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Abstract

Few-shot table-to-text generation seeks to gen-
erate natural language descriptions for the
given table in low-resource scenarios. Previous
works mostly utilized Pre-trained Language
Models (PLMs) even Large Language Mod-
els (LLMs) to generate fluent descriptions of
the tables. However, they are prone to halluci-
nations that do not conform to the table. In this
work, we propose CoT-Planner, a simple but ef-
ficient Chain-of-Thoughts-based approach that
can be used to reduce the generation of hal-
lucinations in the few-shot table-to-text gen-
eration. We first use a large language model
(such as ChatGPT) to automatically generate
ten intermediate content plans in the form of
a Chain-of-Thoughts (CoT) for each table and
corresponding description pair. Then, we re-
fined the most accurate content plan for each
sample and used the table and text pairs with
the added content plan (CoT-Plan) as demon-
strations for In-Context Learning (ICL). Both
automatic and human evaluations on the numer-
icNLG dataset show our method can effectively
alleviate hallucinations, thereby improving fac-
tual consistency in few-shot table-to-text gener-
ation. The code and data will be released upon
acceptance.

1 Introduction

Table-to-text generation (Table2Text) is an im-
portant branch of Natural Language Generation
(NLG), aiming at generating textual natural lan-
guage descriptions that can fluently and precisely
describe the given table. Table2Text has a wide
variety of application scenarios, such as weather
forecasting report (Liang et al., 2009), sport news
generation (Wiseman et al., 2017), medical report
generation (Nishino et al., 2020) and open-domain
table-based question answering (Chen et al., 2020a,
2021; Jiang et al., 2022).

In recent years, supervised natural language gen-
eration models have shown the ability to generate
natural language text at an astounding degree of

fluency and coherence, due to the advent of pre-
trained language models (PLMs) such as GPT-2
(Radford et al., 2019), TS5 (Raffel et al., 2020), and
BART (Lewis et al., 2020). However, table-to-text
generation faces the dilemma of lack of labeled
data. In our daily lives, numerous statistical ta-
bles are produced, yet they lack nearly any cor-
responding descriptions in natural language. To
address this concern, researchers are exploring al-
ternative methods in the few-shot settings (Luo
et al., 2022). Fortunately, large language mod-
els (LLMs; Zhao et al., 2023) that contain hun-
dreds of billions (or more) of parameters, such as
GPT-3 (Brown et al., 2020), PaLM (Chowdhery
et al., 2022), Galactica (Taylor et al., 2022), and
LLaMA (Touvron et al., 2023a), can solve few-shot
tasks through in-context learning (ICL; Dong et al.,
2023) which incorporates input-output demonstra-
tions into the prompt. More recently, ChatGPT!
and GPT-4 (OpenAl, 2023) benefit from instruction
fine-tuning and perform well on new tasks even in
the few-shot scenario.

Nevertheless, when presented with complex rea-
soning tasks, this simple ICL method usually per-
forms poorly. As shown in Figure 1, in the table-to-
text generation task involving numerical reasoning
(Suadaa et al., 2021), the simple ICL method is
prone to generating descriptions with various hal-
lucinations: (1) the fact exists, but the numerical
value is incorrect; (2) the fact does not exist, and the
numerical value is also incorrect; (3) the numerical
value is correct, but the fact does not exist.

Wei et al. (2022) finds that chain-of-thought
prompting—a technique that involves incorpo-
rating step-by-step reasoning processes into the
demonstration—can enhance the reasoning abil-
ity of LLMs. Inspired by this discovery, in this
paper, we propose CoT-Planner, a simple but effi-
cient Chain-of-Thoughts-based few-shot table-to-
text generation approach to reduce the hallucina-
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( You are a researcher in the field of computer science and are currently writing a paper on AL I will give you a table made up \

\ The test tabular data: [Table fest 0].

of experimental results in json format. You need to analyze the data and generate a technical analysis which can be directly
put into an academic paper as the description of the table Tt is advisable to imitate the writing style of academic papers. in
which you need to show the results and further illustrate them through numerical reasoning

Here are some examples:

Example one: The tabular data: [Tzb/e I]. The corresponding description: [Description I].

Example two: The tabular data: [Table 7]. The corresponding description: [Description 2].

ChatGPT

ﬂb!e 5 presents the results of link prediction experiments on the test-I, test-II, and test-all sets of FB122 and WN18 in the\
fi

Itered setting. The rows represent different models and datasets, while the columns represent different evaluation metrics.
The results are reported in terms of Mean Reciprocal Rank (MRR), Median (MED), and Hits@k (%0) with k=3,5,10.
For FB122_ KALE-Joint achieves the best MRR score of (.338 on the test-all set. while TransR achieves the best MRR score
of 0.299 on the test-1 and KALE Pre achieves the best MER score of 0.787 on the test-1I. The MED scores for all models are
relatively low and vary between 3 and 16, indicating that the median ranks are generally quite low. The Hits@k (%) scores
show that KALE-Pre and KALE-Joint achieve the best performance on most test sets and metrics, with some exceptions
where other models perform slightly better.
For WN18, KALE-Joint achieves the best MRR score of 0.662 on the test-all set. while TransE achieves the best MRR score
of 0.325 on the test-1 and KALE-Pre achieves the best MRR score of 0.787 on the test-II. The MED scores for all models are
relatively low and vary between 1 and 3, indicating that the median ranks are generally quite low. The Hits@k (%) scores
show that KALE-Pre and KALE-Joint achieve the best performance on most test sets and metrics, with some exceptions
where other models perform slightly better.
Overall, the results demonstrate that KALE-Pre and KALE-Joint are competitive with existing models on the link prediction

and metrics, while the TransH and TransR models generally perform worse than the other models.

