
Published in Transactions on Machine Learning Research (02/2024)

Towards Measuring Predictability: To which extent data-
driven approaches can extract deterministic relations from
data exemplified with time series prediction and classifica-
tion

Saleh Gholam Zadeh salehgholamzadeh17@gmail.com
Autonomous Learning Robots,
Karlsruhe Institute of Technology
SAP SE

Vaisakh Shaj vaisakhs.shaj@gmail.com
University Of Edinburgh

Patrick Jahnke pj@turba.ai
Turba AI

Gerhard Neumann gerhard.neumann@kit.edu
Autonomous Learning Robots,
Karlsruhe Institute of Technology

Tim Breitenbach tim.breitenbach@uni-wuerzburg.de
SAP SE
Julius-Maximilians-Universität Würzburg

Reviewed on OpenReview: https: // openreview. net/ forum? id= jZBAVFGUUo

Abstract

Minimizing loss functions is one important ingredient for machine learning to fit parameters
such that the machine learning models extract relations hidden in the data. The smaller the
loss function value on various splittings of a dataset, the better the machine learning model
is assumed to perform. However, datasets are usually generated by dynamics consisting of
deterministic components, where relations are clearly defined and consequently learnable, as
well as stochastic parts where outcomes are random and thus not predictable. Depending on
the amplitude of the deterministic and stochastic processes, the best achievable loss function
value varies and is usually not known in real data science scenarios. In this research, a
statistical framework is developed that provides measures to address the predictability of a
target given the available input data and, after training a machine learning model, how much
of the deterministic relations have been missed by the model. Consequently, the presented
framework allows to differentiate model errors into unpredictable parts regarding the given
input and a systematic miss of deterministic relations. The work extends the definition
of model success or failure as well as the convergence of a training process. Moreover,
it is demonstrated how such measures can enrich the procedure of model training. The
framework is showcased with time series data on different synthetic and real-world datasets.
The code is available at https://github.com/Saleh-Gholam-Zadeh/predictability_measure.

1

https://openreview.net/forum?id=jZBAVFGUUo
https://github.com/Saleh-Gholam-Zadeh/predictability_measure

Published in Transactions on Machine Learning Research (02/2024)

1 Introduction

Data analysis and the application of the corresponding insights work if there are reliable and stable relations
between the measured quantities and their model. However, due to the fact that any measurement may
not be error free or the dynamics that determine the values of the considered quantities may be inherently
noisy to a certain extent, measurement values do not only purely reflect the relations to be investigated.
Furthermore, the input data could miss relevant information, e.g., relevant features are not provided or even
measured, to model the output data such that regarding the given input data some parts of the output
are unpredictable due to the lack of information. One example is that past stock prices may not always
provide a clear indication of future prices due to the complexity of market dynamics and the influence of
external factors such as economic events and investor sentiments. Therefore, accurately predicting future
stock prices might not be directly evident from historical observations alone. Without having a criterion for
the amount of predictable relations between both the input and output or model deviations, respectively, in
such scenarios, one could spend a huge amount of time on learning dynamics which either don’t exist (such
as a pure noise) or it is impossible to learn more than a certain level because the given history is sharing no
or low information with the output. Usually, real-world datasets are not binary in terms of being predictable,
meaning that there are some deterministic patterns plus patterns which can’t be inferred from the provided
historic data, as might be the case in the example from the financial markets above, and therefore there is
no chance for any model to predict them totally accurately. Depending on the relative magnitude of these
elements, the prediction error can vary even for a successful model. In such cases, it is beneficial to know
the upper bound of the model’s performance to avoid trying to train it at all where there is no deterministic
relation or to improve it while further improvement is not possible. We extend the term for model success by
its ability to extract or learn, respectively, all the available deterministic relations. Consequently, we argue
that the magnitude of prediction errors alone does not unequivocally signify the model success or failure
because a high inaccuracy might arise from the unpredictability of the data, rather than from deficiencies in
the model or flaws in the learning process.

One key issue before any data analysis, machine learning (ML) model training or information extraction from
a dataset is testing whether such reliable relations exist between the quantities in the dataset of interest, as
outlined in the example above. Such tests deliver valuable insights to evaluate efforts for further analysis,
and if reasonable at all. A second key aspect after an iteration of data analysis or information extraction,
such as the training of an ML model, is testing if there is information left to extract or all the reliable
information is extracted in terms of deterministic relations between input and output data. If all relations
are extracted or learned, respectively, the deviations between the predictions given the input data and the
target (ground truth) are supposed to be stochastically independent of the input data. Thus, given that
input, additional analysis on this input-target relation might not reveal further insights or improve accuracy
in terms of extracting more deterministic relations. Consequently, further training might not improve a
model in terms of learning these deterministic relations.

Following the outline above, in the presented work, we provide a framework to address the following, which
is illustrated in Figure 1:

• We utilize measures to evaluate the stochastic dependence and information content between random
variables modeling the data to evaluate to what extent the data is interconnected and to quantify
extractable information based on defined input and output (target) variables assembled from the
dataset.

• After fitting a model, we use these measures to estimate if there is still information left to extract.
This evaluation is done by testing the stochastic independence and information content between the
input and the deviations of the model output regarding the ground truth. For this purpose, we
investigate the relation of random variables that model corresponding quantities.

These bullet points provide the foundation of the presented framework for characterizing failure cases in
prediction modeling. To provide an implementation of a practical framework and to give evidence with
some showcases for its usability is the main purpose of this work. In our work, a failure case is defined as a

2

Published in Transactions on Machine Learning Research (02/2024)

Investigate the data

Is the target predictable
from the input?

Train ML model
Refine data set

or
STOP

NoYes

Determine the
deviation between
model prediction

and target

Are the deviations
predictable from the

input?

Done!

Model extracts
all information

No

Adapt model

Yes

Figure 1: Graphical abstract representing the main concept of the presented work to analyze for information
content and information extracted or learned, respectively, by a model.

scenario in which a prediction model fails to capture the essential, meaning deterministic, dynamics of the
target variable(s), given the input information. This definition of failure allows us to decide on whether there
is potential for improvement or the prediction model has already achieved the best possible scenario, where
inaccuracies are not further predictable and thus not improvable, given the input data. Our mathematical
framework provides an additional insight for model evaluation and extends the current performance measures
of ML models considering not only the ground truth and the model output but also the input and thus to
what degree the ground truth is predictable given the input. This extension aligns with the perception
in the area of generative models such as GAN Yoon et al. (2019); Jeha et al. (2022) or diffusion models
Kollovieh et al. (2024); Tashiro et al. (2021); Li et al. (2022); Yuan & Qiao (2024) where the discriminative
score, the generative score, the Frechet Inception Distance (FID), the Maximum Mean Discrepency (MMD),
the Negative Log Likelihood (NLL) or the Continuous Ranked Probability Score (CRPS) is also reported
besides the standard evaluation framework of mean squared or absolute error (MSE/MAE) to have a more
probabilistic view by taking distributions of predictions into account. One contribution of the presented work
is to extend the term of model assessment beyond the model accuracy based on its output and ground truth
to also taking the predictability of the deviation between model output and ground truth into account given
the input. Moreover, we provide also numerical implementations of such measures and show its applicability
on synthetic and real-world data sets. Through the numerical experiments, we exemplify determining if the
deviation is improvable at all given the input data.

One benefit of our metrics, which are based on the stochastic independence of input and model deviations,
is that they can provide an explanation for poor model accuracy. The explanation is given by analyzing the
deviations if there is information left or deviations consist only of unpredictable parts from the perspective of
the input data. The ability to differentiate what data points are predictable and what are not given the input
data is not provided by accuracy measures or loss functions that only consider the model output and ground
truth, for instance mean squared or absolute errors. Instead, we additionally consider the information the
model deviations share with the input data. The framework is not limited to a specific model architecture
and thus is model-agnostic since we only inspect the dependence of input and the model errors, which does
not require the knowledge of the inner function of the model.

The implementation of this general framework provided with this work is the mutual information, the chi-
square test of independence and the Pearson correlation to investigate the existence of relations between
random variables. However, our framework is not limited to these tests. Consequently, other methods that
test for information content or stochastic dependence can be used and easily included into our modularized

3

Published in Transactions on Machine Learning Research (02/2024)

git repository. The choice of the measures and their implementations themselves are not the focus of this
work.

Evaluating the deviations for dependence on the input can be applied to facilitate model training particularly
as follows. The first three bullet points are elaborated in Sections 4.1, 4.2, 4.3 and 4.4, while the last two
bullet points are addressed in Section 4.5:

• Success criterion: We provide a loss function agnostic framework to evaluate the performance of
ML accuracy defined by the quantity of extracted deterministic relations, which can be used as a
model selection criterion. Furthermore, we can decide if a loss function value is a corresponding
lower bound for the given dataset since no further deterministic relations remain within the dataset.

• Further convergence criterion: Apart from utilizing the loss function for convergence, we can stop
training whenever there is no information or dependence left between the input and the deviation
of a model prediction from the ground truth.

• Hyperparameter tuning: We can stop a grid search whenever we have identified a hyperparameter set
with which the corresponding model has extracted all the information on the training or validation
set.

• Distribution shift detection: A data splitting into training and validation set or historical and present
can result in different stochastic properties, therefore resulting in different learnable relations in the
sets.

• Data efficiency: In case of a closed system where distribution shift can be excluded, e.g., the dynamics
are known and fixed, the total amount of training data can be used for fitting model parameters
since no data is required to be utilized as an additional set for early stopping.

In Section 4, we present examples demonstrating the utility of our framework for issues described in the
bullet points above. Among different data modalities such as text, image, and time series, our insight is
that in time series data, the existence of a clear relationship between input and output is often not directly
noticeable. Therefore, in this work, we focus specifically on time series analysis. For instance, in natural
language processing (NLP), we typically do not encounter a sequence of random words or tokens. Similarly, in
image datasets, depending on the task (e.g., classification, segmentation), the relationship between input and
output usually exists a priori, and one would not typically spend time proving such existence, instead would
directly train a model to solve the task at hand. However, in time series analysis, the underlying dynamics of
a process need to be learned from the measurements. For this purpose, we showcase our general framework
with an application to time series forecasting. The basic procedure is the following. After quantifying the
level of predictability by inspecting the input and ground truth target, we can perform an exactly similar
test on the input and the residuals, which define the deviations as ground truth minus prediction, to see
whether they are still predictable given the input. We use supervised ML techniques to predict future parts
of the time series. Another use case is the application for time series classification with nominal target data.
This use case differs from the ordinal output data above as model deviations cannot be defined by differences
due to the lack of order. A corresponding concept is presented and its usability to quantify left information
is showcased in this work. One further example of unpredictable time series might be the prediction of
workloads, mainly network traffic in data centers, where time points of the triggering of the workload by
users might be unpredictable. In Greenberg et al. (2009), we find: “measurement studies found two key
results with implications for the network design. First, the traffic patterns inside a data center are highly
divergent..., and they change rapidly and unpredictably.” A more recent manifesto by Buyya et al. (2018)
re-iterated the brittleness of existing “demand estimation and workload prediction methods”, leaving it as
an open question if “Machine Learning (ML) and Artificial Intelligence(AI) methods could fully address this
shortcoming”. With our present work, we can even provide a quantified answer in each case.

Paper outline The work is organized as follows: The main theoretical concepts used in the proposed
framework are explained in Section 2. This includes a precise definition of the measure of mutual information
and the chi-square test of independence, as well as an equinumeric discretization scheme for features with a
continuous co-domain.

4

Published in Transactions on Machine Learning Research (02/2024)

A section of related methods follows Section 2 and addresses among others how our work extends related
works using mutual information, ensemble learning and time series prediction.

Applications of the information extraction evaluation of a model are showcased in Section 4 with different
experiments in the area of time series prediction and classification. These experiments include a basic proof
of concept, an analysis of the influence of the loss function on the information extraction depending on the
structure of the noise, suggest additional convergence criteria based on the presented framework, as well as
detect distribution shifts of the data.

In the Discussion, we provide assumptions and limitations of our current approach. Furthermore, we sketch
further applications of our framework in the area of unstructured data. Moreover, efficient model size
reduction is also discussed by ranking subparts of a model with stochastic measures since the presented
framework is general and can be applied to any function generating output from input data.

2 Theoretical background and Methods

In this section, we provide the necessary background and mathematically establish our framework.

2.1 Basic concept for unpredictability in a nutshell

Definition of unpredictability
The random variable Y is deemed unpredictable with respect to an information set given by the random
variable X if the conditional distribution P (Y = y|X = x) aligns with the unconditional distribution
P (Y = y) according to

P (Y = y|X = x) = P (Y = y) (1)

for all x and y. Specifically, if X comprises the past realization of Y , then (1) suggest that having knowledge
about these past realizations does not enhance the predictive accuracy of Y . It is important to note that
this form of unpredictability in Y is an inherent attribute, unrelated to any prediction algorithm Bezbochina
et al. (2023). One famous example of unpredictable time series is white noise where samples are identically
but independently distributed (iid), where the independence of future samples from the past samples makes
it essentially unpredictable and therefore training an ML model is pointless. In this case, the best predictor
in terms of L2-loss is a mean predictor, suggesting further investing on improving the prediction model is
fruitless. Please note that while unpredictable data and noisy data are related, they are not equivalent.
Noise represents a specific subset of unpredictability.

On the other hand, if (1) doesn’t hold true, it suggests that given X, it is reasonable to train an ML model
to predict Y . The more the distributions of the two sides of (1) deviate from each other, the more chance
we have to train a model with a high accuracy to predict Y based on X. In the scope of this work, we call
X the context/input variable and Y the target/output that we want to predict. In this work, we use the
terms input and context interchangeably, analogously the terms output and target. In the following part,
we explain how to measure and quantify the concept we have introduced so far.

Measuring predictability
Assuming (1) is satisfied, we can derive the joint distribution by

P (Y = y, X = x) = P (Y = y)P (X = x) (2)

for all x and y by utilizing the definition of conditional probability. However, in practical data science
scenarios (2) barely holds entirely true even in case of independence of X and Y due to noise or numerical
errors. Therefore, it is crucial to quantify the degree to which the independence assumption is met and to
introduce statistical concepts to decide based on a level of significance if the hypothesis of independence
cannot be rejected.

Our approach to quantifying the independence of these random variables is grounded in (2), where we measure
the deviation between its left and right-hand side. Although in general any measure of deviation can be
used, in this work, we mainly focus on Kullback–Leibler divergence and chi-square test of independence

5

Published in Transactions on Machine Learning Research (02/2024)

as a measure of this deviation. In the former case, such deviation can be calculated based on the mutual
information formula given by

I(X; Y) = DKL(P(X,Y)∥PX ⊗ PY)

where DKL is the Kullback–Leibler divergence, PX ⊗ PY denotes the outer product distribution, and P(X,Y)
is the joint distribution (see Murphy (2022) Section 2.2.4 Figure 2.3). A higher value of mutual information
represents higher predictability of Y based on X which aligns with the definition of mutual information,
measuring the information gained about Y through observation of X.

Quantifying measure of success
We define a successful prediction when the deviations between model output and ground truth, e.g., the resid-
ual defined as the ground truth minus the prediction, are stochastically independent of the context/input
information. In case of independence, the deviations contain no information shared with the context, ren-
dering them effectively unpredictable based on the provided context information. Consequently, no further
improvements are possible, marking the prediction as successful. It is crucial to note that as long as some mu-
tual information remains, there is potential for enhancements, whether through selecting a different model,
loss function, or adjusting various parameters. For the sake of assessment, lower values of mutual information
suggest a better prediction quality.

We remark that the scope of this work does not include the development of new methods to calculate, estimate
or approximate mutual information but the application of such methods to improve ML training. In the
Related Work section, we provide references to such methods. For the demonstration of the application,
we provide one implementation that worked for our experiments. Our framework is flexible and does not
depend on a specific method to quantify stochastic independence, allowing for various measures such as
mutual information. The following sections provide a rigorous mathematical formulation and details on the
framework’s implementation

2.2 Foundations and implementation details for the predictability framework

In this section, we explain our framework in detail.

Measures for stochastic independence and information content
We are given n ∈ N input features in the format x ∈ Rn and m ∈ N output features in the format y ∈ Rm.
Each feature is modeled as a random variable taking values upon measurement. Consequently, the set of
input random variable is given by X = (x1, ..., xn), xi : R → Zxi

, t 7→ xi (t), i ∈ {1, ..., n} where t is a
time point of measurement and Zxi

:=
{

zk
xi

}
k=1,...,lxi

, lxi
∈ N, is a set of discrete events. In our case, such

an event is defined through the random variable xi taking a value at time point t between two predefined
boundaries (see Figure 9 and 10 in the Appendix). In this work, these boundaries are calculated by an
adaptive scheme presented in Algorithm 1.

Analogously, the set of output random variables is defined by Y = {y1, ..., ym}, yj : R → Zyj
, t 7→ yj (t),

j ∈ {1, ..., m} and Zyj
:=

{
zk

yj

}
k=1,...,lyj

, lyj ∈ N, is a set of discrete events. Our framework not only

holds for random variables with a discrete co-domain but also for random variables with a continuous co-
domain. In our case, we choose to discretize continuous domains and we will later explain Algorithm 1
that discretizes random variables with a continuous co-domain equinumerically. Furthermore, independent
of the topology of the co-domain, we define an information or a dependence measure by Φ : X × Y →
R, (x1, ..., xn, y1, ..., ym) 7→ Φ (x1, ..., xn, y1, ..., ym) that describes how much information, resp., stochastic
dependence exists between the input and the output variables. An example for such a measure can be the
stochastic independence of multiple real-valued random variables, see, e.g., (Gallager, 2013, 1.3.4) or mutual
information as outlined in Subsection 2.1.

In this work, we focus on a specific structure of Φ, which is a pairwise test between input and output
random variables providing corresponding information or stochastic dependence summing up each value of

6

Published in Transactions on Machine Learning Research (02/2024)

the pairwise measure. The measure Φ is given by

Φ (x1, ..., xn, y1, ..., ym) :=
n∑

i=1

m∑
j=1

ϕ (xi, yj)

where ϕ : X × Y → R, (xi, yj) 7→ ϕ (xi, yj) for each i ∈ {1, ..., n} and j ∈ {1, ..., m}.

We are aware that a pairwise test might be an approximation of the actual value of the measure for the
deterministic relations, e.g., as in the case of the stochastic independence of multiple real-valued random
variables. However, this approximation provides the advantage of much less computational costs, in particu-
lar for large n and m as provided in the discussion section of Breitenbach et al. (2022). It is one outcome of
this work that this approximation is a useful measure to estimate the deterministic relations between input
and output as well as model deviations between predictions and ground truth, moreover to estimate the
learning success of a model which is the reduction of deterministic relations between the input dataset and
the model deviations from the ground truth. A similar consideration holds for the mutual information where
a precise calculation of the joint probability can be very costly in case of many input and output variables
and where other mutual information estimators exist as well to circumvent this issue, please see the related
work and the discussion section for references and further details about this issue.

