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Abstract001

Implementing new features in repository-level002
codebases is a crucial application of code gen-003
eration models. However, current benchmarks004
lack a dedicated evaluation framework for this005
capability. To fill this gap, we introduce FEA-006
Bench, a benchmark designed to assess the007
ability of large language models (LLMs) to008
perform incremental development within code009
repositories. We collect pull requests from010
83 GitHub repositories and use rule-based and011
intent-based filtering to construct task instances012
focused on new feature development. Each task013
instance containing code changes is paired with014
relevant unit test files to ensure that the solu-015
tion can be verified. The feature implementa-016
tion requires LLMs to simultaneously possess017
code completion capabilities for new compo-018
nents and code editing abilities for other rel-019
evant parts in the code repository, providing020
a more comprehensive evaluation method of021
LLMs’ automated software engineering capa-022
bilities. Experimental results show that LLMs023
perform significantly worse in the FEA-Bench,024
highlighting considerable challenges in such025
repository-level incremental code development.026

1 Introduction027

The remarkable text generation capabilities of large028

language models (LLMs) (Achiam et al., 2023)029

have extended their impact into the domain of code030

generation (Xu et al., 2022), which has led to the031

emergence of developer assistants such as Copilot,032

Cursor, Devin, etc. An important research topic to033

evaluate the effectiveness of LLMs in generating034

code across diverse scenarios. Many of the existing035

benchmarks focus on evaluating standalone pro-036

gramming problems, such as HumanEval, MBPP,037

and LiveCodeBench (Chen et al., 2021; Austin038

et al., 2021; Jain et al., 2024). These benchmarks039

offer little insight into the challenges developers040

face in real-world projects, where codebases are041

composed of multiple interconnected files. In such042

Figure 1: The proposed FEA-Bench aims to evaluate
incremental repository development, while SWE-bench
(Jimenez et al., 2024) focuses on repairing issues.

projects, modifications in one part of the code of- 043

ten necessitate corresponding edits elsewhere. This 044

type of collaborative, large-scale development is 045

referred to as repository-level code development. 046

In the realm of repository-level code generation, 047

much of the current evaluation effort is centered 048

around code completion (Li et al., 2024b; Yang 049

et al., 2024a). Code completion refers to gener- 050

ating correct code snippets at specified locations 051

within a given code context. However, this task 052

is inherently limited—it typically targets localized 053

generation and does not account for broader impli- 054

cations beyond the scope of completion. 055

Recent advancements in the capabilities of 056

LLMs have expanded their potential role from 057

merely suggesting code snippets to managing the 058

full lifecycle of repository development. A promi- 059

nent benchmark in this domain is SWE-bench 060

(Jimenez et al., 2024), which evaluates LLMs on 061

resolving issues, primarily focusing on bug fixes 062

within repositories. In practice, as shown in Fig- 063

ure 1, a more critical aspect of software engineer- 064

ing is the launch of new features, which often en- 065

tails introducing new functions or even entire files 066

into the repository. The continuous implementa- 067

tion of new features drives software growth and 068

is a key focus of automated software engineering. 069

We define such tasks as repository-level incremen- 070

tal code development. In this work, to bridge the 071
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gap in benchmarks for this domain, we construct072

a dataset derived from pull requests in GitHub073

repositories that specifically focus on adding new074

components, with the overarching goal of imple-075

menting new features. Each task instance in our076

dataset is paired with its corresponding unit test077

files, culminating in the creation of the Feature078

Implementation Benchmark (FEA-Bench), which079

comprises 1,401 task instances sourced from 83080

diverse GitHub repositories.081

Statistically, our dataset exhibits characteristics082

that significantly differ from the bug-fix-oriented083

SWE-bench. Task instances in FEA-Bench require084

the implementation of new functions and classes085

in Python and involve substantially longer code086

generation compared to SWE-Bench. Experimen-087

tal results demonstrate that current LLMs perform088

poorly on the proposed benchmark. According to089

our execution-based metrics, the best-performing090

LLM, DeepSeek-R1, successfully resolves only091

about 10% of the task instances. The key contribu-092

tions of this paper are as follows:093

• We introduce the task of repository-level incre-094

mental code development, addressing a criti-095

cal challenge in real-world software engineer-096

ing where the continuous implementation of097

new features is essential for sustaining soft-098

ware growth.099

• We construct the first benchmark to evalu-100

ate repository-level incremental code devel-101

opment. By employing parsing and other fil-102

tering methods, we constructed a dataset com-103

posed of feature implementation tasks, offer-104

ing execution-based evaluation.105

• Using an automated pipeline, we scale the test106

data to include 83 diverse code repositories,107

ensuring high diversity. We will publicly re-108

lease our data collection and evaluation code-109

base, allowing FEA-Bench to be continuously110

updated and expanded.111

2 Related Work112

2.1 Code Large Language Models113

Large language models (LLMs) have revolution-114

ized software engineering by enabling code gener-115

ation, debugging, and translation capabilities (Pan116

et al., 2024; Li et al., 2023a; Joshi et al., 2023;117

Shi et al., 2024). Large-scale pre-trained LLMs118

such as GPT-4 (Achiam et al., 2023), CodeLlama119

(Roziere et al., 2023), DeepSeek-Coder (Guo et al., 120

2024; Zhu et al., 2024), and Qwen2.5-Coder (Hui 121

et al., 2024) have demonstrated proficiency in gen- 122

erating functional code across multiple program- 123

ming languages. Recent advancements also include 124

instruction-tuned models like Starcoder (Li et al., 125

2023b), WizardCoder (Luo et al., 2023), Wave- 126

Coder (Yu et al., 2024b), Magicoder (Wei et al., 127

2024) and EpiCoder (Wang et al., 2025). With 128

these advancements, code LLMs are poised to fur- 129

ther revolutionize how developers interact with 130

code, promising increased efficiency in software 131

creation. Additionally, the integration of agents 132

has further enhanced the performance of LLMs in 133

software engineering tasks (Yang et al., 2024b; Xia 134

et al., 2024; Zhang et al., 2024). In this paper, we 135

further evaluate the performance of current LLMs 136

in the incremental code development scenarios at 137

the repository level. This investigation aims to 138

drive the research on code LLMs toward address- 139

ing more intricate software engineering challenges, 140

thereby advancing the capabilities of these models 141

in handling sophisticated development tasks. 142

2.2 Code Generation Benchmarks 143

Recent code generation benchmarks, such as Hu- 144

manEval (Chen et al., 2021) and MBPP (Austin 145

et al., 2021), have primarily focused on synthe- 146

sizing standalone functions or scripts from natu- 147

ral language, while subsequent efforts like APPS 148

(Hendrycks et al., 2021), EvalPlus (Liu et al., 149

2023a), CoderEval (Yu et al., 2024a), ClassEval 150

(Du et al., 2023), BigCodeBench (Zhuo et al., 151

2024), and FullStackBench (Liu et al., 2024b) have 152

expanded evaluation to more complex scenarios. 153

However, these benchmarks largely overlook the 154

repository-level challenges of real-world software 155

development, a gap addressed by recent works 156

(Bairi et al., 2024; Zhang et al., 2023). Because 157

of the wild applications of auto code completion 158

tools like Github Copilot (Dakhel et al., 2023), 159

most repository-level code generation benchmarks 160

aim to evaluate the code completion capabilities of 161

LLMs (Liu et al., 2023b). Repository-level code 162

completion aims to generate code for incomplete 163

code snippets within a repository (Wang et al., 164

2024). Benchmarks such as DevEval (Li et al., 165

2024b), EvoCodeBench (Li et al., 2024a), Codev- 166

Bench (Pan et al., 2024), and ExecRepoBench 167

(Yang et al., 2024a) evaluate this capability. How- 168

ever, code completion data constructed by remov- 169

ing a single line or function body can suffer from 170
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future context leakage issues (Zheng et al., 2024).171