Qk, achieving the best performance on several test sets and metrics. The TransE model also performs well on sotme test sey

Hallucination 1: The fact exists, but the numerical value is incorrect. (0.338 should be 0.523)

Hallucination 2: The fact does not exist (TransR should be KALE-Joint), and the mumerical value is also incorrect (0.299 should be 0.325).

Hallucination 3: The numerical value is correct, but the fact does not exist (KALE-Pre should be KALE-Joini).

Figure 1: Hallucinations of ChatGPT in the table-to-text generation focusing on numerical reasoning.

tions from LLMs. Specifically, we first utilize 2 Related Work
LLMs to automatically generate the intermediate

content plan in the form of the Chain-of-Thoughts ~ 2.1 Few-shot Table-to-Text Generation.

and then introduce the content plan with the origi-
nal corresponding input and output as the example
of In-Context Learning for the few-shot table-to-
text generation. Compared with traditional two-
stage methods (Puduppully et al., 2019; Moryossef
et al., 2019a,b; Su et al., 2021b; Luo et al., 2022),
our method does not require fine-tuning of the two-
stage model with content planning data, which
is particularly suitable for low-resource scenar-
i0s. Furthermore, descriptions generated under the
guidance of an intermediate CoT-Plan are more
trustworthy and interpretable than descriptions pro-
duced using the typical ICL method. To evalu-
ate the effectiveness of our approach, we conduct
extensive experiments on a wide range of Large
Language Models, such as ChatGPT, LLaMA-
2(Touvron et al., 2023b), Alpaca(Taori et al., 2023),
and Vicuna(Zheng et al., 2023). Our results reveal
that LLMs can achieve remarkable performance
with only 1 or 2 CoT-Plan demonstrations in the
table-to-text generation task. Our human evalua-
tion indicates that the CoT-Planner can effectively
reduces the hallucinations generated by various
LLMs in few-shot table-to-text generation.

Ma et al. (2019) firstly studied table-to-text gener-
ation under the low-resource constraint, and sepa-
rated the generation process into two stages: key
fact prediction and surface realization.
pre-trained language models (PLMs; Chen et al.,
2020b) such as GPT-2, T5, and BART have per-
formed well in various few-shot natural language
generation (NLG) tasks in recent years (Li et al.,
2021). However, adapting pre-trained language
models to the table-to-text generation task requires
serialization for structured data, resulting in the loss
of its structured information. To preserve the ta-
ble’s structural information and improve the text’s
fidelity, Gong et al. (2020) exploited multi-task
learning with two auxiliary tasks: table structure
reconstruct from GPT-2’s representation and the
content matching based on the optimal transport
distance. Su et al. (2021a) proposed the Prototype-
to-Generate (P2G) framework, which utilized the
retrieved prototypes to help the model bridge the
structural gap between tables and texts. And Ke
et al. (2022) introduced self-training to explicitly
capture the relationship between structured data
and texts. To generate a coherent and faithful sen-
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Please generate an intermediate content plan based on the provided structured
input and corresponding description text.
The tabular data: [ ]-
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Verified and Refined by Human ‘
CoT-Plan

Content planning:
1. Introduction to the problem of link prediction in Al
2. Description of the dataset used in the experiment (FB122 and WN18)
3. Overview of the models used in the experiment (TransE, TransH, TransR, KALE-
Trip, KALE-Pre, KALE-Joint)
4. Presentation of the experimental results in the table -
5. Analysis of the experimental results:
a. Comparison of the models' performance on Test-I, Test-11, and Test-ALL sets
b. Comparison of the models' performance on FB122 and WN18 datasets
c. Discussion of the results and their implications

Instruction

are currently writing a paper on Al.

1 will give you a table made up of experimental results in
technical analysis which can be directly put into an
academic paper as the description of the table.

It is advisable to imitate the writing style of academic

illustrate them through numerical reasoning.

Before generating the description text, you need to do a
content planning process first. The content planning
requires you to select and sort content.

w...

Here are some examples:

~ = Intermediate content plan: [CoT-Plan]

— +» The corresponding description: [Textual description].
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Figure 2: The overview of the proposed CoT-Planner approach.

tence with high coverage of table slots, Zhao et al.
(2021) proposed a table slot attention mechanism
to empower the model generalization ability in in-
ference and designed a memory unit to monitor
the visits of each table slot. Li et al. (2023) in-
troduced a unified representation for knowledge
graphs, tables, and meaning representations, which
led to significant improvements in transfer learning
scenarios across structured forms in the few-shot
settings. Inspired by prompt tuning that was first
proposed by GPT-3, Luo et al. (2022) prepended
a task-specific prefix for the PLMs to make the ta-
ble structure better fit the pre-trained input. Jiang
et al. (2023) developed an Iterative Reading-then-
Reasoning (IRR) approach to support large lan-
guage models (LLMs) in reading and reasoning on
the structured data with the help of external inter-
faces. Different from the above studies, we focus
on how to reduce the hallucinations from LLMs in
few-shot table-to-text generation.