In the present work, we focus on the mutual information and the chi-square test of independence between
two random variables as measures, which are both explained later in detail. However, the presented work
is generic and can also be executed with different measures for independence, like Pearson’s correlation
coefficient as defined in, e.g., Breitenbach et al. (2023) for random variables. We remark that in terms of
testing a hypothesis if input and model deviations are independent of each other, it is beneficial to rely
on several tests to be sure about the consistency of the results and not having a wrong decision because
requirements of a test are not fulfilled, which is often challenging to verify.

In the following part, we explain the main ingredients of the present framework to analyze for deterministic
relations. Although these concepts might be well-known, we repeat them here for the convenience of the
reader since they are central for this work and a precise definition consistent with this work facilitates its
understanding.

Mutual information
The probability P

(
xi = zk1

xi

)
describes the likelihood that the outcome of xi equals the event zk1

xi
for any i ∈

{1, ..., n} and any k1 ∈ {1, ..., lxi
}. Analogously for P

(
yj = zk2

yj

)
for any j ∈ {1, ..., m} and k2 ∈

{
1, ..., lyj

}
.

The probability P
(

xi = zk1
xi

∧ yj = zk2
yj

)
describes the likelihood that the outcome of xi equals the event

zk1
xi

and the outcome of yj equals the event zk2
yj

for any i ∈ {1, ..., n}, j ∈ {1, ..., m}, k1 ∈ {1, ..., lxi} and
k2 ∈

{
1, ..., lyj

}
. Based on this definition, we can define the mutual information for a pair of random variables

xi and yj as one example for ϕ as follows

I (xi, yj) :=
lxi∑

k1=1

lyj∑
k2=1

P
(

xi = zk1
xi

∧ yj = zk2
yj

)
loga

 P
(

xi = zk1
xi

∧ yj = zk2
yj

)
P

(
xi = zk1

xi

)
P

(
yj = zk2

yj

)
 (3)

for any i ∈ {1, ..., n} and j ∈ {1, ..., m} with the basis a ∈ N \ {1} of the logarithm. Mutual information
describes how much information we gain about the outcome of yj given the outcome of xi. If the outcome
of xi is independent of yj , namely

P
(
xi = zk1

xi

)
= P

(
xi = zk1

xi
|yj = zk2

j

)
:=

P
(

xi = zk1
xi

∧ yj = zk2
yj

)
P

(
yj = zk2

yj

) ,

for all k1 ∈ {1, ..., lxi
} and k2 ∈

{
1, ..., lyj

}
, where P

(
xi = zk1

xi
|yj = zk2

j

)
is the conditional probability that

xi = zk1
xi

under the condition that yj = zk2
j , we expect zero mutual information since loga 1 = 0.

7

Published in Transactions on Machine Learning Research (02/2024)

The mutual information is bounded from below by 0. The upper bound depends on the number of events
of yj . In order to normalize the mutual information such that it is bounded from above by 1 for any yj , we
define the corresponding log base a = lyj . We remark that in case where yj is replaced by the corresponding
model deviation, the basis is defined accordingly to the number of different events of the model deviation
from the ground truth. The normalization is in particular important to compare the information content
between xi and yj with the left information content between xi and the corresponding deviation between
model output and ground truth after the training of the ML model to estimate the information extraction
of the model from the dataset.

As a next example, we introduce the chi-square test of independence of two random variables.

Chi-square test of independence
In case the chi-square test of independence is taken as the measure for stochastic independence, then we
define in this work that ϕ returns 1 if the corresponding random variables of the pair are not independent
of each other, else 0.

Let us have N ∈ N measurements where at each measurement the values of all random variables are deter-
mined. For any fixed i ∈ {1, ..., n} and j ∈ {1, ..., m}, we define

P
(

xi = zk1
xi

∧ yj = zk2
yj

)
:= Ok1k2

N

where Ok1k2 ∈ N is the number of observed measurements where xi = zk1
xi

and yj = zk2
yj

for the corresponding
k1 ∈ {1, ..., lxi} and k2 ∈

{
1, ..., lyj

}
. Then, we have

P
(
xi = zk1

xi

)
=

lyj∑
k2=1

Ok1k2

N
and P

(
yj = zk2

yj

)
=

lxi∑
k1=1

Ok1k2

N

with N =
∑lyj

k2=1
∑lxi

k1=1 Ok1k2 . Under the hypothesis that the random variables xi and yj , i ∈ {1, ..., lxi}
and j ∈

{
1, ..., lyj

}
, are stochastically independent, the number of expected measurements Ek1k2 ∈ R where

xi = zk1
xi

and yj = zk2
yj

is given by

Ek1k2 := P
(
xi = zk1

xi

)
P

(
yj = zk2

yj

)
N

for the corresponding k1 ∈ {1, ..., lxi
} and k2 ∈

{
1, ..., lyj

}
as we can take the corresponding proportions from

N independent of the outcome of the other random variable. Consequently, if xi and yj are independent,
it is necessary that the observed and the expected number of measurements for all k1 ∈ {1, ..., lxi

} and
k2 ∈

{
1, ..., lyj

}
are each equal. The chi-square statistic given by

χ2 :=
lxi∑

k1=1

lyj∑
k2=1

(Ok1k2 − Ek1k2)2

Ek1k1

, (4)

equals zero if Ok1k2 and Ek1k2 equal each other for all k1 ∈ {1, ..., lxi
} and k2 ∈

{
1, ..., lyj

}
and quantifies the

deviation from not being equal. However, due to the presence of noise, even under independence of xi and yj ,
it might hold that (Ok1k2 − Ek1k2)2

> 0 for some k1 ∈ {1, ..., lxi
} and k2 ∈

{
1, ..., lyj

}
. Consequently, we need

to estimate from a distribution how likely the observed chi-square value under the hypothesis of independence
is. If the observed value is too unlikely, we rather assume that the opposite of our hypothesis of independence
is the case, meaning the variables depend on each other and there exists a dependence between the random
variables in taking their values. It can be proven that χ2 is chi-square distributed with (lxi − 1)

(
lyj − 1

)
degrees of freedom, see, e.g., (Rao, 1973, 6d.2) or (Georgii, 2015, 11.3). One important assumption is that the
term Ok1k2 −Ek1k2√

Ek1k1
is approximately normally distributed, which is usually sufficiently the case if Ek1k2 ≥ 5

for all k1 ∈ {1, ..., lxi} and k2 ∈
{

1, ..., lyj

}
, see, e.g., McHugh (2013) or (Greenwood & Nikulin, 1996, page

21). Based on the distribution, we can calculate a p-value for the observed χ2 value. The p-value is the

8

Published in Transactions on Machine Learning Research (02/2024)

probability to get a higher chi-square value than the observed one under the hypothesis of independence. If
the p-value is too small, e.g., for this work we use lower than the level of significance of 0.01, we reject the
hypothesis of independence and assume that the random variables take their values not independent of each
other. Our measure of dependence is the number of chi-square tests that indicate dependence of the tested
pairs for the input and output variables (xi, yj) for each i ∈ {1, ..., n} and j ∈ {1, ..., m}. However, since the
number of chi-square tests is given by nm, which can scale to large numbers, we use an adapted p-value to
lower the risk of wrongly rejected hypothesis, which would result in assuming too often dependence. We use
the Bonferroni-correction dividing our level of significance 0.01 by the number of chi-square tests mn.

Discretization scheme for co-domains of random variables
In the next part, we describe how to discretize real-valued continuous random variables, meaning that the
co-domain is continuous. We take Algorithm 4 from Breitenbach et al. (2022). We remark that our algo-
rithm also works for real-valued discrete random variables without any change. Consequently, no separation
between discretized and continuous random variables is necessary. The algorithm provides an adaptive dis-
cretization scheme for each random variable, meaning that boundaries of the bins, in which the co-domain
of a random variable is divided and define the events denoted with zk1

xi
or zk2

yj
, are not set equidistant but

rather equinumeric. With equinumeric, we mean that each bin has - if possible - the same number of data
points which balances the likelihood of each event.

Algorithm 1 Discretize the co-domain of random variables
1. Set ρ ∈ N number of minimum data points per bin.

2. For any random variable v:

(a) Determine the minimum value m and the maximum value M of all measured values of v.
(b) If M ≤ m: Skip v

(c) If M > m:
i. Sort the measured data points of v in ascending order.
ii. Go through the data points in ascending order. Determine the range of a bin such that there

are at least ρ data points within the current bin and that the value of the last data point of
the current bin is smaller than the first one of the next bin.

iii. If there are less than ρ data points left: Join these data points with the last bin that has at
least ρ data points.

iv. Output: Upper and lower bound of each bin defining the events zk
v for k ∈ {1, ..., lv}.

Algorithm 1 works as follows. The parameter ρ ∈ N determines the minimum number of data points
per bin in which the co-domain of a random variable, such as xi or yj , is discretized. These upper and
lower bounds of each bin define the event zk

xi
meaning that the random variable xi takes a value within

the corresponding kth bin. Analogously, it holds for the events zk
yj

of the random variable yj . Thus,
the parameter ρ influences the marginal probability P

(
xi = zk1

xi

)
and P

(
yj = zk2

yj

)
of the joint probability

P
(

xi = zk1
xi

∧ yj = zk2
yj

)
and consequently the corresponding expected frequency Ek1k2 as well as the number

of bins for each random variable. Increasing ρ will increase the quantity Ek1k1 , which might be useful if
Ek1k1 < 5 for one k1 ∈ {1, ..., lxi

} and one k2 ∈
{

1, ..., lyj

}
. Consequently, this discretization scheme is

beneficial for the implemented chi-square test and can be used without any restriction for the calculation
of the mutual information as well. We need to keep in mind that a too big ρ might lead to a too coarse
discretization deleting information from the continuous random variable. In case of the chi-square test, one
strategy might be to start with a small ρ where Ek1k1 < 5 for one k1 ∈ {1, ..., lxi

} and one k2 ∈
{

1, ..., lyj

}
and increase ρ until Ek1k1 ≥ 5 for all k1 ∈ {1, ..., lxi

} and all k2 ∈
{

1, ..., lyj

}
. A further advantage of

that scheme is that by ensuring always a minimum number of data points in each bin of each marginal
distribution, the denominator in the mutual information and chi-square formula is never zero which could
happen with an equidistant discretization strategy.

9

Published in Transactions on Machine Learning Research (02/2024)

In step 2 a), we determine the minimum and the maximum of the available data points of the corresponding
random variable v to filter out constant random variables in 2 b). Without any variation, constant random
variables do not provide any information for predicting something for what at least two different kind of
events are necessary. For non-constant random variables, we sort the data points of the random variable
in ascending order. Once this is done, we can go through the points in ascending order and determine the
boundaries of the bins such that at least ρ data points are included in a bin. If there are several data points
with equal values, we include all these points into the current bin such that the first data point in the next
bin is larger than all data points in the bin before. If the remaining data points, which have not yet been
associated to a bin, are less than ρ data points, we include them into the bin with the largest upper bound.

The binning generated by Algorithm 1 can be used for the chi-square test and the mutual information
to calculate corresponding marginal and joint probabilities as we do in our implementation provided with
this work. The marginal and joint probabilities of (3) and (4) are calculated as follows. We take the
frequency of each event zk1

xi
, zk2

yj
and zk1

xi
∧ zk2

yj
and divide it by N to obtain the corresponding probabilities

P
(
xi = zk1

xi

)
, P

(
yj = zk2

yj

)
and P

(
xi = zk1

xi
∧ yj = zk2

yj

)
for all k1 ∈ {1, ..., lxi

}, k2 ∈
{

1, ..., lyj

}
, i ∈ {1, ..., n}

and j ∈ {1, ..., m}. In Appendix A, the process is illustrated with time series data.

Stochastic independence as a hypothesis test
We conclude this section with a remark about the distribution of test statistics. Even under the hypothesis
of independent data/random variables, there are some variations by coincident that lead to a distribution of
the test statistic. Consequently, we need a probability how likely it is under the assumption of independent
random variables (no deterministic relation between input and output) to get a test statistic value bigger
than the observed one, and thus exclude that the relation in the measured data is just by coincidence. Then,
we can decide if a certain observed test statistic is too unlikely under the assumption of independent random
variables, and we should rather assume that the opposite is true, meaning that there are some deterministic
relations by whose effect random variables do not take their values independent of each other. Based on
such a statistical view, all models where it cannot be rejected that their deviations from the ground truth
are independent of the input are equally good in terms of extracting the deterministic relations.

The chi-square value χ2 is chi-square distributed with corresponding degrees of freedom under certain as-
sumptions. Consequently, we can evaluate the likelihood for the observed chi-square value of being generated
by two independent random variables. This likelihood can be calculated for each pair of random variables
separately as in (4), which results in mn decisions. However, when considering each term of (4) as a random
variable where (lxi

− 1)
(
lyj

− 1
)

of them take their value freely for each i ∈ {1, ..., n} and j ∈ {1, ..., , m},
resulting in the corresponding degree of freedom under which we evaluate the likelihood of the observed χ2,
we can add the chi-square value of all random variables together as follows

χ2 :=
n∑

i=1

m∑
j=1

lxi∑
k1=1

lyj∑
k2=1

(Ok1k2 − Ek1k2)2

Ek1k1

. (5)

The likelihood of χ2 defined in (5) under the hypothesis of independent input and output variables can
be evaluated as sum of

∑n
i=1

∑m
j=1 (lxi − 1)

(
lyj − 1

)
freely varying normalized random variables, defining

the degree of freedom for the corresponding chi-square distribution. The value of χ2 defined in (5) can be
used as a measure for stochastic independence between input and output as an alternative to the number
of stochastic independent input and output pairs as described in the context of (4). The difference is in
defining the function ϕ.

We are not aware of a theoretical distribution for the mutual information defined in (3) under the hypothesis
of independent variables. However, to get a threshold for mutual information, such that we can decide based
on a level of significance if an observed mutual information value is too unlikely under the assumption of
independent input and output variables, we can numerically determine a distribution of mutual information
with the following permutation procedure. The idea is to shuffle the association of value pairs between input
and output based on the available data according to (xi (t) , yj (π (t))) for all i ∈ {1, ..., n} and j ∈ {1, ..., , m}
where π : T → T , t 7→ π (t) is a bijective map, called permutation, and T is the set of all time points of
measurements of the data points. Intuitively, the permutation test destroys the relation between input and

10

Published in Transactions on Machine Learning Research (02/2024)

output by shuffling them. The reason is the sampling of the data from the marginal distributions, instead of
from the joint distribution, thus, enforcing independence by design. Ideally, the mutual information computed
from samples drawn according to the marginal distributions is zero. However, in practice, due to possible bias
in any finite sampling, it might not be exactly zero. Therefore, the mutual information computed from this
test can serve as an experimental minimum or baseline. If the computed mutual information value based on
the dataset samples, which are distributed according to the joint probability distribution, is unlikely according
to the numerically determined distribution from the permutation test based on independent variables, we
assume that the computed mutual information value is determined by deterministic mechanisms relating
input and output. This applies to both model output and deviations from the ground truth. The observed
mutual information value is considered unlikely under the hypothesis of independent input and output
variables if less than a predefined percentage of mutual information values (level of significance; in this work
5%) generated with the randomly shuffled data is bigger than the observed mutual information value. The
distribution is generated by calculating mutual information for several random permutations (100 times
in this work). The same procedure holds to calculate a distribution for the chi-square value defined in
(4) or (5) in case assumptions are violated to justify the application of the chi-square distribution for χ2.
However, we remark that the theoretically available distributions for the test statistic defined in (4) and
(5) are an advantage in terms of computation time as the above described permutation method requires
repeated computations to generate the distribution under the assumption of independent input and output
variables. Finally, with such a stochastic framework in place, we are able to make concrete decisions if a
further improvement is possible given the data or if all the learnable relations are already extracted.

3 Related Work

Relation to feature selection methods In analogy to the idea of using information and stochastic
dependence measures for feature selection, we apply the same methods to the input and the deviations
between the model prediction and the ground truth. Our approach for measuring the predictability of
output based on input variables is similar to feature selection methods, such as the minimize redundancy
maximize relevance (mRMR) method Peng et al. (2005), which is based on mutual information.

Mutual information estimation and applications
Besides classical methods to estimate mutual information such as Darbellay & Vajda (1999); Kraskov et al.
(2004); Gretton et al. (2005); Moon et al. (1995); Kozachenko & Leonenko (1987); Gao et al. (2017), a more
recent neural network based estimation of mutual information Belghazi et al. (2018); Oord et al. (2018); Song
& Ermon (2020); Franzese et al. (2024) is proposed. Such methods provide an alternative to Algorithm 1 for
the calculation of mutual information. However, since it is the focus of this work to use such implementations
to test model convergence in terms of independent input and output, we use a framework in which we can
directly implement further stochastic measures such as the chi-square test, not being just specific for mutual
information estimation. Our work may further motivate the development of such methods as we give another
application of such measures and estimators for model evaluation. Furthermore, in different scenarios it
may be that different requirements of certain estimation methods are more or less fulfilled, which justifies
considering several stochastic measures and their implementations which is facilitated by our modularized
approach. Moreover, by using different statistical tests, we can demonstrate how to include hypotheses
testing to decide for independent input and output, like the target data, residuals or model deviations,
which allows us to make a stochastic decision for model convergence based on the given data. Nevertheless,
in Czyż et al. (2023) several mutual information estimators are benchmarked regarding their accuracy. This
work provides evidence that in low-dimensional settings, such as the pairwise case, histogram based methods,
e.g., Algorithm 1, can provide accurate results. Under model convergence with independent input and model
deviations, it is required that the pairwise test confirms independent input and model deviations as well,
which represents a necessary condition for convergence. On the other hand, if we have to calculate the full
mutual information according to Czyż et al. (2023), neural estimators may better handle high dimensional
settings, making it suitable to compute the joint mutual information.

The work Xu et al. (2019) introduces an information-theoretic measure called Determinant-based Mutual
Information (DMI) to train deep networks that are robust to label noise. However, the key conceptual differ-
ence from our approach is that they do not account for the input in the same way we do. Specifically, once

11

Published in Transactions on Machine Learning Research (02/2024)

the prediction and the ground truth are available, their method does not consider the input that generated
the prediction anymore. In contrast, our approach consistently evaluates whether a given prediction can be
improved based on the provided input, taking into account the entire triple of input, prediction, and ground
truth, whereas Xu et al. (2019) focus solely on a tuple consisting of the prediction and ground truth.