In practice, autonomous development of a code172

repository should include all edits to the code,173

rather than simply completing the specified code174

under perfect context. SWE-bench (Jimenez et al.,175

2024) focuses on repairing repositories’ issues by176

revising existing programs. This highlights the177

need for models to effectively modify and inte-178

grate changes within the repository. Our work fills179

another gap of incremental repository-level devel-180

opment by introducing a benchmark that evaluates181

LLMs on the implementation of new features, fur-182

ther bridging the divide between code completion183

and real-world software engineering.184

3 Benchmark Construction185

3.1 Overview186

The task instances in FEA-Bench are constructed187

based on existing pull request (PR) data from188

GitHub. As illustrated in Figure 2, each task in-189

stance contains the following elements:190

❶ Feature Request Content of the pull request191

and corresponding issues (if any) provide essential192

information regarding the new feature or function-193

ality to be developed.194

❷ Definition of New Components This in-195

cludes the signatures and documentation of newly196

added functions and classes. The name of the197

new component must be consistent with that in198

PR, which is the prerequisite for completing the199

task, because unit tests are written based on the200

specified name.201

❸ Environment Setup This includes the rele-202

vant information for the repository and specifies203

the base commit of the code repository for each204

task instance. Besides, the configurations of the205

building execution environment are also included.206

❹ Patch It describes the changes made to the207

code in the repository and can be processed by208

the unidiff standard library1. Additionally, the209

changes can be applied to the repository using the210

git apply tool. A patch can be divided into a211

test patch and a gold patch; the former pertains to212

changes in test codes, while the latter involves the213

other changes affecting the software itself.214

❺ Unit Test The correctness of the code changes215

is verified based on the result of running these tests.216

We get the ground truth status by actually running217

pytest before and after applying the gold patch.218

1https://github.com/matiasb/python-unidiff

Figure 2: An example of the task instances from the
FEA-Bench. During the inference of LLMs, the first
two items: feature request and new components are
considered as known information. The environment
setup serves as a prerequisite for creating the testbed
and environment. Python file patches and unit tests are
used as labels and evaluation metrics and should not be
leaked during the inference of LLMs.

Our data collection pipeline is developed based 219

on SWE-bench. As shown in Figure 3, the pro- 220

posed collection pipeline ensures data diversity and 221

comprehensiveness, enabling a robust evaluation 222

of LLMs’ capabilities in implementing new fea- 223

tures at the repository level. By making our data 224

collection and evaluation codes publicly available, 225

we aim to facilitate continuous updates and the cre- 226

ation of new versions of FEA-Bench. In the rest of 227

this section, we will discuss the construction and 228

the characteristics of FEA-Bench. 229

3.2 Repository Collection 230

To determine the scope of GitHub repositories for 231

data collection, we initially focus on the GitHub 232

repositories corresponding to Python packages 233

listed on the Top PyPI website 2. Packages ap- 234

pearing on this list are generally influential Python 235

software with high data quality, and most reposito- 236

ries use a unified pytest format for testing, which fa- 237

cilitates later execution. This leaderboard contains 238

8,000 Python packages. We filter out repositories 239

2https://hugovk.github.io/top-pypi-packages/
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Figure 3: The data collection pipeline for the FEA-Bench. First, determine the scope of GitHub repositories from
which task instances will be collected. Next, gather pull requests as task instances and apply filtering criteria to
select instances that meet the purpose of adding new features. Finally, use the included test files to execute unit tests,
ensuring that only task instances with reproducible test results are included in FEA-Bench. For a more detailed
construction process, please refer to Appendix A.2.

that have a license and more than 1,000 pull re-240

quests, resulting in approximately 600 repositories241

meeting these criteria.242

Fast Validation Except for repositories already243

included in SWE-bench, the remaining reposito-244

ries do not have customized installation procedures245

or testing methods. While environment configura-246

tions vary among different Python packages, pip247

offers a unified installation approach3. And we248

adopt pytest as the default method for unit testing.249

Based on these settings, for each repository, we ex-250

tract the first 20 pull requests that include changes251

to test files and observe the unit test status. Reposi-252

tories that have at least one task instance where the253

unit tests passed with the default configuration are254

retained, as they possess the potential to generate255

task instances that meet our criteria.256

After this fast validation process, in addition to257

the 18 Python packages included in the SWE-bench258

dataset, another 101 Python packages are identified259

as sources for extracting repository-level data for260

our benchmark.261

3.3 Task Collection and Filtering262

Based on existing repository data, we crawl all pull263

requests and filter out those that include changes to264

test files as valid task instances. Given our focus265

on the incremental feature development task, we266

introduce the following steps to filter out final task267

instances for FEA-Bench:268

Extraction of new components For each task in-269

stance candidate, we perform parsing on all Python270

scripts involved in the gold patch. We compare the271

state before and after applying the patch to iden-272

tify newly added namespaces, including classes273

and functions, and extract their signatures and doc-274

strings as metadata.275

Filtering based on new components We re-276

tain only those task instances that contain at least277

one new component. To ensure that implementing278

3pip install -e .

new features is the primary purpose of the pull re- 279

quest, we further restrict the new components to 280

occupy more than 25% of all edited lines in gold 281

patch. This threshold is set relatively low because 282

code changes often need to include modifications 283

to other related code in addition to the new compo- 284

nents themselves. 285

Intent-based filtering The pull requests filtered 286

using the above rule-based approach still include 287

some that are not primarily aimed at feature imple- 288

mentation. Therefore, we use GPT-4o to classify 289

the intent based on the pull request description. 290

Only pull requests classified as "new feature" are 291

retained. 292

Verification by running unit tests For each in- 293

stance, we first set up the environment and testbed. 294

We then apply the test patch and run the unit test 295

files involved in the test patch. Theoretically, some 296

unit tests should fail at this stage. After applying 297

the gold patch, we rerun the same unit tests. If the 298

configuration is correct, all unit tests should pass. 299

Unlike SWE-bench, we do not impose restrictions 300

on whether ImportError or AttributeError oc- 301

curs before applying the gold patch, as these errors 302

are almost inevitable before new components are 303

implemented. Instead, to ensure data quality, we 304

exclude samples where tests remain in the failed 305

status after applying the gold patch. The status 306

of each test function before and after applying the 307

gold patch is recorded. 308

After task collection and filtering, 83 out of 119 309

repositories collected by the method in Section 310

3.2 produce 1,401 task instances for new feature 311

implementation. 312

3.4 Benchmark Characteristics 313

Semi-guided software engineering task Although 314

the signatures for new components are provided, 315

the primary objective of the FEA-Bench is to eval- 316

uate the whole solution of new feature implementa- 317

tion. This is a comprehensive real-world software 318
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FEA-Bench SWE-bench
Full Lite Full Verified

|Repositories| 83 48 12 12
|Tasks| 1401 200 2294 500

# Lines of oracle files 2115.5 1366.8 1961.3 1488.2
# Files edited 2.62 1.54 1.66 1.24
# Lines edited 128.5 68.1 37.71 14.32