2.2 Chain-of-Thoughts Reasoning with LL.Ms.

While LLMs have shown remarkably effective in a
range of NLP tasks, their capacity for reasoning is
often seen as a drawback. Even worse, this capabil-
ity cannot be gained simply by increasing the size
of the model. It has recently been found that LLMs
can do intricate reasoning over text when they are

given the Chain-of-Thoughts prompting(Wei et al.,
2022). CoT prompting allows the model to learn
more precisely about the reasoning process and the
complexities of the queries. And Wang et al. (2023)
propose to use self-consistency with CoT to fur-
ther improve performance. Besides, the Chain-of-
Symbol (CoS; Hu et al., 2023) represents the com-
plex environments with condensed symbolic chain
representations during planning in symbolic reason-
ing. The original chain structure naturally limits
the scope of exploration. Tree of Thoughts (ToT;
Yao et al., 2023), a variant of CoT, allows LLMs
to perform deliberate decision-making by consid-
ering multiple different reasoning paths and self-
evaluating choices to decide the next course of ac-
tion. Skeleton-of-Thought (SoT; Ning et al., 2023)
is another variant of ToT, which decomposes a prob-
lem into subproblems that can be processed in par-
allel. Furthermore, Graph of Thoughts (GoT; Besta
etal., 2023; Lei et al., 2023) additionally introduces
aggregation and refinement operations compared to
the ToT. However, current research does not delve
into the ability of Chain-of-Thoughts prompting
with LLMs to perform numerical reasoning on ta-
bles (Chen, 2023). In this paper, we are specifically
interested in understanding LLMs’ capability to
reason over numerical tables with CoT-Planner, es-
pecially in data-to-text generation tasks.



3 CoT-Planner

In this section, we present the proposed CoT-
Planner approach for the few-shot table-to-text gen-
eration task. Figure 2 depicts the overall architec-
ture of our approach. As shown in the figure, the
CoT-Planner framework consists of two subtasks:
(1) Semi-automatic CoT-Plan and (2) In-Context
Learning with CoT-Plan. We begin by showing
in Section 3.1 how to semi-automatically generate
the CoT-Plan (the content plan in the form of the
Chain-of-Thoughts) in zero-shot scenarios. Next,
in Section 3.2, we demonstrate the process of In-
Context Learning with CoT-Plan for the few-shot
table-to-text generation task.

3.1 Semi-automatic CoT-Plan.

Semi-automatic CoT-Plan integrates the advan-
tages of both manual and automatic construction
methods. Specifically, it first generates the corre-
sponding CoT-Plan for each table-description pair
directly using a large language model such as Chat-
GPT, as illustrated in Figure 2 (left). Inspired by
zero-shot-CoT (Kojima et al., 2022), we imple-
mented zero-shot content planning using just one
simple prompt with the table-description pair. To
ensure that the generated CoT-Plan is more reliable,
we repeated the above operation ten times, thus
forming a set of 10 candidate CoT-Plan for each ex-
ample. The candidate CoT-Plan set is then verified
and refined by human experts. Each training exam-
ple finally forms a high-quality CoT-Plan for sub-
sequent In-Context Learning. The semi-automatic
CoT-Plan reduces the workload of manual writ-
ing while introducing manual quality inspection
to ensure the quality of CoT-Plan and enhance the
reasoning ability and stability of LLMs.

3.2 In-Context Learning with CoT-Plan.

As shown in Figure 2 (right), for the table-to-text
generation task, the input to the Large Language
Model consists of 6 parts:

¢ Role Setting (RS): You are a researcher in
the field of computer science and are currently
writing a paper on Al

» Task Objectives (TO): I will give you a table
made up of experimental results in json format.
You need to analyze the data and generate a
technical analysis which can be directly put
into an academic paper as the description of
the table.

* Key Requirements (KR): It is advisable to
imitate the writing style of academic papers,
in which you need show the results and further
illustrate them through numerical reasoning.

* Task-specific Prompt (TSP): Before gener-
ating the description text, you need to do a
content planning process first. This process
requires you to select and sort content.

* ICL with CoT-Plan. Conventional ICL
only incorporates input-output demonstrations
into prompts. However, in our proposed
method, the high-quality CoT-Plan generated
by the first subtask is also integrated into the
input-output demonstrations. Therefore, each
demonstration has three components: input X
(tabular data), CoT-Plan Cpy,,,, and output Y’
(textual description).

* Tabular data. This part is a test input
for the few-shot table-to-text generation task.
For complex tables with multiple rows and
columns, the input data will be serialized into
a long sequence. This helps to ensure that
the large language model can effectively pro-
cess and understand all of the information pre-
sented in the table, and generate accurate and
coherent descriptions.

The basic instruction /rg defines the role we
want the LLM to play. The basic instruction I
defines the specific objectives we want the LLM
to achieve for table-to-text generation tasks. The
basic instruction [ r further requires the large lan-
guage model to follow a specified writing style and
focus on numerical reasoning. Suppose there is a
probabilistic language model prpy.

In the conventional ICL scenario, the main objec-
tive is to maximize the likelihood of textual descrip-
tion Y = (y1,%2,- -, y)y|) given the input tabular
data X and prompt T7¢1,, as shown in Equ(1, 2).

