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ABSTRACT

Current protein generative models are able to design novel backbones with de-
sired shapes or functional motifs. However, despite the importance of a protein’s
dynamical properties for its function, conditioning on these dynamics remains elu-
sive. We present a new approach to include dynamical properties in protein gener-
ative modeling by leveraging Normal Mode Analysis. We introduce a method for
conditioning diffusion probabilistic models on protein dynamics, specifically on
the lowest non-trivial normal mode of oscillation. Our method, similar to classifier
guidance conditioning, formulates the sampling process as being driven by condi-
tional and unconditional terms. However, unlike previous works, we approximate
the conditional term with a simple analytical function rather than an external neu-
ral network, thus making the eigenvector calculations approachable. We present
the corresponding SDE theory as a formal justification of our approach. We ex-
tend our framework to conditioning on structure and dynamics at the same time,
enabling scaffolding of dynamical motifs. We demonstrate the empirical effec-
tiveness of our method by turning the open-source unconditional protein diffusion
model Genie into a normal-mode-dynamics-conditional model with no retraining.
Generated proteins exhibit the desired dynamical and structural properties while
still being biologically plausible. Our work represents a first step towards incorpo-
rating dynamical behaviour in protein design and may open the door to designing
more flexible and functional proteins in the future.

1 INTRODUCTION

Generative Artificial Intelligence (AI) has rapidly accelerated protein design research. A common
problem tackled with AI is the task of protein backbone design, which is finding a new and realistic
3D structure tailored to the specific biological function. Recently, AI models based on the denoising
diffusion framework (Ho et al., 2020; Song et al., 2021) have shown remarkable success in gener-
ating realistic protein backbones, especially backbones with pre-defined, fixed substructures often
referred to as motifs (Watson et al., 2022; Trippe et al., 2023). Since many functions have been
linked to the presence of various functional motifs, enforcing the generation process to preserve
such substructures is crucial in meaningful protein design. However, current modeling approaches
do not incorporate an important aspect of protein design - structure alone is not enough to determine
the protein’s functional properties. Information about protein flexibility, especially about its low-
frequency collective motion, is crucial in determining protein functional properties (Bauer et al.,
2019). In this work, we address this research gap and provide a framework for a diffusion model
conditioned not only on structural constraints but also on protein dynamics.

We analyse protein dynamics through the lens of Normal Mode Analysis (NMA) (Bahar et al., 2010).
This is a simple yet powerful method for obtaining eigenvectors of the motion of protein residues and
their relative displacements in each mode. After performing NMA on a real-life protein with known
functionality, the obtained eigenvectors can be used as the dynamic targets when using a diffusion
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model to sample a novel backbone. We are particularly interested in proteins which exhibit hinge-
like motions, which are responsible for a number of protein functions and are strongly constrained
in both structure and dynamics (Khade et al., 2020). Protein hinges usually involve two secondary
structure elements rotating against each other about the common axis, similar to how a hinge at the
door frame has closing and opening motions.

Our contributions are as follows:

• We introduce a new methodology for conditioning protein generation on dynamical prop-
erties. Our approach is based on NMA which is easy to compute and captures collective
motions related to protein function. Moreover, we demonstrate how conditioning on the
desired relative displacements, which we refer to as dynamics conditioning, can be accom-
panied by structure conditioning. To substantiate this joint conditioning theoretically, we
present a formal interpretation in terms of stochastic differential equations.

• We train our custom conditional diffusion model and generate dynamics-conditioned back-
bones. Thanks to the large number of real-life dynamics targets extracted from our data, we
provide a detailed analysis of the effectiveness of the method. We measure the agreement
of the displacements using a custom loss function and manually inspect the agreement of
target and sample displacement vectors for selected samples. Our method indeed allows us
to generate proteins with desired dynamics and is easily transferable to other models.

• We showcase the joint conditioning by applying it to a trained Genie model (Lin &
AlQuraishi, 2023). Through literature research, we select three proteins that exhibit hinge
structures and motions, identify residues located in the hinge arms and use those as condi-
tioning targets. Figure 1 shows that we succeed in generating new and biologically plau-
sible proteins with the targeted hinge dynamics, demonstrating that our framework can be
transferred to other models in a plug-and-play fashion.

