorithm via case analysis,

i.e., for each platform 𝑗 , we have 𝜇𝑘
𝑗
= max𝜇 (MC𝑗 (𝜇) ≤ 𝑘). Fix any

arbitrary platform 𝑗 , if MC𝑗 (𝑟 𝑗) ≤ 𝑘 , the algorithm will keep update

ℓ𝑗 until eventually ℓ𝑗 = 𝑟 𝑗 and correctly set 𝜇𝑘
𝑗
= ℓ𝑗 = 𝑟 𝑗 . On the

other hand, if MC𝑗 (𝑟 𝑗) > 𝑘 , by the termination condition, we know

that MC𝑗 (𝜇𝑘𝑗 + 1) > 𝑘 , MC𝑗 (𝜇𝑘𝑗) ≤ 𝑘 , which corresponds to 𝜇𝑘
𝑗
being

the maximum bid with a marginal cost weakly less than 𝑘 . □

B.2 Proof of Lemma 5

Proof. Since OptCheck queries at most 2 strategies from each

platform, the worst-case number of queries used is 2𝑚 = 𝑂 (𝑚). We

now prove the correctness of the subroutine for each different case.

The INFEASIBLE case is trivial. For the NOT-𝜇𝜇𝜇𝑘 case, as indicated by

line 8, since there exists a platform where MC𝑗 (𝜇 𝑗 +1) ≤ 𝑘 , we know

that the given bidding profile 𝜇𝜇𝜇 is not 𝜇𝜇𝜇𝑘 for some 𝑘 by definition.

On the other hand, if OptCheck does not terminate in line 9, it

means 𝜇𝜇𝜇 is feasible and 𝜇𝜇𝜇 = 𝜇𝜇𝜇𝑘 for some 𝑘 . To check if the given

profile is almost-optimal (the floor of 𝜇𝜇𝜇𝑜), by Lemma 3, we just need

to verify whether increasing 𝑘 would make 𝜇𝜇𝜇𝑘 infeasible. If the

next immediate change would cause 𝜇𝜇𝜇 to be infeasible, then 𝜇𝜇𝜇 is

ALMOST-OPTIMAL; otherwise, it is NOT-OPTIMAL. □

C Missing proofs from section 5

C.1 Proof of Theorem 3

Proof. Given any algorithm, assume it knows the correct value

of 𝑘 . On each platform, finding the maximum 𝜇 (therefore the ⌈𝜇𝑜
𝑗
⌉)

such that MC𝑗 (𝜇) ≤ 𝑘 takes at least Ω(log𝑛) queries. We prove

this via a decision tree argument similar to the Ω(log𝑛) query
complexity for the binary search problem.

Fix an arbitrary platform 𝑗 ; we want to determine the maximum

index 𝜇 such that MC𝑗 (𝜇) ≤ 𝑘 . We represent any algorithm as a

decision tree as follows:

(1). Each query made to the platform is represented as a node in

the decision tree, and each node has three children: one for MC𝑗 (𝜇) ≤
𝑘 , one for MC𝑗 (𝜇) > 𝑘 , and a third for cases not specified. (2). The

leaves of this tree represent the possible outcomes of the search:

specifically, finding the maximum index 𝜇 such that MC𝑗 (𝜇) ≤ 𝑘 .

There are𝑛+1 distinct outcomes, corresponding to the maximum

value of 𝜇 being 0, 1, ..., or 𝑛. In any decision tree with 𝑥 leaves, the

minimum height ℎ is log𝑥 .

Moreover, the height ℎ of the decision tree corresponds to the

number of queries made. Therefore, the minimum height of the de-

cision tree is log(𝑛+1), implying that the number of queries needed

to resolve the search will be at least Ω(log(𝑛 + 1)) = Ω(log𝑛).
Lastly, since all platforms operate independently, the search on

each platform requires Ω(log𝑛) queries. Consequently, to complete

the search across all platforms will require Ω(𝑚 log𝑛) queries. □

C.2 Proof of Theorem 4

Proof. There are a total of𝑚𝑛 distinct marginal costs, and our

objective is to determine the marginal cost MC𝑗 (𝜇) for a specified
𝑗 and 𝜇 such that 𝜇𝜇𝜇MC𝑗 (𝜇) represents the almost-optimal integral

solution. We establish this by reducing the binary search problem

to our problem.

Consider a binary search scenario involving a single sorted array

𝐴 with |𝐴| = ℎ and a target number 𝑎 for which we are searching.

Let 𝑖 denote the index of 𝑎 within this array. We can construct an

instance of our problem featuring a global ordering of marginal

costs. In this global ordering, the marginal costs MC𝑗 (𝜇) located at

index 𝑖 correspond to the bidding strategy 𝜇𝜇𝜇MC𝑗 (𝜇) , which serves as

the almost-optimal integral solution. If we are able to identify the

index of the optimal marginal cost in fewer than Ω(log𝑚𝑛) queries,
it would consequently allow us to resolve the binary search problem

in fewer than Ω(logℎ) queries. This outcome would contradict the

established complexity bounds associated with binary search. □

10

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Characterization of Bidder's Optimal Bidding Strategy
	3.1 The fractional optimal bidding strategy

	4 The Median of the Medians Algorithm
	5 Lower Bounds on Query Complexity
	6 Learning-Augmented Algorithms
	7 Conclusion
	References
	A Proof of Lemma 2
	B Missing Proofs from Section 4
	B.1 Proof of Lemma 4
	B.2 Proof of Lemma 5

	C Missing proofs from section 5
	C.1 Proof of Theorem 3
	C.2 Proof of Theorem 4