Y]

p(Y|Tior, X) = [[ pear (il Tron, X, y<i) (D)
=1

Trcr = {Irs, Ito, Ixr, (t1,d1), -, (tn,dn)}

2

where t,, and d,, represent the tabular data of the n-

th sample in the demonstrations, respectively. And

|Y'| represents the number of tokens of the textual
description Y.

In the CoT-Planner scenario, where the prompt

T'pian contains the task-specific prompt I7sp and



the demonstrations contain the content planning
process Cpian, We need to maximize the likeli-
hood of textual description Y and rationale R =
(ri,ma, -+, T‘R|), as shown in Equ(3, 4, 5, 6, 7).

p(Y’TPlanu X) = p(Y|TPlan7 X, R) 'p(R|TPlan7 X)

3)
|R|
p(R‘TPlana X) = H pLM(Ti|TPlan7 X7 r<i)
i=1
4
Y]
p(Y|Tpian, X, R) = [[ par (W51 Tpian: X, R, y<;)
j=1
)
Tpian = {Ipian, (t1,c1,d1),- -, (tn, cn,dpn)}
(6)

Ipian = {Irs, Ito, IxRr, ITsr} (7)

where ¢, represents the CoT-Plan (Cpyg;,) of the n-
th sample in the demonstrations, and | R| represents
the number of tokens of the rationale R.

4 Experimental Results

4.1 Experimental Settings.

Here, we introduce the dataset, evaluation metrics,
and baselines used in our experiment.

4.1.1 Dataset.

NumericNLG Dataset The numericNLG dataset
was released by Suadaa et al. (2021). Most of the
table content in this dataset is numerical because
it shows the experimental results from the scien-
tific papers. We use this dataset to evaluate the
accuracy and factual consistency of the descrip-
tions generated for tables with numerical content.
Specifically, <table_id> serves as the table’s identi-
fier, and <caption> is the table’s brief headline for
each numericNLG table. Additionally, there are
various views of a cell for each table cell, including
<metric>, <header>, and <value> for each row and
column. The difficulty of this dataset lies in the
need for numerical reasoning.

4.1.2 Automatic Evaluation Metrics.

We evaluate the generated description text from the
following three aspects:

(1) We first assessed the informativeness of the
generated texts using BLEU(Papineni et al., 2002),
METEOR(Lavie and Agarwal, 2007), and ROUGE-
L(Lin, 2004).

(2) We second computed the BERTScore(Zhang
et al., 2020) to evaluate the semantic similarity
between the generated texts and the ground-truth

table descriptions using contextualized token em-
beddings of pre-trained BERT(Devlin et al., 2019).

(3) The unfaithful generation usually contains
hallucinated content that can not be aligned to any
input structured data, especially in table-to-text gen-
eration. Thus, considering both the reference text
and table content, we also use the PARENT (Dhin-
gra et al., 2019) metric to evaluate the faithfulness
of the generated text to the input table.

4.1.3 Baselines.

In these experiments, we mainly take into account
the following baseline models.

(1) Non-pre-trained Models

Template-based Generator. Following previ-
ous methods Suadaa et al. (2021), we also use a
domain-specific template-based generator to gen-
erate two types of sentences in table descriptions:
table referring sentences and data description sen-
tences.

Pointer-Generator. Pointer-Generator (See
et al., 2017) is a seq2seq model with the attention
and copy mechanism. This model handles the out-
of-vocabulary problem in data-to-text generation
by combining copying from source text and gener-
ating from a vocabulary. We take table serialization
as input for the pointer-generator model.

(2) Pre-trained Language Models (PLMs)

Fine-tuned GPT-2. GPT-2 (Radford et al,,
2019) is a pre-trained language model with a
decoder-only transformer architecture. In the fine-
tuning stage, we concatenate the serialized table
Ts and corresponding description text Y to train
the language modeling of the pre-trained model. In
the inference phase, we used only the serialized
table Ts as the input to generate description text Y
starting after the last token of the Ts.

TableGPT. To simultaneously improve text
fidelity and leverage structural information,
TableGPT (Gong et al., 2020) utilizes a multi-task
learning paradigm that consists of two auxiliary
tasks: one task aligns the tables and the information
in the generated text, while the other reconstructs
the table structure from representations of GPT-2.

TASD. TASD (Chen et al., 2022) first adopted a
three-layered multi-head attention network to real-
ize the table-structure-aware text generation model
with the help of the pre-trained language model.
Furthermore, a multi-pass decoder framework is
adopted to enhance the capability of polishing gen-
erated text for table descriptions.

(3) Large Language Models (LLMs)



Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE BERTS PARENT

Template-based Generator 10.28  5.52 2.83 1.14 11.31 1149 86.88 17.15
Pointer-Generator 5.10 2.71 1.16 0.56 7.82 1521 7638 1.40
Fine-tuned GPT-2 16.13  9.02 4.68 2.20 10.14 17.48 85.12 6.56
TableGPT 18.69 8.21 3.31 1.51 11.06 1690 - -
TASD 21.81 11.03 492 2.15 11.87 2040 - -
Text-davinci-003 2153  10.62 5.21 2.52 22.23 20.56 84.70 17.21
- with TSP 21.58 10.51 5.16 2.51 21.62 2031 84.48 16.74
- with 1-shot ICL 23.89 1194 593 2.94 22.76 22.09 8571 15.29
- with TSP+1-shot CoT-Plan 24.15  11.97 5.90 2.79 23.60 2145 85.72 13.67
GPT-3.5-turbo-16k 1545 7.46 341 1.36 22.90 15.85 83.16 13.46
- with TSP 1578 7.62 3.63 1.40 23.10 16.28  83.51 12.26
- with 1-shot ICL 1579  7.58 3.60 1.47 23.11 15.89 83.56 13.59
- with TSP+1-shot CoT-Plan 17.64  8.30 3.94 1.57 23.16 17.15 84.11 13.05
LLaMA 2 13.73 431 1.31 0.37 15.15 13.01 8296 4.67
- with TSP 12.84 4.11 1.25 0.44 15.24 12.28  82.68 5.07
- with 1-shot ICL 1539 5.22 1.66 0.48 17.62 13.06 82.82 5.11

- with TSP+1-shot CoT-Plan 17.76  6.44 2.15 0.52 19.52 14.62 84.12 547
Alpaca-2 1493  6.62 3.12 1.28 22.69 1530 82.82 13.46
- with TSP 1442  6.31 2.84 1.22 22.1 1491 8259 12.33
- with 1-shot ICL 1459 5.53 1.81 0.59 19.30 13.14  82.13 6.85
- with TSP+1-shot CoT-Plan 18.32  7.82 3.25 1.23 20.70 16.89 83.93 8.26
Vicuna 7.76 3.62 1.63 0.72 15.8 12.32  80.78 7.73

- with TSP 7.80 3.53 1.51 0.73 15.37 12.19 80.56 6.59
- with 1-shot ICL 20.55 1058 5.70 2.85 21.35 2042  84.56 10.15
- with TSP+1-shot CoT-Plan 21.20  11.13  6.13 3.12 21.60 21.23 84.89 1247

Table 1: Performance comparisons of the automatic evaluation on the numericNLG dataset. BERTS denotes

BERTScore.

This family of models contains tens or hundreds
of billions of parameters. In this paper, we also
add a baseline method that directly uses various
LLMs (e.g. ChatGPT, LLaMA 2, Alpaca-2, and
Vicuna) to accomplish the table-to-text generation
task in a zero-shot manner. We use the same ba-
sic instructions (role setting, task objective, and key
requirements) in our approach to implement this
baseline method, to ensure that the only distinction
between our approach and this baseline method is
the use of a task-specific prompt (TSP) and some
examples of In-Context Learning (with CoT-Plan).

4.1.4 Implementation Details.

The split settings for training, validation, and
testing were 1084:136:135 for the numericNLG
dataset. Concerning ChatGPT, we tested two
models, Text-davinci-003 and GPT-3.5-turbo-16k,
respectively, for inference on the numericNLG
dataset. Their parameters are all 175B, but the
former has a context window of 4k, while the latter
has a context window of 16k. We used a tempera-

ture of 0.5 without any frequency penalty and top-k
truncation. About LLaMA 2, we mainly used the
Llama2-13B-4k version with the top-1 setting. For
Alpaca-2, we mainly tested the Chinese-Alpaca-
2-13B-16k(Cui et al., 2023) model on the numer-
icNLG dataset. For Vicuna, we mainly used the
Vicuna-v1.5-13B-16k model (top-k = 10, top-p =
0.5, temperature = 0.2) to generate descriptions of
tabular data.

4.2 Main Results and Analysis.

Table 1 presents the automatic evaluation results
comparisons between CoT-Planner and other base-
lines on the numericNLG dataset. First, with the
basic instruction (role setting, task objectives, and
key requirements) as the prompt, LLMs have the
capability to directly generate fluent descriptions
of the numerical tables, achieving comparable per-
formance as full-data supervised-tuning methods,
in a zero-shot setting without using any example.
Second, our proposed method can significantly im-



Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE BERTS PARENT

GPT-3.5-turbo-16k 15.45 7.46 341 1.36 22.90 1585 83.16 13.46
- with TSP 15778  7.62 3.63 1.40 23.10 16.28 83.51 12.26
- with 1-shot ICL 15779  7.58 3.60 1.47 23.11 15.89 83.56 13.59
- with 1-shot CoT-Plan 14.08  6.66 3.00 1.19 22.72 1492 8322 11.72
- with TSP+1-shot CoT-Plan 17.64  8.30 3.94 1.57 23.16 17.15 84.11 13.05
- with 2-shot ICL 16.62 7.95 3.77 1.44 23.5 16.65 83.79 13.53
- with TSP+2-shot ICL 16.26  7.75 3.61 1.50 23.23 16.63  83.77 12.76
- with TSP+2-shot CoT-Plan 17.43  8.16 3.87 1.63 23.26 17.11 8397 14.14
Alpaca-2 1493  6.62 3.12 1.28 22.69 1530 82.82 13.46
- with TSP 1442 6.31 2.84 1.22 22.1 1491 8259 12.33
- with 1-shot ICL 1459 553 1.81 0.59 19.30 13.14 82.13 6.85
- with 1-shot CoT-Plan 17.8 7.73 3.25 1.26 21.05 16.89 84.04 9.18
- with TSP+1-shot CoT-Plan 18.32  7.82 3.25 1.23 20.70 16.89 83.93 8.26
- with 2-shot ICL 14.12  6.35 2.86 1.09 22.84 12.86  82.85 6.03
- with TSP+2-shot ICL 1275  5.50 241 0.90 20.89 1237 81.60 6.74
- with TSP+2-shot CoT-Plan 12.53  4.80 1.38 0.32 16.47 13.18 82.18 4.04
Vicuna 7.76 3.62 1.63 0.72 15.8 12.32  80.78 7.73
- with TSP 7.80 3.53 1.51 0.73 15.37 12.19 80.56 6.59
- with 1-shot ICL 20.55 1058 5.70 2.85 21.35 2042 84.56 10.15
- with 1-shot CoT-Plan 1994 1056 5.83 2.94 21.25 2097 84.86 10.38
- with TSP+1-shot CoT-Plan 21.20  11.13  6.13 3.12 21.60 21.23  84.89 1247
- with 2-shot ICL 13.73  6.75 3.53 1.70 20.05 16.01 80.64 8.34
- with TSP+2-shot ICL 13.77  6.87 3.50 1.66 19.9 16.13  80.64 8.90
- with TSP+2-shot CoT-Plan 20.91  10.82  5.67 2.62 20.27 2236 8543 1193

