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Abstract

Generative Adversarial Networks (GANs) have shown great promise in model-1

ing high dimensional data. The learning objective of GANs usually minimizes2

some measure discrepancy, e.g., f -divergence (f -GANs) or Integral Probability3

Metric (Wasserstein GANs). With f -divergence as the objective function, the4

discriminator essentially estimates the density ratio, and the estimated ratio proves5

useful in further improving the sample quality of the generator. However, how6

to leverage the information contained in the discriminator of Wasserstein GANs7

(WGAN) is less explored. In this paper, we introduce the Discriminator Contrastive8

Divergence, which is well motivated by the property of WGAN’s discriminator and9

the relationship between WGAN and energy-based model. Compared to standard10

GANs, where the generator is directly utilized to obtain new samples, our method11

proposes a semi-amortized generation procedure where the samples are produced12

with the generator’s output as an initial state. Then several steps of Langevin13

dynamics are conducted using the gradient of the discriminator. We demonstrate14

the benefits of significantly improved generation on both synthetic data and several15

real-world image generation benchmarks.16

1 Introduction17

Generative Adversarial Networks (GANs) [10] proposes a popular way to learn likelihood-free gener-18

ative models, which have shown promising results on various challenging tasks. Specifically, GANs19

are learned by finding the equilibrium of a min-max game between a generator and a discriminator or20

a critic. Assuming the optimal discriminator can be obtained, the generator substantially minimizes21

some discrepancy between the generated distribution and the target distribution.22

Improving training GANs by exploring the discrepancy measure with the excellent property has stimu-23

lated fruitful lines of research works and is still an active area. Two well-known discrepancy measures24

for training GANs are f -divergence and Integral Probability Metric (IPM) [26]. f -divergence is25

severe for directly minimization due to the intractable integral, f -GANs provide minimization instead26

of a variational approximation of f -divergence between the generated distribution pGθ and the target27

distribution pdata. The discriminator in f -GANs serves as a density ratio estimator [36]. The other28

families of GANs are based on the minimization of an Integral Probability Metric (IPM). According29

to the definition of IPM, the critic needs to be constrained into a specific function class. When30

the critic is restricted to be 1-Lipschitz function, the corresponding IPM turns to the Wasserstein-131

distance, which inspires the approaches of Wasserstein GANs (WGANs) [25, 1, 13].32

No matter what kind of discrepancy is evaluated and minimized, the discriminator is usually discarded33

at the end of the training, and only the generator is kept to generate samples. A natural question to34
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ask is whether, and how we can leverage the remaining information in the discriminator to construct35

a more superior distribution than simply sampling from a generator.36

Recent work [2, 35] has shown that a density ratio can be obtained through the output of discriminator,37

and a more superior distribution can be acquired by conducting rejection sampling or Metropolis-38

Hastings sampling with the estimated density ratio based on the original GAN [10].39

However, the critical limitation of previous methods lies in that they can not be adapted to WGANs,40

which enjoy superior empirical performance over other variants. How to leverage the information of41

a WGAN’s critic model to improve image generation remains an open problem. In this paper, we do42

the following to address this:43

• We provide a generalized view to unify different families of GANs by investigating the44

informativeness of the discriminators.45

• We propose a semi-amortized generative modeling procedure so-called discriminator con-46

trastive divergence (DCD), which achieves an intermediate between implicit and explicit47

generation and hence allows a trade-off between generation quality and speed.48

Extensive experiments are conducted to demonstrate the efficacy of our proposed method on both49

synthetic setting and real-world generation scenarios, which achieves state-of-the-art performance on50

several standard evaluation benchmarks of image generation.51

2 Methodology52

We first introduce the Fenchel dual of the intractable partition function Zθ in Eq. 8:53

Theorem 1. [38] With H(q) = −
∫
q(x) log q(x)dx, the Fenchel dual of log-partition Zθ is as54

follows:55

A(Eθ) = max
q∈P
〈q(x), Eθ(x)〉+H(q), (1)

where P denotes the space of distributions, and 〈q(x), Eθ(x)〉 =
∫
Eθ(x)q(x)dx.56

We put the Fenchel dual of A(Eθ) back into the MLE objective in Eq. 9, we achieve the following57

min-max game formalization for training energy-based model based on MLE:58

min
q∈P

max
Eθ∈E

Ex∼Pdata [Eθ(x)]− Ex∼q [Eθ(x)]︸ ︷︷ ︸
WGAN’s objective for critic

− H(q)︸ ︷︷ ︸
entropy regularization

. (2)

