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Abstract

The effectiveness of unsupervised domain adaptation degrades when there is a
large discrepancy between the source and target domains. Gradual domain adaption
(GDA) is one promising way to mitigate such an issue, by leveraging additional un-
labeled data that gradually shift from the source to the target. Through sequentially
adapting the model along the “indexed” intermediate domains, GDA substantially
improves the overall adaptation performance. In practice, however, the extra unla-
beled data may not be separated into intermediate domains and indexed properly,
limiting the applicability of GDA. In this paper, we investigate how to discover
the sequence of intermediate domains when it is not already available. Concretely,
we propose a coarse-to-fine framework, which starts with a coarse domain dis-
covery step via progressive domain discriminator training. This coarse domain
sequence then undergoes a fine indexing step via a novel cycle-consistency loss,
which encourages the next intermediate domain to preserve sufficient discriminative
knowledge of the current intermediate domain. The resulting domain sequence can
then be used by a GDA algorithm. On benchmark data sets of GDA, we show that
our approach, which we name Intermediate DOmain Labeler (IDOL), can lead to
comparable or even better adaptation performance compared to the pre-defined do-
main sequence, making GDA more applicable and robust to the quality of domain
sequences. Codes are available at https://github.com/hongyouc/IDOL.

1 Introduction

The distributions of real-world data change dynamically due to many factors like time, locations,
environments, etc. Such a fact poses a great challenge to machine-learned models, which implicitly
assume that the test data distribution is covered by the training data distribution. To resolve this
generalization problem, unsupervised domain adaption (UDA), which aims to adapt a learned model
to the test domain given its unlabeled data [13, 15], has been an active sub-field in machine learning.

Typically, UDA assumes that the “source” domain, in which the model is trained, and the “target”
domain, in which the model is deployed, are discrepant but sufficiently related. Concretely, Ben-David
et al. [1], Zhao et al. [75] show that the generalization error of UDA is bounded by the discrepancy of
the marginal or conditional distributions between domains. Namely, the effectiveness of UDA may
degrade along with the increase in domain discrepancy. Take one popular algorithm, self-training [38,
48, 49], for example. Self-training adapts the source model by progressively labeling the unlabeled
target data (i.e., pseudo-labels) and using them to fine-tune the model [2, 28, 30, 31, 41, 44, 77, 78].
Self-training works if the pseudo-labels are accurate (as it essentially becomes supervised learning),
but is vulnerable if they are not, which occurs when there exists a large domain gap [35].

To address this issue, several recent works investigate gradual domain adaption (GDA) [12, 25, 35,
71], in which beyond the source and target domains, the model can access additional unlabeled
data from the intermediate domains that shift gradually from the source to the target. By adapting
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Figure 1: Gradual domain adaption (GDA) without indexed intermediate domains. In this setting, one
is provided with labeled source, unlabeled target, and additional unlabeled intermediate data that have not
been grouped and indexed into a domain sequence. Our approach intermediate domain labeler (IDOL) can
successfully discover the domain sequence, which can then be leveraged by a GDA algorithm to achieve a higher
target accuracy than direct unsupervised domain adaptation (UDA). Images are from the Portraits dataset [14].

the model along the sequence of intermediate domains — i.e., from the ones close to the source to
the ones close to the target — the large domain gap between source and target is chipped away by
multiple sub-adaptation problems (between consecutive intermediate domains) whose domain gaps
are smaller. Namely, every time the model moves a step closer to the target, instead of taking a huge
jump that can significantly decrease the performance (see Figure 1 for an illustration). GDA makes
sense, as real-world data change gradually more often than abruptly [11, 60, 66]. The recent work
by Kumar et al. [35] further demonstrates the strength of GDA both empirically and theoretically.

One potential drawback of GDA is the need for a well-defined sequence of intermediate domains.
That is, prior to adaptation, the additional unlabeled data must be grouped into multiple domains and
indexed with intermediate domain labels that reflect the underlying data distribution shift from the
source to the target. Such information, however, may not be available directly. Existing methods
usually leverage side information like time tags [25, 35, 71] to define the sequence, which may be
sub-optimal. In some applications, even the side information may not be accessible (e.g., due to
privacy concerns), greatly limiting the applicability of GDA.