Table 2: Ablation experiments on the numericNLG dataset. BERTS denotes BERTScore.

prove the performance of LLMs, especially GPT-
3.5-turbo-16k, LLaMA 2, and Vicuna. It indicates
the effectiveness of CoT-Planner in helping LLMs
reasoning over numerical tables. However, the per-
formance of Alpaca-2 with 1-shot ICL is worse
than that of the zero-shot baseline method, indicat-
ing that Alpaca-2 has trouble comprehending exam-
ples of the data-to-text generation task. In addition
to Alpaca-2, LLMs with CoT-Planner are more ef-
fective than ordinary ICL methods, achieving new
state-of-the-art performance on the numericNLG
dataset in the few-shot scenario.

4.3 Ablation Study.

Moreover, to verify the effectiveness of different
modules, we compare CoT-Planner with its variants
on three models with the 16k context window since
the 4k context window can only contain at most
1-shot example. Table 2 shows our ablation experi-
mental results. We then analyze the following three
questions:

(1) Is only TSP effective? As can be seen in
Table 2, compared to the baseline method in a zero-

shot setting, the method that only added TSP did
not significantly improve the text generated by the
LLMs and even deteriorated the performance of
Vicuna and Alpaca-2. Moreover, the lack of exam-
ples of content planning in ICL makes it difficult
for LLMs to comprehend TSP accurately, which
leads to the generation of erroneous descriptions.

(2) Is only CoT-Plan effective?

Table 2 shows that the method with only 1-shot
CoT-Plan is slightly inferior to the method with
both TSP and 1-shot CoT-Plan added simultane-
ously. In conclusion, we can declare that the best
option is to combine the CoT-Plan with TSP. The
two complement each other in terms of definition
and instance, which helps the large language mod-
els better understand specific tasks.

(3) More examples are better?

We are aware that CoT-Plan and TSP must work
together, but we aren’t sure if it is preferable to
provide more CoT-Plan examples. To explore this
point, we design a comparison between 2-shot and
1-shot. From Table 2, we can see that the 2-shot
CoT-Plan is generally less effective than the 1-shot



Method H-1 H-2 H-3 Total
Text-davinci-003 13.61 3.58 825 25.44
- w/ 1-shot ICL 825 3.75 15.65 27.65
- w/ 1-shot CoT-Planner 2.50 2.92 6.17 11.59
GPT-3.5-turbo-16k 9.69 0.63 276 13.08
- w/ 1-shot ICL 6.25 328 559 15.12
- w/ 1-shot CoT-Planner 4.45 0.00 5.11 9.56
LLaMA 2 4.00 38.19 6.86 49.05
- w/ 1-shot ICL 9.57 45.00 1.25 55.82
- w/ 1-shot CoT-Planner 5.75 25.07 0.00 30.82
Alpaca-2 4.17 1572 6.58 2647
- w/ 1-shot ICL 3.76 1598 16.68 36.42
- w/ 1-shot CoT-Planner 1.00 4.46 17.97 23.43
Vicuna 6.68 23.64 4.43 34.75
- w/ 1-shot ICL 7.00 22.00 5.00 34.00
- w/ 1-shot CoT-Planner 2.50 4.78 13.00 20.28

Table 3: Human Evaluation on Hallucinations.

H-n

denotes the proportion of Hallucination-n type (%). Be-
sides, Total = H-1 + H-2 + H-3. CoT-Planner: TSP +
CoT-Plan. The proposed method (LLMs with 1-shot
CoT-Planner) achieved the best scores (bold).

CoT-Plan, especially on Alpaca-2 and Vicuna. Due
to the average length of each CoT-Plan example
exceeding 3340 words, the understanding ability of
the LLMs such as Alpaca-2 for contextual exam-
ples exceeding 2-shot has significantly decreased.

4.4 Human Evaluation on Hallucinations.

We have conducted a human evaluation to better
assess the quality of the generated descriptions for
tables with numerical content. Specifically, we se-
lected 10 samples with complex tables from the
numericNLG test set. Then we separately counted
the proportion of three types of hallucinations in
each sample and used their arithmetic mean as the
final result. As shown in Table 3, our method (CoT-
Planner) effectively reduces the hallucinations gen-
erated by various large language models, while
ordinary ICL methods may even exacerbate the
hallucination problem of large language models.
From the results of H-1, it can be observed that our
method makes the large language models more ac-
curate in numerical reasoning, thereby generating
descriptions with fewer numerical hallucinations.
In addition, our method achieved the lowest propor-
tion on H-2, indicating that it can at least accurately
predict facts or values, especially on the GPT-3.5-
turbo-16k model (H-2 = 0.00%).

