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Abstract

Adaptive optimization algorithms, particularly Adam and its variant AdamW,1

are fundamental to modern deep learning, however, their training dynamics lack2

comprehensive theoretical understanding, with limited insight into why com-3

mon practices—such as specific hyperparameter choices and normalization lay-4

ers—contribute to successful generalization. This work presents a continuous-time5

formulation of Adam and AdamW, facilitating a tractable analysis of training6

dynamics that can shed light on such practical questions. We theoretically derive7

a stable region for Adam’s hyperparameters (β, γ) that ensures bounded updates,8

empirically verifying these predictions by observing unstable exponential growth9

of parameter updates outside this region. Furthermore, we theoretically justify10

the success of normalization layers by uncovering an implicit meta-adaptive ef-11

fect of scale-invariant architectural components. This insight leads to an explicit12

optimizer, 2-Adam, which we generalize to k-Adam—an optimizer that applies13

an adaptive normalization procedure k times, encompassing Adam (correspond-14

ing to k = 1) and Adam with a normalization layer (corresponding to k = 2).15

Overall, our continuous-time formulation of Adam facilitates a principled analysis,16

offering deeper understanding of optimal hyperparameter choices and architectural17

decisions in modern deep learning.18

1 Introduction19

Adaptive optimization algorithms have become an essential component of modern deep learning,20

providing significant benefits to the training of neural networks compared to their non-adaptive21

counterparts. Among these algorithms, Adam [1] and its variant AdamW [2] have become widely22

used in practice, featuring both an adaptive learning rate (in the sense of RMSprop [3]) and an23

adaptive gradient direction (in the sense of momentum [4]). Despite their wide success, there is24

limited theoretical insight into why common practices – such as typical hyperparamter choice, and25

the use of normalization layers (e.g. layer-norm) – contribute towards successful generalization. In26

this work, we demonstrate the utility of continuous-time models of optimization in shedding light on27

such questions. A continuous-time approach allows for a mathematically tractable analysis that can28

leverage the tools of calculus – namely, differential equations.29

Our contributions can be summarized as:30

1. Continuous-time formulation (Section 2)31

(a) We derive an explicit continuous-time expression for Adam’s (& AdamW’s) parameter update32

u(t), which we directly utilize in Section 3 (discussed in contribution 2).33

(b) We further derive a second-order differential equation modelling the dynamics of Adam (&34

AdamW), which we directly utilize in Section 4 (discussed in contribution 3).35
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2. Theory of adaptive hyperparameters (Section 3)36

(c) We determine a theoretical stability region for Adam’s adaptive hyperparameters (β, γ) that37

ensures bounded parameter updates and stable training, which we verify empirically.38

(d) This result implies that instability may occur when the hyperparameters move outside the stable39

region, a phenomenon we empirically verify, exhibiting predictable exponential growth.40

(e) We observe a faster rate of generalization when (β, γ) is further from the instability boundary.41

3. Implicit effect of scale invariance (Section 4)42

(f) We perform a theoretical analysis of the implicit beneficial effect of scale invariant architectural43

components (e.g. layer-norm), uncovering a meta-adaptive normalization effect.44

(g) We convert this implicit effect to an explicit optimizer, which we name 2-Adam, and consider45

its extension k-Adam: a generalization of Adam/AdamW (which corresponds to k = 1) that46

performs a normalization procedure k times successively.47

We discuss related work in Appendix A and future directions in Appendix B.48

2 Continuous-time formulation of Adam49

In this section we present a continuous-time formulation of the Adam (& AdamW) optimizer which50

forms the theoretical foundation for the rest of the paper: we derive a continuous-time expression51

for the Adam gradient update (utilized in Section 3 to derive a condition for bounded updates), and52

formulate Adam as a second-order differential equation (used in Section 4 to interpret the implicit53

effect of scale invariance and motivate the k-Adam optimizer). We provide brief descriptions of54

relevant optimizers (momentum, RMSprop, Adam, AdamW) in Appendix C. Experimental details55

are left to Appendix H.56

Notation. We write ||x|| :=
√∑

i x
2
i and ||x||∞ := maxi |xi| for x ∈ Rp, and denote the inner57

product ⟨x, y⟩ ≡
∑

i xiyi. We denote elementwise squaring by x⊙2. We consider a loss function58

L : Θ→ R where Θ ⊂ Rp, and θn ∈ Θ denotes a model’s parameters after n discrete updates, with59

corresponding gradient gn := ∇θL(θn), and initial parameter θ0. We will write g0:n ≡ (g0, . . . , gn).60

2.1 Adam in continuous-time61

Neglecting weight decay for the moment (i.e. λ = 0), Adam & AdamW possess the discrete-time62

update rule63

θn+1 = θn − ηun, where un :=

√
1− βn+1

1− γn+1

mn√
vn

(1)

with learning rate η, and adaptive hyperparameters (β, γ) ∈ [0, 1]2 with moving-averages

mn := γmn−1 + (1− γ)gn, vn := βvn−1 + (1− β)g⊙2
n

where (m−1, v−1) := (0, 0). We say that un is an adaptive-normalization of the gradients g0:n (see64

Appendix Q for more details). We will work in continuous-time, at a timescale of ηp, such that e.g.65

mn = m(tn), with tn := nηp for some p ∈ R (typically p = 1). We can then derive continuous-time66

expressions for the moving-averages mn and vn (details left to Appendix E), which (to leading order67

in ηp) take the form68

m(t) =

∫ t

0

dτ Kγ(τ, t)g(τ), v(t) =

∫ t

0

dτ Kβ(τ, t)g(τ)
⊙2 (2)

with g(τ) := ∇θL(θ(τ)) the gradient at continuous time τ and Kα defined below. This provides a69

continuous-time expression for Adam/AdamW’s update un = u(tn),70

u(t) =

√
1− β1+t/ηp

1− γ1+t/ηp

∫ t

0
dτ Kγ(τ, t)g(τ)√∫ t

0
dτ Kβ(τ, t)g(τ)⊙2

, Kα(τ, t) :=
1− α
ηpα

exp

(
−1− α
ηpα

(t− τ)
)
(3)

Including weight decay is simple and is described in Appendix E. As we will see, Equation (3)71

is a central result for Section 3, allowing us to derive theoretical guarantees regarding training72
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stability with respect to Adam/AdamW’s adaptive hyperparameters (β, γ). From Equation (1) we can73

also determine θn = θ(tn) in continuous-time via a governing differential equation (details left to74

Appendix E). To second-order, AdamW with weight decay λ is governed by the differential equation75

ληθ(t) + ηpθ̇(t) +
η2p

2
θ̈(t) = −ηu(t) (4)