The Fenchel dual view of MLE training in the energy-based model explicitly illustrates the gap59

and connection between the WGAN and Energy based model. If we consider the dual distribution60

q as the generated distribution pGθ , and the Dφ as the energy function Eθ. The duality form for61

training energy-based models is essentially the WGAN’s objective with the entropy of the generator62

is regularized.63

Hence to turn the discriminator in WGAN into an energy function, we may conduct several fine-tuning64

steps, as illustrated in Eq. 2. Note that maximizing the entropy of the pGθ is indeed a challenging65

task, which needs to either use a tractable density generator, e.g., normalizing Flows [7], or maximize66

the mutual information between the latent variable Z and the corresponding Gθ(Z) when the Gθ is a67

deterministic mapping. However, instead of maximizing the entropy of the generated distribution68

pGθ directly, we derive our method based on the following fact:69

Proposition 1. [19] Update the generated distribution pGθ according to the gradient estimated70

through Equation. 2, essentially minimized the Kullback–Leibler (KL) divergence between pGθ and71

the distribution pDφ , which refers to the distribution implied by using Dφ as the energy function, as72

illustrated in Eq. 8, i.e. DKL(pGθ ||pDφ).73

To avoid the computation of H(pGθ ), motivated by the monotonic property of MCMC, as illustrated74

in Eq. 11, we propose Discriminator Contrastive Divergence (DCD), which replaces the gradient-75

based optimization on q(pGθ ) in Eq. 2 with several steps of MCMC for finetuning the critic in WGAN76

into an energy function. To be more specific, we use Langevin dynamics[33] which leverages the77

gradient of the discriminator to conduct sampling:78

xk = xk−1 −
ε

2
∇xDφ (xk−1) +

√
εω, ω ∼ N (0, I), (3)
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where ε refers to the step size. The GAN-based approaches are implicitly constrained by the dimension79

of the latent noise, which is based on a widely applied assumption that the high dimensional data,80

e.g., images, actually distribute on a relatively low-dimensional manifold. Apart from searching the81

reasonable point in the data space, we could also find the lower energy part of the latent manifold by82

conducting Langevin dynamics in the latent space which are more stable in practice, i.e.:83

zlt = zl−1
t − ε

2
∇zDφ

(
Gθ(zt)

l−1
)
+
√
εω, ω ∼ N (0, I). (4)

Ideally, the proposal should be accepted or rejected according to the Metropolis–Hastings algorithm:84

α := min

{
1,

Dφ (xk) q (xk−1|xk)
Dφ (xk−1) q (xk|xk−1)

}
, (5)

where q refers to the proposal which is defined as:85

q (x′|x) ∝ exp

(
− 1

4τ
‖x′ − x− τ∇ log π(x)‖22

)
. (6)

In practice, we find the rejection steps described in Eq. 5 do not boost performance. For simplicity,86

following [31, 8], we apply Eq. 3 in experiments as an approximate version. The whole tuning87

procedure is illustrated in Algorithm 1.88

After fine-tuning, the discriminator function can be approximated seen as an unnormalized probability89

function, which implies a unique distribution pDφ . And similar to the p∗ implied in the rejection90

sampling-based method, it is reasonable to assume that pDφ is a superior distribution of pGθ . Sampling91

from pDφ can be implemented through the Langevin dynamics, as illustrated in Eq. 3 with pGθ serves92

as the initial distribution.93

3 Experiments94

3.1 Synthetic Density Modeling95

(a) Target (b) SNGAN (c) SNGAN-DCD

Table 1: Density modeling on synthetic distribu-
tions. Top: 8 Gaussian distribution. Bottom: 25
Gaussian distribution. Left: Distribution of real
data. Middle: Distribution defined by the genera-
tor of SNGAN. The surface is the level set of the
critic. Yellow corresponds to higher value while
purple corresponds to lower. Right: Distribution
defined by the SNGAN-DCD. The surface is the
level set of the proposed energy function.

Displaying the level sets is a meaningful way to96

study learned critic. Following the [2, 13], we97

investigate the impacts of our method on two98

challenging low-dimensional synthetic settings:99

twenty-five isotropic Gaussian distributions ar-100

ranged in a grid and eight Gaussian distributions101

arranged in a ring (Fig. 1a). For all different set-102

tings, both the generator and the discriminator103

of the WGAN model are implemented as neu-104

ral networks with four fully connected layers105

and Relu activations. The Lipschitz constraint106

is restricted through spectral normalization [25],107

while the prior is a two-dimensional multivari-108

ate Gaussian with a mean of 0 and a standard109

deviation of 1.110

To investigate whether the proposed Discrimina-111

tor Contrastive Divergence is capable of tuning112

the distribution induced by the discriminator as113

desired energy function, i.e. pDφ , we visual-114

ize both the value surface of the critic and the115

samples obtained from pDφ with Langevin dy-116

namics. The results are shown in Figure. 1. As can be observed, the original WGAN (Fig. 1b) is strong117

enough to cover most modes, but there are still some spurious links between two different modes. The118

enhanced distribution pDφ (Fig. 1c), however, has the ability to reduce spurious links and recovers the119

modes with underestimated density. More precisely, after the MCMC fine-tuning procedure (Fig. 1c),120

the gradients of the value surface become more meaningful so that all the regions with high density in121

data distribution pdata are assigned with high Dφ value, i.e., lower energy(exp(−Dφ)). By contrast,122

in the original discriminator (Fig. 1b), the lower energy regions in pDφ are not necessarily consistent123

with the high-density region of pdata.124
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Model Inception FID