DeepInfoMax (DIM) Hjelm et al. (2019) as well as contrastive predictive coding (CPC) Oord et al. (2018)
maximizes mutual information between raw data and its compressed representation to find a better repre-
sentation of raw images. Furthermore, Chen et al. (2016) employs mutual information to find a disentangled
and interpretable representation of images. The work of Brakel & Bengio (2017) also focused on finding
a disentangled/independent representation/features of images and uses mutual information as a measure
of independence between these features and thus the degree of disentanglement. Our framework can be
directly applied to the corresponding generated representations to test if the model accuracy is only caused
by unpredictable parts like noise. For more details, please see the Discussion about the case of unstructured
input data.

Innovation method
In time series analysis and signal processing, the Innovation method Reid & Term (2001); Houts et al. (2013)
is a widely recognized metric. It is often used as an indirect measure of the consistency of the prediction of
the model (typically Kalman Filter) when the true (ground truth) latent states of a dynamical system are
inaccessible. The Innovation method works by comparing the observed data with the model’s predictions
with the goal that the differences —known as innovations or residuals— have a zero mean and a specific
covariance where residuals from different time points are uncorrelated. For Kalman Filters, this covariance
can be determined in closed form. A range of tests Reid & Term (2001) can be conducted to ensure these
criteria are met, thereby confirming the filter is consistent and reliable. While the Innovation method uses
stochastic means to investigate properties of the residuals to evaluate the model performance, our framework
additionally includes the input data to evaluate the stochastic independence of input and residuals to evaluate
the potential of a model to be improved due to remaining deterministic relations between input and residuals.
Due to computational challenges the calculation of stochastic measures might have and thus due to the usage
of approximations, the Innovation method and our presented framework can be used as necessary tests that a
successful model has to pass. Furthermore, our framework also suggests an option how to extend to nominal
ground truth data where it is not possible to define differences and thus residuals.

Ensemble learning
Our proposed framework can be considered as an extension of ensemble learning methods such as Wortsman
et al. (2022), in particular any kind of boosting algorithms Schapire & Freund (2012). We refrain from the
indiscriminate combination of multiple models. Our framework triggers a combination only if it confirms
the presence of potential for further improvement in terms of further learnable/extractable deterministic
relations. Thus, we can define a convergence criterion for the number of combined models.

Information bottleneck
Another application of our framework is to extend the information bottleneck concept Saxe et al. (2019);
Kawaguchi et al. (2023). The basic framework of the information bottleneck is to maximize the mutual
information between a data representation sought and the corresponding output data and at the same time
to minimize the mutual information between this representation and the input data. There is a parameter
to balance both contradicting requirements. With our framework, we can extend the information bottleneck
method by providing a procedure how to choose this balance parameter to find a lossless compression of
the input data. Starting with a configuration where the model extracts all the information between input
and output data, we tune the balance parameter such that the compression is weighted higher until the
model cannot extract all the information between input and output assessed by having dependent input and
residuals or model deviations. With that procedure, we find the threshold of the balance parameter for a
lossless compression.

Time series prediction
Besides the above related methods, the showcase of this work is in particular associated with time series
prediction. In the past few years many of time series prediction models have been developed to improve
the prediction performance, such as RNN, LSTM Memory (2010), GRU Cho et al. (2014), transformer and

12

Published in Transactions on Machine Learning Research (02/2024)

its variants Vaswani et al. (2017); Kitaev et al. (2019); Zhou et al. (2021); Liu et al. (2022); Zhang & Yan
(2022); Wu et al. (2021); Zhang et al. (2022) and state space models such as RKN Becker et al. (2019), S4
Gu et al. (2021), MTS3 Shaj et al. (2023) as well as simple yet effective linear models such as Zeng et al.
(2023). The improvement is measured in terms of corresponding loss function values of the best weight
configuration of a model. We would like to extend these evaluation by our framework where we introduce
another quantity that evaluates how much information is left to extract from the time series given the input
length of the historic data. Furthermore, our approach would like to establish a level before model training,
that allows for evaluation if a time series is predictable given historic data. This is in particular important
for challenging time series and to evaluate if already simple models are sufficient in a prediction scenario
Zeng et al. (2023), Li et al. (2023). Nevertheless, there is a question in all scenarios: How can we make sure
that the current method has already achieved the lowest possible bound of the error for each time series or
can it still be improved by fitting a better model for each case?

4 Applications|Numerical experiments

In this section, we showcase our framework to analyze time series for their predictability, measure the
dependence between input/context and output/target data for the purpose specified in the bullet points on
page 4 and demonstrate how to measure learning success of models with our framework. Moreover, we show
how our framework extends the performance evaluation of a model.

Apart from several real world datasets, we use a synthetic dataset to purely demonstrate the core concept of
the paper described in the bullet points on page 2 where we can control properties of the noise, such as the
ratio between information and noise, which we do not know in a real dataset. The synthetic dataset consists
of the time series that is composed of the sinus function, sin : R → R, t 7→ sin(t) and the random variable
θ : R → R, t 7→ θ(t), which generates noise by random values according to y(t) := sin(t) + aθ(t) where a > 0
scales the amplitude of the noise. In order to evaluate performance in an already established metric, we use
the normalized root mean squared error (RMSE) defined by 1

σ

√∑N
i=1 (ỹi − yi)2 where N ∈ N is the number

of measurement points, ỹi is the model prediction at the discrete time point i ∈ N, yi is the ground truth
and σ is the standard deviation

√∑N
i=1 (ȳ − yi)2 calculated on the training dataset where ȳ is the mean of

the data points of the training data.

The parameter ρ of Algorithm 1 is set to 5% of the number of measurement points of the corresponding
dataset on which the algorithm is performed, unless otherwise stated.

We remark that the term residuals is usually used instead of model deviations to name the difference between
model output and the ground truth in case of ordered target data. In the nominal case, we further use the
term model deviation, which is defined in Subsection 4.4. We show in both settings the stochastic dependence
decays over training epochs on training and validation datasets.

We provide a short overview about the intention of each subsection in this section and what it is supposed
to demonstrate:

• Subsection 4.1: The noise-independent evaluation of model performance shows the success criterion.

• Subsection 4.2: The loss-function agnostic evaluation of model convergence demonstrates the success
criterion as well.

• Subsection 4.3: Differentiating model inaccuracies into systematic model failures or those due to
unpredictability and thus show stochastic independence of input and residuals or model deviations
as a stopping criterion. Consequently, it shows the success criterion, a convergence criterion and
thus the usability for determining hyperparameters.

• Subsection 4.4: The application of our framework to nominal data. It demonstrates the first three
bullet points of page 4 for the classification problem.

13

Published in Transactions on Machine Learning Research (02/2024)

• Subsection 4.5: The detection of distribution shift in the sense that relations learned by a model do
not hold on a data set different from the training data set. Consequently, it shows the distribution
shift detection and data efficiency bullet point of page 4.

While these items demonstrate the numerical application of our proposed framework outlined in the bullet
points of the Introduction, we have an additional section in the Appendix, Section E, where we stack models
on top of each other to correct the output of the former model. The numerical experiments with the stacking
architecture provide further evidence that any remaining stochastic dependence between input and model
deviations, identified with our implementation, can be used to correct former predictions. These dependencies
are not detectable with accuracy metrics that only consider model output and ground truth.

4.1 Splitting noise off from model inaccuracy

In practical scenarios where data is obscured by noise or cases that some components of the future samples
are not predictable based on the given features, like the the history, evaluating prediction models becomes
challenging. Traditional metrics such as L2-loss on validation set may not suffice due to the uncertainty
surrounding the ratio of unpredictable to predictable parts. This uncertainty complicates determining the
lower bound of prediction error beforehand. Therefore, solely relying on loss metrics for model assessment is
insufficient, as the source of error could be either model inadequacy/failure or inherent data unpredictability.
For example, when the power of noise (as an unpredictable component) equals to half of the data power,
the lowest possible normalized mean squared error (MSE) on validation is 0.5. However, by employing
our framework that identifies when the model has learned the primary data component effectively, we can
stop training and attribute the remaining residual to initial data noise, although the L2-error is still high.
Motivated by this discussion, we start our experiments with such a data where the first component is fully
predictable such as the sinusoid function plus some independent, identical distributed Gaussian noise that
is completely unpredictable, however, the portion of each is controllable for us in this synthetic case.

For the numerical implementation, we consider a window of size 50 and the first 49 samples are considered as
context/input to the model and the 50th sample as the target/output. To generate the dataset, the window
is slid over the time series that was split into training and test/validation set before the experiment according
to a ratio of 0.75/0.25.

For the experiments depicted in Table 1, the random variable θ adds Gaussian noise. According to the
table, the chi-square test and the mutual information indicate that the MLP model, trained with L2-loss,
has extracted the sinus function. We see that all essential information is extracted because the chi-square
test indicates that all residuals are independent of the input. In the case of mutual information where the
p-values are greater than 0.01, it is indicating that based on that level of significance, we cannot reject the
hypothesis that the input and the residual are independent of each other and thus the input is unlikely to carry
information about the outcome of the residual. Therefore, in these cases, even a much more sophisticated
model is not able to decrease the error further and might lead to overfitting to the noise. While the RMSE
increases with the amplitude of the noise, indicating that the model performance would become worse, our
stochastic measures indicate that the model has extracted the sinus function as the main deterministic driver
of the time series. This can be seen since the L2-norm between model prediction and the pure sinus value,
shown as Actual Err in Table 1, is (almost) independent of the noise amplitude. Furthermore, the fact
that the normalized test RSME is always close to the relative noise standard deviation indicates that the
deviation between model and data results from the noise and not from a systematic deviation from the sinus
function. We remark that the first and third column can only be presented because we exactly know the
signal and the noise component separately. In real world data, these numbers usually cannot be computed,
however, our method can provide the valuable insight if there is some relation left to extract or the deviation
between model and data is rather due to errors coming from unpredictable relations given the input data.

4.2 Information extraction influenced by loss function and noise properties

In this part, we show that small values of stochastic measures coincide with a model that learned the under-
lying dynamics of the deterministic part of the data. Moreover, the choice of loss function is an important

14

Published in Transactions on Machine Learning Research (02/2024)

Exp. Err Chi-square Analysis Mutual Information Analysis
Rel. noise std RMSE Actual Err Init. dep. var Res. dep. var Init. MI Init. Perm Res. MI Res. Perm pv

0 2.2 × 10−5 2.2 × 10−5 49 49* 27.497 0.7385 ± 0.0272 27.2781 0.4039 ± 0.236 0
0.2715 0.2731 0.0616 49 0 8.3351 0.7076 ± 0.0136 0.7301 0.7096 ± 0.0114 0.05
0.4927 0.4914 0.1073 49 0 4.193 0.7337 ± 0.0119 0.7643 0.7332 ± 0.0108 0
0.6465 0.6568 0.1476 47 0 2.5647 0.7024 ± 0.0104 0.7472 0.7049 ± 0.0095 0
0.7482 0.7461 0.1682 38 0 1.6659 0.7325 ± 0.0092 0.7503 0.7054 ± 0.0089 0
0.8166 0.8184 0.1789 37 0 1.2591 0.7293 ± 0.0095 0.7862 0.7296 ± 0.0085 0
0.8611 0.8595 0.1831 30 0 1.053 0.711 ± 0.0077 0.7562 0.7102 ± 0.0069 0
0.8921 0.9068 0.1893 28 1 0.9725 0.7275 ± 0.0086 0.7931 0.7278 ± 0.0075 0
0.9148 0.9134 0.1846 19 0 0.8825 0.7109 ± 0.0079 0.7605 0.7384 ± 0.0082 0.01
0.9306 0.9415 0.1934 11 0 0.8751 0.7341 ± 0.0075 0.7521 0.7070 ± 0.0073 0
0.9425 0.9410 0.1952 5 0 0.8153 0.7053 ± 0.007 0.7652 0.7042 ± 0.0085 0

Table 1: Impact of varying amplitudes of white noise on a sinusoidal signal and assessing its influence on the
performance of a simple MLP. The relative power of the noise component, which is the root of the variance
of noise divided by the variance of the total time series, is shown in the first column, which is the theoretical
lower bound of test RMSE. In the second column, the normalized RMSE on the test data is shown. The third
columns shows the L2-loss between the prediction and actual clean sinusoid. The fourth column illustrates
the dependency of the target on the history evaluated by chi-square test, which is initially complete until
almost half of the power is taken by noise and decreases to small numbers when noise becomes the dominant
(94 percent) part of the time series. The fifth column evaluates the dependency of residual target on the
corresponding context to show how successful the model is to reduce this dependencies. The last five columns
show the same concept in terms of mutual information. Similar to chi-square, we have initial and residual
values as well as two more columns to report their corresponding lower bound which is obtained by random
permutation of input and the corresponding residual, see Subsection 2.2 for details. The last column shows
the p-value of the observed mutual information under the hypothesis that residuals are independent of the
input given the dataset calculated by the mentioned random permutation. Note: * The model fits the data
up to numerical errors occurring in the residuals around the peak of the sinus, which represents a predictable
pattern due to the periodicity, see Figure 15. Such cases can be handled by introducing a threshold indicating
a very close fit between model output and data in some norm. An alternative could be to impose a minimal
bin width in Algorithm 1 which might impact the equinumeric property.

key factor to extract the deterministic relations from the data. To demonstrate it, we use our synthetic
dataset where the random variable θ is defined by θ(t) := 1

10 θ1(t) + 10θ2(t), θ1 is Gaussian distributed with
mean zero and standard deviation 1 and θ2 is a Poisson distributed random variable over the number of
peaks (high values of the time series) within a time interval. If at a time point t there is such a random
peak, the variable θ2(t) = 1 and 0 otherwise. In this numerical experiment, the rate of arrivals of a peak
is 1

200 peaks per sample (or expected time between two peaks), meaning that we expect one peak after 200
data points on average.

Since peaks only increase the values of the time series randomly, the mean of the noise is greater than zero,
indicating asymmetry. In this case, we see in Figure 2 that the initial dependence between input and output
is totally reduced only by the MLP that is trained with the L1-loss function while it does not extract the
total deterministic relations when using an L2-loss function. By "extracting deterministic relations", we refer
to learn/approximate the sinus-function with the model. This extraction has taken place when only noise is
left that is independent of the input, as shown in Figure 2 where we see that in the L2-norm the model output
trained with L1-loss function is much closer to the corresponding sinus-function, evaluated on the validation
set. In other words, the results of Figure 2 depict that the model trained with an L2-loss function is prone
to the properties of unpredictable patterns, specifically irregular peaks, in this experiment. For illustration,
plots of predictions and residuals for L1- and L2-loss functions are given in Figure 16. We remark that also
here the synthetic set is useful since we know the exact functional formula that generates the data apart
from noise in order to confirm that our utilized metrics can better reveal which prediction is more in line
with the underlying relations in the data, in particular where these metrics are solely applied on measured
and possibly noisy data. Consequently, this example demonstrates that when a stochastic measure reports
independence between model deviations and input, it indicates that the model has successfully extracted
deterministic relationships, excluding noise or unpredictable patterns. This aligns with being close to the

15

Published in Transactions on Machine Learning Research (02/2024)

Chi-square Analysis MI Analysis
0

10

20

30

40

Nu
m

be
r o

f D
ep

en
de

nt
 V

ar
ia

bl
es

Results for Chi-square Analysis and Residual MI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
sid

ua
l M

I

L2-trained Model
L1-trained Model

L2-trained Model L1-trained Model
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n
RM

SE
 ±

 V
ar

ia
nc

e

L2 Distance Between Prediction and Sinusoid
L2-trained Model
L1-trained Model

Figure 2: In the left sub-figure, the bars represent the stochastic measures of independence between the
input and residuals, along with their corresponding standard deviations obtained from several training runs
with different seeds. The initial number of dependent variables is 49. The value of initial MI is 13.342 ±
0.071. The p-values are shown in Figure 3. For the L2 model, the p-value always remains zero. The right
sub-figure shows the RMSE values between the model predictions and the clean (pure) sinusoid for models
trained with L2- and L1-loss functions. The lower bound on the error is 0, as the predictions are compared
to the pure sinusoidal function. This results is completely in line with the result of the left sub-figure as
being closer to the clean data coincides with a lower value of the stochastic measures. Notably, these metrics
require no prior knowledge of the clean data, underlying relationships, or model architecture, as they rely
solely on the input, output, or residual data. All models were trained on noisy data. More information is
provided in Figure 3. All values are reported on the validation set.

ground truth, not in terms of fitting the training data (which includes noise), but in capturing the underlying
deterministic dynamics. In our case, this corresponds to the pure sinusoidal signal derived from the input
data. A further example is given in the Appendix, Section C, showing that independence of input and model
deviations indicates being close to the clean data.

An explanation for the observations is that the minimization of a loss function under the constraints of the
model does not necessarily coincide with extracting the real dynamic that underlies a dataset or extracting
the most information from the dataset, respectively. For example, the minimum of the L2-loss function
subject to the constraints of the model is more distracted from the real dynamics (sinus-function) by the
specific noise than the L1-correspondence. Another reason for the difference of the loss functions in taking
optima might be that the L1-loss weights any deviation between model and ground truth equally regardless
if the corresponding data point is predictable given the input while mutual information, like any other
measure based on stochastic independence, takes only predictable data points into account. Depending on
the properties of the unpredictable data part, this difference might lead to different optima regarding the
model’s parameter values. The key point is that these stochastic dependence measures can determine which
optimum is closer to the underlying dynamics, something loss functions cannot always achieve.

4.3 Stochastic measures as convergence criteria

Next, we show how the mutual information and the chi-square test evolve during the training after each epoch
to demonstrate its capability to work as convergence criteria both for model training and hyperparameter
search. The procedure is as follows. If input and output are not independent of each other, training of a
model is started. If after some epoch, input and residuals or model deviations, respectively, are independent
regarding the training or validation set, more detailed if we cannot reject the hypothesis that input and
residuals, resp., model deviations are stochastically independent, then there is no information left to extract
and we can stop the training. The importance of the stochastic measure is that we can evaluate if flattening
of the loss function after some epochs is due to whether the training is done in terms of information extraction

16

Published in Transactions on Machine Learning Research (02/2024)

or if the convergence speed meanwhile has just slowed down. In the latter case, it is worth further patience
since further information may be extracted. Moreover, during later epochs, the convergence speed might
increase again once the optimal weight updates are identified. The advantage of a stochastic measure
taking the relation between input and model deviations into account is that there is a lower bound of
dependence known in advance. This bound is theoretically always achievable by a model, namely when all
the deterministic relations are extracted, which is by definition independent of the unpredictable parts given
the input data. In contrast, for loss functions that do not take this relation into account, there is no lower
bound known in advance that is achievable on the concrete dataset.