# Lines of added components 87.1 47.2 10.9 2.1
% Added components 67.8 69.3 28.9 14.7
# Functions added 4.49 2.02 0.73 0.25
# Classes added 0.78 0 0.064 0.006

Table 1: Statistics for FEA-Bench and its lite subset,
as well as for SWE-bench and its verified subset. The
metrics include: 1) the number of task instances and in-
volved repositories; 2) the average total number of lines
in all Python files involved in code changes (i.e., the
Oracle setting described in Section 4.2), and the average
number of edited files and lines; 3) the average number
of lines of new components, the average percentage of
new component lines relative to all edited lines, and the
average number of added functions and classes.

engineering task, distinct from code completion.319

As shown in Table 1, each instance in FEA-Bench320

involves an average of 128.5 modified lines, with321

87.1 lines attributed to the new components them-322

selves. This indicates that approximately 41.4 lines323

of changes are made elsewhere in the repository.324

Implementing new features not only requires the325

ability to generate code for specified new compo-326

nents but also necessitates making complementary327

changes within the existing repository.328

Lite version We have also curated a subset to329

serve as a lite version of our dataset. This subset330

was filtered based on criteria including higher qual-331

ity and lower difficulty. This lite version is particu-332

larly useful for evaluating systems that are compu-333

tationally intensive and time-consuming. Detailed334

information can be found in Section A.3.335

New components driven generation task From336

Table 1, we can observe that, on average, the num-337

ber of lines for new components in each FEA-338

Bench task instance is more than 8× that of SWE-339

bench. Furthermore, the new components account340

for approximately 67.8% of all edited lines in FEA-341

Bench, compared to just 28.9% in SWE-bench.342

The difference in this metric between FEA-Bench343

lite and SWE-bench verified is even more pro-344

nounced. These statistics indicate that the task345

instances in FEA-Bench are primarily aimed at346

implementing new features. In SWE-bench, the347

average number of new functions is 0.73, indicat-348

ing that its task instances mainly involve editing349

existing code rather than incremental development.350

Complex solutions While SWE-bench focuses 351

on fixing issues, which generally involve simpler 352

problems, the task instances in FEA-Bench exhibit 353

greater complexity. From Table 1, whether mea- 354

sured by the number of edited lines or edited files, 355

the solutions of task instances in FEA-Bench are 356

notably more complex than those in SWE-bench. 357

4 Experimental Design 358

4.1 Models 359

Due to its repository-level code generation char- 360

acteristics, FEA-Bench requires models to have a 361

long context window. We evaluate representative 362

code LLMs and general-purpose LLMs with strong 363

foundational capabilities on the FEA-Bench. The 364

code LLMs used in our evaluation include CodeL- 365

lama, Codestral4, Qwen2.5-Coder, and DeepSeek- 366

Coder-V2 (Roziere et al., 2023; Hui et al., 2024; 367

Zhu et al., 2024). For general-purpose LLMs, 368

we evaluate the performance of GPT-4, GPT-4o 369

(Achiam et al., 2023; Hurst et al., 2024) and 370

DeepSeek-V3(Liu et al., 2024a), as well as models 371

with long chain-of-thought (CoT) capabilities such 372

as o1 and DeepSeek-R1 (Jaech et al., 2024; Guo 373

et al., 2025). 374

4.2 Context 375

To explore the capabilities and potential limits of 376

LLMs in implementing new features within code 377

repositories, we construct different prompts from 378

several perspectives based on our collected data. 379

Each task instance is evaluated using various con- 380

text settings to provide a comprehensive under- 381

standing of model performance. 382

New component hints In FEA-Bench, informa- 383

tion about new components can be derived from 384

two sources: 1) signatures and documentation 385

of newly extracted functions and classes, and 2) 386

changes in non-Python files within the patch, which 387

often contain relevant information about the new 388

components. Based on this, we have two settings: 389

Brief. Only provides the signatures of new compo- 390

nents. Detailed. Includes all the aforementioned 391

information. 392

Retrieval method Given the extensive amount 393

of code across multiple files in a repository, selec- 394

tive inclusion of file contents as context is neces- 395

sary. Firstly, the README file and files containing 396

new components are always included in the context. 397

For other files, similar to SWE-bench, we divide 398

4https://mistral.ai/en/news/codestral
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FEA-Bench FEA-Bench lite
Model Size Window Oracle BM25 (27K) Oracle BM25 (27K)

Detailed Brief Detailed Brief Detailed Brief Detailed Brief

CodeLlama 13B 16K 0.14 0.43 × × 0.0 0.0 × ×
34B 16K 0.57 0.57 × × 0.0 0.0 × ×

Qwen2.5-Coder 14B 32K 3.57 3.57 3.71 2.93 3.5 4.5 3.5 2.5
32B 32K 4.43 3.64 3.85 2.78 6.0 5.5 2.0 2.5

Codestral-22B 22B 32K 0.86 0.93 1.43 1.36 0.5 1.0 0.0 0.0

DeepSeek-Coder-V2 16B 128K 0.21 0.29 0.57 0.36 0.0 0.5 0.0 0.5
DeepSeek-R1-Distill 32B 128K 3.78 4.07 4.78 4.21 5.5 7.5 7.0 5.5
DeepSeek-V3 671B 64K 8.14 - 8.21 - 14.5 - 13.0 -
DeepSeek-R1 671B 64K 9.92 - 10.49 - 14.5 - 12.0 -

GPT-4 128K 4.71 4.21 3.14 2.86 6.0 6.5 2.0 1.0
GPT-4o 128K 6.14 5.57 5.28 4.50 5.0 5.0 4.0 3.5
o1-mini 128K 1.93 1.86 2.28 2.57 2.0 3.5 1.0 2.0
o1 200K 7.28 6.57 6.78 6.64 10.0 12.5 5.0 7.0

Table 2: The resolved ratios on FEA-Bench (lite) task instances. The evaluation is conducted on single-round
generation outputs by each model and a task instance is considered resolved only if all unit tests are passed. The
prompt using BM25 retrieved files is limited to length of 27K tokens. This ensures that, with a maximum generation
of 4K tokens, the total length will not exceed 32K tokens, which is the context window limits of most tested models.
"Detailed" and "Brief" refer to the levels of hints regarding new components in prompt, as mentioned in Section 4.2.