In this paper, we therefore study GDA in the extreme case — the additional unlabeled data are
neither grouped nor indexed. Specifically, we investigate how to discover the “domain sequence”
from data, such that it can be used to drive GDA. We propose a two-stage coarse-to-fine framework
named Intermediate DOmain Labeler (IDOL). In the first stage, IDOL labels each intermediate
data instance with a coarse score that reflects how close it is to the source or target. We study several
methods that estimate the distance from a data instance to a domain. We find that a progressively
trained domain discriminator — which starts with source vs. target data but gradually adds data close
to either of them into training — performs the best, as it better captures the underlying data manifold.

In the second stage, IDOL then builds upon the coarse scores to group data into domains by further
considering the discriminative (e.g., classification) knowledge the model aims to preserve from the
source to the target. Since the additional unlabeled data are fully unlabeled, we take a greedy approach
to identify the next intermediate domain (i.e., a group of data) that can best preserve the discriminative
knowledge in the current intermediate domain. Concretely, we employ self-training [38] along the
domain sequence discovered so far to provide pseudo-labels for the current domain, and propose a
novel cycle-consistency loss to discover the next domain, such that the model adapted to the next
domain can be “adapted back” to the current domain and predict the same pseudo-labels. The output
of IDOL is a sequence of intermediate domains that can be used by any GDA algorithms [25, 35, 71].

We validated IDOL on two data sets studied in [35], including Rotated MNIST [36] and Portraits
over years [14]. IDOL can successfully discover the domain sequence that leads to comparable GDA
performance to using the pre-defined sequence (i.e., by side information). More importantly, IDOL
is compatible with pre-defined sequences — by treating them as the coarse sequences — to further
improve upon them. We also investigate IDOL in scenarios where the additional unlabeled data
may contain outliers and demonstrate IDOL’s effectiveness even in such challenging cases. To our
knowledge, our work is the first to tackle GDA without grouped and indexed intermediate domains.
The success of IDOL opens up broader application scenarios that GDA can contribute to.
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2 Background: gradual domain adaptation (GDA)

2.1 Setup of UDA and GDA

We consider an unsupervised domain adaptation (UDA) problem, in which a classifier is provided
with labeled data from the source domain S = {(xSi , ySi )}

|S|
i=1 and unlabeled data from the target

domain T = {xTi }
|T |
i=1. Both S and T are sampled IID from the underlying joint distributions of the

source PS and target PT , respectively. A source model θS is typically produced by training on S
directly. The goal of UDA is to learn a target model θT such that it can perform well on the target,
measured by a loss L(θT , PT ). We focus on the standard UDA setup that assumes no label shifts [6].
Gradual domain adaptation (GDA), on top of UDA, assumes the existence of a sequence of
domains P0, P1, . . . PM−1, PM , where P0 and PM are the source domain and target domain, respec-
tively, along with M − 1 intermediate domains P1, . . . , PM−1. The data distributions of domains
are assumed to change gradually from the source to the target along the sequence. One can access
unlabeled data Um = {xUmi }

|Um|
i=1 from each of the intermediate domain, forming a sequence of

unlabeled data U1, . . . ,UM−1. We denote the union of them by U = {xUi }
|U|
i=1. For brevity, we

assume that each Um is disjoint from the others but the size |Um| is the same ∀m ∈ {1, · · · ,M − 1}.

2.2 GDA with pre-defined domain sequences using self-training [35]

We summarize the theoretical analysis of GDA using self-training by Kumar et al. [35] as follows.
Self-training for UDA. Self-training [38] takes a pre-trained (source) model θ and the target unla-
beled data T as input. Denote by z = f(x;θ) the predicted logits z, self-training first applies f(·;θ)
to target data points x ∈ T , sharpens the predictions by argmax into pseudo-labels, and then updates
the current model θ by minimizing the loss ` (e.g., cross entropy) w.r.t the pseudo-labels,

θT = ST(θ, T ) = arg min
θ′∈Θ

1

|T |

|T |∑
i=1

`
(
f(xi;θ

′), sharpen(f(xi;θ))
)
, (1)

where θT denotes the resulting target model and ST(θ, T ) denotes the self-training process. A
baseline use of self-training for UDA is to set θ as the source model θS . However, when the domain
gap between S and T is large, θS cannot produce accurate pseudo-labels for effective self-training.
Gradual self-training for GDA. In the GDA setup, self-training is performed along the domain
sequence, from the current model θm (updated using Um already) to the next one θm+1 using Um+1

θm+1 = ST(θm,Um+1), (2)
starting from the source model θ0 = θS . By doing so, the model gradually adapts from S to T
through the sequence U1, . . . ,UM to produce the final target model θT .