Figure 1: Comparison of natural proteins (top) from which the hinge targets were extracted with
conditional samples (bottom). Top row: from the left – lysozyme, adenylate kinase, haemoglobin.
Bottom row: protein backbones synthesised with Genie that match the pre-selected hinge motif
residues and have the desired dynamics, from the left with lysozyme, adenylate kinase, haemoglobin
targets. Purple arrows are the displacements of selected residues in the normal mode, while green
ones are the displacements in the same mode but in a novel structure. Arrows have been scaled
up for increased visual clarity. Note how the relative amplitudes and pair-wise angles of the green
arrows match the constraints imposed by the target, and how the relative positions of the novel hinge
residues are as in the original structure.
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2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION PROBABILISTIC MODELING

The generative process in diffusion probabilistic models (Sohl-Dickstein et al., 2015) starts with a
sample from the standard normal distribution, xT ∼ N (0, 1). The goal of this process is to transform
xT into the sample x0 from the targeted data distribution p0(x0), initially unknown and indirectly
accessed by the trained model.

The key idea is to formulate the model training as a forward diffusion process in which the model
predicts how much noise was added to the original sample. For a sample from the training set x0, the
forward process is defined as iteratively adding a small amount of Gaussian noise to the sample in T
steps, which produces a sequence of noisy samples x0:T such that the final sample xT ∼ N (0, 1) to
good approximation. In the Denoising Diffusion Probabilistic Modeling (DDPM) framework (Ho
et al., 2020) the noise magnitude at each step is defined by a variance schedule {βt, t ∈ [0 : T ]}
such that

pt(xt|xt−1) = N (xt,
√

1− βtxt−1, βtI). (1)
The above transition defines a Markov process in which the original data is transformed into a
standard normal distribution. It is possible to write the density of xt given x0 in a closed form

pt(xt|x0) = N (xt,
√
ᾱtx0, (1− ᾱt)I), s.t. xt =

√
ᾱtx0 +

√
1− ᾱtϵt, (2)

where ᾱt =
∏t

i αi and αi = 1−βi and ϵt ∼ N (0, 1). Transforming a sample xT into the sample x0

is done in several updates that reverse the destructive noising, given by a reverse sampling scheme

xt−1 =
1
√
αt

(
xt −

√
1− αt

1− ᾱt
ϵθ(xt, t)

)
+ (1− αt)z, (3)

where z ∼ N (0, 1). The neural network ϵθ (the denoiser) should be trained to predict noise added
to x0. Ho et al. (2020) showed the following loss function is sufficient

L = Ex0,t

(
||ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)||2

)
. (4)

Song et al. (2021) state that the DDPM is an example from the larger class of score-based models.
They demonstrated that the discrete forward and reverse diffusion processes have their continuous
time equivalents, that is, the forward Stochastic Differential Equation

dx = −1

2
β(t)xdt+

√
β(t)dw, (5)

and its reversal

dx =

[
−1

2
β(t)x− β(t)∇x ln pt(x)

]
dt+

√
β(t)dw̄, (6)

where the quantity ∇xt ln pt(xt) is called the score and is closely related to the noise in DDPM
by the equivalence ∇xt ln pt(xt) = −ϵt/

√
1− ᾱt (derivation are in the Appendix F). Any model

trained to predict the noise can be written in terms of the score, which is an essential prop-
erty of our work. Whenever we derive some expression with respect to the score, we can use
the noise-based formulation for forward and reverse diffusion processes by simply substituting
ϵt = −

√
1− ᾱt∇xt

ln pt(xt).

Related work on Diffusion Probabilistic Models for protein design. In the context of protein
generative modelling, the real data samples x0 are often represented by protein backbone coordinates
(e.g., at the resolution of Cα atoms), optionally with amino-acid identity as a scalar feature. Protein
diffusion models operating on such representations were shown to generate designable and novel
samples to various degrees (Lin & AlQuraishi, 2023; Ingraham et al., 2022; Watson et al., 2022;
Yim et al., 2023). Some of those were additionally designed to condition the sample on properties
such as substructure, symmetry or structural motif; however, none of those works link the function to
dynamics. Motif scaffolding has been done by, for example, providing the denoised motif residues
positions in the conditional training (Watson et al., 2022), by particle filtering methods (Trippe
et al., 2023), or by empirically estimating the chances that the sample will have the query motif
(Ingraham et al., 2022). Eigenfold (Jing et al., 2023) attempts to incorporate the physical constraints
for oscillations into the diffusion kernel, however, it did not improve the sample quality, and it was
not tested whether it changes the dynamics of generated samples.
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2.2 NORMAL MODE ANALYSIS