In this experiment, we use the data from Section 4.2 and plot relevant metrics in Figure 3. We see that when
the loss function doesn’t improve any more, the corresponding chi-square test is zero and the p-value of the
mutual information becomes non-zero in a magnitude of order such that we cannot reject the independence of
input and residuals. Although we only check pairwise instead of all possible combinations of variables (joint
distribution), see the limitations in the Discussion for details, this experiment shows that our framework
provides valuable convergence criteria as a stagnating loss function coinciding with stochastic independence
can be rather interpreted that the model has extracted all the deterministic relations between input and
output. The rationale is that if input and residuals or model deviations are independent of each other, it is
necessary that also a pairwise test indicates independence. Furthermore, the turning point when stochastic
measures increase marks the condition for early stopping without relying on a validation set. This turning
point indicates that, while the loss function continues to decrease, the model may start overfitting to the
training data by adapting to spurious correlations or noise. The overfitted relations do not seem to be
relevant for the validation set as here the stochastic measures do not decrease any more after some epochs.

We provide a further example based on the dataset ETTh2 Zhou et al. (2021) with a similar result depicted
in Figure 4. We see based on the chi-square test that, after some epochs, there is already a set of weights
based on which the residuals are clearly stochastically independent of the input. Similarly, we see that the
mutual information is close to the value generated by the permutation test, supporting the chi-square results.
Furthermore, the increase of the chi-square and the mutual information on the validation set for later epochs
might indicate an overfitting since the minimum based on the L1-loss function, which further decreases over
epochs, does not necessarily coincide with the maximum of extracted deterministic relations defined by a
stochastic measure, see also Section 4.2.

4.4 Time series classification

In this section, we apply our framework on time series classification (TSC) problems. We remark that for
ordered classes, we can apply the framework where the differences between the discrete output values and
the ground truth model the residuals. The deviations from the ground truth in the nominal case are defined
as follows. The random variable θ modeling the deviation of the model classification from the ground truth,
takes the value of the correct class in case the output of the model is not correct and -1 otherwise. This
definition allows us to measure the information content between the correction of the model (representing
the model deviation) and the input. We apply our framework on two subsets of the well-known UCR dataset
Dau et al. (2019). More specifically, the dataset DistalPhalanxOutlineCorrect shown in Figure 5 is a binary
classification problem from time series data and the dataset ElectricDevices shown in Figure 6 consists of
seven classes. We relabeled the classes always starting from 0 until all classes are labeled accordingly. The
model architectures used are the Nonstationary Transformer (NSTs) Liu et al. (2022) and the MLP.

In this case, the parameter ρ of Algorithm 1 is set to 10 to cope with the high imbalance of the classes and
the fact that over epochs this imbalance increases since most of the cases are classified correctly and thus
the size of the class labeled with -1 for θ increases. Results including cross-entropy loss, accuracy and the
mutual information per epoch are shown in Figure 5 and Figure 6. In these figures, we observe that while
the accuracy is increasing, the dependence of the variable θ with the input x decreases over epochs as it
is supposed to since less and less cases are not predicted correctly. In other words, the random variable θ
tends to become a constant function where information gain becomes small or zero, regardless of any input
time series. The difference in both cases is the following. From the results of Figure 5, we can conclude
that over training epochs we approach a parameter configuration where we cannot reject the hypothesis, at
a significance level of 1%, that the input and the model deviations are independent based on our mutual

17

Published in Transactions on Machine Learning Research (02/2024)

Figure 3: Curves showing stochastic measures of independence and loss function history.

18

Published in Transactions on Machine Learning Research (02/2024)

Figure 4: Curves showing values of stochastic measures of independence between input and residuals as well
as the loss function history based on the ETTh2 dataset.

information measure. In this case, we do not expect a further improvement regarding the model performance
since it potentially captures all deterministic relations. In contrast, in the experiment depicted in Figure 6,
our mutual information test allows us to reject this hypothesis, indicating that there are still deterministic
relationships to be extracted, which may improve the model’s performance.

4.5 Detecting distribution shifts

One prevalent issue hindering the advancement of ML models towards higher accuracies is distribution shift,
meaning that relations that hold within the training set do not hold on the validation set. A reason could
be that the validation set contains newer data and that the underlying dynamics have changed or change
over time. Especially several existing works such as (Zeng et al., 2023, Figure 5) and Kim et al. (2021), in
particular (Kim et al., 2021, Figure 3) have confirmed this phenomenon, e.g., on ETT1 and ETT2 data sets.
This section presents a novel insight into this phenomenon, illustrating how our proposed framework can
detect and distinguish such cases from mere overfitting to noise. In a typical training scenario, after some
epochs while training loss continues to decrease, validation loss may gradually start to increase. Without
prior assurance of the absence of distribution shift, a pure loss function based approach without including
stochastic measures struggles to differentiate between overfitting to the noise in training data and (partial)
distribution shift due to different deterministic relations between the training and the validation set, as both
can lead to similar observations of an increasing loss function on the validation set.

Our framework provides a concise solution. Instead of solely monitoring the loss function, tracking mutual
information enables us to determine the types of relationships the model is learning. A decrease in mutual
information across epochs indicates successful extraction of information, suggesting that the model is learning
deterministic relationships within the training set, and not already overfitting to noise. If it does so as well

19

Published in Transactions on Machine Learning Research (02/2024)

Figure 5: Results on a classification problem showcasing our framework, in particular the definition of
the model deviation for nominal target data. Although validation accuracy remains below 0.8, mutual
information analysis shows the model deviations are already independent of the input.

20

Published in Transactions on Machine Learning Research (02/2024)

Figure 6: Results on a classification problem showcasing our framework for nominal target data. The p-
value for mutual information always remains zero in this experiment for both the training and validation
sets indicating that the achieved accuracy is still improvable.

on the validation set until input and deviations between model and ground truth are independent, then we
can stop the training process since the model might have learned all deterministic relations on the training
set that hold true for the validation set, too. In that case, further training might cause an overfitting to
relations not present in the validation set. Similarly, if there is no significant reduction in mutual information
despite decreasing training loss, it may indicate overfitting to the noise in the training data, as the model is
fitting to the unpredictable elements of the target which share no mutual information with the input.

In our synthetic dataset, the deterministic relations are identical in training and test set by construction.
In Figure 3, we observe that during the training based on the L2-loss function that the mutual information
increases on training and validation set after reaching their minimum within a few epochs simultaneously.
It may mean that the model fits noise rather than the actual sinus function since the norm of the difference
between model prediction and sinus function increases simultaneously while the loss on the training set
further decreases.

21

Published in Transactions on Machine Learning Research (02/2024)

Figure 7: Distribution shift experiment on the ETTh1 dataset. The experiment is repeated for six different
random seeds. The shaded area depicts the minimum and maximum over seeds and the solid line shows the
average.

In case the deterministic relations in the training data may (partially) not hold true for the validation set,
it may lead to an increase of the loss function value and potentially mutual information over epochs on the
validation set, while mutual information on the training set decreases, as we see in Figure 7. In this figure,
the deterministic relations learned on the training data do not cause a fitting output of the model on the
validation set. In contrast, please see Figure 3 where mutual information between input and residuals on
training and validation set demonstrate the same behavior. The results in Figure 7 show the learning curves
when fitting an MLP with an L1-loss function on the residuals of a PatchTST model Nie et al. (2022) with
the best setting they proposed on the ETTh1 data set where the input length is 336 lags and we predict
a target length of 96 lags. Details about the combination of both models can be found in Section E of the
Appendix. We remark that this experiment also showcases the application of our proposed framework to
multi-dimensional output.

5 Discussion

This section discusses the assumptions and limitations of our approach, followed by potential applications.

Assumptions and Limitations: The implemented approach tests the pairwise relationship between input
and output features. We acknowledge that there is a difference between pairwise stochastic independence
and mutual stochastic independence when dealing with more than two random variables (Gallager, 2013,
Section 1.3.4). This implies that more information might be obtained by considering multiple input features
simultaneously and testing their relationship with the output, rather than testing pairwise relations between
individual input and output features. However, the full consideration, instead of a pairwise testing, scales
exponentially in terms of the computational costs. Consequently, we are aware that the current pairwise
approach, which is computationally cheap compared to the full approach, cannot provide in general a full
statement that no information is left to learn. In this regard, the current approach can only be used as
an additional metric to evaluate if training is complete and further iterations might not provide a further
improvement. This could be the case if a low pairwise measure of the relation between input and output
coincides with a little or no improvement in the loss function. Pairwise test is a specific case of a full
consideration. Consequently, it holds: a pairwise test indicating deterministic relations between inputs and

22

Published in Transactions on Machine Learning Research (02/2024)

residuals/model deviations implies that there is still information left that the model can learn. An analogous
framework involves using gradient descent as a convergence criterion in optimization. Gradient descent is
widely used in deep learning and has been successful despite in general lacking sufficient conditions for global
minima convergence. The gradient provides necessary conditions for convergence, and only under certain
circumstances, it can be a sufficient condition. Nonetheless, it produces useful optimization results and
keeps computational costs manageable, similar to our pairwise stochastic measures. In this regard, if all
deterministic relations are learned, it is necessary that the measures for independence based on a pairwise
test indicate independence of the input and the residuals or the model deviations.

It is left to investigate under which conditions a pairwise consideration is sufficient to test for total stochastic
independence of input and output. Furthermore, we remark that our framework is not limited to a specific
choice of stochastic dependence/information measures and also our git repository is designed that new
measures can be quickly included in a modularized manner.

Due to the fact that any approximation or estimation of a measure, such as mutual information, may not
be sufficiently accurate Czyż et al. (2023), it is prudent not to rely only on a single estimator but rather to
use multiple ones. We achieve this by considering both an approximation for mutual information and the
chi-square test. The generality of our framework allows for the use of different measures for independence
where we can also consider other features like computational runtime apart from accuracy. For example,
the test statistic of the chi-square test of independence provides a theoretically known distribution enabling
quick hypotheses testing to determine if based on the data corresponding variables are independent.

For time series, we would like to remark, even if a method shows (full) mutual independence between the
input (history of the time series) and the output (prediction target), that this result does not imply that
the time series is not predictable. It just indicates that with the given input/provided information, the time
series is not predictable. Maybe with other features that are related to the quantity measured as a time
series, there is a deterministic relation that can be used for predicting the time series.

Alternative of model deviation for nominal data: One further option to model deviations of a model
from the ground truth in the case of nominal target data could be a multi-dimensional random variable that
models the difference between the actual probability distribution (e.g., 1 for the correct class, 0 otherwise)
and the predicted distribution from the model over the classes to be predicted. If the input variables and
the difference of the distributions, which serves as the model deviation, are deterministically related, then
the model deviation could be represented as a multi-dimensional variable (one variable for each class) to
measure the predictability. In other words, the classification problem could be seen as a multi-dimensional
ordinal data scenario.

Extension to unstructured data: For models that extract information from an input like videos, images,
sound, or text, the input data needs to be transformed into a numerical representation that shares information
with the ground truth. An example are the pixels in a figure where a small object of interest moves within a
big blank picture or tokenized text, where the position of a word can vary while not changing the meaning.
We could optimize first layer(s) to have the highest mutual information with the ground truth that is to
be predicted analogously to Chen et al. (2016) or Brakel & Bengio (2017) to optimize the encoding of the
unstructured input into numerical vector representations.

It is the task of an encoder to find a numerical representation (vector embedding) from an input signal
that maximizes information content, e.g., in the form of mutual information or stochastic dependence,
with the ground truth to be predicted. Thus, the encoder is supposed to extract the relevant information
from the (unstructured) input regarding the prediction target. This extraction can be seen as a definition
for "relevant information". In that sense, training a model can be two-staged. First, we could train an
encoder part to maximize the mutual information or stochastic dependence between the vector embedding
(output of an encoder) and the ground truth. Using a gradient-based method for this purpose requires
differentiable estimators of mutual information (e.g., Franzese et al. (2024)) or any other differentiable
definition of stochastic independence. To consider the example above, the role of the encoder may be
to extract the moving object from the figure, independent of its position. In the second stage, we train
the decoder part, which is supposed to make the prediction based on the vector embedding, with some
loss function to minimize errors between model output and ground truth. Another option is to optimize

23

Published in Transactions on Machine Learning Research (02/2024)

Input x (unstructured data)

Encoder

Vector em
bedding z

Decoder

M
odel output y

First training process (Encoder training):
Optimize parameters of the Encoder such that

given x the information content between z and G
is maximized, measured in mutual information or
any smooth approximation of it or any other loss

function maximizing stochastic dependence.

G
round truth data G

for m

odel output

Second training process (Decoder training):
Optimize parameters of the Decoder such that

given z the deviation between y and G is
minimized.

Figure 8: Encoder-Decoder architecture for a separated training of the encoder and the decoder based on
stochastic dependence.

the decoder for minimizing mutual information or the stochastic dependence between the model deviation
(decoder’s output and ground truth) and the vector embedding (encoder’s output). However, this approach
also requires a differentiable function for defining stochastic independence or mutual information. We remark
that separating the training of the encoder from the decoder’s training might be important in case we use
a loss function based on reducing stochastic dependence between the encoder’s output and the decoder’s
deviation from the ground truth because if the encoder’s representation does not contain much information
about the ground truth, the decoder’s deviation from the ground truth is not predictable given the encoder’s
representation and would thus indicate training success. Given the fixed dimension of the vector embedding,
we can compare different encoder architectures and define the best according to, e.g., the highest (normalized)
mutual information between vector embedding and prediction target. Analogously, the best decoder can
be defined as the one having the lowest (normalized) mutual information between the encoder’s vector
embedding and the model deviation of the decoder’s output and the ground truth. The mutual information
measure can be replaced by any measure for stochastic dependence. The corresponding encoder-decoder
architecture is illustrated in Figure 8.

With the definition of model deviation, see Subsection 4.4, subparts of the model, such as layers, in par-
ticular those associated with representing the unstructured input as a numerical vector representation, can
be analyzed regarding their contribution to find the next token in the context of large language models.
Moreover, investigating the dependence of the model’s layers/substructures with the model deviation can
help to answer the question how small a model can be and where most information is learned/extracted to
make large language or even multimodal models more efficient. For more details, see the next paragraph
about cutting down models. Since distributions over classes represent the probability for corresponding
outputs, it might also be an option to work on distributions directly to investigate the dependence between
the layers and the model deviation as described above under "Alternative of model deviation for nominal
data", although the dimensionality of the problem increases accordingly.

Another advantage of calculating stochastic measures between representations within a (pre-)trained model
and the ground truth belonging to a specific prediction task such as classifying input or predicting numbers,
is to find out which representations have the highest dependence (information content) on the corresponding
task, which might make the inference more efficient by only utilizing the most contributing parts.

Cutting down models to structures extracting most information: If we train a model with usual
loss functions without any additional optimization for mutual information in specific layers, we could identify
the best structures within a trained model that extract most information and which subparts only contribute
in a minor way to, e.g., an embedding. For this purpose, we zoom more in a model’s architecture to analyze

24

Published in Transactions on Machine Learning Research (02/2024)

the model itself regarding its subunits (e.g. layers, embeddings, attention mechanisms, etc.). The approach
is to apply mutual information similar to the scenario of multi-dimensional input and output. The output
can either be filled with the data to predict or the output of some other subunit, such as an embedding,
upstream towards the output of the total model where the output of several subunits is combined. If there
is no contribution or only a minor one, we could cut the corresponding subunit out.

By ranking subunits with such measures, we have a clear procedure what subunits to prune to make a model
more efficient, instead of randomly selecting some for cutting out before retraining the model. The training
could start from the current model parameters to just fine-tune the remaining layers. Training from the
scratch is also possible but could delete a lot of parameter values that are still valid. The procedure can be
iteratively repeated and even to that point where model size is balanced against a (small) drop of accuracy.
Our framework can additionally help to find a lossless pruning similar to the Related Work section about the
information bottleneck by testing if the stochastic measures between input or any representation of it and
the model deviations get worse after a pruning. Such investigations might facilitate an understanding about
the problem-specific relevant structures and keeping model sizes efficient without lowering their accuracy.
As an example, we could test how large, e.g., large language or multimodal models need to be and which
structures extract the most information, similar to Liu et al. (2024). Further, we remark that with a measure
for self-similarity, like the Pearson correlation, we could probably identify identities, resp., structures that
behave similarly, e.g., in a sequential arrangement of layers that have the same output behavior, where all the
layers except the last one should be considered as less relevant since they only direct information through.
A similar work is done in Gromov et al. (2024) to identify layers with a similar behavior that can be pruned.
However, with mutual information, besides considering similarly behaving units, we can also investigate the
single subunits’ contribution within a branch structure to the part where the branches come together.

If a training fails, we could also use such methods to test which structures fail. An example is a cascade
of layers with one layer where input and output do not share any information anymore. The disruption of
routing information could mean that one layer might not be well trained and is like a constant function,
which may delete important information.

6 Conclusion and Future Work

In this work, a framework for measuring predictability of input-output relation was developed. Furthermore,
it was shown how the information extraction of an ML model from this input-output-relation can be mea-
sured. Moreover, it was demonstrated how the corresponding stochastic measures for predictability can be
used to extend the current definition of model convergence and training success. The total framework was
showcased with time series prediction and classification on synthetic and real world datasets.

The presented framework provides measures to evaluate the existence of deterministic relations that a model
can extract and how successful a model has been in extracting them. All these measures consider the
triple of input, model output and ground truth to determine whether the model deviations from the ground
truth are independent of the input. Promising further research could involve developing a differentiable loss
function based on such stochastic measures to fit the model to the deterministic relations directly, sorting out
unpredictable parts like noise. In contrast, there are loss functions that only consider a tuple of ground truth
and model output, such as L1, L2, cross entropy or KL-Divergence that minimize the deviation between the
model’s prediction and the ground truth without differentiating if a data point is mainly influenced by, e.g.,
noise or the deterministic relations.

According to the presented framework the mutual information between input and the model deviations might
serve as such a loss function sought. However, for the implementation, there are some challenges left that
need further research to overcome them. One challenge might be that the current implementation is not
differentiable since the discretization procedure of Algorithm 1 is not differentiable when a boundary of a bin
is crossed by a data point. To overcome the challenge of the non-smoothness issue, smooth approximations of
mutual information, such as Belghazi et al. (2018) and Franzese et al. (2024) could be utilized. However, these
approximations can become computationally too costly since the mutual information estimator model might
have to be retrained after every epoch of the prediction model to approximate the mutual information between
input and model deviations. Another challenge is the potential instability in estimating mutual information,

25

Published in Transactions on Machine Learning Research (02/2024)

as reported in Choi & Lee (2022). Such an inaccuracy in the estimation of the mutual information utilized
as a loss function could cause divergence of the optimization procedure and hinder the model’s capability
to extract more deterministic relations differentiating them from unpredictable parts like noise given the
input data. Further research for a smooth and computational cheap approximation of mutual information
is promising to focus the model training on the deterministic relations encoded in the data to the degree the
corresponding architecture is able to extract.