θT = θM = ST
(
θS , (U1, . . . ,UM )

)
. (3)

As the domain gap between consecutive domains is smaller than between S and T , the pseudo-labels
will be more accurate in each step. As a result, self-training in GDA can lead to a lower target error
than in UDA. We note that the domain sequences in [35] are pre-defined using side information.
Theoretical analysis. Kumar et al. [35] make three assumptions for theoretical analysis:

• Separation: for every domain Pm, the data are separable such that there exists an R-bounded
(linear) classifier θm ∈ Θ with ‖θm‖2 ≤ R that achieves a low loss of L(θm, Pm).

• Gradual shift: for the domain sequence P0, . . . , Pm with no label shifts, the maximum per-class
Wasserstein-infinity distance ρ(Pm, Pm+1) between consecutive domains should be ≤ ρ < 1

R .
• Bounded data: finite samples X from each domain Pm are bounded, i.e., EX∼Pm

[‖X‖22] ≤ B2.

Under these assumptions of GDA, if the source model θ0 has a low loss L(θ0, P0) on P0, then with a
probability δ, the resulting target model θM through gradual self-training has

L(θM , PM ) ≤ βM+1
(
L(θ0, P0) +

4BR+
√
2 log 2M/δ√
|U|

)
, where β =

2

1− ρR
. (4)

That is, the target error is controlled by the intermediate domain shift ρ. If we can sample infinite
data (i.e., |U| → ∞) and the source classifier is perfect (i.e., L(θ0, P0) = 0), with a small distance
ρ(Pm, Pm+1) ≤ ρ between consecutive domains, gradual self-training achieves a zero target error.
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3 GDA without indexed intermediate domains

3.1 Setup and motivation

In this paper, we study the case of GDA where the additional unlabeled data U are not readily divided
into domain sequences U1, · · · ,UM−1. In other words, we are provided with a single, gigantic
unlabled set that has a wide range of support from the source to the target domain. One naive way to
leverage it is to adapt from S to U1 and then to T , which however leads to a much larger target error
than applying self-training along the properly indexed intermediate domains [35]. We attribute this to
the large ρ(S,U) or ρ(U , T ) according to Equation 4. To take advantage of U , we must separate it
into intermediate domains such that ρ(Pm, Pm+1) is small enough for every m ∈ {0, . . . ,M − 1}.

3.2 Overview of our approach: intermediate domain labeler (IDOL)

Given the source data S , the target data UM = T , and the unlabeled intermediate data U = {xUi }
|U|
i=1,

we propose the intermediate domain labeler (IDOL), whose goal is to sort intermediate data instances
in U and chunk them into M − 1 domains U1, · · · ,UM−1 (with equal sizes) for GDA to succeed.

Taking gradual self-training in Equation 3 as an example, IDOL aims to solve the following problem

minL(θT , PT ),
s.t. θT = ST

(
θS , (U1, . . . ,UM )

)
and (U1, . . . ,UM−1) = IDOL(S, T ,U ;M − 1), (5)

where the target model θT is produced by applying gradual self-training to the domain sequence
discovered by IDOL. IDOL accepts the number of intermediate domainsM−1 as a hyper-parameter.

Solving Equation 5 is hard, as evaluating any output sequence needs running through the entire gradual
self-training process, not to mention that we have no labeled target data to estimate L(θT , PT ). In
this paper, we propose to solve Equation 5 approximately via a coarse-to-fine procedure.
The coarse stage. We aim to give each xUi ∈ U a score qi, such that it tells x’s position in between
the source and target. Specifically, a higher/lower qi indicates that xUi is closer to the source/target
domain. With these scores, we can already obtain a coarse domain sequence by sorting them in the
descending order and dividing them into M − 1 chunks.
The fine stage. Instead of creating the domain sequence U1, · · · ,UM−1 by looking at the score of
each individual xUi ∈ U , we further consider how data grouped into the same domain can collectively
preserve the discriminative knowledge from the previous domains — after all, the goal of UDA or
GDA is to pass the discriminative knowledge from the labeled source domain to the target domain.
To this end, we propose a novel cycle-consistency loss to refine the coarse scores progressively.