Normal Mode Analysis (NMA) is a technique for describing collective motions of protein residues
for a given energy function. It assumes that a protein is in the energy minimum state in a given force
field, such that the protein residues will, to first approximation, undergo harmonic motions about
their minima (Bahar et al., 2010). Amplitudes and frequencies of such oscillations are the solutions
to the equations of motions for all residues. These equations of motions are compactly written in
matrix form as Mẍ = −Kx, where x ∈ R3N is a flattened vector of coordinates of N residues,
M ∈ R3N×3N is a mass matrix and K ∈ R3N×3N is the interaction constants matrix derived from
the force field that describes the strength of interactions between residues. Despite the simplistic
assumptions about the form of these force fields, NMA has been shown to successfully explain
many dynamical phenomena amongst numerous proteins (Gibrat & Gō, 1990; Tama & Sanejouand,
2001; Bahar et al., 1997). Most functional properties of proteins that involve dynamics are related
to the low-frequency motions, mathematically represented as the lowest non-trivial eigenvectors of
the matrix equation.

3 METHODS

Consider the following problem: given a target matrix yD ∈ R|C|×3, where rows correspond to
displacement vectors of C residues, we aim to generate a new protein in which the displacement
vectors of selected residues in their non-trivial lowest normal mode are close to those defined by
yD. We use a coarse-grained protein representation, where each residue is represented with the
Cα carbon only, and aim to obtain new Cα chains that satisfy the dynamics constraint. To tackle
this problem we employ score-based generative modelling (Song et al., 2021). We formulate the
agreement of the displacement with a target as a condition in the reverse process and quantify the
notion of ‘similar dynamics’ with a custom loss function.

3.1 CONDITIONING DIFFUSION MODELS

The goal of conditional generative modeling is to sample from the posterior p(x0|y) such that new
samples x0 satisfy some chosen property y. We specify the following model (Song et al., 2023,
Equation 4)

p(x0|y) =
p(x0) exp[−l(y, v(x0))]∫
p(x0) exp[−l(y, v(x0))]dx0

and κ(y) =

∫
p(x0) exp[−l(y, v(x0))]dx0 (7)

where l(y, v(x0)) measures the loss for a measurement of y at x0, κ(y) is the normalisation con-
stant, and v(x) maps to the relevant physical quantity represented by y. This specification, as shown
in Song et al. (2023), allows for guiding a trained unconditional model along the path specified by
the loss l. Finding an appropriate p(y|x0) is where the novelty of our method lies. For the dynamics
target y, if p(y|x0) was a neural network, it would need to approximate the eigenvectors of an arbi-
trary symmetric matrix. To the best of our knowledge, finding matrix eigenvectors for any variable
size symmetric matrix with a neural network is not considered a solved problem yet (there exist
neural network approaches to find eigenvectors, but those require retraining for every new matrix
(Gemp et al., 2021; Yi et al., 2004), and are not suitable for a large dataset of backbone structures).
A method to reconstruct a graph structure from a set of learned eigenvectors via an interactive Lapla-
cian matrix refinement is presented in Martinkus et al. (2022). However, this approach has never
been tested for a reverse reconstruction. We escape the need to train a neural network and equate
p(y|x0) to a simple analytical function.

One of the most common mathematical frameworks to obtain a novel sample with any desired prop-
erty y consists of estimating conditional scores. Different approximations for estimating said score
have given rise to a variety of methods such as classifier guidance (Dhariwal & Nichol, 2021), clas-
sifier free guidance (Ho & Salimans, 2022), and ‘reconstruction guidance’ (Ho et al., 2022; Chung
et al., 2022a). What all these approaches have in common is that they decompose the conditional
score as

∇xt ln pt(xt|y) = ∇xt ln p(y|xt) +∇xt ln pt(xt), (8)
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where p(y|xt) is a probability that the sample meets the condition at t = 0 given the state xt at some
other time. Following Chung et al. (2022a), we re-express it with the integral

p(y|xt) =

∫
p(y|x0)p0(x0|xt)dx0. (9)

The integral is intractable and we cannot evaluate p0(x0|xt) directly. But as in Chung et al. (2022a),
we overcome this via the approximation of the denoiser’s transition density with a delta function
centred at the mean

p0(x0|xt) ≈ δE [x0|xt](x0). (10)
Such approximations to the posteriors via point masses centred at their means rather than their
modes (MAP) are known as Bayes point machines (Herbrich et al., 2001), and have been shown to
outperform MAP. Under this approximation, the entire integral simplifies to

p(y|xt) ≈ p(y|E [x0|xt]). (11)