In combination with the continuous-time expression for u(t) (Equation (3)), we can numerically76

solve Equation (4) (method described in Appendix I) to obtain a continuous-time parameter trajectory77

θ(t). We demonstrate that the continuous-time trajectory (for timescale p = 1) associated with78

Equation (4) closely agrees with the true discrete-time trajectory in Appendix K. In Section 4 we will79

use Equation (4) to interpret the implicit effect of scale invariance.80

3 Theory of adaptive hyperparameters81

In this section we will present a theory-driven account of adaptive hyperparameter choice for82

Adam/AdamW, understanding the values of (β, γ) that result in stable training and effective general-83

ization. First we will use the continuous-time expression for Adam’s update (Equation (3)) to derive a84

theoretical region of hyperparameter space B+ for which updates are provably bounded (Section 3.1).85

We will then empirically verify that this region indeed exhibits stable training, with unstable training86

in the complementary region B− (exhibiting a predictable exponential growth), and observe how87

generalization performance varies in B+ (Section 3.2).88

3.1 Deriving a condition for bounded updates89

The continuous-time expression for Adam’s update (Equation (3)) has an immediate consequence in90

regards to bounding the max-update ||un||∞ ≡ ||θn+1 − θn||∞/η. We have the following bound,91

Max-update bound. The max-update can be bounded as92

||un||∞ ≤
√
1− βn+1

1− γn+1

1− γ
γ

√
β

1− β
Bn(β, γ) (5)

where

Bn(β, γ) :=


1/
√
C(β, γ), C(β, γ) > 0,√

n, C(β, γ) = 0,

exp(n|C(β, γ)|/2)/
√
|C(β, γ)|, C(β, γ) < 0

defining C(β, γ) := (2β(1−γ)−γ(1−β))/βγ. We leave the derivation of this bound to Appendix E.93

We highlight that this bound is only possible because of the specific form of Adam’s update u(t):94

a moving-average of g divided by the square-root of a moving-average of g⊙2 (Equation (3)), i.e.95

an adaptive-normalization of g (see Appendix Q), which allows us to apply the Cauchy-Schwarz96

inequality. We can therefore view this result as a theoretical justification for the form of Adam’s97

update.98

We define the bounded-update region B+ := {(β, γ) : C(β, γ) > 0}, and the complementary region99

B− := {(β, γ) : C(β, γ) < 0}. From Equation (5), we can bound the max-update by a constant100

independent of n when (β, γ) ∈ B+. Outside of B+, the bound depends on n and diverges over101

training as n→∞. This is suggestive that we may observe stable training when (β, γ) ∈ B+, and102

that the max-update may grow exponentially (at a rate/exponent proportional to |C(β, γ)|) when103

(β, γ) ∈ B−. Indeed, we will verify this phenomena empirically in Section 3.2. We comment on104

the case (β, γ) ∈ B0 in Appendix F. It is easy to show that β > γ is a sufficient condition for105

(β, γ) ∈ B+, meaning that the choice of hyperparameters typically chosen in practice – e.g. the106

PyTorch default values (β̃, γ̃) := (0.999, 0.9) – lie within B+.107

For the following, we define the level curves Bc := {(β, γ) : C(β, γ) = c}, and consider normal108

curves perpendicular to these level curves, visualized in Figure 1. We will denote the (unique)109

normal curve passing through the point (β, γ) by Cβ,γ . Note that, by construction, C(β, γ) varies110

monotonically along a normal curve.111
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Figure 2: Max-update bound accurately predicts stable region and unstable exponent of diver-
gence. We consider 64 hyperparameter points (β, γ) taken uniformly along a section of the normal
curve Cβ̃,γ̃ passing through the point (β̃, γ̃) = (0.999, 0.9), which we visualize in (c). For each of
these points, we plot (a) the max-update ||un||∞ ≡ ||θn − θn−1||∞/η over training iterations n,
and (b) the slope d log ||un||∞/dn of the log-max-update at iteration n = 500 (in order to interpret
exponential growth). In (a) we visualize the bounds of Equation (5) as dotted lines, and in (b) we
denote the predicted slope/exponent |C(β, γ)|/2 (when C(β, γ) < 0) as a dashed line.

3.2 Empirical analysis of max-update112
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Figure 1: Visualization of
level curves Bc (solid lines)
and normal curves Cβ,γ
(dashed red lines). Level
curves are coloured based
on their value of C(β, γ),
(i.e. purple has most positive
value, red most negative). The
bounded-update region B+ is
highlighted in red.

We now consider the empirical implications of Equation (5), as-113

sessing whether these bounds indeed hold in practice and whether114

C(β, γ) is predictive of training stability. We train a decoder-only115

transformer model on a shakespeare text dataset (details left to Ap-116

pendix H) and observe how the max-update ||un||∞ evolves over117

training iterations n. Specifically, in Figure 2, we consider the nor-118

mal curve Cβ̃,γ̃ passing through the typical hyperparameter values119

(β̃, γ̃) = (0.999, 0.9), taking 64 points (β, γ) uniformly along this120

curve (which we visualize in Figure 2c). For each point (β, γ), we121

plot the max-update trajectory (Figure 2a), finding that the theoret-122

ical bounds of Equation (5) are satisfied in both regions B+ and B−,123

observing well-behaved bounded growth in B+, whereas B− exhibits124

exponential growth at a rate that appears correlated with |C(β, γ)|125

as predicted by Equation (5). We more closely verify this phenom-126

ena in Figure 2b, finding that in B−, the slope d log ||un||∞/dn has127

a near-perfect agreement with the theoretically predicted growth128

rate of |C(β, γ)|/2. It is surprising that not only are the theoretical129

bounds (Equation (5)) satisfied in practice, but the bounds are very130

accurate models of the true empirical dynamics, with exponential131

growth occurring almost immediately after entering B−. We look132

more closely at the results of Figure 2a in the case of (β, γ) ∈ B+ in Appendix M. We comment on133

correcting the exponential growth in B− via learning rate annealing in Appendix O.134

These results partly justify the success of typical values (β̃, γ̃) = (0.999, 0.9) in practice: these135

values lie in B+ and hence benefit from theoretical guarantees regarding training stability (which, as136

we have seen, are faithful to practice). Can we further obtain a more fine-grained picture as to what137

choices of (β, γ) within the region B+ will result in successful generalization? We will now assess138

how generalization performance varies in B+, and particularly, how the value of C(β, γ) correlates139

with generalization performance. In Figure 3 we observe how test loss varies along the normal curve140

Cβ̃,γ̃ . taking 128 points uniformly along the entire curve (visualized in Figure 3c). We see that larger141

values of C(β, γ) display faster generalization, as seen in Figure 3a and highlighted at iteration 1000142

in Figure 3b. After sufficient training, i.e. at iteration 3000 in Figure 3b, all points in B+ achieve143

roughly the same test loss. The test loss exhibits a rapid increase after entering the region B−, which144

is to be expected given the unstable exponential growth in the max-update shown in Section 3.2.145
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Figure 3: Our theory accurately predicts the divergence of test loss across Adam’s hyperparam-
eter space. We consider 128 hyperparameter points (β, γ) taken uniformly along the entire normal
curve Cβ̃,γ̃ , visualized in (c). For each point, we plot (a) the test loss over training iterations n, and
(b) the best test loss achieved over the first 1000 and 3000 iterations. The rightmost point in (c)
corresponds to (β̃, γ̃) = (0.999, 0.9).