3.3 The coarse stage: assigning domain scores

In this stage, we assign each xUi ∈ U a score qi, such that higher/lower qi indicates that xUi is closer
to the source/target domain. We discuss some design choices. For brevity, we omit the superscript U .
Confidence scores by the classifier f(x;θ). We first investigate scoring each intermediate data
instance by the confidence score of the source model θS , i.e., qi = max f(xi;θS) across classes.
This is inspired by outlier detection [42] and the common practice of self-training, which selects only
data with sufficiently large confidence scores to fine-tune upon [35, 38]. Here we employ an advanced
version, which is to use the latest θ (i.e., the model adapted to the current intermediate domain) to
select the next intermediate domain. That is, every time we select the highest confidence instances
from the remaining ones in U to adapt θ. Overall, we can give data selected in the m-th round
(m ∈ {1, · · · ,M − 1}) a score M−1−m

M−2 ∈ [0, 1]. One drawback of this method is the blindness to
the target domain T . Specifically, we find that using confidence scores tends to select easily classified
examples, which do not necessarily follow the gradual shift from the source to the target.
Manifold distance with the source features. To model the flow from the source to the target, we
argue that it is crucial to consider both sides as references. We thus extract features of S, T , and U
using the source model θS and apply a manifold learning algorithm (e.g., UMAP [50]) to discover the

1In [35], the authors investigated sampling U1, · · · ,UM−1 from U uniformly at random with replacement.
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underlying manifold. Denote by γ(x) the dimension-reduced features of x after UMAP, we compute

the ratio of its distance to the nearest point in the T and S as the score qi =
minxT ∈T ‖γ(xi)−γ(xT )‖2
minxS∈S ‖γ(xi)−γ(xS)‖2 .

Domain discriminator. We investigate another idea to emphasize the roles of the source and target,
which is to train a domain discriminator [13]. Concretely, we construct a binary classifier g(·;φ)
using deep neural networks, which is trained to separate the source data S (class: 1) and the target
data T (class: 0). We use a binary-cross entropy loss to optimize the learnable parameter φ

L(φ) = − 1

|S|
∑
xS∈S

log(σ(g(xS ;φ)))− 1

|T |
∑
xT ∈T

log(1− σ(g(xT ;φ))), (6)

where σ is the sigmoid function. We can then assign a score to xi ∈ U by qi = g(xi;φ).
Progressive training for the domain discriminator. The domain discriminator g(·;φ), compared
to the manifold distance, better contrasts the source and target domains but does not leverage any
of the data x ∈ U . That is, it might give a faithful score to an example x that is very close to S
or T , but for other examples that are far away and hence out-of-domain from both ends, the score
by g(·;φ) becomes less reliable, not to mention that neural networks are usually poorly calibrated
for these examples [21, 42]. We therefore propose to progressively augment the source and target
data with x ∈ U that has either a fairly high or low g(x;φ), and fine-tune the domain discriminator
g(x;φ). We perform this process for K rounds, and every time include |U|2K new examples into the
source and target. By doing so, the domain discriminator g(x;φ) is updated with data from U and
thus can provide more accurate scores to distinguish the remaining examples into the source or target
side. More specifically, let N denote |U|, we repeat the following steps for k from 1 to K:

1. Train g(·,φ) using S and T , based on the loss in Equation 6.
2. Predict q̂i = g(xi,φ),∀xi ∈ U .
3. Rank all q̂i in the descending order.
4. The data with the N

2K largest q̂i scores form a new intermediate domain for the source side (their
qi is set to 2K−k

2K ). We remove them from U and add them into S.
5. The data with the N

2K smallest q̂i scores form a new intermediate domain for the target side (their
qi is set to k

2K ). We remove them from U and add them into T .

Overall, we give a data instance x ∈ U selected in the k-th round (k ∈ {1, · · · ,K}) a score 2K−k
2K if

it is added into the source side, or k
2K if it is added into the target side.

3.4 The fine stage: cycle-consistency for refinement

The domain scores developed in subsection 3.3 can already give each individual example x ∈ U a
rough position of which intermediate domain it belongs to. However, for GDA to succeed, we must
consider intermediate data in a collective manner. That is, each intermediate domain should preserve
sufficient discriminative (e.g., classification) knowledge from the previous one, such that after M
rounds of adaptation through GDA, the resulting θT in Equation 5 will be able to perform well on T .
This is reminiscent of some recent claims in UDA [46, 75]: matching only the marginal distributions
between domains (i.e., blind to the class labels) may lead to sub-optimal adaptation results.