retrieval methods into: Oracle. Includes all files399

involved in the patch in the context. BM25. Re-400

trieves relevant files across the entire repository by401

BM25 algorithm (Robertson et al., 2009) based on402

the content of the pull request, and ranks them by403

relevance and filling the context until reaching a404

specified length.405

Output format Generating an entire file can406

lead to interruptions due to generation limits and407

is costly. Therefore, our experiments offer two408

edit-based generation settings: Natural. Generates409

code edits in a natural format as pairs of before-410

and-after snippets, which can be converted into411

patches applicable to the code repository through412

post-processing. Patch. Directly generates edits in413

patch format. Since patches use line numbers for414

fragment location, this setting includes line num-415

bers in the context’s code content.416

The details of prompt and experimental settings417

are shown in Appendix B.418

5 Evaluation Results419

The performance of LLMs The evaluation results420

of FEA-Bench are presented in Table 2. It is ob-421

served that in Oracle and Detailed prompt settings,422

the best resolved ratio of task instances is 9. 92%,423

indicating the poor performance of LLMs in the in-424

cremental development task at the repository level.425

Generally, the models with larger parameter sizes426

demonstrate better results. Among code LLMs, 427

Qwen2.5-Coder exhibited performance compara- 428

ble to that of GPT-4, highlighting its superiority 429

in the domain of code generation. Despite this, 430

general-purpose LLMs with stronger foundational 431

capabilities can approach the performance of spe- 432

cialized code LLMs. For example, R1-Distill, 433

which shares the same underlying architecture as 434

Qwen2.5-Coder, showed competitive performance. 435

Among the models evaluated, the latest DeepSeek- 436

V3 and R1 models achieve the best performance, 437

significantly outperforming OpenAI’s GPT-4 and 438

o1 series. This underscores the importance of foun- 439

dational capabilities in LLMs for repository-level 440

development tasks. Additionally, the performance 441

on the lite version is slightly higher, but the relative 442

trends remain largely consistent. When computa- 443

tional resources are limited, the metrics from FEA- 444

Bench lite can be used to reflect the performance 445

on the full benchmark. 446

The performance under different contexts As 447

shown in Table 2, we evaluate the performance of 448

LLMs under different settings of new component 449

hints and retrieval methods. Overall, detailed new 450

component hints lead to better model performance. 451

However, in the results from FEA-Bench lite, brief 452

hints that only provide signatures performed bet- 453

ter. This discrepancy could be attributed to the lack 454

of structured presentation of new components and 455
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BM25 (27K) BM25 (40K)
Retrieval Metrics (%)

Precision Avg. 40.26 31.85
Recall Avg. 76.04 77.14
Recall All 51.61 53.03

Resolved Ratio (%)
Detailed Brief Detailed Brief

GPT-4 3.14 2.86 3.14 2.78
GPT-4o 5.28 4.50 4.78 4.64

Table 3: The retrieval metrics and the instance resolved
ratios under 27K and 40K token length limits of the
prompt in BM25 retrieval mode.

their documentation within the prompt, as illus-456

trated in Figure 6. Regarding retrieval methods, the457

Oracle setting generally outperforms the BM25 set-458

ting, although the difference is not substantial. This459

may be because code files containing new compo-460

nents, which are regarded as known conditions in461

the FEA-Bench, ensure a certain baseline perfor-462

mance. Considering the simplest instances in the463

dataset: those involving modifications to only one464

code file. Since instances in FEA-Bench always465

include new components, the unique code file is466

known information. In this case, BM25 retrieved467

files supplement additional information, which can468

lead to better model performance compared to the469

Oracle setting.470

6 Discussion471

6.1 Retrieved Files in Context472

We aim to investigate whether providing more code473

context helps LLMs improve new feature develop-474

ment. Therefore, we conducted experiments by475

increasing the prompt limit from 27K to 40K to-476

kens, which surpasses the original context window477

limit of Qwen2.5-Coder but can contain more re-478

trieved files. The results are presented in Table 3.479

The evaluated models include GPT-4 and GPT-4o,480

and we also report the average precision and recall481

of Python files in the context relative to those in the482

gold patch, as well as the proportion of instances483

where all involved files are recalled.484

Although the recalls slightly improve at the limit485

of 40K tokens, model performance decreases. This486

indicates that current LLMs still struggle to extract487

useful information from long contexts in repository-488

level code development tasks. To improve perfor-489

mance on FEA-Bench, enhancing the precision of490

retrieval may be an effective approach than simply491

%Apply %Resolved
Model Natural Patch Natural Patch

Qwen2.5-Coder(32B) 44.82 12.92 4.43 1.71
R1-Distill(32B) 55.75 19.06 3.78 1.71
GPT-4 59.10 33.26 4.71 3.07
GPT-4o 66.38 19.49 6.14 1.86
o1 57.03 - 7.28 -
DeepSeek-V3 69.09 - 8.14 -
DeepSeek-R1 73.16 - 9.92 -

Table 4: The impact of output formats Natural and Patch.
We show the success rates of applying code edits to the
code repository and the final resolved ratios. The ex-
periments on directly generating patches are conducted
only on the models shown in the first four columns.

increasing the context length. 492

6.2 Output Format of Edits 493

Direct repository-level code development outputs 494

edits rather than new code itself. How LLMs can 495

better generate edits remains an open question. 496

Therefore, we analyze the impact of output formats 497

using the two configurations described in Section 498

4.2. The two rightmost columns of Table 4 illustrate 499

a comparison between the Natural and the Patch 500

generation method, with the former demonstrat- 501

ing significantly higher performance. The possible 502

reason is that generating patches imposes stricter 503

formatting requirements, which current LLMs find 504

challenging to adhere to accurately. Therefore, the 505

main results presented in Table 2 adopt the perfor- 506

mance by Natural generation method. 507

Whether using patches converted by converting 508

before-and-after code snippets in Natural mode or 509

directly generating patches in Patch mode, during 510

evaluation, these patches must be applied to the 511

repository. The success rates of the git apply are 512

shown in the middle two columns of Table 4. It 513

can be observed that the success rate in the Natural 514

prompt mode is significantly higher, contributing 515

to the superior performance of LLMs in Natural 516

mode. Further observation reveals a significant 517

positive correlation between the success rate of ap- 518

plying patches and the resolved ratio, regardless of 519

whether Natural or Patch mode is used. DeepSeek- 520

R1, which performs the best on FEA-Bench, has 521

the highest values for both metrics. This indicates 522

that the format of code edits is a critical factor lim- 523

iting the performance of LLMs on such tasks. 524

6.3 Performances across Repositories 525

To further analyze LLMs’ performance at a finer 526

granularity, we examine resolved ratios across dif- 527

7



Figure 4: The resolved ratios grouped by the categories of the repositories.

Figure 5: Histogram of the number of added functions
both in all task instances and resolved task instances
by DeepSeek-R1 (under Natural and Detailed prompt
settings).