These results suggest that for a given normal curve, the point (β, γ) with the largest value of C(β, γ)146

generalizes the fastest along the curve. We provide supporting evidence for this claim, finding similar147

results for the normal curve that instead passes through the hyperparameter values (0.95, 0.9), in148

Appendix N. This would further justify why the values (β̃, γ̃) succeed in practice (since β̃ ≈ 1,149

hence C(β̃, γ̃) is large relative to other points along its normal curve), however unlike the results150

of Section 3.2, this claim lacks an explicit supporting theoretical result; it is only suggestive from151

Equation (5) that a larger value of C(β, γ) may correlate with better training properties. We leave152

direct theoretical guarantees regarding the rate of generalization to future work.153

4 Implicit effect of scale invariance154

The presence of scale-invariant architectural components has become ubiquitous in modern machine155

learning. One particular instance of such components are normalization layers, such as layer-norm156

[5], batch-norm [6], and qk-norm [7, 8]. It has been observed in practice that such normalization157

provides an implicit beneficial effect to training, compared to e.g. explicitly fixing/constraining the158

weight norm after each update step [9, 10, 11]. In this section we will use the second-order differential159

equation for Adam/AdamW (Equation (4)) to solve for the norm dynamics and uncover an implicit160

meta-adaptive effect of scale invariance (Section 4.1). Furthermore, we will introduce the k-Adam161

optimizer, a generalization of Adam that explicitly models this implicit effect (Section 4.2).162

4.1 Uncovering an implicit meta-adaptive effect163

A function f : Θ → R is scale-invariant with respect to a weight W ∈ W ⊂ Θ if and only if164

f(θ) remains unchanged under the transformation W 7→ αW for all α ∈ R. One can show (see165

Appendix L) that if L is scale-invariant with respect to a weight W , then166

⟨W (t), gW (t)⟩ = 0 (6)

at all times t, where gW (t) := ∇WL(θ(t)) is the gradient associated with W . To theoretically167

analyse the implicit effect of scale invariance, we will use the second-order differential equation for168

AdamW described by Equation (4) and choose a timescale of p = 1 (we verified the accuracy of169

this setup in Appendix K). For an arbitrary scale invariant weight W (e.g. a key/query matrix under170

qk-norm), the continuous-time dynamics of W are governed by171

1

2
ηẄ (t) + Ẇ (t) + λW (t) = −uW (t) (7)

to second-order, with uW defined analogously to u (replacing g with gW in Equation (3)). From here,172

using Equation (6), we can derive (see Appendix J) the following approximation for the weight norm,173

||W (t)||2 ≈ ||W (0)||2e−2λt + η

∫ t

0

dτ e−2λ(t−τ)||uW (τ)||2 (8)
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Interestingly, Equation (8) has an identical form to an exponential moving-average of ||uW ||2 in174

continuous-time (see Appendix J). Further (also see Appendix J), the evolution of the unit direction175

Ŵ – which is most relevant to consider, given that W is scale invariant – is governed by176

1

2
η
¨̂
W (t) +

˙̂
W (t) + ΛŴ (t) = − 1

||W (t)||
uW (t) (9)

where we define Λ := 1
2ηr||

˙̂
W ||2. Equation (9) has the same form as Equation (7), with weight decay177

λ = Λ and updating via uW /||W ||. With the aforementioned interpretation of ||W || as the square-178

root of a moving-average of ||uW ||2, we can undo the coarse-graining assumption (Appendix J) and179

view Ŵ as updating by an adaptive-normalization of uW without additional momentum. This concept180

of meta-adaptive normalization, i.e. adaptive-normalization of an already adaptively-normalized181

gradient uW , can be converted into an explicit optimizer 2-Adam, which we now describe.182

4.2 The k-Adam optimizer183

The k-Adam optimizer captures the concept of meta-adaptivity, applying an adaptive-normalization184

procedure k times with respect to hyperparameters (β1:k, γ1:k), with update rule185

k-Adam: θn+1 := θn − ηu(k)n (10)
where for i = 1, . . . , k,

u(i)n :=
m̃

(i)
n√
ṽ
(i)
n

, m̃(i)
n :=

1

1− γn+1
i

m(i)
n , ṽ(i)n :=

1

1− βn+1
i

v(i)n ,

m(i)
n := γim

(i)
n−1 + (1− γi)u(i−1)

n , v(i)n := βiv
(i)
n−1 + (1− βi)(u(i−1)

n )⊙2

with u(0)n := gn ≡ ∇θL(θn) and (m
(i)
−1, v

(i)
−1) = (0, 0) for all i = 1, . . . , k.. We present an explicit186

algorithm for implementing k-Adam in Appendix R. A more succinct (but equivalent) description187

of k-Adam is presented in Appendix Q. Note that 1-Adam is equivalent to Adam. A scale-invariant188

weight trained under Adam is analogous to 2-Adam with γ2 = 0.189

Hyperparameter choice. We will consider 4 strategies for choosing hyperparameters (β1:k, γ1:k),190

Inverse exp: βi := 1− (1− β̃)1/k, γi := 1− (1− γ̃)1/k

Exp: βi := β̃k, γi := γ̃k

Scaled: βi := β̃/k, γi := γ̃/k

Naive: βi := β̃, γi := γ̃
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Figure 4: Plot of the best test accuracy against k
after training a CNN for 100 epochs on CIFAR10
using the k-Adam optimizer. We highlight the k =
1 case in red, corresponding to Adam/AdamW.

for all i = 1, . . . , k, where (β̃, γ̃) :=191

(0.999, 0.9) are the typical Adam/AdamW hy-192

perparameter values. In Appendix P we moti-193

vate the inverse exp strategy; the other strategies194

have been chosen heuristically. We note that195

max-update bounds as shown for Adam (Equa-196

tion (5)) hold analogously for each intermediate197

update u(i)n , which we describe in Appendix S.198

For the strategies defined above, (βi, γi) ∈ B+199

for all i = 1, . . . , k (since βi > γi) hence we200

expect stable training as a result of this bound.201

Evaluating k-Adam. We motivated interpret-202

ing the implicit effect of scale invariance based203

on its beneficial influence on training [9, 10, 11].204

We would therefore expect 2-Adam, and perhaps k-Adam for k > 2, to outperform Adam; is this205

indeed the case? We train a CNN (architecture details in Appendix H) on the CIFAR10 dataset for206