But how can we measure the amount of discriminative knowledge preserved by an intermediate
domain (or in the target domain) if we do not have its labeled data? To seek for the answer, we revisit
Equation 4 and consider the case M = 1. If the two domains P0 and P1 are sufficiently close and the
initial model θ0 is well-trained, the resulting model θ1 after self-training will perform well. Reversely,
we can treat such a well-performing θ1 as the well-trained initial model, and apply self-training again
— this time from P1 back to P0. The resulting model θ′0, according to the same rationale, should
perform well on P0. In other words, θ′0 and θ0 should predict similarly on data sampled from P0.
The similarity between θ′0 and θ0 in terms of their predictions therefore can be used as a proxy
to measure how much discriminative knowledge θ1, after adapted to P1, preserves. It is worth
noting that measuring the similarity between θ′0 and θ0 requires no labeled data from P0 or P1.

Now let us consider a more general case that M is not limited to 1. Let us set θ0 = θS , where θS
has been trained with the labeled source data S till convergence. Based on the concept mentioned
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Figure 2: Cycle-consistency (cf. Equation 8).

above, we propose a novel learning framework to discover the domain sequences,

argmin(U1,...,UM−1)Ex∼P0

[
`
(
f(x;θ′0), sharpen(f(x;θ0))

)]
,

s.t., θ′0 = ST(θM , (UM−1, . . . ,U0)), (7)
θM = ST(θ0, (U1, . . . ,UM )),

where U0 is the source data S with labels removed, and UM = T is the target data. θ′0 is a gradually
self-trained model from θ0 that undergoes a cycle U1 →, · · · ,→ UM →, · · · ,→ U0. In other words,
Equation 7 aims to find the intermediate domain sequences such that performing gradual self-training
along it in a forward and then backward fashion leads to cycle-consistency [76].

Optimization. Solving Equation 7 is still not trivial due to its combinatorial nature. We therefore
propose to solve it greedily, starting with discovering U1, and then U2, and then so on. Concretely,
we decompose Equation 7 into a series of sub-problems, as illustrated in Figure 2, each is defined as

argminUm+1⊂U\m
1

|Um|
∑
x∈Um

`
(
f(x;θ′m), sharpen(f(x;θm))

)
,

s.t., θ′m = ST(θm+1,Um), (8)
θm+1 = ST(θm,Um+1),

where θm is the model already adapted to the current domain Um, and U\m = U \ ∪mj=1Uj is the
remaining data that have not been selected by the m intermediate domains so far. That is, each
sub-problem discovers only the next intermediate domain Um+1 via cycle-consistency.

Let N = |U\m| and U\m = {xi}Ni=1, selecting Um+1 ⊂ U\m is equivalent to selecting a binary
indicator vector q ∈ {0, 1}N , in which qi = 12 means that xi ∈ U\m is included into Um+1. This
representation turns the self-training step θm+1 = ST(θm,Um+1) in Equation 8 into

ST(θm, q) = arg min
θ∈Θ

1

N

N∑
i=1

qi × `
(
f(xi;θ), sharpen(f(xi;θm))

)
, (9)

We choose to solve Equation 8 approximately by relaxing the binary vector q ∈ {0, 1}N into a real
vector q ∈ RN , which fits perfectly into the meta-reweighting framework [29, 55]. Concretely, meta-
reweighting treats q ∈ RN as learnable differentiable parameters associated to training examples (in
our case, the data in U\m). Meta-reweighting for Equation 8 can be implemented via the following
six steps for multiple iterations.

1. Detach: θ ← θm,

2. Forward: θ(q)← θ −
ηθ

|U\m|
×
∂
∑
i∈U\m qi × `(f(xi;θ), sharpen(f(xi;θm)))

∂θ
,

3. Detach: θ′ ← θ(q),

4. Backward: θ(q)← θ(q)−
ηθ

|Um|
×
∂
∑
j∈Um `(f(xj ;θ(q)), sharpen(f(xj ;θ′)))

∂θ(q)
,

5. Update: q ← q −
ηq

|Um|
×
∂
∑
j∈Um `(f(xj ;θ(q)), sharpen(f(xj ;θm)))

∂q
,

6. Update: qi ← max{0, qi}.
2Here we use the same notation as the coarse scores defined in subsection 3.3, since later we will initialize

these values indeed by the coarse scores.
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The aforementioned updating rule gives xi a higher value of qi if it helps preserve the discriminative
knowledge. After obtaining the updated q ∈ RN , we then sort it in the descending order and select
the top |U|

M−1 examples to be Um+1 (i.e., every intermediate domain has an equal size).

Discussion. The way we relax the binary-valued vector q ∈ {0, 1}N by real values is related to the
linear programming relaxation of an integer programming problem. It has been widely applied, for
example, in discovering sub-domains within a dataset [16]. Theoretically, we should constrain each
element of q to be within [0, 1]. Empirically, we found that even without the clipping operation to
upper-bound qi (i.e., just performing max {0, qi}), the values in qi do not explode and the algorithm is
quite stable: we see a negligible difference of using upper-bounded qi or not in the resulting accuracy
of GDA. This is also consistent with the common practice of using meta-reweighting [29, 55].