Via Tweedie’s formula (Chung et al., 2022a), the expected output of the model at t = 0 is

E [x0|xt] =
xt + (1− ᾱt)s(xt, y)√

ᾱt
. (12)

Under our model specification, via Bayes rule

p(y|E [x0|xt]) = p(E [x0|xt]|y)p(y)/p(E [x0|xt]), (13)

substituting back into the score we obtain

∇xt
ln

(
p(E [x0|xt]) exp[−l(y, v(E [x0|xt]))]

p(E [x0|xt])κ(y)
p(y)

)
= −∇xt

l(y, v(E [x0|xt])). (14)

Depending on the quantity y, different losses must be used in Equation 14. Note that even though
the derivations are done in continuous time, the equivalence of the score and the noise still applies,
and we can use the discretised sampling scheme as in Equation 3. Now, we explain our choices for
dynamics and structure conditioning losses.

3.2 DYNAMICS LOSS

The next step is to define the loss function in Equation 14 that enforces the targeted dynamics while
being invariant to the protein rotations and translations. Knowing the expected residues’ positions
at t = 0 and the expected components of the normal mode of the conditioned residues given struc-
ture xt at some time t, the invariance is preserved if one compares the relative pairwise angles
between the displacement vectors and their relative magnitudes. Moreover, this makes the condi-
tioning target independent of the protein length: eigenvectors are normalised, hence the amplitudes
of displacements of a subset of residues depend on the protein length. Therefore, we propose to
use the following loss in Equation 14, which is a simple combination of amplitude and angle terms
between all pairwise residues. For the rest of this work, we refer to it as the NMA-loss.

lNMA(yD, v(x)) = langle(yD, v(x)) + lampl(yD, v(x)), (15)

langle =
∑
i,j∈C

| cos(yD,i, yD,j)− cos(v(xt)i, v(x)j)|, (16)

lampl =
∑
i∈C

∣∣∣∣ ||yD,i||
||yD||

− ||v(x)i||
||v(x)||

∣∣∣∣ . (17)

In this invariant loss, yD,i and v(x)i are displacement vectors of residue i ∈ C in the target yD and
in the displacements matrix v(x) ∈ R|C|×3 derived from expected positions at t = 0. The amplitude
terms are normalised such that only their relative sizes matter, consistent with the fact that amplitude
information from NMA can only make relative statements about the participation of a given residue
in a mode (Bahar et al., 2010). For the combined loss, in the process of minimisation of NMA-loss in
the sampling steps, the lampl is scaled by 2, such that its contribution is similar in magnitude to langle.
We compute the NMA-loss using a differentiable implementation of the eigenvector calculations
assuming the Hinsen force-field ((Hinsen & Kneller, 1999), more details in Appendix B.2).
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3.3 STRUCTURE LOSS AND JOINT CONDITIONING

The essential part of our work is building a connection between conditioning on dynamics and con-
ditioning on structure. Even though dynamics and structure are correlated, many structures will have
similar low-frequency eigenvectors, and there is no guarantee that the particular protein packing will
correspond to the biological function for which the dynamics were designed. Therefore, dynamics
conditioning must be accompanied by structure conditioning. Structure conditioning enforces the
generated protein backbone to have a subset of residues CM positioned in pre-defined relative posi-
tions. For example, structure conditioning might enforce the presence of a given functional motif M
somewhere in the arbitrarily rotated protein. We denote the target positions as yM ∈ R|CM |×3, and
xCM

∈ R|CM |×3 is the prediction of conditioned residues’ positions at t = 0 in the sampling pro-
cess. In the language of score-based generative modeling, the conditional score for the joint target
(yD, yM ) will be now decomposed into three terms

∇xt
ln pt(xt|yD, yM ) = ∇xt

ln p(yD|xt) +∇xt
ln p(yM |xt) +∇xt

ln pt(xt). (18)

Finally, the appropriate structure loss should be substituted to the∇xt
ln p(yM |xt) term. We define

the structure loss to be the misalignment between yM and xCM
, specifically the L1 loss between all

CM residues’ coordinates. In order not to violate equivariance, we use our custom differentiable im-
plementation of the Kabsch algorithm (Kabsch, 1976; 1978) to find the best fit of the target residues
yM and xCM

at the reverse diffusion step and only then compute the misalignment. In the discus-
sion of the results, we report the final root-mean-square deviation (RMSD), which is related to but
different from the structure loss (see Section 5.2).