CIFAR-10 Unconditional
PixelCNN [37] 4.60 65.93
PixelIQN [28] 5.29 49.46
EBM [8] 6.02 40.58
WGAN-GP [13] 7.86± .07 18.12
MoLM [29] 7.90± .10 18.9
SNGAN [25] 8.22± .05 21.7
ProgressiveGAN [18] 8.80± .05 -
NCSN [31] 8.87± .12 25.32

DCGAN w/ DRS [2] 3.073 -
DCGAN w/ MH-GAN [35] 3.379 -
ResNet-SAGAN w/ DOT [32] 8.50± .12 19.71

SNGAN-DCD (Pixel) 8.54± .11 21.67
SNGAN-DCD (Latent) 9.11± .04 16.24

CIFAR-10 Conditional
EBM [8] 8.30 37.9
SNGAN [25] 8.43± .09 15.43
SNGAN-DCD (Pixel) 8.73± .13 22.84
SNGAN-DCD (Latent) 8.81± .11 15.05
BigGAN [3] 9.22 14.73

Table 2: Inception and FID scores for CIFAR-10.

Figure 1: Unconditional CIFAR-10
Langevin dynamics visualization.

3.2 Real-World Image Generation125

For quantitative evaluation, we report the inception score [30] and FID [15] scores on CIFAR-10126

in Tab. 2. As shown in the Tab. 2, in pixel space, by introducing the proposed DCD algorithm,127

we achieve a significant improvement of inception score over the SNGAN. The reported inception128

score is even higher than most values achieved by class-conditional generative models. Our FID129

score of 21.67 on CIFAR-10 is competitive with other top generative models. When the DCD is130

conducted in the latent space, we further achieve a 9.11 inception score and a 16.24 FID, which is a131

new state-of-the-art performance of IS. When combined with label information to perform conditional132

generation, we further improve the FID to 15.05, which is comparable with current state-of-the-art133

large-scale trained models [3]. Some visualization of generated examples can be found in Fig 1,134

which demonstrates that the Markov chain is able to generate more realistic samples, suggesting that135

the MCMC process is meaningful and effective. Tab. 4 and Tab. 5 shows the performance on STL-10136

and ImageNet respectively, which demonstrate that as a generalized method, DCD is not over-fitted to137

the specific dataset. More experiment details and the generated samples can be found in Appendix. I.138

4 Conclusion and Future Work139

Based on the density ratio estimation perspective, the discriminator in f -GANs could be adapted to a140

wide range of applications, e.g., mutual information estimation [17] and bias correction of generative141

models [12]. However, as another important branch in GANs, the available information in WGANs’142

discriminator is less explored. In this paper, we narrow down the scope and focus on how to leverage143

the discriminator of WGANs to further improve the sample quality. We first present a comprehensive144

theoretical analysis on the informativeness of WGANs’ discriminator. Motivated by the theoretical145

understanding, we investigate the possibility of turning the discriminator of WGANs into an energy146

function and propose a tuning and sampling procedure named “Discriminator Contrastive Divergence”.147

The final generation process is semi-amortized, where we take the generator as the initial state and148

then conduct several MCMC steps. Empirical results demonstrate the effectiveness of the proposed149

method on several tasks. We hope our work can shed some light on a generalized view to a method150

of connecting different GANs and energy-based models, which will stimulate more exploration into151

the potential of current deep generative models. One potential direction for future work is to conduct152

DCD in each layer of the generator. This can be seen as a compromise between the latent and the153

pixel space, which may lead to further sampling quality improvements.154
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A Related Works251

Both empirical [1] and theoretical [15] evidence has demonstrated that learning a discriminative model252

with neural networks is relatively easy, and the neural generative model (sampler) is prone to reach its253

bottleneck during the optimization. Hence, there is strong motivation to further improve the generated254

distribution by exploring the remaining information. Two recent advancements are discriminator255

rejection sampling (DRS) [2] and MH-GANs [35]. DRS conducts rejection sampling on the output256

of the generator. The vital limitation that lies in the upper bound of Dφ is needed to be estimated257

for computing the rejection probability. MH-GAN sidesteps the above problem by introducing a258