Initialization. We initialize qi by the coarse scores defined in subsection 3.3. This is for one
important reason: Equation 8 searches for the next intermediate domain Um+1 only based on the
current intermediate domain Um. Thus, it is possible that Um+1 will include some data points that
help preserve the knowledge in Um but are distributionally deviated from the gradual transition
between Um and the target domain T . The scores defined in subsection 3.3 thus serve as the guidance;
we can also view Equation 8 as a refinement step of the coarse scores. As will be seen in section 4, the
qualities of the initialization and the refinement steps both play important roles in IDOL’s success.

4 Experiment

4.1 Setup

We mainly study two benchmark datasets used in [35]. Rotated MNIST [36] is a popular syn-
thetic dataset to study distributional shifts. It gradually rotates the original 50, 000 images in the
MNIST [37] dataset with [0, 60] degrees uniformly, where [0, 5)/[5, 55)/[55, 60] degrees are for the
source/intermediate/target domains, respectively. However, since original images have no ground
truths of the rotation, the rotation annotations are not expected to be perfect. Portraits dataset [14] is
a real-world gender classification dataset of a collection of American high school seniors from the
year 1905 to 2013. Naturally, the portrait styles change along years (e.g., lip curvature [14], fashion
styles). The images are first sorted by the years and split. For both datasets, each domain contains
2000 images, and 1, 000 images are reserved for both the source and target domains for validation.

We follow the setup in [35]: each model is a convolutional neural network trained for 20 epochs for
each domain consequently (including training on the source data), using Adam optimizer [32] with
a learning rate 0.001, batch size 32, and weight decay 0.02. We use this optimizer as the default if
not specified. Hyper-parameters of IDOL include K = 2M rounds for progressive training and 30
epochs of refinement per step (with mini-batch 128), where M = 19 for the Rotated MNIST and
M = 7 for the Portraits. More details are in the supplementary material.

To study how the intermediate domain sequences affect gradual self-training, we consider baselines
including “Source only” and “UDA” that directly self-trains on the target data (T ) and all the
intermediate data (U). We compare different domain sequences including Pre-defined indexes, e.g.,
rotations and years. We further consider the challenging setup that all intermediate data are unindexed.
Random sequences are by dividing the unlabeled data intoM−1 domains randomly, with self-training
on the target in the end. For our IDOL, different domain scores introduced in subsection 3.3 are
adopted for the coarse domain sequences, and we optionally apply cycle-consistency refinement to
make them fine-grained.

4.2 Main study: comparison with pre-defined domain sequences

The main results on Rotated MNIST and Portraits are provided in Table 1. We first verify that without
any domain sequences, UDA (on target and intermediate data) and GDA (on random sequences) do
not perform well, though they slightly improve over the source model. On the contrary, training with
pre-defined indexes that arguably guide the gradual adaptation significantly performs better.
IDOL is competitive to pre-defined sequences. IDOL can produce meaningful domain sequences
(see Figure 3), given only the intermediate unlabeled data without any order. The domain discrimi-
nator with progressive training performs the best and is comparable to pre-defined sequences. The
confidence scores by the classifier are not enough to capture domain shifts.
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(a) Rotated MNIST (class “1”) (b) Portraits (class “female”)

Figure 3: Random samples (the most representative class) from pre-defined indexes or IDOL sequences.

Table 1: Gradual self-training on Rotated MNIST and Portraits. Bottom section: IDOL with domain scores.

Coarse scores Indexed? Adaptation Refined? Rotated MNIST Portraits

None 7
Source only - 31.9±1.7 75.3±1.6
UDA (T ) - 33.0±2.2 76.9±2.1

UDA (T + U) - 38.0±1.6 78.9±3.0

Pre-defined [35] 3 GDA 7 87.9±1.2 83.8±0.8
3 93.3±2.3 85.8±0.4

Random 7 GDA 7 39.5±2.0 81.1±1.8
3 57.5±2.7 82.5±2.2

Classifier confidence

7 GDA

7 45.5±3.5 79.3±1.7
Manifold distance 7 72.4±3.1 81.9±0.8
Domain discriminator 7 82.1±2.7 82.3±0.9
Progressive domain discriminator 7 85.7±2.7 83.4±0.8

3 87.5±2.0 85.5±1.0

(a) Target Acc. of gradual ST.