100 epochs using k-Adam, for values k = 1, . . . , 10 and using each hyperparameter strategy defined207

above. We display the results in Figure 4, finding that k-Adam outperforms Adam/AdamW at various208

k > 1 under the first three strategies, however the naive strategy performs particularly badly for209

k > 2; we show this in more detail in Appendix P. We find that 2-Adam with the inverse exp strategy210

and decoupled weight decay performs best. We discuss related future directions in Appendix B.211

6



References212

[1] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. 1, 10213

[2] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. 1, 10214

[3] T. Tieleman and G. Hinton. Lecture 6.5—rmsprop, coursera: Neural networks for machine learn-215

ing. Coursera Lecture Slides, 2012. https://www.cs.toronto.edu/~tijmen/csc321/216

slides/lecture_slides_lec6.pdf. 1, 10217

[4] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR218

Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964. 1, 9219

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. 5220

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training221

by reducing internal covariate shift, 2015. 5222

[7] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin223

Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Je-224

natton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias225

Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F.226

Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings,227

Mark Patrick Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay,228

Thomas Mensink, Alexander Kolesnikov, Filip Pavetić, Dustin Tran, Thomas Kipf, Mario229
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A Related work282

Previous work has studied adaptive optimization theoretically [12, 13, 14, 15, 16], but this work283

focuses on asymptotic convergence rates and hence does not cover the results presented here. These284

works perform a discrete-time analysis, except for [16] which uses the same differential equation285

representation of Adam to the one we consider in Section 2, and [15] which considers a different286

differential equation for Adam, yet these works do not explicitly solve for Adam’s moving-averages287

m(t), v(t) or update u(t) in continuous-time as we do in this paper.288

There has been previous work on interpreting the effect of scale invariance on training dynamics289

from a theoretical perspective [9, 17, 18, 19, 10]. Most relevant to our work is [9], which – using a290

Lagrangian-based approach – shows that scale-invariant weights trained under gradient descent with291

momentum exhibits an adaptive effect analogous to RMSprop. Since this work does not consider an292

adaptive learning rate, the theoretical analysis is greatly simplified, however the results are less faithful293

to practical machine learning where optimizers with adaptive learning rates (i.e. Adam/AdamW) are294

widely used; our analysis in Section 4 extends this argument to the case of Adam/AdamW, where we295

observe a meta-adaptive effect. We further use our theoretical insights to motivate a novel optimizer,296

k-Adam, which captures the implicit role of scale invariance.297

Various extensions to Adam have been proposed – such as the AMSGrad [20], LAMB [21], and298

Lion [22] optimizers – however they differ from our proposed optimizer k-Adam: AMSGrad extends299

Adam by scaling the learning rate by an adaptive factor 1/
√
v̂n where v̂n is a maximum of all past300

moving-averages vn; LAMB uses layer-wise adaptive learning rates and a trust ratio mechanism; Lion301

[22] uses the sign of a moving-average of the gradient in order to update the parameters. k-Adam302

extends Adam uniquely, instead applying an adaptive normalization procedure k times in succession,303

and is motivated by theoretical insight.304

B Discussion305

In this work we have presented a continuous-time framework for Adam, facilitating a mathematically306

tractable analysis of training dynamics. We have demonstrated the utilty of our framework for an-307

swering questions of practical interest regarding hyperparameter choice and the role of normalization.308

We have seen that the derived bound on the max-update (Equation (5)) is surprisingly accurate to309

empirical training dynamics, however our bound does not rigorously justify (only suggests) why we310

observe a faster rate of generalization for larger C(β, γ) along a given normal curve, hence there is311

still progress to be made for a complete understanding of adaptive hyperparameter choice.312

In this paper we do not perform a rigorous analysis of k-Adam’s performance – i.e. evaluating its313

performance across various datasets and architectures – as our focus in this paper is a theory-driven314

analysis of training dynamics. Though we find k = 2 to perform best in this paper, it is possible that315

a larger k may be beneficial in certain contexts, e.g. at small batch sizes (to possibly alleviate noisy316

gradients). There may also be a more natural, theoretically-motivated hyperparameter strategy than317

the strategies we consider here. We leave a study of these aspects to future work.318

We note that the meta-adaptive effect we describe in this paper is not a complete account of the benefits319

of normalization layers. Normalization layers possess additional benefits, such as avoiding rank320

collapse [23, 24, 25] and contributing towards the smoothness of the loss landscape [11, 26, 27, 19];321

it is unclear whether such phenomena are related to the meta-adaptive effect we describe in this paper.322

C Descriptions of optimizers323

Momentum [4] features an adaptive gradient direction – updating by a moving-average of the gradient
– as described by the update rule,

Momentum: θn+1 := θn − ηmn,

mn := γmn−1 + (1− γ)gn

for n = 0, 1, 2, . . ., with moving-average hyperparameter γ and m−1 := 0.324
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RMSprop [3] features an adaptive learning rate – normalizing the update gradient gn by a moving-
average of the squared gradient g⊙2

n – as described by the update rule,

RMSprop: θn+1 := θn − η
gn√
vn
,

vn := βvn−1 + (1− β)g⊙2
n

with v−1 := 0. Note that g⊙2
n describes an element-wise squaring, and the division gn/

√
vn is325

also element-wise. Here we have neglected weight decay; we will discuss weight decay strategies326

(coupled vs decoupled) below.327

Adam [1] and its variant AdamW [2] are a combination of momentum and RMSprop, and also use a
bias correction factor, which we justify in Appendix D. Neglecting weight decay, Adam & AdamW
are equivalent, with update rule

Adam/AdamW: θn+1 := θn − η
m̃n√
ṽn
,

m̃n :=
1

1− γn+1
mn, ṽn :=

1

1− βn+1
vn,

mn := γmn−1 + (1− γ)gn, vn := βvn−1 + (1− β)g⊙2
n

where a tilde denotes bias correction. The difference between Adam and AdamW comes from how
they apply weight decay: Adam uses coupled weight decay, equivalent to transforming the loss
L(θ) 7→ L(θ) + λ

2 ||θ||
2 such that gn 7→ gn + λθn, and AdamW uses decoupled weight decay, which

involves subtracting ληθn from the RHS of the update rule, i.e.