Such a framework can also benefit applications outside machine learning where parameters of function are
optimized to map input to ground truth data as closely as possible. One example is in the field of optimization
and data-driven modeling, such as best parameter fitting Raue et al. (2015); Crouch et al. (2024) since such
a loss function might improve the parameter finding with regard to making their value choice more robust
against noise. In this regard, the input variable is the time t in case the modeling is done with ordinary
differential equations (ODEs) or the space x and optionally the time t if the modeling is done with partial
differential equations (PDEs). Additionally, we could have some external stimuli u as further input variables,
such as the effect of drugs in biology or the heating of a work piece. The corresponding quantities y that
are to be described by the model are the model output (ground truth). Thus, we ideally have that, e.g.,
f(t, x, u) approximates y as well as possible where f solves the underlying system of differential equations.
With such an approach, we can test if y is predictable given the input data at all. After that, we can see if the
underlying model (consisting of, e.g., ODEs or PDEs) fits the data, meaning the model is able to capture all
the deterministic relations within the data or if the model should be extended, e.g., with further interactions
between the system states, to capture the information hidden in the data. The successful extraction is the
case if we cannot reject the hypothesis that the input variables and the residuals are independent.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

Philipp Becker, Harit Pandya, Gregor Gebhardt, Cheng Zhao, C. James Taylor, and Gerhard Neumann.
Recurrent kalman networks: Factorized inference in high-dimensional deep feature spaces. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 544–552. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/becker19a.html.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville,
and Devon Hjelm. Mutual information neural estimation. In International conference on machine learning,
pp. 531–540. PMLR, 2018.

Alexandra Bezbochina, Elizaveta Stavinova, Anton Kovantsev, and Petr Chunaev. Enhancing predictability
assessment: An overview and analysis of predictability measures for time series and network links. Entropy,
25(11):1542, 2023.

Philemon Brakel and Yoshua Bengio. Learning independent features with adversarial nets for non-linear ica.
arXiv preprint arXiv:1710.05050, 2017.

Tim Breitenbach. On the SQH method for solving optimal control problems with non-smooth state cost
functionals or constraints. Journal of Computational and Applied Mathematics, 415:114515, 2022.

Tim Breitenbach, Lauritz Rasbach, Chunguang Liang, and Patrick Jahnke. A principal feature analysis.
Journal of Computational Science, 58:101502, 2022.

Tim Breitenbach, Bartosz Wilkusz, Lauritz Rasbach, and Patrick Jahnke. On a method for detecting periods
and repeating patterns in time series data with autocorrelation and function approximation. Pattern
Recognition, 138:109355, 2023.

Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros, Yogesh Simmhan, Blesson
Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel Vaquero, Marco A. S. Netto, Adel Nadjaran Toosi,

26

https://proceedings.mlr.press/v97/becker19a.html

Published in Transactions on Machine Learning Research (02/2024)

Maria Alejandra Rodriguez, Ignacio M. Llorente, Sabrina De Capitani Di Vimercati, Pierangela Samarati,
Dejan Milojicic, Carlos Varela, Rami Bahsoon, Marcos Dias De Assuncao, Omer Rana, Wanlei Zhou, Hai
Jin, Wolfgang Gentzsch, Albert Y. Zomaya, and Haiying Shen. A manifesto for future generation cloud
computing: Research directions for the next decade. ACM Comput. Surv., 51(5):105:1–105:38, November
2018. ISSN 0360-0300. doi: 10.1145/3241737. URL http://doi.acm.org/10.1145/3241737.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: In-
terpretable representation learning by information maximizing generative adversarial nets. Advances in
neural information processing systems, 29, 2016.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1724. Association for Computational Linguistics, 2014.

Kwanghee Choi and Siyeong Lee. Combating the instability of mutual information-based losses via regular-
ization. In Uncertainty in Artificial Intelligence, pp. 411–421. PMLR, 2022.

Samantha AW Crouch, Jan Krause, Thomas Dandekar, and Tim Breitenbach. Dataxflow: Synergizing data-
driven modeling with best parameter fit and optimal control–an efficient data analysis for cancer research.
Computational and Structural Biotechnology Journal, 23:1755–1772, 2024.

Paweł Czyż, Frederic Grabowski, Julia E Vogt, Niko Beerenwinkel, and Alexander Marx. Beyond normal:
On the evaluation of mutual information estimators. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=25vRtG56YH.

Georges A Darbellay and Igor Vajda. Estimation of the information by an adaptive partitioning of the
observation space. IEEE Transactions on Information Theory, 45(4):1315–1321, 1999.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive. IEEE/CAA
Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Giulio Franzese, Mustapha BOUNOUA, and Pietro Michiardi. MINDE: Mutual information neural diffusion
estimation. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=0kWd8SJq8d.

Robert G. Gallager. Stochastic Processes: Theory for Applications. Cambridge University Press, 2013. doi:
10.1017/CBO9781139626514.

Weihao Gao, Sewoong Oh, and Pramod Viswanath. Density functional estimators with k-nearest neighbor
bandwidths. In 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1351–1355. IEEE,
2017.

Hans-Otto Georgii. Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Walter de
Gruyter GmbH & Co KG, 2015.

Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri,
David A Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: a scalable and flexible data center network.
In Proceedings of the ACM SIGCOMM 2009 conference on Data communication, pp. 51–62, 2009.

Priscilla E Greenwood and Michael S Nikulin. A guide to chi-squared testing, volume 280. John Wiley &
Sons, 1996.

Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, Bernhard Schölkopf, et al. Kernel
methods for measuring independence. 2005.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The unrea-
sonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

27

http://doi.acm.org/10.1145/3241737
https://openreview.net/forum?id=25vRtG56YH
https://openreview.net/forum?id=0kWd8SJq8d
https://openreview.net/forum?id=0kWd8SJq8d

Published in Transactions on Machine Learning Research (02/2024)

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam Trischler,
and Yoshua Bengio. Learning deep representations by mutual information estimation and maximization.
In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Bklr3j0cKX.

Sarah E Houts, Shandor G Dektor, and Stephen M Rock. A robust framework for failure detection and
recovery for terrain-relative navigation. Unmanned Untethered Submersible Technology, 2013.

Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan, Valentin
Flunkert, Jan Gasthaus, and Tim Januschowski. Psa-gan: Progressive self attention gans for synthetic
time series. In The Tenth International Conference on Learning Representations, 2022.

Kenji Kawaguchi, Zhun Deng, Xu Ji, and Jiaoyang Huang. How does information bottleneck help deep
learning? In International Conference on Machine Learning, pp. 16049–16096. PMLR, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In International
Conference on Learning Representations, 2021.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In International
Conference on Learning Representations, 2019.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and
Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time
series forecasting. Advances in Neural Information Processing Systems, 36, 2024.

Lyudmyla F Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random vector.
Problemy Peredachi Informatsii, 23(2):9–16, 1987.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. Physical
review E, 69(6):066138, 2004.

Yan Li, Xinjiang Lu, Yaqing Wang, and Dejing Dou. Generative time series forecasting with diffusion,
denoise, and disentanglement. Advances in Neural Information Processing Systems, 35:23009–23022, 2022.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation
on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring the
stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:9881–9893,
2022.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang Xiong,
Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing sub-billion
parameter language models for on-device use cases. arXiv preprint arXiv:2402.14905, 2024.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The m4 competition: 100,000 time
series and 61 forecasting methods. International Journal of Forecasting, 36(1):54–74, 2020.

Mary L McHugh. The chi-square test of independence. Biochemia medica, 23(2):143–149, 2013.

Long Short-Term Memory. Long short-term memory. Neural computation, 9(8):1735–1780, 2010.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information using kernel
density estimators. Physical Review E, 52(3):2318, 1995.

28

https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX

Published in Transactions on Machine Learning Research (02/2024)

Kevin P Murphy. Probabilistic machine learning: an introduction. MIT Press, 2022. Available at https:
//github.com/probml/pml-book/releases/latest/download/book1.pdf.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. In The Eleventh International Conference on Learning Repre-
sentations, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis and machine
intelligence, 27(8):1226–1238, 2005.

Calyampudi Radhakrishna Rao. Linear statistical inference and its applications, volume 2. Wiley New York,
1973.

Andreas Raue, Bernhard Steiert, Max Schelker, Clemens Kreutz, Tim Maiwald, Helge Hass, Joep Vanlier,
Christian Tönsing, Lorenz Adlung, Raphael Engesser, et al. Data2dynamics: a modeling environment
tailored to parameter estimation in dynamical systems. Bioinformatics, 31(21):3558–3560, 2015.

Ian Reid and Hilary Term. Estimation ii. University of Oxford, Lecture Notes, 2001.

Andrew M Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan D Tracey, and
David D Cox. On the information bottleneck theory of deep learning. Journal of Statistical Mechanics:
Theory and Experiment, 2019(12):124020, 2019.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. The MIT Press, 2012. ISBN
0262017180.

Vaisakh Shaj, Saleh GHOLAM ZADEH, Ozan Demir, Luiz Ricardo Douat, and Gerhard Neumann. Multi
time scale world models. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=fY7dShbtmo.

Jiaming Song and Stefano Ermon. Understanding the limitations of variational mutual information estima-
tors. In International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=B1x62TNtDS.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. Advances in Neural Information Processing Systems, 34:
24804–24816, 2021.

Michael Ulbrich. Semismooth Newton methods for variational inequalities and constrained optimization
problems in function spaces. SIAM, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging
weights of multiple fine-tuned models improves accuracy without increasing inference time. In Interna-
tional Conference on Machine Learning, pp. 23965–23998. PMLR, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
auto-correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 34:
22419–22430, 2021.

Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L_dmi: A novel information-theoretic loss function
for training deep nets robust to label noise. Advances in neural information processing systems, 32, 2019.

29

https://github.com/probml/pml-book/releases/latest/download/book1.pdf
https://github.com/probml/pml-book/releases/latest/download/book1.pdf
https://openreview.net/forum?id=fY7dShbtmo
https://openreview.net/forum?id=B1x62TNtDS
https://openreview.net/forum?id=B1x62TNtDS

Published in Transactions on Machine Learning Research (02/2024)

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial networks.
Advances in neural information processing systems, 32, 2019.

Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=4h1apFjO99.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp. 11121–11128, 2023.

Ray Zhang, Nicholas F Lahens, Heather I Ballance, Michael E Hughes, and John B Hogenesch. A circadian
gene expression atlas in mammals: implications for biology and medicine. Proceedings of the National
Academy of Sciences, 111(45):16219–16224, 2014.

Xiyuan Zhang, Xiaoyong Jin, Karthick Gopalswamy, Gaurav Gupta, Youngsuk Park, Xingjian Shi, Hao
Wang, Danielle C. Maddix, and Bernie Wang. First de-trend then attend: Rethinking attention for time-
series forecasting. In NeurIPS ’22 Workshop on All Things Attention: Bridging Different Perspectives on
Attention, 2022. URL https://openreview.net/forum?id=GLc8Rhney0e.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for mul-
tivariate time series forecasting. In The Eleventh International Conference on Learning Representations,
2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. In-
former: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

30

https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=4h1apFjO99
https://openreview.net/forum?id=GLc8Rhney0e

Published in Transactions on Machine Learning Research (02/2024)

A Further explanation on discretization and empirical probability estimation

This section aims at providing further explanation on the discretization schema and the details of the
calculation of the empirical marginal and joint probability functions. We exemplify the procedure how we
compute these entities based on Algorithm 1 with our time series data.

We first consider a sufficient number of input-output windows as depicted in Figure 9a, each having the same
total length, which is the sum of the input length and the output length. In each window, the ith point in
the input is considered as the random variable xi, while the jth point in the output is treated as the random
variable yj . This is illustrated in Figure 9b. For each window, we get one realization of each random variable
xi and yj .

(a) Several input-output windows randomly selected from a dataset.

Input | Context Output | Target

(b) Details of a selected window including input and output modeled as random variables.

Figure 9: Preparation of the data for the statistical tests.

Once we have a sufficient number of realizations for each of the random variables, we apply Algorithm 1 to
discretize the co-domain of each random variable. Each bin of the discretized co-domain of a random variable
defines the event that the value of this random variable is between the boundaries of that bin. Algorithm 1
can be viewed as performing adaptive binning and histogram construction for each of the random variables.
In this context, each event zk

vi
represents the random variable vi taking a value within the interval defined by

the upper and lower bounds of the kth bin after discretization. Consequently, the output of this algorithm
includes the upper and lower bounds of the bins as well as the frequency with which the random variable vi

falls into each bin.

To compute the joint probability distribution of random variables, modeling the input of a model, the output
of a model, the residuals or the model deviations, we calculate the frequency of the joint events where each
random variable is within a bin. For this purpose, each joint realization is placed into the corresponding
2D cell (or cuboids in higher dimensions where more than pairwise combinations of random variables are
considered), whose bin boundaries are predetermined by the outer product of the marginal bins. This process
is illustrated in Figure 10. The probability for marginal and joint distributions is obtain by dividing the
corresponding frequency by the number of realizations (in this case the number of windows).

31

Published in Transactions on Machine Learning Research (02/2024)

Bo
un

dr
ie

s
of

 e
ve

nt
/in

te
rv

al

 or less

Range of variable

R
an

ge
 o

f V
ar

ia
bl

e

Boundries of event/interval

or less

Figure 10: Computation of the joint histogram for pairs of random variables. Each joint realization of
xi and yj observed across all input-output windows is represented by a green square and is placed in the
corresponding 2D bin. The boundaries of the 2D bins are determined by the outer product of the boundaries
for each random variable. Discretization of each random variable follows the procedure outlined in Algorithm
1. Note that the marginal distributions are discretized to have equal numbers of data points per bin (where
there might be an exception for the last bin according to our realization or if there are many points with the
same value), the joint distribution can deviate arbitrarily much from a uniform distribution. In this figure,
ρ1 and ρ2 are illustrated with different values (ρ1 = 10, ρ2 = 15) for the sake of generality. Consequently,
each bin of the marginals here contains 10 or 15 green squares, respectively. However, in our experiments,
these values are set to be equal.

B Convergence and bounds on estimation of mutual information

In this section, we discuss the convergence property of our approximation of mutual information based on
Algorithm 1. For this purpose, we focus on Darbellay & Vajda (1999) which describes a convergence result
for mutual information based on an adaptive discretization scheme of the co-domains of random variables.
We show that our method fulfills the same conditions as used in Darbellay & Vajda (1999). These conditions
are that the discretization scheme decouples the process of decreasing bin width and approximation of the
true density with the empirical one by increasing the samples in each bin. Once we have shown that our
approach fulfills the same conditions, we can follow the reasoning in Darbellay & Vajda (1999) to prove
convergence of the mutual information based on our framework to the true mutual information between
random variables. For this rigorous analysis, we have to equip our algorithm by a further threshold keeping
a bin at a minimal width. In this case of reaching the minimum bin width, the condition of the minimum
number of points per bin is suspended for this bin. These two further items are used for the theoretical
consideration to apply it several times for the convergence process, however, do not come into action for its
application.

First, we show how we can ensure the decreasing bin width by including more samples. The data, prediction
and therefore residuals/model deviations from the data are finite. The reason for the boundedness is that the

32

Published in Transactions on Machine Learning Research (02/2024)

model is a continuous function and thus bounded input is mapped to a bounded output. Consequently, as
these entities constitute our random variables, the marginal and joint distributions are of bounded support.
Therefore, adding more data points would lead to an arbitrarily smaller bin width when a fixed amount of
data points per bin is considered, unless the marginal probability is exactly zero. However, in this case the
joint probability is also zero resulting in the fact that these events do not contribute to the total mutual
information. Consequently, we can discard these bins and without loss of generality, we require non-zero
probability density within the domain. By iteratively including more data points, our discretization scheme
provides decreasing bin width until the minimum bin width is reached.

The next requirement for applying the reasoning of Darbellay & Vajda (1999) is to show that putting more
samples increases the data points per bin to approximate the true probabilities by the empirical ones to
any arbitrarily small error. Due to the action of the minimum bin width, putting more data points solely
increases the number of data points per bin since we have a non-zero probability. Consequently, the minimum
bin width ensures a decoupling of the limit process of getting a finer discretization of the domains of the
probability functions and more data points per bin to make empirical distributions converge to the true ones.

We remark that the main focus of our work is to show that measures quantifying the stochastic independence
between input and output, and thus residuals or model deviations, are useful to monitor model convergence.
Examples are the chi-square test of independence or the mutual information. In particular, for the mutual
information there are many different implementations that have their pros and cons. For some overview,
please have a look into (Czyż et al., 2023, Appendix), including convergence results for the estimators.

C Extra notes on Subsection 4.2

During the training of models in experiment 4.2, we observed an intriguing phenomenon. Specifically, there
exists a model trained with an L2-loss function that not only performs better in the L2-metric (MSE) but
also achieves comparable performance in the L1-metric (MAE) to a model trained with an L1-loss function
on the validation set. Under normal circumstances, one would naturally prefer the L2-loss-trained model in
such a scenario.

However, our analysis using the proposed framework reveals that, even in this situation, the L1-loss-trained
model is superior. To validate this finding, we examined the distance to the true underlying relationship,
which is sinusoidal function in this experiment. As shown in Figure 11, our framework effectively highlights
the importance of model selection and demonstrates the advantages of our proposed metric compared to
traditional loss functions.

D Data description

Datasets Here is a description of the datasets used in our experiments:

(1) ETT Zhou et al. (2021) contains seven features including the oil temperature and six power load feature.
ETTh indicates the ETT data with a granularity of 1-hour-level and ETTm indicates the ETT data with a
granularity of 15-minutes-level.

(2) Weather1 is recorded every 10 minutes for the whole year 2020, and contains 21 meteorological indicators
such as humidity and air temperature.

(3) Nasdaq dataset consists of 82 variables, including important indices of markets around the world, the
price of major companies in the U.S. market, treasury bill rates, etc. It is measured daily, having a total
of 1984 data samples for each variable. We set the corresponding input length as 60 similar to Kim et al.
(2021). In this work, we conduct our experiments on DE1 variable.

(4) ElectricDevice is a subset of the UCR time series classification dataset. It consists of seven different
classes, each representing a specific type of electric device which is to be predicted from the time series.

1https://www.bgc-jena.mpg.de/wetter/

33

https://www.bgc-jena.mpg.de/wetter/

Published in Transactions on Machine Learning Research (02/2024)

Figure 11: Curves showing mutual information as a stochastic measures of independence between input
and residuals, along with the loss function history. Traditional metrics such as L1- and L2-distance, when
measured on noisy validation data, are not as indicative as mutual information (MI) in identifying which
model is closer to the underlying clean relationships in the data (e.g., the sinusoidal pattern).