Metropolis-Hastings sampling procedure with generator acting as the independent proposal; the state259

transition is estimated with a well-calibrated discriminator. However, the theoretical justification260

of both the above two methods is based on the fact that the output of discriminator needs to be261

viewed as an estimation of density ratio pdata
pGθ

. As pointed out by previous work [40], the output of a262

discriminator in WGAN [1] suffers from the free offset and can not provide the density ratio, which263

prevents the application of the above methods in WGAN.264

Our work is inspired by recent theoretical studies on the property of discriminator in WGANs [13, 40].265

[32] proposes discriminator optimal transport (DOT) to leverage the optimal transport plan implied266

by WGANs’ discriminator, which is orthogonal to our method. Besides, turning the discriminator of267

WGAN into an energy function is closely related to the amortized generation methods in energy-based268

model (EBM) literature [19, 39, 22] where a separate network is proposed to learn to sample from269

the partition function in [9]. Recent progress [31, 8] in the area of EBM has shown the feasibility270

of generating high dimensional data with Langevin dynamics. From the perspective of EBM, our271

proposed method can be seen as an intermediary between an amortized generative model and an272

implicit generative model, i.e., a semi-amortized generation method, which allows a trade-off between273

speed and quality of generation. With a similar spirit, [11] also illustrates the potential connection274

between neural classifier and energy-based model in supervised and semi-supervised scenarios.275

B Preliminaries276

B.1 Generative Adversarial Networks277

Generative Adversarial Networks (GANs) [10] is an implicit generative model that aims to fit an278

empirical data distribution pdata over sample space X . The generative distribution pGθ is implied by a279

generated function Gθ, which maps latent variable Z to sample X , i.e., Gθ : Z −→ X . Typically, the280

latent variable Z is distributed on a fixed prior distribution p(z). With i.i.d samples available from281

pGθ and pdata, the GAN typically learns the generative model through a min-max game between a282

discriminator Dφ and a generator Gθ:283

min
θ

max
φ

Ex∼Pdata [r(Dφ(x))]− Ex∼pGθ [m(Dφ(x))] . (7)

With r and m as the function r(x) = m(x) = x and the Dφ(x) is constrained as 1-Lipschitz284

function, the Eq. 7 yields the WGANs objective which essentially minimizes the Wasserstein distance285

between pdata and pGθ . With r(x) = x and m(x) as the Fenchel conjugate[16] of a convex and lower-286

semicontinuous function, the objective in Eq. 7 approximately minimize a variational estimation of287

f -divergence[27] between pdata and pGθ .288

B.2 Energy Based Model and MCMC basics289

The energy-based model tends to learn an unnormalized probability model implied by an energy290

function Eθ(x) to prescribe the ground truth data distribution pdata. The corresponding normalized291

density function is:292

qθ(x) =
e−Eθ(x)

Zθ
, Zθ =

∫
e−Eθ(x)dx, (8)

where Zθ is so-called normalization constant. The objective of training an energy-based model with293

maximum likelihood estimation is as:294

LMLE(θ; p) := −Ex∼pdata(x) [log qθ(x)] . (9)
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The estimated gradient with respect to the maximum likelihood estimation objective is as follows:295

∇θLMLE(θ; p) =∇θEx∼pdata(x)[Eθ(x)]−
∫
e−Eθ(x)∇θEθ(x)dx

Zθ
(10)

= Ex∼pdata(x)[∇θEθ(x)]− Ex∼qθ(x)[∇θEθ(x)].

The above method for gradient estimation in Equation 10 is called contrastive divergence (CD).296

Markov chain Monte Carlo is a powerful framework for drawing samples from a given distribution.297

An MCMC is specified by a transition kernel K(x′|x) which corresponds to a unique stationary298

distribution p. More specifically, MCMC can be viewed as drawing x0 from the initial distribution q0299

and iteratively get sample xt at the t-th iteration by applied the transition kernel on the previous step,300

i.e., xt|xt−1 ∼ K(xt|xt−1). Following [23], we formalized the distribution qt of xt as obtained by a301

fixed point update of form qt(x)← Kqt−1(x), and Kqt−1(x):302

Kqt−1(x) :=

∫
qt−1 (x

′)K (x|x′) dx′.