(b) Years vs. IDOL sequence.

Figure 4: Portraits with year indexes
or IDOL domain sequence.

Refinement helps and coarse initialization matters. We ob-
serve that it is crucial to have high-quality coarse sequences as
the initialization; the fine indexes by cycle-consistency refine-
ment could further improve the coarse sequences, validating its
effectiveness. We note that the Rotated MNIST dataset treats
the original MNIST data as 0-degree rotation and artificially
rotates the data given a rotation index. However, for data in
the original MNIST dataset, there already exist variations in
terms of rotations. This can be seen in Figure 3: in the first
row of 0-degree rotation based on the pre-defined indexes, the
examples of digit 1 do have slight rotations. Interestingly, in
this situation, IDOL could potentially capture the true rotation
of each example to further improve GDA.
Analysis. To understand why refinement helps, we take a closer
look at the Portraits dataset that is naturally sorted by years.
Are years the best factor to construct the domain sequence? We
compare it with the refined sequence by IDOL. In Figure 4,
we monitor the target accuracy of each step of adaptation and
find that the accuracy fluctuates by using years. Interestingly,
learning with IDOL stably and gradually improves the target
accuracy and ends up with a higher accuracy, validating that
refinement with cycle-consistency indeed produces better sequences. Specifically, the IDOL sequence
has a reasonable 0.727 correlation with years but they are not perfectly aligned. Several factors such
as fashions, hairstyles, eyeglasses, and lip curvatures may not perfectly align with years [14]. Even
within the same year, individuals could have variations in these factors as well. We thus hypothesize
that IDOL can discover the domain sequence that reflects a smoother transition of these factors.
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We note that the intermediate domains constructed by IDOL (domain scores with or without refine-
ment) may not match the target “class” distributions. We monitor the number of examples of class c
in each domain Um, i.e., |Um,c|, and compute 1

M−1
∑M−1
m=1

maxc {|Um,c|}
minc {|Um,c|} , which ideally should be

1.0, i.e., class-balanced. We observe fine-grained indexes are indeed more class-balanced (coarse vs
fine-grained): 1.33 vs 1.23 on Rotated MNIST and 1.27 vs 1.25 on Portraits.

4.3 Case study: learning with partial or outlier information

If partial or outlier information of the intermediate domains is given, is IDOL still helpful? We
examine the question by three experiments. First, we consider unsorted domains: the data are grouped
into M − 1 domains according to the pre-defined indexes but the domains are unordered. We find
that if we sort the domains with the mean domain scores 1

|Um|
∑
xi∈Um qi, then we can perfectly

recover the pre-defined order. Second, we investigate if we have fewer, coarsely separated pre-defined
domains: we double the size of |Um|. We find that on Rotated MNIST (w/ pre-defined indexes), the
accuracy degrades by 11%. IDOL can recover the accuracy since IDOL outputs a sorted sequence
of data points, from which we can construct more, fine-grained intermediate domains. Third, we
investigate the addition of outlier domains, in which the starting/end intermediate domains do not
match the source/target domains exactly. For example, on Rotated MNIST, the intermediate domains
are expanded to cover [−30, 90] degrees. GDA on such domain sequence with outlier domains
degrades to 77.0± 2.0 accuracy. Refinement can still improve it to 81.3± 1.4.

4.4 Case study: learning with low-quality intermediate data or indexes

(a) Rotated MNIST.

(b) Portraits.
Figure 5: Different numbers of
noisily-indexed intermediate data.

In practice, the intermediate unlabeled data or the pre-defined do-
main indexes for them might not be perfect. We consider several
realistic cases to show that our method can make GDA more robust
to the quality of the intermediate data or the domain sequences. First,
we investigate fewer intermediate data: Equation 4 implies that the
target error increases if the intermediate data are too sparse. We
repeat the experiments in subsection 4.2 but with only 30% interme-
diate data. Second, we consider noisy indexes: building upon 30%
clean indexes, we further add more data with noisy, random indexes.

Figure 5 summarizes the results. We first notice that with only
30% intermediate data, even if the indexes are clean, the accuracy
decreases drastically by 14% for MNIST and by 5% for Portraits.
For MNIST, adding more noisily-indexed data actually decreases
the accuracy. Portraits gains some improvements with the noisily-
indexed data, suggesting that the task could benefit from learning
with intermediate data (even without accurate indexes). One ad-
vantage of IDOL is that we can annotate domain indexes for any
unindexed data. On both datasets, IDOL stably improves with more
data available, significantly outperforming that without IDOL.