4 MODELS AND THE EXPERIMENTAL SETUP

The aim of the experimental evaluation is two-fold. Firstly, we test whether the proposed con-
ditioning method indeed results in better agreement between the target and the novel structure’s
dynamics. To do so, we use our custom denoiser model, perform conditional sampling using a large
number of dynamics targets and examine the conditioning effectiveness. Secondly, we utilise Ge-
nie (Lin & AlQuraishi, 2023), the diffusion model able to produce high-quality samples and modify
its sampling scheme with our joint conditioning. We therefore demonstrate the universality of our
framework which leaves an open path to transferring our method to other large protein diffusion
models. The modified Genie model produces samples conditioned on the hinge targets which we
thoroughly evaluate for designability.

4.1 MODELS

GVP (Geometric Vector Perceptron (Jing et al., 2021b;a)) is the main building block of our equiv-
ariant denoiser. We use a Graph Neural Network with 5 layers based on GVP (details in the Ap-
pendix B.1). The denoiser was trained with the loss function given by Equation 4. We use the
Hoogeboom schedule (Hoogeboom et al., 2022) with a 250-step DDPM discretisation scheme. The
model was trained for 1000 epochs with a learning rate of 1e-4.
Genie. Genie (Lin & AlQuraishi, 2023) is a diffusion probabilistic model with the DDPM discreti-
sation. It takes advantage of the protein geometry by extracting the Frenet-Serret frames of residues
at each noise prediction step, which are then passed to the SE(3)-equivariant denoiser. Genie out-
performed other models such as ProtDiff (Trippe et al., 2023), FoldingDiff (Wu et al., 2022) or
FrameDiff (Yim et al., 2023), and remains comparable to RFDiffusion (Watson et al., 2022). For
our experiments, we used the published weights of the model trained on the SCOPe dataset (Fox
et al., 2014; Chandonia et al., 2021) able to work with proteins up to 256 residues long.

4.2 DATASET AND TARGETS

For our custom model training, we extract all short monomeric CATHv4.3 domains (Orengo et al.,
1997) for structures with high resolution (< 3Å), of lengths between 21-112 amino acids, clus-
tered 95% sequence similarity to remove redundancy. The resulting dataset contained 10037 protein
structures.
We extract random and strain dynamics targets from the proteins in the validation set. Random
targets are the displacements in the randomly chosen sets of 10 consecutive residues; for the strain
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targets, we perform strain-energy calculation (Hinsen & Kneller, 1999) (details in the Appendix B.2)
and choose 10 consecutive residues with the largest summed energy.

Joint conditioning imposes constraints on both the protein normal mode and the specific residues’
positions. Biologically relevant targets that require such constraints are the hinge parts of proteins.
Three proteins were selected from the literature: lysozyme (PDB ID: 6lyz), adenylate kinase (PDB
ID: 3adk), and haemoglobin (PDB ID: 2hhb). In each protein we analysed which residues participate
in the hinge motion – those residues constitute the yM targets. For each protein we perform NMA
calculation to obtain the displacements of the hinge residues – the yD targets (details in Appendix D).

4.3 EVALUATION METRICS

Population level. For the first set of experiments investigating dynamics conditioning, we focus
on quick-to-compute statistics of the large sample set to understand the expected effects of con-
ditioning on the sample quality. Apart from the NMA-loss, we check the sample quality using:
(1) the mean chain distance (Cα − Cα) that should be close to 3.8 Å (2) the radius of gyration
of the backbone, which is an indicator of whether the model produces samples with an adequate
compactness; (3) secondary structure statistics (SSE), that is, the proportion of α-helices, β-sheets
and disordered loops; (4) novelty in terms of the TM-score to the closest structure in the train set.
TM-score measures the topological similarity of protein structures and has values in the range [0, 1].
TM-score > 0.5 suggests two structures are in the same fold (Xu & Zhang, 2010).