As indicated by the standard theory of MCMC, the following monotonic property is satisfied:303

DKL(qt||p) ≤ DKL(qt−1||p). (11)

And qt converges to the stationary distribution p as t→∞.304

B.3 Informativeness of WGAN Discriminator305

So far, it is well known that the discriminator Dφ in f -GAN is optimized to estimate a statistic related306

to the density ratio between pdata
pGθ

[2]. In this section, we seek to investigate the following questions:307

• What kind of information is contained in the discriminator of WGANs?308

• Why and how can the information be utilized to further improved the quality of generated309

distribution?310

Different from f -GANs, the objective of WGANs is derived from the Integral Probability Metric,311

and the discriminator can not naturally be derived as an estimated density ratio. Before leveraging312

the remaining information in the discriminator, the property of the discriminator in WGANs needs to313

be investigated first. We introduce the primal problem implied by WGANs objective as follows:314

Let π denote the joint probability for transportation between P and Q, which satisfies the marginality315

conditions,316 ∫
dyπ(x,y) = p(x),

∫
dxπ(x,y) = q(y) (12)

The primal form first-order Wasserstein distance W1 is defined as:317

W1 (P,Q) = inf
π∈Π(P,Q)

E(x,y)∼π[‖x− y‖2]

the objective function of the discriminator in Wasserstein GANs is the Kantorovich-Rubinstein duality318

of Eq. 12, and the optimal discriminator has the following property[13]:319

Theorem 2. Let π∗ as the optimal transport plan in Eq. 12 and xt = tx+ (1− t)y with 0 ≤ t ≤ 1.320

With the optimal discriminator Dφ as a differentiable function and π∗(x, x) = 0 for all x, then it321

holds that:322

P(x,y)∼π∗

[
∇xiD∗φ (xt) =

y − x
‖y − x‖

]
= 1

Theorem. 2 states that for each sample x in the generated distribution pGθ , the gradient on the x323

directly points to a sample y in the pdata, where the (x, y) pairs are consistent with the optimal324

transport plan π∗. All the linear interpolations xt between x and y satisfy that∇xkD∗φ (xt) =
y−x
‖y−x‖ .325

It should also be noted that similar results can also be drawn in some variants of WGANs, whose loss326

functions may have a slight difference with standard WGAN [40]. For example, the SNGAN uses327

the hinge loss during the optimization of the discriminator, i.e., r(·) and g(·) in Eq. 7 is selected as328
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max(0,−1− u) for stabilizing the training procedure. We provide a detailed discussion on several329

surrogate objectives in Appendix. H.330

The above property of discriminator in WGANs can be interpreted as that given a sample x from331

generated distribution pGθ we can obtain a corresponding y in data distribution pdata by directly332

conducting gradient decent with the optimal discriminator D∗φ:333

y = x+ wx ∗ ∇xD∗φ, wx ≥ 0 (13)

It seems to be a simple and appealing solution to improve pGθ with the guidance of discriminator Dφ.334

However, the following issues exist:335

1) there is no theoretical indication on how to set wx for each sample x in generated distribution.336

We noticed that a concurrent work [32] introduce a search process called Discriminator Optimal337

Transport(DOT) by finding the corresponding y∗ through the following:338

yx = argmin
y

{
‖y − x‖2 −D∗φ(y)

}
(14)

However, it should be noticed that Eq. 14 has a non-unique solution. We further extend the fact into339

the following theorem:340

Theorem 3. With the π∗ and D∗φ as the optimal solutions of the primal problem in Eq. 12 and341

Kantorovich-Rubinstein duality of Eq. 12, the distribution pot implied by the generated distribution342

pGθand the discriminator D∗φ is defined as (yx is defined in Eq. 14):343

pot(y) =

∫
dxδ(y − yx)pGθ (x)

when pdata 6= pGθ , there exists infinite numbers of pot with pdata as a special case.344

Theorem 3 provides a theoretical justification for the poor empirical performance of conducting DOT345

in the sample space, as shown in their paper.346

2) Another problem lies in that samples distributed outside the generated distribution (pGθ ) are never347

explored during training, which results in much adversarial noise during the gradient-based search348

process, especially when the sample space is high dimensional such as real-world images.349

To fix the issues mentioned above in leveraging the information of discriminator in Wasserstein350

GANs, we propose viewing the discriminator as an energy function. With the discriminator as an351

energy function, the stationary distribution is unique, and Langevin dynamics can approximately352

conduct sampling from the stationary distribution. Due to the monotonic property of MCMC, there353

will not be issues like setting wx in Eq. 13. Besides, the second issue can also be easily solved by354

fine-tuning the energy spaces with contrastive divergence. In addition to the benefits illustrated above,355

if the discriminator is an energy function, the samples from the corresponding energy-based model356

can be obtained through Langevin dynamics by using the gradients of the discriminator which takes357

advantage of the property of discriminator as shown in Theorem 2. With all the facts as mentioned358

above, there is strong motivation to explore further and bridge the gap between discriminator in359

WGAN and the energy-based model.360

B.4 Semi-Amortized Generation with Langevin Dynamics361

B.5 Real-World Image Generation362

To quantitatively and empirically study the proposed DCD approach, in this section, we conduct363

experiments on unsupervised real-world image generation with DCD and its related counterparts. On364

several commonly used image datasets, experiments demonstrate that our proposed DCD algorithm365

can always achieve better performance on different benchmarks with a significant margin.366