ferent categories of repositories. We classify reposi-528

tories into several categories, as shown in Appendix529

A.1. The performance of DeepSeek-R1, o1, and530

GPT-4o across different categories is illustrated in531

Figure 4. The resolved ratios of different models532

vary across categories; task instances in the Test-533

ing category (from the repo: joke2k/faker) have534

the highest resolved ratio, followed by the Internet535

category. For the remaining categories, the pass536

ratio of the three models are at a similar level.537

Among the three LLMs, GPT-4o shows slightly538

weaker performance compared to the other models,539

but its trend is largely consistent with o1. Notably,540

DeepSeek-R1 exhibits weaker performance in the541

Testing category but significantly outperforms both542

GPT-4o and o1 in all other categories. This sug-543

gests that integrating different models might further544

enhance overall performance on FEA-Bench.545

6.4 Performances under Different Complexity546

of New Components547

To further investigate whether the implementation548

of new components adds pressure on LLMs in com-549

pleting feature implementation tasks, we examine550

the relationship between the number of new func-551

tions and the number of resolved instances. The 552

number of added functions is more indicative of 553

the complexity of new components, as functions 554

are more atomic compared to classes. Figure 5 il- 555

lustrates the distribution of task instances and those 556

solved by R1 with respect to the number of added 557

functions. Excluding instances where the number 558

of added functions is zero (i.e., adding only classes 559

for storing variables), it is evident that the resolved 560

ratio decreases as the number of added functions 561

increases. The resolved ratio is 18.96% when the 562

number of added functions is 1, 8.24% when it is 563

2, and 5.47% when it is greater than or equal to 564

3. This indicates that implementing new features 565

is a more challenging task than fixing bugs, which 566

constitute the majority of instances in SWE-bench. 567

Moreover, the more complex the new components, 568

the higher the difficulty of successful implementa- 569

tion. 570

7 Conclusion 571

In this paper, we introduce FEA-Bench, a novel 572

benchmark for evaluating the repository-level in- 573

cremental code development capabilities of large 574

language models (LLMs). Our benchmark focuses 575

on the critical task of implementing new features 576

by adding new components to existing code repos- 577

itories. Through our comprehensive dataset and 578

rigorous evaluation, we demonstrate that current 579

LLMs face significant challenges in this domain. 580

We also analyzed that the retrieval method of files, 581

the output format, the repository itself, and the 582

complexity of new components all impact the im- 583

plementation of new features. Our work highlights 584

the need for further advancements in LLMs’ rea- 585

soning and generation capabilities to better address 586

real-world software engineering tasks. We hope 587

that FEA-Bench will serve as a valuable resource 588

for the research community, driving progress in 589

this important area. 590
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Limitations591

Our constructed data and experiments have certain592

limitations. Firstly, the quantity of high-quality593

data suitable for repository-level incremental de-594

velopment is limited. High-quality and usable pull595

requests for new feature development are relatively596

scarce. Many repository-level code developments597

for implementing new functionalities were commit-598

ted during the early stages of repositories, without599

going through the rigorous code review process600

typical of the open-source community, resulting601

in lower data quality that cannot be utilized. Fur-602

thermore, the software’s early-stage developments603

might not even have been conducted using the604

GitHub platform, posing a challenge for data col-605

lection and utilization. Consequently, FEA-Bench,606

which is built on publicly available data and sub-607

jected to stringent filtering, may exhibit certain608

scenario limitations.609

Secondly, due to the long context involved in610

repository-level code development, the cost of con-611

ducting experiments using LLMs is relatively high.612

Therefore, the experimental results are based on613

a single round generation, akin to Pass@1, which614

may introduce a certain level of bias into the results.615

Additionally, given the scarcity of API resources616

for models like DeepSeek-V3 and R1, some results617

in the main experiments presented in Table 2 are618

missing. We hope that more affordable models619

similar to DeepSeek can be further developed to620

facilitate research and applications in the field of621

repository-level code development.622

Ethics Statement623

We collected the data from publicly available624

Github repositories only for research purposes. All625

the repositories have licenses that allow free soft-626

ware use. LLMs are used only for classification627

during the construction of the FEA-Bench dataset,628

so no harmful information can be created in the629

dataset. The dataset and code for our proposed630

method will be made publicly available for aca-631

demic research. However, we should note that632

the inference results of the task instances from the633

benchmark may contain code that is harmful to634

computer systems. Evaluation by docker is recom-635

mended, just like SWE-bench.636

Additionally, the ChatGPT platform was used as637

an AI assistant for refining the paper writing.638
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A Dataset Details 870

A.1 Repositories 871

The task instances in FEA-Bench are derived 872

from 83 Python packages corresponding to GitHub 873

repositories. For each package, we obtained its 874

license information and topic classification from 875

the PyPI website. For packages missing the topic 876

attribute, we utilized their README files and em- 877

ployed GPT-4o to classify them into topics avail- 878

able on the PyPI website5. Finally, considering 879

the distribution of the topics of task instances in 880

FEA-Bench, we further simplify the topics to sev- 881

eral categories to facilitate data visualization and 882

analysis, as presented in Section 6.3. 883

The relevant information regarding the involved 884

code repositories is summarized in Table 5. 885

A.2 Construction Details 886

Table 6 shows the number of remaining task in- 887

stances for each stage during the data collection 888

process. In Section 3.2, we mentioned that after the 889

fast validation step, including the 18 repositories 890

from SWE-bench, a total of 119 repositories (18 + 891

101) are available for further data collection. On 892

this basis, we crawl the pull requests from GitHub 893

to obtain code changes. Files with names contain- 894

ing words like test are identified as unit test files 895

executable by pytest. 896

Initially, we filter pull requests (PRs) based on 897

whether they were merged, resulting in the number 898

of PRs shown in the "# PR" column of Table 6. 899

Next, we excluded PRs without any test files, leav- 900

ing only those PRs with the necessary conditions 901

to be considered valid task instances, as indicated 902

by the "# All tasks" column. Further filtering was 903

conducted according to the third and fourth stages 904

illustrated in Figure 3, retaining only those PRs that 905

introduce at least one new component and are clas- 906

sified as "new feature" types by GPT-4o based on 907

the PR content. Additionally, instances with patch 908

lengths exceeding 8K (8192) tokens are excluded 909

to remove long-tail distributions and noise. The 910

remaining candidate task instances are listed under 911

the "# Candidates" column. This filtering step does 912

5https://pypi.org/classifiers/

11

https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://arxiv.org/abs/2412.11990
https://arxiv.org/abs/2412.11990
https://arxiv.org/abs/2412.11990
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.18653/v1/2024.acl-long.280
https://doi.org/10.18653/v1/2024.acl-long.280
https://doi.org/10.18653/v1/2024.acl-long.280
https://doi.org/10.18653/v1/2024.acl-long.280
https://doi.org/10.18653/v1/2024.acl-long.280
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1145/3650212.3680384
https://arxiv.org/abs/2406.06918
https://arxiv.org/abs/2406.06918
https://arxiv.org/abs/2406.06918
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://pypi.org/classifiers/


You will be provided with a partial code base and an feature request which requires a
 new feature to add in the code repository.Premise

Request
Content

<request>
Pull Request Title + Pull Request Body
Comments before first commit
</request>

Issue
Content
(If any)

Here is the discussion in the issues of the pull request.
<issues>
Issue Title + Issue Body
Comments before first commit
</issues>

Doc
Changes
(If any)

To implement the new features mentioned above, some design in this repository need 
to be modified, as the modification in document files:
<description changes>
Gold patches that are not from .py files
</description changes>

New
Components

There are several new functions or classes that need to be implemented, using the definitions below: 
<definitions>
[start of new definitions in file 1]
(definition of namespace of new component 1:)
signature of new component 1 in file 1
(definition of namespace of new component 2:)
signature of new component 2 in file 1
...
[end of new definitions in  file 1]
[start of new definitions in file 2]
...
</definitions>

+ docstring of new component 1 in file 1

+ docstring of new component 2 in file 1

Code Files

All the involved readme files and code files are listed below
with their contents. If a file's content is indicated as empty, it
means that the file does not yet exist in the current repository
and needs to be created with new content.
<code>
[start of file 1]
All content in file 1; In "Patch" mode, line number is added
[end of file 1]
[start of file 2]
...
</code>

README files

Files with new
components

Files Retrieved
("Oracle" or BM25)

De-duplication

Output
Instruction "Natural" Format Output Instructions / "Patch" Format Instructions

Figure 6: The prompt for the inference of the task instances.