4.5 Case study: CIFAR10-STL UDA with additional, open-domain unlabeled data

Table 2: CIFAR10-STL.
Method Target Acc.

Source only 76.6±0.4
UDA (T ) (lr = 10−4) 69.4±0.4
UDA (T ) (lr = 10−5) 75.1±0.3
UDA (T + U) 61.1±0.8
GDA w/ conf. 77.1±0.5
GDA w/ IDOL 78.1±0.4

We examine IDOL on a CIFAR10-to-STL [5, 34] UDA task
which is known to be challenging due to the small data size [4].
The STL dataset has an additional unlabeled set, whose data
are sub-sampled from ImageNet [9]. We use this set as the
intermediate data, which contains unknown or outlier domains
and classes. Here, we do not aim to compete with the state of
the arts on the CIFAR10-to-STL UDA task, but study a more
general application scenario for IDOL.

To leverage these data, we use M = 3 and filter out 80% of them using the classifier confidence. We
first train a ResNet-20 [23] source model. In Table 2, we observe that direct UDA using self-training
on STL or unlabeled data are inferior to the source model, even if the learning rate is carefully tuned.
GDA with IDOL achieves the highest accuracy, demonstrating its robustness and wide applicability.
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5 Related Work

Domain adaption. UDA has been studied extensively [1, 53, 63], and many different approaches
have been proposed such as minimizing domain divergence [13, 20, 45, 61, 62, 65], cross-domain [39,
57, 58, 61] and domain-invariant features [18, 26, 54, 67–69, 73]. Self-training recently emerges
as a simple yet effective approach [2, 28, 30, 31, 41, 64, 77]. It uses the source model to provide
pseudo-labels for unlabeled target data, and approaches UDA via supervised learning in the target
domain [38, 48, 49]. Theoretical analyses for applying self-training in UDA are provided in [3, 70].
Gradual domain adaption. Many UDA works show the benefits of gradually bridging the domain
gap. With features as input, several work [8, 15, 19] construct Grassmannian manifolds between
the source and the target. For deep models, progressive DA [27] proposes to create the synthetic
intermediate domain with an image-to-image translation network. Other works [7, 17] instead
generate intermediate data with jointly-trained generators. Na et al. [51] augments the intermediate
data with Mixup [74]. Unlike all the above work that focus on building synthetic intermediate
domains given only the source and target data, gradual domain adaption proposed in [12, 25, 35, 71]
studies how to leverage extra real intermediate data with pre-defined domain indexes.
Learning with cycle consistency. The concept of cycle consistency has been successfully applied in
many machine learning tasks. On a high level, cycle supervision enforces that the translation to the
target should be able to be translated back to match the source. For instance, back-translation [22, 59]
is a popular technique to perform unsupervised neural translation in natural language processing.
Many computer vision tasks such as image generation [56], image segmentation[40], style trans-
fer [76], etc., can also be improved by matching the structural outputs with cyclic signals. We propose
a novel approach that uses cycle consistency to discover intermediate domains for gradual adaption.
Discovering feature subspaces. We further discuss the connections of our work to existing efforts
about subspace learning. One powerful technique is subspace clustering [10, 33, 52] that partitions
data into many subspaces (e.g., classes) unsupervisedly. However, it may not be applied to GDA di-
rectly since it groups with discriminative features which might not capture domain shifts. Specifically
for UDA, some works aim to discover sub-spaces in the source/target domains [16, 24, 43, 47, 72].
The assumption is that the datasets might not be collected from one environment but generated from
many different distributions, re-formulating it as a multi-domain adaption problem. We note that,
the sub-domains discovered in these methods are fundamentally different from the domain sequence
we discover. The sub-domains are assumed to have a dedicated adaption mapping to the target
domain. The domain sequences in GDA are for constructing a path from the source to the target via
intermediate data. How to link these learning techniques to GDA will be interesting future work.

6 Conclusion

Gradual domain adaptation leverages intermediate data to bridge the domain gap between the source
and target domains. However, it relies on a strong premise — prior knowledge of domain indexes
to sort the intermediate data into a domain sequence. We propose the IDOL algorithm that can
produce comparable or even better domain sequences without pre-defined indexes. With a simple
progressively-trained domain discriminator, it matches the performance of using pre-defined indexes,
and further improves with the proposed cycle-consistency refinement. Essentially, IDOL is a useful
tool to augment any GDA algorithms with high-quality domain sequences given unindexed data.
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