B.6 Experimental setup367

Baselines. We evaluated the following models as our baselines: we take PixelCNN [37], Pix-368

elIQN [28], and MoLM [29] as representatives of other types of generative models. For the energy-369

based model, we compared the proposed method with EBM [8] and NCSN [31]. For GAN models,370
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Algorithm 1 Discriminator Contrastive Divergence

1: Input: Pretrained generator Gθ, discriminator Dφ.
2: Set the step size ε, the length of MCMC steps K and the total iterations T .
3: for iteration i = 1, · · · , T do
4: Sample a batch of data samples {xt}mt=1 for empirical data distribution pdata and {zt}mt=1 for

the prior distribution p(z).
5: for iteration l = 1, · · · ,K do
6: Pixel Space: Gθ(zt)l = Gθ(zt)

l−1 − ε
2∇xDφ

(
Gθ(zt)

l−1
)
+
√
εω, ω ∼ N (0, I) or

7: Latent Space: zlt = zl−1
t − ε

2∇zDφ

(
Gθ(zt)

l−1
)
+
√
εω, ω ∼ N (0, I)

8: end for
9: Optimized the following objective w.r.t. φ:

10: Pixel Space: L = 1
m

∑
t(Dφ(xt)−Dφ(Gθ(zt)

K)) or
11: Latent Space: L = 1

m

∑
t(Dφ(xt)−Dφ(Gθ(z

K
t )))

12: end for

Model Inception FID

CIFAR-10 Unconditional
PixelCNN [37] 4.60 65.93
PixelIQN [28] 5.29 49.46
EBM [8] 6.02 40.58
WGAN-GP [13] 7.86± .07 18.12
MoLM [29] 7.90± .10 18.9
SNGAN [25] 8.22± .05 21.7
ProgressiveGAN [18] 8.80± .05 -
NCSN [31] 8.87± .12 25.32

DCGAN w/ DRS [2] 3.073 -
DCGAN w/ MH-GAN [35] 3.379 -
ResNet-SAGAN w/ DOT [32] 8.50± .12 19.71

SNGAN-DCD (Pixel) 8.54± .11 21.67
SNGAN-DCD (Latent) 9.11± .04 16.24

CIFAR-10 Conditional
EBM [8] 8.30 37.9
SNGAN [25] 8.43± .09 15.43
SNGAN-DCD (Pixel) 8.73± .13 22.84
SNGAN-DCD (Latent) 8.81± .11 15.05
BigGAN [3] 9.22 14.73

Table 3: Inception and FID scores for CIFAR-10.

Figure 2: Unconditional CIFAR-10
Langevin dynamics visualization.

we take WGAN-GP [13], Spectral Normalization GAN (SNGAN) [25], and Progressiv eGAN [18]371

for comparison. We also take the aforementioned DRS [2], DOT [32] and MH-GAN [35] into372

consideration. The choices of EBM and GANs are due to their close relation to our proposed method,373

as analyzed in Section 2. We omit other previous GAN methods since as a representative of a374

state-of-the-art GAN model, SNGAN and Progressive GAN has been shown to rival or outperform375

several former methods such as the original GAN [10], the energy-based generative adversarial376

network [39], and the original WGAN with weight clipping [1].377

Evaluation Metrics. For evaluation, we concentrate on comparing the quality of generated images378

since it is well known that GAN models cannot perform reliable likelihood estimations [34]. We379

choose to compare the Inception Scores [30] and Frechet Inception Distances (FID) [15] reached380

during training iterations, both computed from 50K samples. A high image quality corresponds to381

high Inception and low FID scores. Specifically, the intuition of IS is that high-quality images should382

lead to high confidence in classification, while FID aims to measure the computer-vision-specific383

similarity of generated images to real ones through Frechet distance.384

Data. We use CIFAR-10 [21], STL-10 [4] and ImageNet [6], which are all standard datasets widely385

used in generative literature. STL-10 consists of unlabeled real-world color images, while CIFAR-10386
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and ImageNet is provided with class labels, which enables us to conduct conditional generation tasks.387

For STL-10, we also shrink the images into 32× 32 as in previous works.388

Network Architecture. For all experiment settings, we follow Spectral Normalization GAN389

(SNGAN) [25] and adopt the same Residual Network (ResNet) [14] structures and hyperparameters,390

which presently is the state-of-the-art implementation of WGAN. Details can be found in Appendix. G.391

We take their open-source code and pre-trained model as the base model for the experiments on392

CIFAR-10 and ImageNet. For STL-10, since there is no pre-trained model available to reproduce the393

results, we train the SNGAN from scratch and take it as the base model.394

B.6.1 Results395

Model Inception FID

SNGAN [25] 8.90± .12 18.73
SNGAN-DCD (Pixel) 9.25± .09 22.25
SNGAN-DCD (Latent) 9.33± .04 17.68