(5) DistalPhalanxOutlineCorrect is a subset of the UCR time series classification dataset. This dataset
focuses on the classification of outlines of distal phalanx bones from time series.

E Model stacking architecture and numerical experiments

With the stacking of models, we provide further evidence that information left between input and model
deviations can be used to correct the corresponding predictions.

E.1 Stacking architecture

Different properties of a model may influence its capability of extracting deterministic relations. Conse-
quently, in this part, we provide an architecture to combine different models with different properties to
systematically extract deterministic relations. Roughly, models are stacked together where all models get
the same input, however, try to learn only what the models in the stack of models so far have not extracted
regarding deterministic relations.

We need to differentiate two cases. The first case is where the target is ordinal data. Here the random
variables modeling the deviations of the model output from the ground truth are defined by the difference
between the model output and the ground truth. In this case the model deviations are termed as residuals.
In case where the target is nominal data, the random variables that model the deviations of the model are
defined as follows. In case the prediction of the model is not correct, the random variable modeling the
deviation of the model from the ground truth takes the value of the ground truth class label. In case the
model is right, the corresponding random variable takes a value that does not represent a model class, e.g.,
a negative integer.

Next, we explain the stacking procedure in detail for both cases. We are given the data {(xi, yi) , i ∈ I}
where xi is the vector-valued input, yi the corresponding vector-valued output and I is a finite subset of the
natural numbers N. With x and y, we denote the corresponding vectors of random variables that take the
corresponding values for a given i. First, we check if x and y are stochastically dependent on each other. If

34

Published in Transactions on Machine Learning Research (02/2024)

Model 1

Model 2

Model 3

Input

Figure 12: Stacking architecture for problems with ordinal target data.

yes, we train the first model/part of the model stack to best fit the prediction ȳ to y given x. With ȳ, we
denote a (vector-valued) random variable taking the values ȳi for the corresponding i ∈ I.

For ordinal target data, the procedure looks as follows. If ∆y1 := y − ȳ is not independent of x, there is still
some information left that can be extracted. Consequently, we fit a model that may have properties different
to the current model to learn these relations between x and the residuals ∆y1. In other words, the purpose
of the second model on top of first model is to correct the prediction of the first model. The output of the
two models is then the prediction of the first model ȳ plus the correction ∆y1. In the next iteration, we test
the residuals ∆y2 := y − ȳ − ∆y1 for stochastic dependence on x. This procedure can be repeated until the
corresponding residuals are stochastically independent of x. We call this procedure stacking of models and
can be generalized as follows such that a new model on top of a stack learns to correct the prediction of the
previous stack. The procedure is illustrated in Figure 12.

To generalize, we define

∆yj := y −
j−1∑
k=0

∆yk

where ∆y0 := ȳ for any j ∈ N. In a purely deterministic scenario, we would extend the stacking until
∆yj = 0. In a real scenario where there are unpredictable parts in the data, our definition of no further
improvement possible is that ∆yj is stochastically independent of x based on a statistical test or measure.
The random variable representing the output of the total stack is denoted with

ỹ :=
j−1∑
k=0

∆yk,

taking the corresponding values ỹi upon the input xi for i ∈ I, where j is the smallest number such that
∆yj is stochastically independent of x. Consequently, the stacking stops if y − ỹ is independent of x. This
definition also works for discrete ordinal data, where the differences, resp., residuals take only discrete values.
We remark that this architecture does not require more inference time since each model of the stack does
not depend on the output of other layers but all perform their inference on the same input data and thus
can be run in parallel.

For nominal target data (the difference between class labels has no meaning), the stacking architecture works
analogously except the definition of the deviation of the model from the ground truth is different, please
compare with Figure 13. The deviation of the model output from the ground truth is defined by a random
variable θj , j ∈ N that take the value of the correct class in case of a wrong prediction from the model/stack
below and a value that does not represent a discrete class of the ground truth in case the prediction of the
model/stack below is correct. If θj is independent of the input x for one j, we can stop the stacking of more

35

Published in Transactions on Machine Learning Research (02/2024)

Model 1

Model 2

Model 3

Input

Decision

module

Decision

module

Figure 13: Stacking architecture for problems with nominal target data.

models. As long as θj is dependent on the input x, where θ1 is based on the predictions of the first model,
there is a deterministic relation that another model can learn to predict θj , which models a correction to the
prediction of the model/stack below. In such a case, the stack is extended by another model predicting θj .
Based on the prediction ȳj of the model/stack below and the prediction for the corresponding θj , we can
decide during inference which prediction to take. In case of θj equaling a class label, we take the value of θj

predicted by the corresponding model subsequent upstream in the stacking architecture as the value for ȳj+1.
Otherwise, i.e. θj equals a number not representing a class label, the value of ȳj+1 equals the one of ȳj . The
final prediction of the stack is denoted with ȳ, which represents a the vector-valued case as well. We remark
that the co-domain of the random variable θj is not one-hot encoded but the models output ȳj should be
due to the nominal character. However, in terms of the random variable θ, since there is a bijection between
the co-domain of this random variable and the corresponding one-hot encoding, the information content or
statistical independence between the random variable θj with its one-dimensional co-domain consisting of
integer numbers and the input also exists and is supposed to be equal to the one-hot encoded version of θj .

One greedy implementation of both stacking concepts above is to combine models randomly and check that
after each new model ∆yj or θj has less information with the input than ∆yj−1 or θj has with the input
to ensure benefits of the new model on top of the stack. This is a test that the new model successfully
extracts remaining information and doesn’t do guessing rather than really filling in what is missing in terms
of deterministic relations and thus provides a well-working correction.

E.2 Stacking of models systematically extracts information and improves prediction

We have seen in this work that the loss function has an influence on the information extraction depending
on the noise, see in particular Section 4.2. We investigate in this section how different model properties,
like the architecture or hyperparameters, contribute to capturing different kind of information and how such
differences could be systematically combined to extract all available deterministic relations in a dataset. We
present a general architecture that is supposed to combine the capabilities of different models as described in
the Section E.1. Further, this section showcasing the function of the stacking architecture provides evidence
that dependent input and model deviations indeed contain information to correct the output of the former
model.

We showcase the efficacy of our framework with a real-world time-series datasets. The dataset is a Nasdaq
datasets taken from the UCI repository and the M4 competition dataset Makridakis et al. (2020). More
specifically, we take the variable DE1. We train models according to MLP and Nonstationary Transformer
(NSTs) Liu et al. (2022) architecture on the dataset that is split according to the ratio of 0.7/0.3 into a
training and test set. The input of the models are the past 60 time lags and the output is the next value
in the time series (singlestep prediction). To this end, an MLP model trained with L1-loss is chosen as the

36

Published in Transactions on Machine Learning Research (02/2024)

Metrics Init MI Init Perm Init diff Res MI Res Perm pv Res diff Init Chi-square Res Chi-sauare
MLP L1-0.5 23.038 4.167 18.871 5.256 4.617 0 0.6392 60 2
MLP L2-0.5 23.038 4.167 18.871 5.347 4.579 0 0.7679 60 8
stacked-0.5 23.038 4.167 18.871 4.843 4.564 0.06 0.2798 60 0

2nd stacked model-0.5 5.256 4.617 0.6392 4.483 4.564 0.06 0.2798 2 0
MLP L1 23.038 4.167 18.871 5.262 4.586 0 0.6758 60 4
MLP L2 23.038 4.167 18.871 5.414 4.533 0 0.8814 60 5

Stacked MLP 23.038 4.167 18.871 4.955 4.579 0.01 0.3765 60 0
2nd stacked model 5.262 4.543 0.7182 4.955 4.579 0.01 0.3765 4 0

NST L1 23.038 4.167 18.871 5.267 4.577 0 0.6901 60 1
NST L2 23.038 4.167 18.871 5.468 4.564 0 0.9038 60 8

Table 2: Comparison of performance metrics for various standalone and stacked models. Initial mutual
information (MI), permutation analysis values, and their differences are presented, providing insights into the
starting states. Residual metrics, including mutual information, permutation values, and the corresponding
p-values in the mutual information framework assessing the independence of input and residual output, are
also reported. Additionally, chi-square values for both initial and residual states are included indicating the
number of correlated input lags of the time series.

first model and another MLP trained with L2-loss is chosen as a second model in the stack. The weights of
the last layer of the models in the stack, except the first model, are initially set such that the output of each
model is close the zero. The rationale is that if the prediction from the stack below is correct, only minor
corrections are necessary building on the previous predictions. Furthermore, the last layers in models are
chosen for weight rescaling since the first layers are usually intended for feature extraction. Additionally, the
layer norm operation (dividing by standard deviation) would cancel the scaling to small values, for details
about this part please see the Appendix, Section I.4.

As illustrated in Table 2, none of the individual models successfully render the residuals independent of the
input. Remarkably, it was only through the combination in stacked models that an increase of p-values
was observed, enhancing the overall performance. To provide a more comprehensive comparison, results for
NST are also included. We see that in this case, the MLP stack not only extracts more information than
the NST but is computationally even cheaper. In order to exclude that the effect is a result of more free
parameters, we have included MLPs with about the half of free parameters each indicated by the "0.5".
Moreover, we see that only the stacked models provide a non-zero p-value such that only in this case, we
cannot reject the hypothesis that input and residuals are independent based on a level of significance of 1%.
Beyond mutual information and chi-square test, considerations such as L2-loss and learning curves in Figure
14 further support the empirical evidence that stacking models outperforms their individual counterparts
by having a smaller L2-loss function (comparison only valid if the last layer of the stack is trained with the
same loss functions, which is in this case L2-loss function, as the corresponding single model). This evidence
showcases the capacity of multiple models to learn diverse aspects. However, we remark that a comparison
in terms of loss functions and information extraction is tricky as shown in Section 4.2.

We remark that a linear combination of loss functions according to λ1∥ ·∥2
L2 +λ2∥ ·∥L1 with the hyperparam-

eters λ1, λ2 > 0 could be an alternative approach to stacking in terms of loss functions. However, the success
of that formulation might depend on the right choice of the hyperparameters λ1 and λ2. Our framework
provides an option to choose the hyperparameters accordingly such that most information is extracted from
the data, e.g., the mutual information is minimized between the input and the residuals. Please note that
finding the best combination or any hyperparameter optimization is not the focus of this work. In the present
work, the focus is on showcasing our framework in terms of its potential for applications in various ML use
cases.

Next, we show that our stacking framework also works for classification problems. For architectural details,
please see Section E.1. In Table 3, we provide numbers based on the ElectricDevices dataset. To further
improve the effect of stacking, we see potential when including a corresponding loss function into the training
process for optimizing parameters such that the corresponding ML architecture extracts most deterministic

37

Published in Transactions on Machine Learning Research (02/2024)

Figure 14: The L2-loss comparison for stacked models and single models.

relations possible. Regarding this topic, please see the Conclusion and Future Work section in combination
with the Discussion part "Alternative of model deviation for nominal data".

Metrics Init MI Init Perm Init diff Res MI Res Perm Res diff
SVM-rbf kernel 41.65 16.00 25.65 23.72 15.50 8.22

SVM-sigmoid kernel 41.65 16.00 25.65 34.13 16.62 17.51
SVM-sigmoid + SVM-rbf 41.65 (23.72) 16.00 (15.50) 25.65 (8.22) 23.23 14.41 7.82

Table 3: Numbers in parentheses show the starting point of the last stacked model. The abbreviation
SVM refers to the standard Python sklearn implementation of a support vector machine. The p-values
assessing the independence of the input and the model deviation from ground truth alsways remains zero in
all experiments. For a description of the meaning of the columns, please refer to Table 4.

The results of the next experiment demonstrating 1-step ahead prediction with the stacking procedure is
provided in Table 4 for the Weather dataset, see Subsection D. The split setting from Nie et al. (2022) is used
here. Except the prediction length, we use the same training parameters and architecture for PatchTST as
used in Nie et al. (2022).

38

Published in Transactions on Machine Learning Research (02/2024)

Metrics Init MI Init Perm Init diff Res MI Res Perm Res diff
PatchTSTL2 (0.41M) 3213 153 3060 659 177 482

MLPL1 (0.59M) 3213 153 3060 514 174 340
NSTL1 (3.88M) 3213 153 3060 608 182 426
NSTL1(1.05M) 3213 153 3060 641 183 458
NSTL2(0.426M) 3213 153 3060 700 182 518

NSTL1(0.86M)+PatchTSTL2(0.41M) 3213(659) 153(177) 3060(482) 506 181 325
NSTL1(1.13M)+PatchTSTL2(0.41M) 3213(659) 153(177) 3060(482) 516 183 333

NSTL2(0.53M)+MLPL1(0.59M) 3213(514) 153(171) 3060(343) 400 181 219
NSTL1(0.86M)+MLPL1(0.59M) 3213(514) 153(171) 3060(343) 441 182 259
NSTL1(0.53M)+MLPL1(0.59M) 3213(514) 153(171) 3060(343) 442 182 260
NSTL1(2.05M)+MLPL1(0.59M) 3213(514) 153(171) 3060(343) 448 182 266

MLPL1(0.59)+NSTL1(1.13M) + PatchTSTL2 (0.41M) 3213(516) 183(153) 3060(363) 499 182 317

Table 4: Comparison of performance metrics for various standalone and stacked models on weather dataset.
Initial mutual information (MI), permutation analysis values, and their differences are presented, providing
insights into the starting states. Residual metrics, including mutual information, values from the permutation
test of mutual information are also reported. The corresponding p-values assessing the independence of input
and residual output is always 0 in all experiments. Additionally, in the first column, number of parameters
for the models is shown in parentheses in millions. In the other columns, the values of the metrics only for
the last model of the stack is depicted in the parentheses. In the first column, the model on the left is the
first one and the one on the right is the last model in the stack.

In the next experiment, we demonstrate our framework for a multistep prediction. We take the Nasdaq
dataset from Kim et al. (2021). We choose the input of length 60 to predict a target length of 30. The result
is provided in Table 5 and shows that also in this case, with stacking of models, we can systematically extract
the information and gradually make the input independent of the residuals in contrast to the single models.
The evidence is provided by the fact that a stack of MLP and NST models provides the smallest mutual
information between input and residuals when subtracting the mutual information generated by randomly
shuffling the data (column "Res diff" of Table 5).

Metrics Init MI Init Perm Init diff Res MI Res Perm Res diff Init Chi-square Res Chi-sauare
MLP L1(2.09M) 617.48 123.29 494.19 169.45 135.11 34.34 1800 332
MLP L2 (3.77M) 617.48 123.29 494.19 163.53 135.36 28.17 1800 182
MLP L2 (4.61M) 617.48 123.29 494.19 162.82 135.47 27.35 1800 177
NST L1(2.67M) 617.48 123.29 494.19 183.23 135.15 48.08 1800 811
NST L2(2.67M) 617.48 123.29 494.19 179.47 135.28 44.19 1800 729

MLP L2(0.67M) + MLP L1(2.09M) 617.48(169.45) 123.287(135.11) 494.19(34.35) 157.91 135.28 22.63 1800(332) 55
MLPL2(0.64M)+NSTL1(2.67M) 617.48(183.23) 123.287(135.15) 494.19(48.08) 156.84 135.22 21.62 1800(811) 35
MLP L2(0.64M)+NSTL2(2.67M) 617.48(179.47) 123.287(135.28) 494.19(44.19) 153.15 135.25 17.90 1800(729) 30

MLPL2(0.09M)+MLPL2(0.64M)+NSTL2(2.67M) 617.48(153.17) 123.287(135.28) 494.19(17.89) 151.80 135.27 16.53 1800(30) 20
Avg Ensemble (3.4M) 617.48 123.29 494.19 170.95 135.36 35.59 1800 387

Table 5: Comparison of performance metrics for various standalone and stacked models. Initial mutual
information (MI), permutation analysis values, and their differences are presented, providing insights into
the starting states. Residual metrics, including mutual information, values from the permutation test of
mutual information. Additionally, the number of dependent input lags tested by the chi-square test of
independence for both initial and residual states are included. In the first column, the number of parameters
for the models is shown in parentheses in millions. In the other columns, the values of the metrics only
for the last model of the stack is depicted in the parentheses. In the first column, the model on the left is
the first one and the one on the right is the last model in the stack. In the last row, we take the average
prediction of the three models of the penultimate row when each of those models is separately trained to
predict the original ground truth. The p-values assessing the independence of input and residual output
based on mutual information remains always zero in all experiments in this table.

Relation to ensemble learning: The stacking approach is characterized by progressiveness: We don’t
assign each model the task of learning the ground truth Wortsman et al. (2022) but rather focus on capturing

39

Published in Transactions on Machine Learning Research (02/2024)

what remains unlearned by the stack of previous models. This progressiveness not only contributes to the
efficacy of our stacking strategy but also enables each model to focus on specific tasks that are not covered by
other models, similar to the concept of gradient boosting. We stack models in a way that the input is given
to all models in a stack, and each model attempts to correct the errors left by the preceding models in the
stack. In order to enable models to extract different information that the preceding models could not so far,
it could be helpful that the models vary in their properties, like the model parameters, the loss function they
are trained with or the architecture itself. The similarity to gradient boosting, where the models are trained
to predict residuals defined based on the gradient of the loss function with respect to the model output, is
that the proposed stacking framework directly uses the model residuals between model stack and ground
truth as a reference to train a new model. While for ordinal data, the stacking procedure is very related to
gradient boosting with L2-loss, the difference for nominal data is that the stacking procedure runs on the
correction of the classification while gradient boosting uses the gradient of the corresponding loss function,
like cross-entropy loss. The presented stacking architecture is supposed to showcase our proposed framework
to provide further evidence that a model output can be further corrected visualized by measuring stochastic
dependence. By considering the stochastic independence of the input and the model deviation, we can set up
a further convergence criterion to stop adding further models. This is the case if input and model deviations
are independent, as adding new models to the ensemble would not extract more deterministic relations as
the input does not contain any information about model deviation.

Stacking software pipeline: Apart from finding relevant properties of a model to vary, like size, depth,
loss function etc., another aspect is that we assume the stack to be constant once trained and parameters
are kept constant while only the new model on top of the stack is trained. It is to investigate in future
research if, e.g., training all the parameters of the whole stack after training the new model on top of the
stack might benefit the accuracy before testing if another model for the top of the stack is needed. One
important application of a pipeline is to facilitate a precise time series prediction related to a concrete single
time series and provide this capabilities to a broad audience even outside the ML community that apply
the predictions of time series, like weather forecasts. Another use case is improving therapies where their
effect depends on time-varying patient-specific parameters. Thus, by taking, e.g., the daily rhythm of gene
expression of humans into account, as argued in the concept of chronotherapy Zhang et al. (2014), a precise
prediction of the expression levels may improve the effect of therapies and can be one brick for personalized
medicine.