AdamW: θn+1 := θn − ληθn − η
m̃n√
ṽn

We note that the PyTorch implementation of RMSprop uses coupled weight decay, i.e. RMSprop is328

Adam with γ = 0.329

D Motivating bias correction in Adam330

Consider an exponential moving average of a sequence {x0, x1, x2, . . .} of tensors,331

yn := βyn−1 + (1− β)xn
= · · ·
= (1− β)(xn + βxn−1 + · · ·+ βnx0)

In the case that E[xn] is independent of n,

E[yn] = E[xn](1− β)(1 + β + · · ·+ βn) = E[xn](1− βn+1)

hence for an unbiased exponential moving average, we should instead consider a bias-corrected form
of yn:

ỹn :=
1

1− βn+1
yn

such that
E[ỹn] = E[xn]

E Deriving the parameter update bound332

First we will derive a continuous-time expression for mn by Taylor expanding its definition,333

m(tn) = γm(tn − ηp) + (1− γ)g(tn)
= γm(tn)− ηpγṁ(tn) + (1− γ)g(tn) +O(η2p)
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and so to leading order,

ṁ(t) +
1− γ
ηpγ

m(t) =
1− γ
ηpγ

g(t)

d

dt

[
exp

(
1− γ
ηpγ

t

)
m(t)

]
=

1− γ
ηpγ

exp

(
1− γ
ηpγ

t

)
g(t)

=⇒ m(t) =
1− γ
ηpγ

∫ t

0

dτ exp

(
−1− γ
ηpγ

(t− τ)
)
g(τ)

≡
∫ t

0

dτ Kγ(τ, t)g(τ)

Similarly for vn,334

v̇(t) +
1− β
ηpβ

v(t) =
1− β
ηpβ

g(t)⊙2

=⇒ v(t) =
1− β
ηpβ

∫ t

0

dτ exp

(
−1− β
ηpβ

(t− τ)
)
g(τ)⊙2

≡
∫ t

0

dτ Kβ(τ, t)g(τ)
⊙2

As a result, the ratio of moving-averages present in Adam’s update u(t) takes the form,335

m(t)√
v(t)

= η−p/2 1− γ
γ

√
β

1− β

∫ t

0
dτ exp

(
− 1−γ

ηpγ (t− τ)
)
g(τ)√∫ t

0
dτ exp

(
− 1−β

ηpβ (t− τ)
)
g(τ)⊙2

(11)

Note that this describes an element-wise division of tensors. This expression is particularly amenable
to the Cauchy-Schwarz inequality, which says that for (square-integrable) functions f, g : R→ R,∣∣∣∣ ∫ dx f(x)g(x)

∣∣∣∣ ≤
√∫

dx f(x)2
∫
dx g(x)2

We can apply the Cauchy-Schwarz inequality (element-wise) to the integral in the numerator of336

Equation (11) to provide an upper bound,337

∣∣∣∣ ∫ t

0

dτ exp

(
−1− γ
ηpγ

(t− τ)
)
g(τ)

∣∣∣∣
≡
∣∣∣∣ ∫ t

0

dτ

[
exp

(
−C(t− τ)

2ηp

)][
exp

(
−1− β

2ηpβ
(t− τ)

)
g(τ)

] ∣∣∣∣
≤

√∫ t

0

dτ exp

(
−C(t− τ)

ηp

)√∫ t

0

dτ exp

(
−1− β
ηpβ

(t− τ)
)
g(τ)⊙2

=

√
ηp

C
(1− exp(−Ct/ηp))

√∫ t

0

dτ exp

(
−1− β
ηpβ

(t− τ)
)
g(τ)⊙2

where we have defined

C :=
2β(1− γ)− γ(1− β)

βγ
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Note that the second factor is exactly equal to the denominator in the expression for m(t)/
√
v(t),338

and so they cancel to give the following bound:339

∣∣∣∣ m(t)√
v(t)

∣∣∣∣ ≤ 1− γ
γ

√
β

1− β

√
1− exp(−Ct/ηp)

C

≤ 1− γ
γ

√
β

1− β


1/
√
C, C > 0,√

t/ηp, C = 0,√
exp(|C|t/ηp)/|C|, C < 0

We can then obtain an expression for un = u(tn) using n = tn/η
p.340

Weight decay. Note that extending Equation (3) to include weight decay is simple: if we want341

coupled weight decay (as in Adam), we can transform g(τ) 7→ g(τ) + kθ(τ); if we want decoupled342

weight decay (as in AdamW), we can subtract kηθn from the RHS of Equation (1) and proceed343

identically.344

Differential equation form. We can obtain a differential equation for Adam/AdamW by noting that,

θn+1 − θn ≡ θ(tn + ηp)− θ(tn) = ηpθ̇(tn) +
η2p

2
θ̈(tn) +O(η3p)

by Taylor expansion, which we can then substitute into the update rule θn+1 = θn − ηun.345

Normal curves. The level curve Bc is determined by

f(β, γ) = c, f(β, γ) :=
2β(1− γ)− γ(1− β)

βγ
≡ C(β, γ)

and normal curves γ = γ(β) satisfy

dγ(β)

dβ
=
∂f/∂γ

∂f/∂β

=⇒ γ(β) = (k − 2β3)1/3

for an integration constant k. The normal curve passing through (β0, γ0) has integration constant346

k = 2β3
0 + γ30 .347

F Empirical analysis of B0348

Equation (5) suggests that ||un||∞ may scale like
√
n when (β, γ) ∈ B0. Do we observe this in349

practice? In Figure 5 we instead see bounded behaviour analogous to that of the region B+ (as seen350

in Figure 2), i.e. there is bounded growth rather than a
√
n scaling in the max-update. We note351

that the bound Equation (5) is not violated; the predicted upper bound is indeed met, though the352

prediction is just not tight relative to the true dynamics empirically. We suspect that the condition353

C(β, γ) = 0 may be sensitive to numerical precision issues in practice, which is perhaps the reason354

why we observe behaviour analogous to C(β, γ) > 0 instead.355
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Figure 5: We plot the max-update over training for 11 points along the boundary B0. The theoretically
predicted

√
n-like scaling is denoted by dotted lines. We use the same experimental setup as used to

produce Figure 2, which we describe in Appendix H.