not exist in SWE-bench, leading to a smaller num-913

ber of candidate task instances in our benchmark914

dataset.915

Finally, for each instance, we apply the test916

patch to the repository in the base commit state917

to verify that unit tests could accurately evaluate918

the corresponding code edits. Similar to SWE-919

bench, our pipeline annotates each instance with920

the corresponding repository version and provides921

environment and installation configurations based922

on versions. For repositories included in SWE-923

bench, we directly utilize their environment setup924

and test configurations grouped by versions. For925

other repositories, minimal installation instructions926

(pip install -e .) and basic pytest testing 927

configurations are used. Initially, we run the unit 928

tests directly and observe the pass status. Subse- 929

quently, we apply the gold patch from the PR and 930

execute the unit tests again. We allowed errors such 931

as AttributeError and ImportError in the first 932

test, which are common when new components are 933

not yet implemented, but these errors are not per- 934

mitted in SWE-bench data collection pipeline. For 935

the second test after applying the gold patch, any 936

FAILED status is unacceptable to ensure data qual- 937

ity. After this execution-based filtering process, the 938

final task instances constitute the FEA-Bench task 939

instances, as shown in the "# in Full" column of 940

12



Table 6.941

We only present information for repositories that942

have at least one instance in FEA-Bench. Specifi-943

cally, out of the 119 repositories identified during944

the repository collection phase, only 83 repositories945

contain at least one task instance.946

A.3 FEA-Bench lite947

The feature implementation task proposed in this948

study, as one primary type of repository-level in-949

cremental code development tasks, require LLMs950

with long context capabilities to perform reasoning951

over extensive file contents. Such inference is com-952

putationally expensive. Considering the possible953

evaluation of multi-round code generation systems,954

it is necessary to select a high-quality subset for955

more efficient evaluation. Therefore, we establish956

stricter criteria to curate a higher-quality, lower-957

difficulty FEA-Bench lite subset.958

Instances meeting any of the following low-959

quality criteria are excluded:960

• The feature request descriptions contain fewer961

than 40 words.962

• The instance involves cascading issues or com-963

mit SHA-256 references.964

• The descriptions contain images.965

Additionally, to limit task difficulty, instances966

meeting any of the following criteria are also ex-967

cluded:968

• Involve deleting code files.969

• Involve more than three code files.970

• The gold patch contains More than 10 code971

change hunks.972

• Natural-formatted code change content ex-973

ceeding 4K(4096) tokens.974

• Contain new class(es).975

• Contain more than ten added functions.976

B Inference977

B.1 Prompt978

In Section 4.2, we present different prompt set-979

tings for the context of inference. A more detailed980

prompt structure is illustrated in Figure 6. The981

prompt is constructed using the first two items982

shown in Figure 2 as known input information. The983

feature request includes both pull request content 984

and issue content. Information about new com- 985

ponents and related code files is listed straightfor- 986

wardly within the prompt. 987

In Figure 6, the italicized text indicates place- 988

holders that need to be filled with specific data 989

of each task instance, while the other text repre- 990

sents standard prompt content. Red text highlights 991

additional information for detailed hints of new 992

components, and blue text indicates parts that need 993

to be modified when directly generating patches as 994

results. 995

In this study, we provide two formats for generat- 996

ing code edits: Natural and Patch. The correspond- 997

ing output instructions are illustrated in Figure 7. 998

To ensure that the models produce outputs in the 999

correct format, both modes are accompanied by 1000

detailed instructions and examples. 1001

We include several different prompts mentioned 1002

above for each task instance in the dataset files. 1003

B.2 Generation Configurations 1004

For models with fewer than 32 billion parameters, 1005

we utilized the vLLM framework 6 on an 8-GPU 1006

NVIDIA A100 workstation, employing tensor par- 1007

allelism for inference. The maximum number of 1008

generated tokens is limited to 4096, matching the 1009

generation length limits of used OpenAI GPT-4 1010

and GPT-4o in our experiments. 1011

For larger open-source and all closed-source 1012

models, specifically DeepSeek-V3, R1, and Ope- 1013

nAI series models, we invoke their APIs for infer- 1014

ence. The versions of the OpenAI models used are 1015

as follows: 1016

• GPT-4: gpt-4-turbo-2024-04-09 1017

• GPT-4o: gpt-4o-2024-05-13 1018

• o1: o1-2024-12-17 1019

• o1-mini: o1-mini-2024-09-12 1020

When possible, the temperature and top-p set- 1021

tings are fixed at 0.2 and 0.95, respectively. For 1022

DeepSeek-V3 and R1, the max output tokens are 1023

8K (8192). For o1 and o1-mini, the max output 1024

tokens is 100,000 and 65,536 (64K), respectively. 1025

During the inference process, LLMs perform a 1026

single generation for each task instance in FEA- 1027

Bench, and the output is converted into a patch 1028

for evaluation. The evaluation tools are adapted 1029

6https://github.com/vllm-project/vllm
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from the SWE-bench evaluation scripts which are1030

based on docker, ensuring safety and easy use for1031

the evaluation process.1032
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"Natural" Format Output Instructions
Please solve the feature request with adding the functions or classes between
the <definitions> and </definitions>. You do not need to output any changes
or edits for description files like .md or .rst files.
I need you to make multiple edits across one or more files in a repository to
implement a specific feature or improvement mentioned above. 
For each edit, output the changes in the following format:

```
<edit>
[start of the snippet before editing in <file_path>]
<code_before_edit>
[end of the snippet before editing in <file_path>]

[start of the snippet after editing in <file_path>]
<code_after_edit>
[end of the snippet after editing in <file_path>]
</edit>
```

Notes:
- The <file_path> is the relative path of the file being edited.
- The <code_before_edit> snippet should include several lines before and
after the modified region, unless the file was originally empty.
- If a file was originally empty, leave <code_before_edit> blank but ensure
<code_after_edit> includes the new content.
- Ensure the edits are sequential and address all necessary changes to achieve
the requested feature.

Here is an example of the output format:
<edit>
[start of the snippet before editing in src/code.py]
def factorial(a):
    res = 1
    while a >= 0:
        res *= a
    return res
[end of the snippet before editing in src/code.py]

[start of the snippet after editing in src/code.py]
def factorial(a):
    assert type(a) == int and a >= 0
    res = 1
    while a >= 2:
        res *= a
        a -= 1
    return res
[end of the snippet after editing in src/code.py]
</edit>

<edit>
[start of the snippet before editing in src/code.py]
def exact_dividion(x, y):
    return x % y == 0
[end of the snippet before editing in src/code.py]

[start of the snippet after editing in src/code.py]
def exact_dividion(x, y):
    assert type(x) == type(y) == int and x > 0 and y > 0
    return x % y == 0
[end of the snippet after editing in src/code.py]
</edit>

<edit>
[start of the snippet before editing in src/demo.py]
[end of the snippet before editing in src/demo.py]

[start of the snippet after editing in src/demo.py]
from code import factorial
print(factorial(5))
[end of the snippet after editing in src/demo.py]
</edit>
I need you to solve the feature request with a series of edits in the format
shown above. Respond below:

"Patch" Format Instructions
Please solve the feature request with adding the functions or classes between
the <definitions> and </definitions>. You do not need to output any changes
or edits for description files like .md or .rst files.
I need you to make multiple edits across one or more files in a repository to
implement a specific feature or improvement mentioned above. 
The edits should be output in patch format.