F A remark on the sensitivity of loss functions regarding distracting the model from
the ground truth

In Section 4.2, we see the L1-loss function is less prone to the asymmetric noise than the L2-loss function.
Since L0-loss function weights all deviations from the real data with the same penalty, we formulate the
hypothesis that L0-loss function might perform even better than L1-loss function. However, since the L0-
loss function is discontinuous and thus not differentiable at all, a lack of a numerical efficient optimization
algorithm capable to deal with the discontinuity of the loss function might hinder its broader application.
Consequently, a starting point for further research might be to analyze the performance of loss functions with
regard to information extraction that consist of parts cutting off bigger deviations with, e.g., min(max(ỹ −
y, −τ), τ), τ > 0, which can be solved with semi-smooth methods, see, e.g., Ulbrich (2011) or as shown
in Breitenbach (2022) by transforming the corresponding optimization problem into a higher dimensional
one to resolve the min- and max-function to differentiable functions. Such a loss function, e.g., taking the
absolute value or the square of the projection min(max(ỹ − y, −τ), τ), could be a tradeoff between numerical
efficiency and robustness against asymmetric noise or outliers parameterized by the parameter τ . Starting
the learning with a big τ and restarting the optimization with a smaller τ with the result from the last
optimization procedure or decreasing τ within one optimization run could also accelerate the convergence
speed. This procedure could make the prediction more precise with regard to extracting the deterministic
relations assuming that bigger determinations come (mostly) from noise given the input data. Our framework
can monitor the effect of τ with regard to extracting the deterministic relations.

40

Published in Transactions on Machine Learning Research (02/2024)

G Models’ settings for numerical experiments

This section of the appendix is allocated to the architecture of the utilized neural networks (NNs) in the
experiments. Through this appendix we show the architecture of the MLPs with the number of nodes per
each layer inside a list. The number of layers is the same as the length of the list. Unless specified differently,
all activation functions are Relu and initial learning rates are 1e-4.

Section 4.1:

All NNs are MLPs with Relu activation functions.
MLP Layers: [49,490,980,1]
Activation functions: Relu
Initial learning rate: 1e-4
0.506M parameters

Section 4.2:

All NNs are MLPs with Relu activation functions. Number of nodes in each layer is written in the list.
MLP Layers: [49,490,700,490,1]
Activation function: Relu
Initial learning rate: 1e-4
0.712M parameters

Figure 5 : Timesreise Classification
MLP CrossEntropy (0.84M)
MLP Layers: [80, 720, 720, 360, 2]

Figure 6 : Timesreise Classification
NST CrossEntropy (0.69M)
Number of encoder layers: 2
Number of decoder layers: 1
Number of heads: 8
d_model: 128
Dropout: 0.1

MLP CrossEntropy (0.85M)
MLP Layers: [96, 720, 720, 360, 7]

Table 2:
MLPL1-0.5 (0.025M) & MLPL2-0.5 (0.025M):
Layers ob both models: [60,80,120,80,1]
Activation function: Relu
InitiaL learning rate: 1e-4

MLPL1(0.05M) & MLPL2(0.05M) :
Layers for both models: [120,80,180,1]

NSTL1 (0.05M) & NSTL2 (0.05M)
Number of encoder layers: 1
Number of decoder layers: 1
Number of heads: 2

41

Published in Transactions on Machine Learning Research (02/2024)

d_model: 40
Dropout: 0.1

Table 4:
Here is the details of the pool of the used models -MLPs and Transformers- in one step ahead prediction
experiment on weather dataset. For all non-stationary transformers (NSTs) dropout is set to 0.1.
The initial learning_rate for all models as the first stack is 1e-4 and for the second and the third stack is
1e-5.
The dropout for NSTs is 0.1 and for PatchTsT is 0.2, and there is no dropout for MLPs.
The size of subsequent hidden layer after the attention head (d_ff) in transformers are set to the provided
default numbers, i.e. 4*d_model for NSTs and for 2*d_model for PatchTST.
Please note that PatchTST uses the vanilla Transformer encoder as its core architecture Nie et al. (2022)
and therefore the number of decoder layer is zero.

PatchTST L2(0.41M)
PatchTST L2 architecture
Number of encoder layers: 3
Number of decoder layers: 0
Number of heads: 16
d_model: 128
Dropout: 0.2

MLP L1(0.59M)
MLP Layers: [96, 720, 720, 1]

NST L1(3.88M)
NST L1 architecture
Number of encoder layers: 2
Number of decoder layers: 2
Number of heads: 8
d_model: 256
Dropout: 0.1

NST L1(1.05M)
NST architecture
Number of encoder layers: 2
Number of decoder layers: 2
Number of heads: 8
d_model: 128
Dropout: 0.1

NST L1(0.86M) on PatchTST L2(0.41M)
NST architecture
Number of encoder layers: 2
Number of decoder layers: 1
Number of heads: 8
d_model: 128
Dropout: 0.1
PatchTST architecture
Number of encoder layers: 3
Number of decoder layers: 0
Number of heads: 16
d_model: 128

42

Published in Transactions on Machine Learning Research (02/2024)

Dropout: 0.2

NST L1(1.13M) on PatchTST L2(0.41M)
NST architecture
Number of encoder layers: 2
Number of decoder layers: 2
Number of heads: 8
d_model: 128
Dropout: 0.1
PatchTST architecture
Number of encoder layers: 3
Number of decoder layers: 0
Number of heads: 16
d_model: 128
Dropout: 0.2

NST L2(0.53M) on MLP L1(0.59M)
MLP Layers: [96, 720, 720, 1]
NST architecture:
Number of encoder layers: 2
Number of decoder layers: 1
Number of heads: 6
d_model: 96
Dropout: 0.1

NST L1(0.86M) on MLP L1(0.59M)
MLP Layers: [96, 720, 720, 1]
NST architecture:
Number of encoder layers: 2
Number of decoder layers: 1
Number of heads: 8
d_model: 128
Dropout: 0.1

NST L1(2.05M) on MLP L1(0.59M)
MLP Layers: [96, 720, 720, 1]
NST architecture:
Number of encoder layers: 4
Number of decoder layers: 4
Number of heads: 8
d_model: 128
Dropout: 0.1

MLP L1(0.59M) on NST L1(1.13M) on PatchTST L2(0.41M)
MLP Layers: [96, 720, 720, 1]
NST architecture
Number of encoder layers: 2
Number of decoder layers: 2
Number of heads: 8
d_model: 128
Dropout: 0.1

43

Published in Transactions on Machine Learning Research (02/2024)

PatchTST architecture
Number of encoder layers: 3
Number of decoder layers: 0
Number of heads: 16
d_model: 128
Dropout: 0.2

Table 3:
In this experiment, two simple SVM models are used:
SVM with rbf kernel
SVM with with sigmoid kernel

Table 5:

Here is the details of the pool of the used models -MLPs and Transformers- in multistep ahead prediction
experiment on Nasdaq-DE1 dataset.

MLP L1 (2.09M):
MLP Layers: [60,360,3440,240,30]

MLP L2 (3.77M):
MLP Layers: [60,720,3440,360,30]

MLP L2 (4.61M):
MLP Layers: [60,900,3440,420,30]

NST L1 & NST L2 (2.67M):
Number of encoder layers: 2
Number of decoder layers: 1
Number of heads: 8
d_model: 256
Dropout: 0.1

MLP L2 (0.67M) on MLPL1 (2.09M)
MLP L2 Layers: [60,360,1080,240,30])
MLP L1 Layers: [60,360,3440,240,30]

MLP L2 (0.64M) on NSTL1 (2.67M):
MLP L2 layers: [60,360,1020,240,30]
NST L1 architecture:
Number of encoder layers: 2
Number of decoder layers: 1
Number of heads: 8
d_model: 256
Dropout: 0.1

MLP L2 (0.09M) on MLP L2 (0.64M) on NST L2 (2.67M)
NST L2 architecture:
Number of encoder layers: 2
Number of decoder layers: 1

44

Published in Transactions on Machine Learning Research (02/2024)

Number of heads: 8
d_model: 256
Dropout: 0.1
MLP L2 (0.64M) layers: [60,360,1020,240,30]
MLP L2 (0.09M) layers: [60,720,60,30]

Section 4.5:

MLP L1 (0.6581M) on PatchTST
MLP L1 layers: [96 ,720 , 720, 96]
details of PatchTsT can be found in Nie et al. (2022).

45

Published in Transactions on Machine Learning Research (02/2024)

H Further tables and figures

Without Noise: residuals are magnified by 10000 Amplitude of Noise = 0.2

Amplitude of Noise = 0.6 Amplitude of Noise = 0.8

Figure 15: Plots of model outputs (prediction), residuals and the data (ground truth) of the experiments of
Section 4.1.

46

Published in Transactions on Machine Learning Research (02/2024)

MLP-L1 MLP-L2

Figure 16: Plots of model outputs (prediction), residuals and the data (ground truth) of the experiments of
Section 4.2.

Figure 17: Plots of model outputs (prediction), residuals and the data (ground truth) of the ETTh2 dataset.

47

Published in Transactions on Machine Learning Research (02/2024)

Theoretical bound Experimental Error Pearsonr Analysis
Relative noise std Normalized Test RMSE Initial R Residual R

0 0.000023 30.764 0
0.2715 0.2737 28.538 0
0.4919 0.5043 23.129 0
0.6465 0.6687 17.494 0.9446
0.7499 0.7683 13.197 0
0.8161 0.8287 10.455 0
0.8614 0.8718 7.868 0
0.8923 0.901 5.561 1
0.9149 0.9206 4.664 0
0.9308 0.9427 3.723 0
0.9429 0.9373 2.882 0

Table 6: Pearson correlation results for Section 4.1. The test consists of the sum of the absolute value
of the Pearson correlation between each input and output features. However, the correlation measure is
only considered if the p-value is smaller than 0.01. Otherwise, the corresponding input and output pair is
considered as uncorrelated. In the first column, there is the relative noise, which is the root of the variance
of the noise divided by the total signal. The second column provides the normalized RMSE as defined in
Section 4. The third column is the sum of the absolute value of the Pearson correlation between input and
the single step forecast as output and the forth column is analogous to the third column where the single step
forecast is replaced by the corresponding residual (model prediction minus data). Since the residuals are less
correlated or even decorrelated with the input, the model extracted the deterministic relations measured in
the Pearson correlation test.

- Initial pearsonr Residual Pearsonr + L2 Residual Pearsonr + L1
Trial 0 15.33 0 0
Trial 1 16.925 0 0
Trial 2 15.25 0 0
Trial 3 17.104 0 0
Trial 4 15.449 0 0

Table 7: The effect of the choice of the loss function in mitigating asymmetric noise effect in terms of
distracting a model from extracting/learning the deterministic relations. The experiments are conducted in
Section 4.2. The Pearson test is described in Table 6. While the chi-square test and the mutual information
test depicted in Figure 2 reflect the better fitting of the model trained with L1-loss function to the real data,
see Figure 2, the Pearson test does not, which could be traced back to the limitation of testing only linear
correlations where chi-square and mutual information are generalizations in terms of measuring stochastic
independence.

I Transformer architecture explanation

In this section, we explain the transformer architecture in more detail. Specifically, we explain the building
blocks as depicted in (Vaswani et al., 2017, Figure 1).

I.1 Token embedding

In the transformer model, each token of the input sequence is first represented as a dense vector called a
token embedding. This embedding captures the semantic meaning of the token in the context of the task
being performed.

48

Published in Transactions on Machine Learning Research (02/2024)

Each token is encoded by a vector z ∈ Rdz one-hot encoding the corresponding token where dz ∈ N is the
number of different tokens generated from the vocabulary. The token embedding is obtained by applying
a linear transformation A ∈ RC×dz to the one-hot encoded representation of tokens z where C ∈ N is the
number of dimensions of the transformer’s internal representation of the embeddings (C sometimes also
denoted with embedding_size). The entries of A are learnable weights and optimized during the training
process. The mapping A : Rdz → RC , z 7→ Az can be implemented as:

token_embedding = nn.Linear(config.vocab_size, config.n_embed)

where config.vocab_size = dz is the size of the vocabulary (number of unique tokens), and config.n_embed is
the desired embedding dimension C. Consequently, this mapping turns the input shape (B, T, dz) to the out-
put shape of the token embedding (B, T, C), where B represents the batch size and T represents the sequence
length of the input (number of tokens). The transformation A is applied to each token and element of a
batch by z(b, :, :) 7→ z(b, :, :)A for each b ∈ {1, ..., B} where z ∈ RB×T ×dz , z(b, :, :) := (zbik)i∈{1,...,T },k∈{1,...,dz}
provides the one-hot encoded representation for each token and each element of the batch. By using batches,
several inputs can be considered at once.

For the specific case of time series modeling, the token embedding is replaced by the following. A convolu-
tional neural network (CNN) is used for generating the embedding. The input channels of the CNN equal 1
in an autoregressive scenario (only historic parts of the time series itself are use to predict future parts of the
time series) but can be set to any feature number F ∈ N, which is measured at each time point, in case, e.g.,
an output is predicted from several input time series. Each time window for each channel, which cuts out
each part of the F time series of length T and which is used as the input for the prediction, is represented by
a vector of size T . These vectors from the sliding window are transformed by a one-dimensional CNN into the
space RC . The padding is set such that the input length T equals the output length of the CNN. We remark
that the shift one by one time points is not necessary and can be increased such that the token number
in the embedding is smaller than the number of time points used as the input for the transformer. In our
case, each filter (convolution) of the CNN is applied to each output, controlled by the parameter groups=1
and a common choice for the kernel size of 3. To achieve this transformation, we employ a one-dimensional
convolutional layer in our implementation. Specifically, a 1D convolutional layer with an input channel size
of F and an output channel size of C (the embedding dimension of the transformer) can be utilized:

nn.Conv1d(In_channels = F, out_channels = C)

This convolutional layer applies a set of learnable filters across the temporal dimension T of the in-
put data, extracting relevant patterns and features. It’s important to note that the kernel size,
padding, and stride parameters of the convolutional layer can be adjusted to ensure that the out-
put length matches the input length T . For more details, see the PyTorch documentation, e.g.,
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html.

In general, the transformation (token embedding by a CNN) is applied as follows CNN : RT ×F →
RT ×C , z(b, :, :) 7→ CNN (z(b, :, :)) to each each element of a batch z(b, :, :) ∈ RB×T ×F , z(b, :, :) :=
(zbik)i∈{1,...,T },k∈{1,...,F }, numerated by b ∈ {1, ..., B} with the batch size B ∈ N, (in parallel) generating a
tensor of dimension (B, T, C).

For more details about the general framework of token embedding, see, e.g., Zhou et al. (2021).

I.2 Positional embedding

The purpose of a positional embedding is to include information about the position of a token relative to
other tokens from the input into the total embedding of each token. The positional embedding is a vector
of dimension C and is added to the token embeddings to provide information about the relative positions of
tokens.

There are several methods available to code for positional information, see, e.g., Vaswani et al. (2017).

49

Published in Transactions on Machine Learning Research (02/2024)

I.3 Attention head operation

The attention head is the essential building block of a transformer. Each attention head forms one layer
where the output of one layer is processed by a subsequent layer until the output of the final layer is processed
by a linear layer to obtain a corresponding output, see, e.g., (Vaswani et al., 2017, Figure 1).

Let’s consider a single attention head operation in a transformer model. In this operation, we have the
input tensor x ∈ RB×T ×C . The tensor x can be the one after the token embedding (inclusive positional
encoding) or the output of a previous layer. We remark that each layer in this presentation preserves the
format (B, T, C).

The input tensor x is next transformed into different representations via linear transformation matrices.
These matrices contain the learnable weights and are given by W K ∈ RC×C , W Q ∈ RC×C and W V ∈ RC×C .
We define a tensor for key (K), query (Q), and value (V) by the linear mappings

K(b, ·, ·) := x(b, ·, ·)W K ∈ RT ×C , Q(b, ·, ·) := x(b, ·, ·)W Q ∈ RT ×C , V (b, ·, ·) := x(b, ·, ·)W V ∈ RT ×C

for each b ∈ {1, ..., B} where x(b, ·, ·) ∈ RT ×C such that x(b, i, k) = xbik for all b ∈ {1, ..., B}, i ∈ {1, ..., T}
and k ∈ {1, ..., C}. Each of the matrices W K , W Q and W V is an instance of a linear layer and can be
implemented with PyTorch as follows:

nn.Linear(C, C, bias = False).

We remark that C may be called embedding_size.

In order to quantify the attention of token i ∈ {1, ..., T} represented in its key representation (K) with regard
to token j ∈ {1, ..., T} of the input represented in its query representation (Q), the dot product is calculated
for each b ∈ {1, ..., B} between the query (Q) and key (K) tensors over the vector embedding for each token
pair i, j ∈ {1, ..., T}. This operation can be represented as

Θ : {1, ..., B} × {1, ..., T} × {1, ..., T} → R, (b, i, j) 7→ Θ(b, i, j) := 1√
C

C∑
k=1

Qb,i,k · Kb,j,k (6)

where b represents the batch index, i and j represent the positions in the sequence (input), and k represents
the embedding dimension. The sum is scaled by C−0.5. One reason behind dividing the sum by the square
root of the embedding dimension is given in the section about the Softmax function below, see Section I.3.1.

We implement the mapping Θ using the key (K) and query (Q) tensors and the Einstein summation con-
vention as follows:

Θ(b, i, j) = 1√
C

torch.einsum(bij, bkj− > bik, Q, K)

I.3.1 Softmax

After calculating the similarities between keys and queries, the purpose of the Softmax function is to nor-
malize the scores of similarity. A high similarity between the key of token i and the query of token j is a
proxy for a high association or attention the token i has to token j, meaning the connection is important for
predicting the corresponding output. Due to the monotonicity of the Softmax function, a bigger similarity
score between the corresponding key and query will result in a bigger value, called attention between the
corresponding tokens, compared to smaller ones.

The Softmax function in our case is defined by

Softmax : {1, ..., B} × {1, ..., T} × {1, ..., T} → R, (b, i, j) 7→ Softmax(b, i, j) := eΘ(b,i,j)∑T
l=1 eΘ(b,i,l)

.

50

Published in Transactions on Machine Learning Research (02/2024)

Here, the Softmax function is applied along the last dimension, ensuring that the attention weights sum
up to 1 along this dimension. This normalization means, fixing a batch number b and a token number
i of the input provides us a normalized attention score about all the other token numbers j ∈ {1, ..., T}.
The implementation is done by applying the corresponding Softmax function along dim=−1 to the tensor
Θb,i,j := Θ(b, i, j) for all b ∈ {1, ..., B} and i, j ∈ {1, ..., T}.