Detailed statistics. In the case of joint conditioning, we sample novel protein backbones using
Genie and check the designability of the new samples using the same in silico evaluation pipeline
as in benchmarking unconditional Genie. For each backbone sample, we obtain 8 ProteinMPNN
generated sequences and fold each sequence with ESMFold (Lin et al., 2022). We calculate the
self-consistency TM-scores (scTM), that is, the TM-scores between the input structure and each of
the ESMFold predictions. scTM scores were also considered in other works (Trippe et al., 2023;
Lin & AlQuraishi, 2023) as one of the standard metrics for sample quality evaluation. We report the
proportion of conditional samples whose best scTM-score to one of the ESMFold designed struc-
tures is > 0.5, in the same fashion as in Trippe et al. (2023) that tackles a similar motif conditioning
problem.

4.4 SAMPLING DETAILS.

Dynamics conditioning with GVP. The sampling process consisted of 250 reverse diffusion steps
(details in the Appendix B.3). We extracted 300 strain and 300 random targets from 300 randomly
sampled proteins from the validation set. For each target, we took 3 conditional and unconditional
samples, and for each group we selected the one with the lowest NMA-loss. Each sample had the
same length as the protein from which the target was extracted.
Joint conditioning with Genie. The original Genie sampling loop with 1000 time steps in the
generation was modified to include the conditional score (details in the Appendix B.3). The guidance
scales were different for each target, and in the order of 2000-3000.

5 RESULTS AND DISCUSSION

5.1 STRAIN AND RANDOM DYNAMICS TARGETS

Here we present the results for the strain and random dynamics targets. At the start, we filter out
the ‘low quality’ samples that evidently do not form a biologically valid proteins (details in the
Appendix C.We examine if the conditioning has the desired effect of enforcing the target normal
mode. Figure 2 shows that indeed, the NMA-loss is successfully minimised in the conditional
samples as compared to the unconditional ones. Note that both the target normal mode and the
mode of the newly sampled structure must obey some physical constraints imposed on all proteins
and the degrees of freedom of all relative displacements are limited, therefore it is occasionally
possible to obtain low loss for the unconditional sample. Encouraged by this finding, we proceed
to the visual inspection of the samples. Figure 3 shows a pair of conditional and unconditional
samples for one of the strain targets (additional sampled pairs are in Appendix G). There is a better
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Figure 2: Density histograms of the NMA-loss for the dynamics conditioning using random and
strain targets. Conditioning shifts the distribution towards lower values, such that the distribution
has an evident sharp peak.

alignment of the displacement vectors and target vectors for the conditional sample as compared to
the unconditional one, which we also consistently observed for the rest of the sampled pairs. We
conclude that our conditioning has the desired effect of enforcing the target dynamics. We therefore
proceed to the quality check of the samples – we must ensure the conditioning does not compromise
the backbone structure. To ensure that the sampled proteins are still biologically valid, we evaluate

Figure 3: Comparison of two samples for the same strain target. Left : Conditional sample (NMA
loss-0.114). Right : Unconditional sample (NMA-loss 0.740). In the conditional sample, green
vectors (new displacements) have much more similar relative amplitudes and pair-wise angles to the
purple vectors (target) when compared to the unconditional sample. In both left and right visualisa-
tion, purples were rotated to match greens.

their geometry. In the end, we investigate the samples’ novelty to check whether the diffusion model
has not simply memorised the train set.

Figure 4 shows the SSE and Rg of the samples compared to the train CATH dataset. Uncondi-
tional samples show a variety of SSE in proportions close to the CATH dataset. Interestingly, we
found that conditioning increases the proportion of β-sheets at the expense of α-helices. Rg dis-
tributions of both unconditional and conditional samples have a visible overlap with the CATH Rg

distribution, the second one is shifted to larger values (but remains within the Rg values observed
in CATH). Therefore, while the conditional samples do not violate physical constraints, the dy-
namics conditioning introduces changes in protein packing. Whether this effect is significant for
downstream applications when the conditioning is transferred into problem-specific models is left
for future work. Respective Figures for the random targets can be found in Appendix A. Lastly, we
calculate the novelty of the samples expressed in terms of TM-score to the closest structure in the
train set. Both unconditional and conditional samples of both target types were highly novel, with
TM-score lower than 0.5 in 90% of the samples.

5.2 HINGE TARGET

Finally, we present results for the joint conditioning. The conditional samples were filtered using
criteria of mean chain distances outside [3.75, 3.85] Å interval and RMSD with respect to the motif
smaller than 1 Å. These constraints left us with 43%, 60% and 23% of the conditional samples for

8



Published as a conference paper at ICLR 2024

10 20 30 40

Radius of gyration Rg [Å]
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Figure 4: Density histogram of Rg and SSE proportions for strain targets.
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0

2

4

6

C
ou

n
t

Uncond.