Here is an example of a patch file. It consists of changes to the code base. 
It specifies the file names, the line numbers of each change, and the removed
and added lines. 
A single patch file can contain changes to multiple files.

<patch>
diff --git a/src/code.py b/src/code.py
--- a/src/code.py
+++ b/src/code.py
@@ -1,11 +1,14 @@
 def factorial(a):
+    assert type(a) == int and a >= 0
     res = 1
-    while a >= 0:
+    while a >= 2:
         res *= a
+        a -= 1
     return res
     #
     # 
     # 
     # 
 def exact_dividion(x, y):
+    assert type(x) == type(y) == int and x > 0 and y > 0
     return x % y == 0
diff --git a/src/demo.py b/src/demo.py
new file mode 100644
--- /dev/null
+++ b/src/demo.py
@@ -0,0 +1,2 @@
+from code import factorial
+print(factorial(5))
</patch>

I need you to solve the provided feature request by generating a single patch
file that I can apply directly to this repository using git apply. Please respond
with a single patch file in the format shown above.
Respond below:

Figure 7: The output instructions at the rear of the inference prompt.
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Repo Name License Topic Category Source
astropy/astropy BSD-3-Clause Scientific/Engineering::Astronomy Physics SWE-Bench
django/django BSD-3-Clause Internet::WWW/HTTP Internet SWE-Bench
matplotlib/matplotlib Other Scientific/Engineering::Visualization Other SWE-Bench
mwaskom/seaborn BSD-3-Clause Scientific/Engineering::Visualization Other SWE-Bench
pallets/flask BSD-3-Clause Internet::WWW/HTTP Internet SWE-Bench
pvlib/pvlib-python BSD-3-Clause Scientific/Engineering::Physics Physics SWE-Bench
pydata/xarray Apache-2.0 Scientific/Engineering::Information Analysis Other SWE-Bench
pydicom/pydicom Others Scientific/Engineering::Medical Science Apps. Medical SWE-Bench
pylint-dev/astroid LGPL-2.1 Software Development::Libraries Libraries SWE-Bench
pylint-dev/pylint GPL-2.0 Software Development::Quality Assurance Other SWE-Bench
pyvista/pyvista MIT Scientific/Engineering::Information Analysis Other SWE-Bench
scikit-learn/scikit-learn BSD-3-Clause Scientific/Engineering::Artificial Intelligence AI SWE-Bench
sphinx-doc/sphinx BSD-2-Clause Text Processing::Markup Other SWE-Bench
sqlfluff/sqlfluff MIT Software Development::Quality Assurance Other SWE-Bench
sympy/sympy Others Scientific/Engineering::Mathematics Mathematics SWE-Bench
Aider-AI/aider Apache-2.0 Software Development::Code Generators Other Fast-Validation
Cog-Creators/Red-DiscordBot GPL-3.0 Communications::Chat Other Fast-Validation
DLR-RM/stable-baselines3 MIT Scientific/Engineering::Artificial Intelligence AI Fast-Validation
EleutherAI/lm-evaluation-harness MIT Scientific/Engineering::Artificial Intelligence AI Fast-Validation
Project-MONAI/MONAI Apache-2.0 Scientific/Engineering::Medical Science Apps. Medical Fast-Validation
PyThaiNLP/pythainlp Apache-2.0 Text Processing::Linguistic Other Fast-Validation
RDFLib/rdflib BSD-3-Clause Software Development::Libraries Libraries Fast-Validation
Textualize/rich MIT Software Development::Libraries Libraries Fast-Validation
Textualize/textual MIT Software Development::User Interfaces Other Fast-Validation
TileDB-Inc/TileDB-Py MIT Software Development::Libraries Libraries Fast-Validation
astronomer/astronomer-cosmos Apache-2.0 Software Development::Build Tools Build Tools Fast-Validation
atlassian-api/atlassian-python-api Apache-2.0 Internet::WWW/HTTP Internet Fast-Validation
aws-cloudformation/cfn-lint MIT-0 Software Development::Quality Assurance Other Fast-Validation
aws-powertools/powertools-lambda-python MIT-0 Software Development::Libraries Libraries Fast-Validation
aws/sagemaker-python-sdk Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
biopragmatics/bioregistry MIT Scientific/Engineering::Bio-Informatics Other Fast-Validation
boto/boto3 Apache-2.0 Software Development::Libraries Libraries Fast-Validation
boto/botocore Apache-2.0 Software Development::Libraries Libraries Fast-Validation
cocotb/cocotb BSD-3-Clause Scientific/Engineering::Electronic Design Automation (EDA) Other Fast-Validation
conan-io/conan MIT Software Development::Build Tools Build Tools Fast-Validation
deepset-ai/haystack Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
docker/docker-py Apache-2.0 Software Development::Libraries Libraries Fast-Validation
dpkp/kafka-python Apache-2.0 Software Development::Libraries Libraries Fast-Validation
embeddings-benchmark/mteb Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
facebookresearch/hydra MIT Software Development::Libraries Libraries Fast-Validation
fairlearn/fairlearn MIT Scientific/Engineering::Artificial Intelligence AI Fast-Validation
falconry/falcon Apache-2.0 Internet::WWW/HTTP Internet Fast-Validation
google-deepmind/optax Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
googleapis/python-aiplatform Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
googleapis/python-bigquery Apache-2.0 Internet::WWW/HTTP Internet Fast-Validation
gradio-app/gradio Apache-2.0 Scientific/Engineering::Human Machine Interfaces Other Fast-Validation
graphql-python/graphene MIT Software Development::Libraries Libraries Fast-Validation
huggingface/accelerate Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
huggingface/datasets Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
huggingface/huggingface_hub Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
huggingface/pytorch-image-models Apache-2.0 Software Development::Libraries Libraries Fast-Validation
huggingface/trl Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
joblib/joblib BSD-3-Clause Software Development::Libraries Libraries Fast-Validation
joke2k/faker MIT Software Development::Testing Testing Fast-Validation
lark-parser/lark MIT Text Processing::Linguistic Other Fast-Validation
minio/minio-py Apache-2.0 Software Development::Libraries Libraries Fast-Validation
open-mmlab/mmengine Apache-2.0 Utilities Other Fast-Validation
openvinotoolkit/datumaro MIT Scientific/Engineering::Image Processing Other Fast-Validation
pgmpy/pgmpy MIT Scientific/Engineering::Artificial Intelligence AI Fast-Validation
pre-commit/pre-commit MIT Software Development::Quality Assurance Other Fast-Validation
prometheus/client_python Apache-2.0 System::Monitoring Other Fast-Validation
prompt-toolkit/python-prompt-toolkit BSD-3-Clause Software Development::User Interfaces Other Fast-Validation
pygments/pygments BSD-2-Clause Software Development::Documentation Other Fast-Validation
pyocd/pyOCD Apache-2.0 Software Development::Debuggers Other Fast-Validation
pypa/hatch MIT Software Development::Build Tools Build Tools Fast-Validation
pyro-ppl/pyro Apache-2.0 Scientific/Engineering::Artificial Intelligence AI Fast-Validation
python-hyper/h2 MIT Internet::WWW/HTTP Internet Fast-Validation
roboflow/supervision MIT Scientific/Engineering::Image Processing Other Fast-Validation
rytilahti/python-miio GPL-3.0 Home Automation Other Fast-Validation
saleweaver/python-amazon-sp-api MIT Internet::WWW/HTTP Internet Fast-Validation
scrapy/scrapy BSD-3-Clause Software Development::Libraries Libraries Fast-Validation
scverse/scanpy BSD-3-Clause Scientific/Engineering::Bio-Informatics Other Fast-Validation
slackapi/bolt-python MIT Communications::Chat Other Fast-Validation
slackapi/python-slack-sdk MIT Communications::Chat Other Fast-Validation
snowflakedb/snowflake-connector-python Apache-2.0 Software Development::Libraries Libraries Fast-Validation
softlayer/softlayer-python MIT Software Development::Libraries Libraries Fast-Validation
spec-first/connexion Apache-2.0 Internet::WWW/HTTP Internet Fast-Validation
statsmodels/statsmodels BSD-3-Clause Scientific/Engineering::Information Analysis Other Fast-Validation
tfranzel/drf-spectacular BSD-3-Clause Software Development::Documentation Other Fast-Validation
tobymao/sqlglot MIT Database::Database Engines/Servers Database Fast-Validation
tornadoweb/tornado Apache-2.0 Internet::WWW/HTTP Internet Fast-Validation
tortoise/tortoise-orm Apache-2.0 Database::Front-Ends Database Fast-Validation
wagtail/wagtail BSD-3-Clause Internet::WWW/HTTP Internet Fast-Validation