G Assumptions of Section 4.1356

Assumption 1. To verify Assumption 1 we consider the transformer model setup described in357

Appendix H with qk-norm [7, 8] enabled, such that the loss is scale invariant under each query and358

key matrix. In Figure 6 we plot the cosine similarity sim(W100, gn) :=
⟨W100,gn⟩

||W100||||gn|| ∈ [−1, 1] for359

iterations n = 1, . . . , 100, for each query and key matrix W in the model (a total of 32 matrices). We360

observe a cosine similarity of ≈ 0 at n = 100 (supporting Equation (6)) and an increase in cosine361

similarity as n decreases, however the cosine similarity still remains negligible. We also demonstrate362

that without qk-norm, the cosine similarity is no longer well behaved.363

0 20 40 60 80 100
n

0.02

0.01

0.00

0.01

0.02

sim
(W

10
0,

g n
)

(a) With qk-norm

0 20 40 60 80 100
n

0.100
0.075
0.050
0.025
0.000
0.025
0.050
0.075
0.100

sim
(W

10
0,

g n
)

(b) Without qk-norm

Figure 6: Plot of the cosine similarity between each query/key matrix at iteration m = 100, with the
gradient at all previous iterations n (x-axis). In (a) we enable qk-norm, whereas in (b) the model does
not include qk-norm.

Assumption 2. To verify Assumption 2 we choose 16 random parameter values from random364

query/key matrices W , and plot their trajectory in regular training vs. their trajectory when using365

coarse-graining on W . We display the results in Figure 7, finding a strong agreement.366
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Figure 7: Plot of the trajectories, with and without coarse-graining, for 16 randomly selected
parameters from query/key matrices.

A consequence of these assumptions is that ⟨W (t),mW (t)⟩ ≈ 0 (from Assumption 1 and Equa-367

tion (2)), and hence (in combination with Assumption 2) we have ⟨W (t), uW (t)⟩ ≈ 0. We use this in368

Section 4.1 in order to obtain an adaptive-normalization interpretation of training dynamics. Note that369

though the cosine similarity is larger at earlier iterations in Figure 6, the kernel Kγ present in mW370

places a lower weight on earlier iterations such that a larger cosine similarity maintains a negligible371

effect.372

H Experimental setups373

Architecture details. Throughout the paper we consider a nanoGPT model [28] – which is a decoder-374

only transformer model [29] – and a CNN model [30]. The nanoGPT model architecture we use has375

6 layers, with 6 attention heads per layer. The embedding dimension is 384. We use a dropout of 0.2.376

When training we use the shakespeare dataset associated with the nanoGPT repository [28], using377

character-level tokenization, for a max input length of 256 tokens. The CNN model architecture we378

use is shown in Figure 8 which we use for Figure 4.379

Continuous-time trajectory. For experiments that require continuous-time trajectories, we use the380

method described in Appendix I.381

Figure 1. We describe the method for plotting normal curves in Appendix E.382

Figure 2. We train the nanoGPT model using Adam at a learning rate of 10−3 (and batch size 64)383

for a range of adaptive hyperparameters (β, γ) for 1500 iterations, saving the max-update ||un||∞ at384

every iteration n. We compute the slope of log ||un||∞ at n = 500 using the values at n = 495 and385

n = 505.386

Figure 3. We use the same setup as Figure 2, and additionally use a learning rate warmup (linear, for387

the first 100 iterations) and after warmup, a cosine decay down to 10−4. We train for 3000 iterations388

in order for training to converge such that we can assess generalization performance. We evaluate on389

a test split of the shakespeare dataset (on 200 iterations worth of test data) every 100 iterations to390

obtain the test losses.391

Figure 4. We train a CNN (using architecture in Figure 8) on CIFAR10 for 100 epochs and for each392

k ∈ {1, . . . , 10}, we sweep over learning rates η ∈ {6e-5, 1e-4, 3e-4, 6e-4, 1e-3, 3e-3} and weight393

decays λ ∈ {1e-6, 1e-5, 1e-4, 1e-3, 1e-2} and plot the best test accuracy across this sweep. We use394

a linear warmup for the first 2 epochs, and a cosine decay to η/10 for the remaining epochs. We395

evaluate on the test split every 5 epochs. We use (β̃, γ̃) = (0.999, 0.9) and a batch size of 512.396

I Numerically solving Equation (4)397

Numerically solving for continuous dynamics. Defining ψ(t) := θ̇(t), we can write Equation (4)398

as two coupled first-order DEs,399

θ̇(t) = ψ(t)
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Image (3, 32, 32)

Conv2d(64), BatchNorm2d,
ReLU

Conv2d(128), BatchNorm2d,
ReLU, MaxPool2d(2)

Conv2d(128), BatchNorm2d,
ReLU

Conv2d(128), BatchNorm2d,
ReLU

+

Conv2d(256), BatchNorm2d,
ReLU, MaxPool2d(2)

Conv2d(512), BatchNorm2d,
ReLU, MaxPool2d(2)

Conv2d(512), BatchNorm2d,
ReLU

Conv2d(512), BatchNorm2d,
ReLU

+

MaxPool2d(4)

Flatten

Linear(512, 10)

Figure 8: CNN model architecture used in Figure 4. All convolutional layers use a kernel size of
3× 3 and a padding of 1.
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ψ̇(t) = − 2

η2p

(
ληθ(t) + ηpψ(t) + η

√
1− β1+t/ηp

1− γ1+t/ηp

m(t)√
v(t)

)

and numerically solve via Euler’s method,400

θ((n+ 1)∆t) ≈ θ(n∆t) + ∆tψ(n∆t)

with ψ(n∆t) ≈ ψ((n− 1)∆t) + ∆tψ̇((n− 1)∆t)

defining ∆t := ηp/K. In our numerical validation experiments, we use the timescale p = 1 and401

K = 100.402

To compute ψ̇(n∆t) via the above DE we must compute403

m(t) =

∫ t

0

dτ M(τ, t)g(τ) =

∫ t−∆t

0

dτ M(τ, t)g(τ) +

∫ t

t−∆t

dτ M(τ, t)g(τ)

= exp

(
−1− γ
ηpγ

∆t

)
∫ t−∆t

0

dτ M(τ, t−∆t)g(τ)︸ ︷︷ ︸
from n − 1th update step

+

∫ t

t−∆t

dτ M(τ, t−∆t)g(τ)︸ ︷︷ ︸
≈∆t 1−γ

ηpγ g(t−∆t)


Empirically validating φ(t). We note that we can write Equation (12) approximately as404

φ(n∆t) ≈ φ0e
−2λn∆t +∆t

n−1∑
m=0

e−2λ(n−m)∆tf(m∆t)

where
f(t) := η||uW (t)||2 − 2 ⟨W (t), uW (t)⟩

We then compare this expression to the true value of ||W (n∆t)||2 to validate Equation (12) in405

Appendix K.406

J Implicit meta-adaptive effect407

Deriving an expression for ||W (t)||2. Applying the inner product ⟨W (t), ·⟩ to both sides of
Equation (7), we arrive at the differential equation