4.5 Case Study.

In order to understand the effect of our method
more intuitively, we select one representative ex-
ample and present its descriptions generated by dif-
ferent methods with the GPT-3.5-turbo-16k model
in Figure 3. Under the zero-shot setting, the model
generates a description containing four H-1 hallu-
cinations (the numerical value is incorrect). The
reason for these hallucinations is that the model
confuses the results of the baseline method (Pointer-
Generator Network) and the proposed method
(MTL + SD + HCL). In the conventional ICL sce-
nario, the description generated by the model not
only failed to solve the H-1 hallucination but also
produced the more serious H-2 hallucination (the
fact does not exist, and the numerical value is also
incorrect) and H-3 hallucination (the fact does not
exist). However, in the CoT-Planner scenario, the
description generated by the model does not con-
tain any hallucinations. This demonstrates that our
approach (CoT-Planner) effectively reduces hal-
lucinations generated by large language models,
particularly in numerical reasoning over tables.

5 Conclusion

In this work, we present CoT-Planner, a simple but
efficient Chain-of-Thoughts-based approach that
can be used to reduce the generation of halluci-
nations from LLMs in the few-shot table-to-text
generation. In our approach, we first utilize LLMs
to automatically generate the intermediate content
plan in the form of the Chain-of-Thoughts (CoT-
Plan) and then introduce CoT-Plan with the original
corresponding input and output as the example of
In-Context Learning for the few-shot table-to-text
generation. To verify the effectiveness of our ap-
proach, we implement our approach on various
large language models. Experimental results on
5 LLMs show that our approach can effectively
reduce the hallucinations from LLMs, thereby im-
proving factual consistency in few-shot table-to-
text generation. We also provide a thorough case
study to highlight the strengths and weaknesses of
LLMs, ordinary ICL methods, and our approach to
enlighten other researchers in related areas.

Limitations

Our approach has several limitations: (1) the con-
textual examples chosen are not necessarily the
most appropriate and there is still a lot of room



for improvement. (2) this method is still costly be-
cause it can only achieve good performance based
on large language models. Therefore, we need to
think about how to give similar reasoning pow-
ers to smaller models. (3) although we believe
that content planning in the form of a chain struc-
ture is more suitable for table-to-text generation
tasks, whether content planning in the form of trees
or graphs is more effective requires further explo-
ration.
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A Case on numericNLG dataset

The representative example and its descriptions
generated by different methods (zero-shot, 1-shot
ICL, and 1-shot CoT-Planner) with the GPT-3.5-
turbo-16k model are shown in Figure 3.
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Headline G i Key Phrase G Cl
R-I R-2 R-L | R-T R-2 R-L Accuracy
Baseline (Pointer-Generator Network) 251 53  21.1[309 106 287 62.8
Proposed (MTL + SD + HCL) 269 6.1 224 | 328 112 30.5 64.4
Comparison of Decoder Information Sharing Method
MTL +SD 263 6.0 21.8 [ 323 104 29.9 63.9
MTL + SD + Cascade Model 263 5.6 21.6 | 31.8  10.6 29.5 64.4
MTL + SD + Cascade Model (Gold) 265 5.8 219 [ 328 104 303 64.5
MTL + SD + Soft-Parameter Sharing 258 59 214 [ 321 100 29.6 64.0
MTL +SD +
Non-Hierarchical Consistency Loss 259 6.0 214 | 326 109 30.2 64.0
MTL +SD +
HCL with Normalized Attention Weights | 262 6.0 21.7 [ 319 105 29.5 63.9
Comparison of Encoder Information Sharing Method
HCL
(SD and MTL are not applied) 258 5.6 212 | 31.0 10.1 28.7 63.1
SD + HCL
(MTL is not applied) 256 5.6 21.5 [ 31.2 102 28.9 62.6

[GPT-3.5-turbo-16k Zero-shot] Description:
Table 6 presents a comparison of different methods for decoder and encoder information sharing on the job advertisement dataset. The
‘metrics used in this comparison are the same as those in Table 3. The proposed method, which adopts Hierarchical Consistency Loss
(HCL), achieved the highest scores compared to the other sharing methods. The table consists of 10 rows and 7 columns. The row headers
provide information about the different decoder and encoder information sharing methods being compared. The column headers indicate
the task (Headline Generation, Key Phrase Generation, Classification) and the corresponding evaluation metric (R-1, R-2, R-L, Accuracy).
‘The proposed method (MTL + SD + HCL) achieved the best performance across all tasks and metrics, as indicated by the bold scores in
the table. For the task of Headline Generation, the proposed method achieved an R-1 score of 25.1, R-2 score of 5.3, and R-L score of 21.1.
In comparison, the baseline method (Pointer-Generator Network) achieved slightly lower scores of 26.9, 6.1, and 22.4, respectively.
Similarly, for Key Phrase Generation, the proposed method outperformed other sharing methods. It achieved an R-1 score of 30.9, R-2
score of 10.6, and R-L score of 28.7, while the baseline method obtained scores of 32.8, 11.2, and 30.5, respectively. In terms of
Classification accuracy, the proposed method achieved a score of 62.8, while the baseline method obtained a slightly lower score of 64.4.
Itis worth noting that the proposed method other sharing all tasks and metrics. This

th i of adopting Hierarchical Consistency Loss (HCL) in improving the performance of the model. Overall, the
experimental results in Table 6 highlight the superiority of the proposed method (MTL + SD + HCL) in comparison to other decoder and
encoder information sharing methods. The achieved scores demonstrate the effectiveness of the proposed approach in various natural
language processing tasks, such as Headline Generation, Key Phrase Generation, and Classification.