Next, we explain the normalization by C−0.5 of (6). For large numbers, the Softmax function is approximately
a constant function and changes in the weights of the transformer model do not result in a significant change of
the attention. Depending on the embedding dimension C, the corresponding sum scales. For an illustration,
see, e.g., (Vaswani et al., 2017, footnote 4). The scaling of the sum by C−0.5 ensures to stay in a range
where the Softmax is in an area of larger steepness and changes in the weights of the transformer result in
significant changes of the attention values. Similarly, see (Vaswani et al., 2017, Section 3.2.1).

I.3.2 Weighted aggregation

We apply the attention scores to the value tensor (V) to obtain a weighted sum. The attention tensor is
defined by

Ab,i,j := Softmax(b, i, j)

for all b ∈ {1, ..., B} and i, j ∈ {1, ..., T} such that A ∈ RB×T ×T . The weighted sum of attention scores is
given by

A(b, ·, ·)V (b, ·, ·) ∈ RT ×C

for each b ∈ {1, ..., B} and turns the output of an attention head into the tensor format (B, T, C). The
output tensor of attention head H ∈ RB×T ×C is defined by

Hb,i,k :=
T∑

l=1
Ab,i,lVb,l,k

for all b ∈ {1, ..., B}, i ∈ {1, ..., T} and k ∈ {1, ..., C}.

I.3.3 Multi-head attention

Optionally, in order to calculate attention on different subspaces of keys and queries for the same input in
each layer, there is a multi-head attention taking only projected parts of keys and queries.

In the multi-head attention formalism, the output of each head is concatenated along the last dimension,
which is the embedding dimension

Concat((B, T, C/n_heads), ..., (B, T, C/n_heads)) = (B, T, C)

where n_heads is the number of attention heads. Specifically, the output of each head is calculated with
the following weight matrices W K

h ∈ RC×C/n_heads, W Q
h ∈ RC×C/n_heads, W V

h ∈ RC×C/n_heads and
W O ∈ RC×C where h ∈ {1, ..., n_heads}. Furthermore, n_heads and C are chosen such that the quotient
C/n_heads is an integer. The matrices calculate the corresponding projections of keys, queries and values as
follows Kh(b, ·, ·) := K(b, ·, ·)W K

h ∈ RT ×C/n_heads, Qh(b, ·, ·) := Q(b, ·, ·)W Q
h ∈ RT ×C/n_heads, V h(b, ·, ·) :=

V (b, ·, ·)W V
h ∈ RT ×C/n_heads for all b ∈ {1, ..., B}.

The weight matrices W K
h , W Q

h and W V
h are each implemented with a linear layer according to

nn.Linear(C, head_size, bias = False)

and head_size is calculated as
head_size =

⌊
embedding_size

n_heads

⌋
where for W O the number head_size is replaced by C.

51

Published in Transactions on Machine Learning Research (02/2024)

Applying the procedure for the single-head attention for each h ∈ {1, ..., n_heads} by replacing each K by
the corresponding Kh, each Q by the corresponding Qh and each V by the corresponding V h provides us
the tensor of each attention head Hh ∈ RB,T,C/n_heads where in (6) the index in the sum is only over 1 to
C/n_heads each.

After processing all attention heads, the outputs are concatenated along the last dimension, resulting in a
tensor of shape (B, T, C). The output of the multi-head attention is given by

H(b, ·, ·) := Concat(H1(b, ·, ·), ..., Hn_heads(b, ·, ·))W O ∈ RT ×C

for each b ∈ {1, ..., B}.

I.4 Adding and layer normalization

After the attention head operation, residual connections and layer normalization are applied.

The adding of the input and the output of a layer (residual learning He et al. (2016)) is crucial for maintaining
an information flow and is easing the training of deep networks. The residual connection involves adding the
input tensor x to the output of the multi-head attention operation H according to x + H where + denotes
an element-wise addition. The addition helps to loop through the original information from the input to all
the layers in a sequential layer architecture while also incorporating the information learned by the attention
mechanism. A prerequisite is that the attention head preserves the input format.

Following the residual learning operation, layer normalization is applied to stabilize the learning process Ba
et al. (2016) according to

LayerNorm := z − E(z)√
V ar(z) + ϵ

where z is the output of the previous layer, E(z) is the mean value of all the values of the output of the
previous layer (mean over the elements of z) and V ar(z) is the corresponding variance. Since the square root
is not differentiable at 0, a small constant ϵ > 0 keeps the numerical implementation stable in case of a small
variance of z. Moreover, the constant ϵ avoids division by zero errors. More details about the implementation
can be found under https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html. Due to
its construction, the normalization is done for each element of the batch.

We remark that for our implementation, the normalization is applied over the embedding dimension (C)
separately for each token of the input (T dimension), meaning that z ∈ RC . This is reasonable since the
feed forward networks (explained in Subsection I.5) are applied over the d_model (C) on each element of
the batch (B) and input length (T).

I.5 Feed forward network (FFN)

After the normalization step of the attention head’s residual learning, each token’s representation is passed
through a feed-forward neural network (FFN). Such an FFN consists of two linear transformations separated
by a non-linear activation function g : Rm×n → Rm×n, m, n ∈ N, z 7→ g(z), such as ReLU (Rectified Linear
Unit; g = max) according to

FFN (x(b, t, ·)) = g (x(b, t, ·)W1 + b1) W2 + b2 ∈ RC

for each b ∈ {1, ..., B} and t ∈ {1, ..., T} where x ∈ RB×T ×C is the output from the previous operation in
the architecture, W1 ∈ RC×dff , dff ∈ N, in our implementation dff = 4C, W2 ∈ Rdff ×C and b1 ∈ Rdff .
Furthermore, x(b, t, ·)W1 ∈ Rdff , which is the same bias for each t in contrast to b1 ∈ RT ×dff where

52

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

Published in Transactions on Machine Learning Research (02/2024)

for each t there is another bias, and b2 ∈ RC are learnable parameters. These operations are applied
by Pytorch’s linear layer https://pytorch.org/docs/stable/generated/torch.nn.Linear.html. The
activation function g introduces non-linearity to the model, enabling it to learn non-linear patterns from the
data. In the transformer architecture, an FFN is also followed by residual learning and layer normalization
as described above in Subsection I.4.

I.6 Masking

Looking at (Vaswani et al., 2017, Figure 1), the masking is one of the essential building blocks located within
the decoder (explained in Subsection I.7).

The masking of values of the attention weights Θ has the purposes of forcing attention between tokens to zero,
meaning not allowing them to interact or to extract information from the interaction. Due to the iterative
application of the transformer for text generation, we would like to force the attention mechanism that a
token only considers tokens backwards in time (that come earlier in a sentence). This backward orientation
helps to generate representations of tokens that collect information from tokens that are already there and
prevents generating representations that make use of tokens that come after that token in a sentence. By
the procedure of masking, the representations of tokens are more unified independent of the input length.
As an example: "I am hungry and thus I go to a restaurant." Although probably "hungry" should get a
lot of attention with "restaurant" without masking, in an iterative application of the transformer, the word
"hungry" in "I am hungry and thus I go" would not be useful since its most attention was on restaurant that is
not there yet. However, with masking we force the transformer to find embeddings and representations such
that the word "hungry" gets a useful representation to predict the next token during learning, independent
if the input is "I am hungry and thus I go to a restaurant." or "I am hungry and thus I go".

A different interpretation of the masking can be causality in a use case where the sequence of events is of
importance forcing attention only to historic events.

We implement the masking effecting only backwards interaction by a lower triangular mask M ∈ RT ×T . This
matrix is applied to the attention weights Θ generating masked attention weights. The tokens of the input
are counted in the second dimension of the tensor Θ where the third dimension accounts for the dimension of
the current vector representation (T or C depending on the current representation). Consequently, the lower
triangular matrix (1 on the diagonal and below and 0 above), allows token 1 to have a non-zero attention
only with token 1, token 2 can interact with token 2 and token 1 and so on until token T .

Subsequently, for each b ∈ {1, ..., B}, the entries of the attention weight tensor Θ(b, :, :) are replaced by −∞
where M equals zero. The attention tensor Θ is thus transformed into the masked attention weight tensor
ΘM . The −∞ forces the corresponding Softmax calculation to zero in the corresponding positions, meaning
that the corresponding token does not pay attention to the corresponding other tokens.

I.7 Encoder and decoder

In a transformer architecture, there are typically two main components. This is the encoder and the decoder.
Next, we explain both components according to (Vaswani et al., 2017, Figure 1).

Usually each layer in the encoder consists of an attention head followed by a residual learning and normaliza-
tion, which is the input into a two linear transformation separated by a non-linear activation function, also
followed by a residual learning and normalization. For the decoder, a layer consists of a masked attention
unit (self-attention), followed by residual learning and layer normalization, followed by an attention unit
where key and values are calculated from the corresponding encoder layer (cross-attention). The rest of the
layer is according to an encoder layer. The repetition of layers of encoder and decoder is the main building
block for the transformer.

The encoder processes the input sequence. These are the text input or for time series prediction the historic
time series (the time series itself or other time series of features) generating a vector representation that

53

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

Published in Transactions on Machine Learning Research (02/2024)

captures the contextual information of each token, which is meant also for the time series case as discussed
in Subsection I.1.

The decoder, on the other hand, takes the encoded representations and generates an output sequence. It
also consists of multiple layers, each containing self-attention mechanisms and cross-attention mechanisms.
The self-attention mechanisms help the decoder focus on different parts of its input sequence, while the
cross-attention mechanisms allow it to incorporate information from the encoder’s output.

For the case of generating iteratively the next token for text generation, the prediction target is typically
the next token in a sequence. Since for the text generation, several predicted tokens are required, the input
of the decoder grows by the predicted token after each iteration. For inference the next token is predicted.
Also during the training, the model is trained to predict the next token given the previous tokens in the
input sequence. The number of input tokens for the decoder is given by L ∈ N. The input to the encoder
can be passed to the input of the decoder. If tokens are iteratively generated, the number L is supposed
to be bigger than T in such cases, where T is the input length of the encoder. If the iterative output of
the decoder becomes longer than a maximum size L̃ ∈ N for the decoder’s input, which can exist due to
limitation on the hardware to calculate attention for such an input length between each token, then only
the latest L̃ tokens are used as an input for the decoder. If the sequence is shorter, corresponding positions
are masked out as explained in Subsection I.6. For translating, input language of the encoder’s input can
be different to the language of the decoder’s output/input. In such a case, the encoder’s input may not be
passed to the decoder’s input and the input of the decoder is iteratively generated by several applications of
the transformer.

In any case, the output of the decoder x ∈ RB×L×C is transformed by a linear map W̄ : C → Rdz with bias
b̄ ∈ Rdz such that the last dimension fits the number of available tokens from a dictionary according to

x̄(b, i, :) := x(b, i, :)W̄ + b̄ ∈ Rdz

for each b ∈ {1, ..., B} and i ∈ {1, ..., L}. Then, the Softmax function is applied to the last slice L of the
tensor x̄ according to

Softmax : {1, ..., B} × {1, ..., dz} → R, (b, s) 7→ Softmax(b, s) := ex̄b,L,s∑dz

l=1 ex̄b,L,l

to obtain a probability over all possible tokens to choose the most likely token as the following token for each
b ∈ {1, ..., B}. To include some variety on choosing the next token, we can disturb this distribution for the
next token (e.g., introducing a temperature parameter) a bit such that also tokens become the most likely
one that are close to the most likely token according to the undisturbed distribution over the tokens.

For time series forecasting tasks, the prediction target may vary depending on the application. It could be
the next value in the time series sequence, multiple future values, or even a binary classification indicating
whether certain conditions will be met in the future. The basic concept is that a linear transformation
W̃ : C → E, E ∈ N, with a bias b̃ ∈ RE transforms the output of the decoder to the output format that
corresponds to what is to predict, like the number of features or the numbers of classes that is then turned
into a probability over classes by a corresponding Softmax function.

In this work, we focus on time series prediction. As discussed in Zhou et al. (2021), it is advantageous to
generate a multistep prediction (which includes a singlestep prediction) not by an iterative application of the
transformer, like explained above, but provide the prediction at once, meaning to provide the prediction of
length L ∈ N with a single application of the transformer. As a consequence, the training is done with a direct
multistep loss. The rationale behind generating the prediction at once is to avoid error accumulation within
the multistep ahead time series prediction task. Considering (Liu et al., 2022, Algorithm 4), we define the
input for the decoder by x ∈ RB× T

2 +L×F where L ∈ N is the number of steps within the multistep prediction
or prediction length, respectively, and F ∈ N the number of features, analogously to the token embedding for
time series prediction tasks described in Subsection I.1. While for the encoder the initialization is the input
sequence, the initialization values for the decoder are as follows. The first T

2 slices of the decoder input x

are filled with the last T
2 slices of the input of the encoder x̃ ∈ RB×T ×F according to xb,i,f = x̃b, T

2 +i,f for all

54

Published in Transactions on Machine Learning Research (02/2024)

b ∈ {1, ..., B}, i ∈ {1, ..., T
2 }, f ∈ {1, ..., F}. The last slices of the decoder are initialized with zeros according

to xb,i,f = 0 for all b ∈ {1, ..., B}, i ∈ { T
2 + 1, ..., T

2 + L}, f ∈ {1, ..., F}. This representation is embedded,
see Subsection I.1, and processed as shown in (Vaswani et al., 2017, Figure 1) by a number of layers within
the transformer. The output of the decoder, again denoted with x ∈ RB× T

2 +L×C , is transformed by a linear
mapping according to

P (b, i, :) := x(b, i, :)W̃ + b̃ ∈ RE

for each b ∈ {1, ..., B} and i ∈ {1, ..., T
2 + L} where W̃ ∈ RC×E , b̃ ∈ RE and P ∈ RB× T

2 +L×E . In our
application, where we predict the time series from its history, F = E = 1. The output after the linear
transformation represents the L-step prediction and is given by

P (b, i, e) for all i ∈ {T

2 + 1, ...,
T

2 + L}

for each element of the batch b ∈ {1, ..., B} and dimension e ∈ {1, ..., E}. Based on the output, loss functions
are calculated with respect to the corresponding ground truth.

J Architecture for multilayer perceptrons for time series prediction

In this section, we describe the multilayer perceptron (MLP) architecture that we use for the time series
prediction in this work. There is evidence that also MLPs are a very powerful model to predict time series
Zeng et al. (2023).

Iteratively, an input tensor x ∈ RB×F ×T with B ∈ N as the batch size, T ∈ N as the length of the historic
input of the time series for the prediction and F ∈ N as the number of features is transformed to the
output tensor y ∈ RB×F ×L where L ∈ N is the length of the multistep prediction, which includes singlestep
prediction where L = 1. In between there can be several hidden layers. All layers have the following
structure taking an input tensor zd−1 ∈ RB×F ×Nd with a certain number of nodes ("neurons") Nd ∈ N where
d ∈ {1, ..., n}, n ∈ N is the number of layers, N1 = T , Nn+1 = L and z0 := x. The layer d is defined by the
function given as follows

Md : RNd → RNd+1 , zd−1(b, f, :) 7→ Md (zd−1(b, f, :)) := gd (zd−1(b, f, :)Wd + bd)

for each b ∈ {1, ..., B} and f ∈ {1, ..., F} where gd : RF ×Nd+1 is a pointwise applied non-linear activation
function for each d ∈ {1, ..., n}, like the ReLu function where gd = max, zd−1 ∈ RB×F ×Nd is the output from
layer d − 1 and the input for layer d, Wd ∈ RNd×Nd+1 and bd ∈ RNd+1 . The operation zd−1(b, f, :)Wd is the
common matrix-vector multiplication for any d ∈ {1, ..., n}, b ∈ {1, ..., B}, f ∈ {1, ..., F}. We remark that gd

can be but does not have to be a different function for each layer. For each b ∈ {1, ..., B} and f ∈ {1, ..., F},
we have that y(b, f, :) := Mn(zn−1(b, f, :). In this formulation, all weights in each layer d are the same for all
features. This is the implementation we provide and is used in Zeng et al. (2023). However, in the examples
within the present work, we have F = 1.

To implement a version that has different weights for each feature in each layer d, we just need to reformulate
the input of the layers by zd−1,f (b, :) = zd−1(b, f, :) ∈ RNd for all f ∈ {1, ..., F}. Accordingly, the definition
of the layers looks like

Md,f : RNd → RNd+1 , zd−1,f (b, :) 7→ Md,f (zd−1,f (b, :)) := g (zd−1,f (b, :)Wd,f + bd,f)

where applying the definitions separately to each feature leads to F different MLPs where the weight matrices
and bias can differ per feature.

In order to introduce cross learning where information from one feature can influence the prediction of other
features, we need to reshape the three dimensional tensor (B, F, Nd) to (B, FNd) for some layers where a
corresponding weight matrix W ∗

d : FNd → FNd+1 can mix information from different features.

In a multi layer architecture, we can combine cross learning and learning per feature in different layers
assembling them in one model by reshaping outputs in the corresponding formats from (B, F, Nd) to (B, FNd)
or (B, FNd) to (B, F, Nd) after a layer before the next one depending on the learning type to change.

55

Published in Transactions on Machine Learning Research (02/2024)

With Pytorch such layers are implemented with

nn.Linear(n, m, bias = True)

where n ∈ N is the dimension of the input and m ∈ N is the dimension of the output. The bias parameter
True adds a bias with non-zero values and the parameter False fixes the values of the bias to zero.

56

	Introduction
	Theoretical background and Methods
	Basic concept for unpredictability in a nutshell
	Foundations and implementation details for the predictability framework

	Related Work
	Applications|Numerical experiments
	Splitting noise off from model inaccuracy
	Information extraction influenced by loss function and noise properties
	Stochastic measures as convergence criteria
	Time series classification
	Detecting distribution shifts

	Discussion
	Conclusion and Future Work
	Further explanation on discretization and empirical probability estimation
	Convergence and bounds on estimation of mutual information
	Extra notes on Subsection 4.2
	Data description
	Model stacking architecture and numerical experiments
	Stacking architecture
	Stacking of models systematically extracts information and improves prediction

	A remark on the sensitivity of loss functions regarding distracting the model from the ground truth
	Models' settings for numerical experiments
	Further tables and figures
	Transformer architecture explanation
	Token embedding
	Positional embedding
	Attention head operation
	Softmax
	Weighted aggregation
	Multi-head attention

	Adding and layer normalization
	Feed forward network (FFN)
	Masking
	Encoder and decoder

	Architecture for multilayer perceptrons for time series prediction