1

2
ηφ̈+ φ̇+ 2λφ ≈ η||Ẇ ||2 − 2 ⟨W,uW ⟩

where we have defined the squared norm φ(t) := ||W (t)||2. One can show (see further below) that
to leading order, ||Ẇ ||2 ≈ ∥uW ∥2 and ηφ̈ = O(η2) +O(λη), hence we neglect the φ̈ term, with the
resulting first-order differential equation,

φ̇+ 2λφ ≈ η||uW ||2 − 2 ⟨W,uW ⟩

which when integrated, gives408

||W (t)||2 ≈ ||W (0)||2e−2λt +

∫ t

0

dτ e−2λ(t−τ)(η||uW (τ)||2 − 2 ⟨W (τ), uW (τ)⟩) (12)

We empirically verify this expression in Appendix K.409

A further approximation. In order to derive Equation (12) we did not need to use the property410

of scale invariance. We will now make use of this property, in combination with the following two411

simplifying assumptions:412
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Assumption 1. We will assume that

⟨W (t), gW (τ)⟩ ≈ 0 ∀ τ ≤ t

Assumption 2. We will use a coarse-graining approximation for vW (t) (using Equation (2)):

vW (t) ≡
∫ t

0

dτ Kβ(τ, t)gW (τ)⊙2 ≈
∫ t

0

dτ K̃β(τ, t)||gW (τ)||2 =: ṽW (t)

with K̃β(τ, t) := Kβ(τ, t)/N where N is the total number of entries of W , i.e. we replace the entries413

of gW (τ)⊙2 with the average entry across the tensor.414

Assumption 1 is intuitive given the properties of high-dimensional spaces1, but also Equation (6) is
suggestive of such a result. We provide empirical support for this assumption in Appendix G. We
also show (in Appendix G) that replacing vW with the coarse-grained version ṽW has little effect on
training dynamics. A consequence of these assumptions is that ⟨W (t), uW (t)⟩ ≈ 0, allowing us to
approximate,

||W (t)||2 ≈ ||W (0)||2e−2λt + η

∫ t

0

dτ e−2λ(t−τ)||uW (τ)||2

||W (t)||2 as a moving average. Restating Equation (8),415

||W (t)||2 ≈ ||W (0)||2e−2λt + η

∫ t

0

dτ e−2λ(t−τ)||uW (τ)||2

which takes an analogous form to a moving-average of ||uW ||2 in continuous-time. Specifically,
consider a moving-average of (x0, x1, x2, . . .),

wn = (1− α)wn−1 + αxn

Then in continuous time, with wn = w(tn) and xn = x(tn), we have shown in Appendix E that416

w(t) = w(0) exp

(
−1− α
ηpα

t

)
+

1− α
ηpα

∫ t

0

dτ exp

(
−1− α
ηpα

(t− τ)
)
x(τ)

Comparing this expression to Equation (8) allows us to view ||W ||2 as a moving-average of ||uW ||2.417

Weight direction dynamics. To obtain Equation (9) from Equation (7), we write W = rŴ with418

r := ||W || (and ||Ŵ || = 1), which after substituting into Equation (7) becomes419

(
1

2
ηr̈ + ṙ + λr)Ŵ + (ηṙ + r)

˙̂
W +

1

2
ηr

¨̂
W = −uW (13)

Note that taking the derivative of ⟨Ŵ , Ŵ ⟩ = 1 implies ⟨ ˙̂W, Ŵ ⟩ = 0, and further ⟨ ¨̂W, Ŵ ⟩ = −|| ˙̂W ||2.
As a result, applying ⟨·, Ŵ ⟩ to Equation (13) gives

1

2
ηr̈ + ṙ + λr =

1

2
ηr|| ˙̂W ||2

Substituting this expression back into Equation (13) and neglecting higher-order terms (noting that
from above, ηṙ = O(η2)), we arrive at

1

2
η
¨̂
W +

˙̂
W + ΛŴ = −1

r
uW

where we define Λ := 1
2ηr||

˙̂
W ||2.420

1For example the Johnson–Lindenstrauss lemma implies that in high-dimensional spaces, randomly chosen
vectors are likely to be almost orthogonal.
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Leading order approximations. We can write

Ẇ = −λW − 1

2
ηẄ − uW

Squaring both sides and using ⟨W,uW ⟩ ≈ 0 (a consequence of Assumption 1 and Assumption 2)
results in

||Ẇ ||2 = ||uW ||2 + λη ⟨W, Ẅ ⟩+ η ⟨Ẅ , uW ⟩+
η2

4
||Ẅ ||2 + λ2||W ||2

hence to leading order in (η, λ), ||Ẇ ||2 ≈ ||uW ||2.421

K Empirical validation of continuous dynamics422

In Figure 9 we empirically verify the differential equation form for AdamW (Equation (4)) and the423

prediction for ||W (t)||2 (Equation (12)). We use the method described in Appendix I – withK = 100,424

p = 1 and η = 10−3 – to numerically solve Equation (4), obtaining a continuous-time trajectory in425

parameter space. We train a nanoGPT model for 100 iterations using setup in Appendix H, with426

(β, γ) = (0.999, 0.9). To produce Figure 9a we randomly select 16 parameters from the model and427

plot their trajectories. For Figure 9b we randomly select 16 query/key matrices W and plot the428

trajectory of ||W ||2 for each.429
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Figure 9: (a) Parameter trajectories and (b) norm trajectories over 100 iterations.

L Symmetries of the transformer architecture430

Say Φs : Θ→ Θ describes some continuous invariance parameterised by some continuous parameter
s ∈ RS , i.e.

L(Φs(θ)) = L(θ) ∀ s ∈ RS

with Φ0(θ) = θ ∀ θ ∈ Θ. Differentiating the above with respect to si and evaluating at s = 0, we431

obtain432

⟨∂Φs

∂si

∣∣∣∣
s=0

,∇θL(θ)⟩ = 0 ∀ i = 1, . . . , S (14)

Scale invariance. In the special case of scale invariance with respect to a weight W , if we write
θ = (W,ϕ) then the relevant transformation is Φs(θ) = (sW, ϕ), and Equation (14) becomes,

⟨W,∇WL(θ)⟩ = 0

M Max-update trajectory in B+433

To visualize the theoretical bounds in the case of (β, γ) ∈ B+ in more detail, we plot the results of434

Figure 2a but restricted to (β, γ) ∈ B+ in Figure 10. We indeed see that the theoretically predicted435

bounds (dotted lines) are approximately satisfied.436
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Figure 10: We plot the results of Figure 2a but restrict to (β, γ) that lie in B+.

N Supporting data for Section 3.2437

In Section 3.2 we found that a larger value of C(β, γ) correlated with a faster generalization. We438

further verify this in Figure 11 by instead taking points along the normal curve through (0.95, 0.9),439

but otherwise an identical experimental setup to the one used to produce Figure 3.440
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Figure 11: Reproduced Figure 3 but instead for the normal curve through the point (0.95, 0.9).