Rl score of 25.1 (26.9), R-2 score of 5.3 (6.1), and R-L score of 21.1 (22.4).

0f 269/(25.1), 61 (5.3, and 22.4 (21.1), respectively

Hallucination 1: Fe
Hallucination 1: I
Hallucination 1: It achieved an R-1 score of 30.9 (32.8), R-2 score of 10.6 (11.2), and R-L score of 28.7 (315, while the baseline method obtained scores of 32.8 (30.9), 11.2 (10.6),
and 30.5 (25.7), respectivel:

Hallucination 1: In terms of C

of 628(619), 64.4(629)

|GPT-3.5-turbo-16k with one-shot ICL] Description:
Table 6 presents a comparison of different decoder and encoder information sharing methods for the job advertisement dataset. The metrics
used in the evaluation are the same as those in Table 3. The proposed method, which adopts Hierarchical Consistency Loss (HCL) in
addition to Multi-Task Learning (MTL) and Sofi-Decoupled (SD) training, achieves the best scores compared to the other sharing methods.
In terms of headline generation, the proposed method achieves an R-1 score of 25.1, which s slightly lower than the baseline Pointer-
Generator Network's score of 26.9. However, the proposed method outperforms the baseline in R-2 and R-L scores, achieving 6.1 and
22.4, respectively, compared to the baseline's 5.3 and 21.1. This indicates that the proposed method generates more accurate and coherent
headlines. For key phrase generation, the proposed method consistently outperforms the baseline across all metrics. It achieves an R-1
score of 30.9, compared to the baseline's 32.8, and an R-2 score of 10.6, compared to the baseline's 11.2. The proposed method also
achieves a higher R-L score of 28.7, c¢ ared to the baseline's 30.5. This demonstrates that the proposed method is more effective in
generating key phrases. In terms of classification accuracy, the proposed method achieves a score of 62.8, which is higher than the
bascline's 64.4. Although the difference is relatively small, it indicates that the proposed method performs well in classifying job

i Comparing the different decoder i ion sharing methods, it can be observed that the proposed method consistently
achieves better scores than the other methods. The inclusion of HCL, in addition to MTL and SD, contributes to the improved performance.
This suggests that the hierarchical consistency loss helps in capturing more meaningful information during training. When comparing the
encoder information sharing methods, the proposed method with HCL performs better than the method with only SD. This indicates that
the inclusion of HCL enhances the encoder's ability to share information effectively. Overall, the results in Table 6 demonstrate that the
proposed method, which adopts MTL, SD, and HCL, achieves the best scores across different metrics for headline generation, key phrase
generation, and classification tasks. This highlights the effectiveness of the proposed approach in improving the performance of the job
advertisement dataset.

Hallucination 1: s 32.8 (30.9), and an R-2 score of 10.6 (11.2), compared to the baseline’s 11.2 (10.6).
Hallucination 1: The proposed method also achieves a higher R-L score of 28.7 (30.5), compared t0 te baseline’s 30.5 (25.7)

628(649),
Rel score of 251 (26.9),

score of 309 (32.),

644 (629)

Hallucination 1
Hallucinatic
Network's score of 26.9 (25.1).

HCL performs only D (not exis).

[GPT-3.5-turbo-16k with one-shot CoT-Planner] Description:
5.3 Overall Results. Table 6 presents a comparison of the decoder and encoder information sharing methods for the job advertisement
dataset. The table includes various metrics, including R-1, R-2, R-L for headline generation and key phrase generation, as well as accuracy
for classification. The proposed method, adopting MTL (Multi-Task Learning), SD (Soft-Decoupled), and HCL (Hierarchical Consistency
Loss), achieved the best scores compared to the other sharing methods. This indicates that the proposed method outperforms other methods
in capturing the semantic information and generating accurate results. When comparing the decoder information sharing methods, it can

be observed that MTL + SD + HCL consistently outperforms other methods in all tasks. This suggests that combining mult-task learning,
soft-decoupling, and hierarchical consistency loss leads to improved performance across different tasks. On the other hand, when
‘comparing the encoder information sharing methods, HCL (without applying MTL and SD) achieves competitive results in most tasks.

This implies that the hierarchical consistency loss alone can effectively capture and share information among different tasks. In conclusion,
the proposed method, incorporating MTL, SD, and HCL, demonstrates superior performance compared to other sharing methods. The
results highlight the importance of leveraging semantic information and utlizing hierarchical consistency in improving the performance of
Al models. These findings have implicati of flective and efficient Al systems in various domains.

There is no hallucination in this description.

Figure 3: A case on numericNLG dataset. Top: tabular
data of Testsg.
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