Table 5: The information of the repositories involved in FEABench.
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Repository Name Class (Short) Max PR No. # PR # All tasks # Candidates # in Full # in Lite
sympy/sympy Mathematics 27454 12857 6034 819 239 46
joke2k/faker Testing 2144 1386 518 186 126 8
conan-io/conan Build Tools 17534 6185 3715 473 124 23
tobymao/sqlglot Database 4597 2463 1996 185 116 14
scikit-learn/scikit-learn AI 30289 17489 4174 186 83 9
pvlib/pvlib-python Physics 2336 1072 444 102 52 10
deepset-ai/haystack AI 8669 4132 1438 317 49 8
Project-MONAI/MONAI Medical 8275 3468 1809 463 37 1
matplotlib/matplotlib Other 29140 18163 4057 164 34 7
sphinx-doc/sphinx Other 13196 5798 1597 126 30 4
googleapis/python-aiplatform AI 4830 2927 826 241 29 1
astropy/astropy Physics 17525 11205 4292 405 27 8
Textualize/textual Other 5444 2205 819 139 27 1
falconry/falcon Internet 2425 1279 499 67 27 3
softlayer/softlayer-python Libraries 2207 1277 661 105 26 2
Textualize/rich Libraries 3548 1142 283 41 24 4
rytilahti/python-miio Other 1993 979 249 46 23 1
sqlfluff/sqlfluff Other 6534 3448 2079 296 19 2
google-deepmind/optax AI 1164 805 174 54 19 3
pydata/xarray Other 9879 4310 1838 234 17 2
boto/boto3 Libraries 4371 757 130 38 17 2
roboflow/supervision Other 1773 1021 94 30 14 7
RDFLib/rdflib Libraries 3025 1562 370 21 13 2
huggingface/datasets AI 7342 4118 792 99 12 2
aws-cloudformation/cfn-lint Other 3898 2583 790 92 11 0
boto/botocore Libraries 3331 2145 777 83 11 0
pgmpy/pgmpy AI 1887 902 368 76 11 2
huggingface/huggingface_hub AI 2683 1559 586 130 10 1
prometheus/client_python Other 1080 429 134 14 10 1
pypa/hatch Build Tools 1860 721 313 34 9 1
scrapy/scrapy Libraries 6598 3253 846 53 9 2
slackapi/python-slack-sdk Other 1627 764 266 29 9 0
django/django Internet 18807 18482 725 32 7 1
pydicom/pydicom Medical 2195 979 494 42 7 1
pylint-dev/pylint Other 10168 4431 1859 79 7 1
embeddings-benchmark/mteb AI 1730 1050 137 15 7 1
python-hyper/h2 Internet 1291 1072 144 11 6 0
mwaskom/seaborn Other 3798 1093 469 40 5 0
pyvista/pyvista Other 7045 3837 1149 292 5 2
dpkp/kafka-python Libraries 2442 937 212 17 5 0
lark-parser/lark Other 1503 467 135 10 5 2
astronomer/astronomer-cosmos Build Tools 1439 754 270 39 4 1
fairlearn/fairlearn AI 1472 937 229 29 4 1
huggingface/accelerate AI 3293 1607 352 67 4 2
docker/docker-py Libraries 3297 1554 538 24 3 1
huggingface/trl AI 2550 1181 248 29 3 0
joblib/joblib Libraries 1641 701 250 11 3 0
open-mmlab/mmengine Other 1620 1013 350 59 3 1
openvinotoolkit/datumaro Other 1689 1388 521 98 3 0
pygments/pygments Other 2837 886 346 79 3 1
pyocd/pyOCD Other 1734 954 175 11 3 0
pyro-ppl/pyro AI 3413 2302 1038 369 3 0
tortoise/tortoise-orm Database 1840 607 283 46 3 0
DLR-RM/stable-baselines3 AI 2069 534 199 23 2 0
EleutherAI/lm-evaluation-harness AI 2609 961 52 9 2 1
PyThaiNLP/pythainlp Other 1056 667 269 39 2 1
TileDB-Inc/TileDB-Py Libraries 2128 1184 488 34 2 0
atlassian-api/atlassian-python-api Internet 1476 849 49 14 2 0
aws/sagemaker-python-sdk AI 4987 3219 715 116 2 2
googleapis/python-bigquery Internet 2102 1372 358 65 2 0
gradio-app/gradio Other 10271 4707 1210 81 2 0
graphql-python/graphene Libraries 1583 68 19 2 2 1
prompt-toolkit/python-prompt-toolkit Other 1949 713 49 3 2 0
snowflakedb/snowflake-connector-python Libraries 2127 1311 466 22 2 0
spec-first/connexion Internet 2011 879 327 31 2 0
statsmodels/statsmodels Other 9462 3793 1444 121 2 0
tornadoweb/tornado Internet 3452 1573 341 16 2 0
pallets/flask Internet 5640 2604 404 17 1 0
pylint-dev/astroid Libraries 2669 1810 301 8 1 0
Aider-AI/aider Other 2767 346 31 1 1 0
Cog-Creators/Red-DiscordBot Other 6499 4060 157 18 1 0
aws-powertools/powertools-lambda-python Libraries 5814 4398 517 115 1 1
biopragmatics/bioregistry Other 1346 784 156 28 1 0
cocotb/cocotb Other 4345 2137 493 34 1 0
facebookresearch/hydra Libraries 3005 1301 442 35 1 0
huggingface/pytorch-image-models Libraries 2398 551 85 17 1 1
minio/minio-py Libraries 1472 890 242 14 1 0
pre-commit/pre-commit Other 3382 1222 527 23 1 0
saleweaver/python-amazon-sp-api Internet 1638 1027 21 9 1 0
scverse/scanpy Other 3427 1535 516 35 1 0
slackapi/bolt-python Other 1234 446 159 9 1 0
tfranzel/drf-spectacular Other 1362 345 135 12 1 1
wagtail/wagtail Internet 12732 7070 1531 213 1 0

Table 6: Statistics of how many PRs (task instances) are left during the data collection procedures.
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