Table 4: Inception and FID scores for STL-10

Model Inception

cGAN 36.23
cGAN w/ DOT [2] 37.29

SNGAN [25] 36.8
SNGAN-DCD 38.9

Table 5: Inception scores for ImageNet

For quantitative evaluation, we report the incep-396

tion score [30] and FID [15] scores on CIFAR-397

10 in Tab. 3. As shown in the Tab. 3, in pixel398

space, by introducing the proposed DCD algo-399

rithm, we achieve a significant improvement of400

inception score over the SNGAN. The reported401

inception score is even higher than most values402

achieved by class-conditional generative models.403

Our FID score of 21.67 on CIFAR-10 is compet-404

itive with other top generative models. When the405

DCD is conducted in the latent space, we further406

achieve a 9.11 inception score and a 16.24 FID,407

which is a new state-of-the-art performance of408

IS. When combined with label information to409

perform conditional generation, we further im-410

prove the FID to 15.05, which is comparable411

with current state-of-the-art large-scale trained412

models [3]. Some visualization of generated413

examples can be found in Fig 2, which demonstrates that the Markov chain is able to generate414

more realistic samples, suggesting that the MCMC process is meaningful and effective. Tab. 4 and415

Tab. 5 shows the performance on STL-10 and ImageNet respectively, which demonstrate that as a416

generalized method, DCD is not over-fitted to the specific dataset. More experiment details and the417

generated samples can be found in Appendix. I.418

C Broader Impact419

It should be noted that the semi-amortized generation allows a trade-off between the generation420

quality and sampling speed, which holds a slower sampling speed than a direct generation with a421

generator. Hence the proposed method is suitable to the application scenario where the generation422

quality is given vital importance. Another interesting observation during the experiments is the423

discriminator contrastive divergence surprisingly reduces the occurrence of adversarial samples424

during training, so it should be a promising future direction to investigate the relationship between425

our method and bayesian adversarial learning.426

However, negative consequences also exist since advances in generative models may lead to more427

realistic fake images, which have the capacity to deceive, emotionally distress, and affect public428

opinions and actions. To mitigate the risks associated with deep generative models, we encourage429

researchers to understand and avoid the bad influence of using generative models in particular430

real-world scenarios.431

D Proof of Theorem 2432

It should be noticed that Theorem. 2 can be generalized to that Lipschitz continuity with l2-norm433

(Euclidean Distance) can guarantee that the gradient is directly pointing towards some sample[40].434

We introduce the following lemmas, and Theorem. 2 is a special case.435

Let (x, y) be such that y 6= x, and we define xt = x+ t · (y − x) with t ∈ [0, 1].436
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Lemma 1. If f(x) is k-Lipschitz with respect to ‖.‖p and f(y)− f(x) = k‖y − x‖p, then f(xt) =437

f(x) + t · k‖y − x‖p.438

Proof. As we know f(x) is k-Lipschitz, with the property of norms, we have439

f(y)− f(x) = f(y)− f(xt) + f(xt)− f(x)
≤ f(y)− f(xt) + k‖xt − x‖p = f(y)− f(xt) + t · k‖y − x‖p
≤ k‖y − xt‖p + t · k‖y − x‖p = k · (1− t)‖y − x‖p + t · k‖y − x‖p
= k‖y − x‖p. (15)

f(y)− f(x) = k‖y − x‖p implies all the inequalities is equalities. Therefore, f(xt) = f(x) + t ·440

k‖y − x‖p.441

Lemma 2. Let v be the unit vector y−x
‖y−x‖2 . If f(xt) = f(x) + t · k‖y − x‖2, then ∂f(xt)

∂v equals to442

k.443

Proof.

∂f(xt)

∂v
= lim
h→0

f(xt + hv)− f(xt)
h

= lim
h→0

f(xt + h y−x
‖y−x‖2 )− f(xt)
h

= lim
h→0

f(xt+ h
‖y−x‖2

)− f(xt)

h
= lim
h→0

h
‖y−x‖2 · k‖y − x‖2

h
= k.

Then we derive the formal proof of Theorem 2.444

Proof. Assume p = 2, if f(x) is k-Lipschitz with respect to ‖.‖2 and f(x) is differentiable at xt,445

then ‖∇f(xt)‖2 ≤ k. Let v be the unit vector y−x
‖y−x‖2 . We have446

k2 = k
∂f(xt)

∂v
= k 〈v,∇f(xt)〉 = 〈kv,∇f(xt)〉 ≤ ‖kv‖2‖∇f(xt)‖2 = k2. (16)

Because the equality holds only when ∇f(xt) = kv = k y−x
‖y−x‖2 , we have that ∇f(xt) = k y−x