We also consider the level curve BC(β̃,γ̃), the results of which we plot in Figure 12. We see a slower441

rate of generalization for points closer to the origin, as expected, given that such points will have a442

smaller value of C(β, γ) relative to other points along their normal curve.443
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Figure 12: Reproduced Figure 3 but instead for the level curve through the point (0.999, 0.9).
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O Attempting to correct exponential growth with learning rate annealing444
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Figure 13: Reproduced Figure 2 and Figure 3 restricted to the region B− and using learning rate
annealing described below.

Since the parameter update is θn+1 − θn ≡ −ηun, it appears that a well chosen step-dependent445

learning rate ηn may correct the exponential growth in the case of C(β, γ) < 0 described by446

Equation (5), which occurs via the factor exp(n|C(β, γ)|/2). Particularly, given the tightness of the447

bound seen in Figure 2b, we could consider the learning rate448

ηn = η0 exp(−n|C(β, γ)|/2) (15)

at step n, which results in a bound on ||θn+1 − θn||∞ ≡ ηn||un||∞ that is equivalent to the case449

of C(β, γ) > 0 with learning rate η0. However when we run this learning rate annealing strategy450

(Equation (15)) in practice, we find that it is too strong, as shown in Figure 13; the max-update451

becomes very small, and we do not observe good generalization performance. Hence, even though452

this annealment strategy for B− results in the regions B+ and B− possessing the same bounds on453

||θn+1 − θn||∞, their training properties are still quite different. Analysis of weaker annealing454

methods are out of scope for this work. It is unclear whether correcting such exponential growth in455

B− by choosing an appropriate annealing method would provide any benefits to simply choosing456

(β, γ) ∈ B+.457

P Choice of k-Adam hyperparameters458
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Figure 14: Zoomed out version of Fig-
ure 4 to show performance of the naive
strategy.

The moving-average m(k)
n will have a prefactor of (1 −459

β1) · · · (1− βk), and we can consider a uniform strategy460

β1 = · · · = βk and enforce that this prefactor is equal to461

the typical prefactor for Adam/AdamW, i.e.462

(1− βi)k = 1− β̃

=⇒ βi = 1− (1− β̃)1/k

which we can do similarly for γi.463

Naive strategy. In Figure 14 we show a zoomed-out464

version of Figure 4 to show the performance of the naive465

strategy across all k, emphasizing the importance of well-selected k-Adam hyperparameters.466

We also found the strategy βi = β̃1/k, γi = γ̃1/k to perform badly.467

Q Adaptive normalization and k-Adam468

For a sequence of tensors x0:n ≡ (x0, . . . , xn), we define the bias-corrected moving-average operator469

Mγ ,470
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Mγ(x0:n) :=
1− γ

1− γn+1
(xn + γxn−1 + · · ·+ γnx0)

We justify bias correction in Appendix D. We then define the adaptive-normalization operator Aγ,β ,471

Aγ,β(x0:n) :=
Mγ(x0:n)√
Mβ(x

⊙2
0:n)

Adaptive optimization. We can describe Adam/AdamW with hyperparameters (β, γ) simply as472

Adam/AdamW: θn+1 = θn − ηAγ,β(g0:n)

i.e. updating by the adaptive-normalization of gradients g0:n, where gi ≡ ∇θL(θi).473

k-Adam extends Adam/AdamW by applying the adaptive normalization operator k-times with474

hyperparameters (β1:k, γ1:k),475

k-Adam: θn+1 = θn − η(Aγk,βk
◦ · · · ◦Aγ1,β1)(g0:n)

which is equivalent to Equation (10). Specifically, the intermediate updates take the form u
(i)
n ≡476

(Aγi,βi ◦ · · · ◦Aγ1,β1)(g0:n) (meaning that u(i+1)
n is an adaptive-normalization of u(i)n ).477

Continuous-time properties. We move into continuous-time, with xn ≡ x(tn) where tn = nηp.
Appendix E has shown that

Mγ(x0:n) =

∫ tn

0

dτ Kγ(τ, t)x(τ), Kγ(τ, t) :=
1− γ
ηpγ

exp

(
−1− γ
ηpγ

(t− τ)
)

to first-order. Then using Cauchy-Schwarz on Aγ,β , Appendix E has also shown that478

||Aγ,β(x0:n)||∞ ≤
√
1− βn+1

1− γn+1

1− γ
γ

√
β

1− β
Bn(β, γ) (16)

where Bn is defined as in Section 3.1. Note that this bound is in general independent of the elements479

x0:n. Since each k-Adam sub-update u(i)n = Aγi,βi
((Aγi−1,βi−1

◦ · · · ◦ Aγ1,β1
)(g0:n)), this bound480

holds analogously for u(i)n .481

R Algorithm for k-Adam482

We provide an explicit algorithm for the k-Adam optimizer below.483
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Algorithm 1 k-Adam update rule

given learning rate η ∈ R, weight decay λ ∈ R, coupled ∈ {False,True}, hyperparameters (β1:k,
γ1:k), epsilon ϵ (10−30 by default)
initialize step count n← 0, initial parameter θ0 ∈ Rp, (mi, vi)← (0, 0) for i = 1, . . . , k
repeat

g ← ∇θL(θn)
if coupled then

g ← g + λθn
ĝ ← g
for i = 1, . . . , k do

mi ← γimi + (1− γi)ĝ
vi ← βivi + (1− βi)ĝ⊙2

C ←
√

1− βn+1
i /(1− γn+1

i )

ĝ ← Cmi/(
√
vi + ϵ)

u← ĝ
if not coupled then

u← u+ λθn
θn+1 ← θn − ηu
n← n+ 1

return parameter trajectory (θ0, θ1, . . .)

S k-Adam update bounds484

Theoretical guarantees in the form of bounds – as shown for Adam/AdamW in Section 3 – hold485

analogously for k-Adam. Specifically, since u(i)n is an adaptive-normalization of u(i−1)
0:n for each486

i = 1, . . . , k, we have the bound487

||u(i)n ||∞ ≤

√
1− βn+1

i

1− γn+1
i

1− γi
γi

√
βi

1− βi
Bn(βi, γi)

with Bn defined as in Equation (5). As a result, we can view k-Adam (for k > 1) as possessing488

stronger stability guarantees than Adam – e.g. k-Adam updates by u(k)n , an adaptive-normalization of489

a bounded quantity u(k−1)
0:n due to the above, whereas Adam updates by an adaptive-normalization of490

g0:n, however the gradients g0:n have no such bound guarantees.491
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