‖y−x‖2 .447

448

E Proof of Theorem 3449

Theorem. 3 states that following the following procedure as introduced in [32], there is non-unique450

stationary distribution. The complete procedure is to find the following y for x ∼ PGθ :451

y∗ = argmin
x
{‖x− y‖2 −D(x)}. (17)

To find the corresponding y∗, the following gradient based update is conducted:452

{x← x− ε∇x {||x− y||2 −D(x)} . (18)

For all the points xt in the linear interpolation of x and target y∗ as defined in the proof of Theorem 2,453

∇xt {||xt − y||2 −D(xt)} =
y − x
‖y − x‖2

− y − x
‖y − x‖2

= 0, (19)

which indicates all points in the linear interpolation satisfy the stationary condition.454

F Proof of Proposition 1455

Proposition. 1 is the direct result of the following Lemma. 3. Following [23], we provide the complete456

proof as following.457

Lemma 3. [5] Let q and r be two distributions for z0. Let qt and rt be the corresponded distributions458

of state zt at time t, induced by the transition kernel K. Then DKL[qt||rt] ≥ DKL[qt+1||rt+1] for all459

t ≥ 0.460
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Proof.

DKL[qt||rt] = Eqt
[
log

qt(zt)

rt(zt)

]
= Eqt(zt)K(zt+1|zt)

[
log

qt(zt)K(zt+1|zt)
rt(zt)K(zt+1|zt)

]
= Eqt+1(zt+1)qt+1(zt|zt+1)

[
log

qt+1(zt+1)q(zt|zt+1)

rt+1(zt+1)r(zt|zt+1)

]
= DKL[qt+1||rt+1] + Eqt+1

DKL[qt+1(zt|zt+1)||rt+1(zt|zt+1)].

461

G Network architectures462

The ResNet architectures for CIFAR-10 and STL-10 datasets are shown in Tab. 6, which are similar463

to the ones in [13]. For the ImageNet datasets, we follow the ResNet architectures in [25]. The details464

are shown in Tab. 7.465

Table 6: ResNet architectures for CIFAR-10 and STL-10 datasets.

z ∈ R128 ∼ N (0, I)

dense, 4× 4× 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3×3 conv, 3 Tanh

(a) Generator

RGB image x ∈ R32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

dense→ 1

(b) Discriminator

Table 7: ResNet architectures of the Generator for ImageNet dataset. As for the model of the
projection discriminator, we used the same architecture used in [24]. Please see the paper for the
details.

z ∈ R128 ∼ N (0, I)

dense, 4× 4× 1024

ResBlock up 1024

ResBlock up 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3×3 conv 3

Tanh

(a) Generator
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H Discussions on Objective Functions466

Optimization of the standard objective of WGAN, i.e. with r(x) = m(x) = x in Eq. 7, are found467

to be unstable due to the numerical issues and free offset [40, 25]. Instead, several surrogate losses468

are actually used in practice. For example, the logistic loss(r(x) = m(x) = − log(1 + e−x)) and469

hinge loss(r(x) = m(x) = min(0, x)) are two widely applied objectives. Such surrogate losses are470

valid due to that they are actually the lower bounds of the Wasserstein distance between the two471

distributions of interest. The statement can be easily derived by the fact that − log(1 + e−x) ≤ x and472

min(0, x) ≤ x. A more detailed discussion could also be found in [32].473

Note that min(0,−1 + x) and − log(1 + e−x) are in the function family proposed in [40], and474

Theorem 4 in [40] guarantees the gradient property of discriminator.475

I More Experiment Details476

I.1 CIFAR-10477

For the meta-parameters in DCD Algorithm 1, when the MCMC process is conducted in the pixel478

space, we choose 6−8 as the number of MCMC stepsK, and set the step size ε as 10 and the standard479

deviation of the Gaussian noise as 0.01, while for the latent space we set K as 50, ε as 0.2 and the480

deviation as 0.1. Adam optimizer [20] is set with 2× 10−4 learning rate with β1 = 0, β2 = 0.9. We481

use 5 critic updates per generator update, and a batch size of 64.482

I.2 STL-10483

We show generated samples of DCD during Langevin dynamics in Fig. 3. We run 150 steps of484

MCMC steps and plot generated samples for every 10 iterations. The step size is set as 0.05 and the485

noise is set as N(0, 0.1).486

I.3 ImageNet487

We show generated samples of DCD during Langevin dynamics in Fig. 4. We run 1000 Langevin488

dynamics steps and plot generated samples for every 100 iterations. The initial step size and the489

Gaussian noise are set as 0.05 and N(0, 0.1) respectively. The step size and standard deviation of490

Gaussian noise are simultaneously decayed with a factor 0.3 for every 100 iterations.491
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Figure 3: STL-10 Langevin dynamics visualization.
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Figure 4: ImageNet Langevin dynamics visualization.
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