Cond.

(b)

Figure 5: NMA-loss and RMSD for the lysozyme hinge target. Conditional samples achieve low
values of NMA-loss and RMSD that none of the unconditional samples have.

lysozyme, adenylate kinase and haemoglobin, respectively, such that we ended up with 27 condi-
tional samples. To match that number, we sampled 27 unconditional ones. In the analysis of the
remaining samples, we considered the distributions of NMA-loss (see Figure 5) and scTM-score.
The distribution of the NMA-loss confirms that our method can enforce the specific dynamics and
conditions on the structure at the same time. Analysis of the designability revealed that the dis-
tribution of scTM-scores depends on the target we use. The proportions of conditional samples
with scTM-score > 0.5 were 0.48, 0.78, 0.41 for lysozyme, adenylate kinase and haemoglobin, re-
spectively. Interestingly, when we sampled 27 structures just with the hinge dynamics conditioning,
those values were 0.93, 1.0, and 0.89, respectively, and the decrease in designability can be attributed
purely to the difficulties in the structure conditioning (Appendix E). Additional experiments with a
conditionally trained Genie model and extra designability results can be found in Appendix H. We
finish with the visual investigation of the generated hinge structures. Figure 1 shows pairs of the
targets and the new samples (more examples in the Appendix G). The new samples indeed possess
the hinge structure, as well as the hinge-like low-frequency motion.

6 CONCLUSIONS AND FURTHER WORK

For the first time, we condition the protein diffusion model on dynamics, thus paving the way to
designing more functional proteins in the future. We also make the code publicly available1. We
generate novel proteins with a pre-defined lowest non-trivial normal mode of oscillation for a subset
of residues. The large-scale statistics show that the conditioning is effective and can be transferred
to already trained unconditional models. The extended version of the conditioning that includes the
structure conditioning is implemented as part of the unconditional Genie model and we produce
novel proteins that exhibit hinge structure and dynamics while remaining designable by the scTM

1Code available at https://github.com/ujk21/dyn-informed.
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criteria. Further work includes integrating the dynamics conditioning with other types of structure
conditioning, and further evaluation with other types of motions.
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APPENDICES

A POPULATION STATISTICS FOR RANDOM TARGETS
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Figure 6: Density histogram of Rg and SSE proportions for random targets.
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B IMPLEMENTATION DETAILS

B.1 CUSTOM MODEL DETAILS

The custom model was based on the Geometric Vector Perceptron-Graph Neural Network architec-
ture Jing et al. (2021b;a). Each protein was represented as a fully connected graph. The node scalar
features were sinusoidal positional embeddings of the residues’ order in the chain concatenated with
a normalised time step feature. We perform a message-passing on a fully connected graph of Cα

carbons. Edge features were distances between nodes in terms of 16 Gaussian radial basis functions
and the unit vectors pointing along the edge. The model used 5 GVP-Convolutions layers and the
output of the network (the noise) had the centre of mass subtracted to ensure equivariance.

B.2 NMA CALCULATIONS DETAILS

Nowadays quick and ready-to-use implementations of NMA are available, such as the Biotite ex-
tension Springcraft (Kunzmann & Hamacher, 2018), which we used and rewrote into a PyTorch
differentiable version.

Before any equations of motion can be written, one must specify a force field that describes interac-
tions between residues. We use a Hinsen force-field (Hinsen & Kneller, 1999) with a cutoff of 16 Å.
For the choice of the strain target we perform the strain-energy calculation as described in Hinsen &
Kneller (1999)

Ei =
1

2

N∑
j

k(Rij)
|(di − dj) ·Rij |2

|Rij |22
(19)

where Ei is the energy of residue i, Rij is a vector that is the equilibrium separation between the
residues i, j, k(Rij) is the interaction constant, and di,dj are the displacements of residues i, j in
the mode to be analyzed (here, the lowest non-trivial normal mode).

B.3 SAMPLING DETAILS

B.3.1 GVP

The generation was run with 250 reverse time steps, but at the last two generation time steps the
noise in the update step was set to 0, since we found that this results in chain distances remaining
closer to 3.8 Å. It is a common practice to upscale the conditional term ∇xt

ln p(y|x) by some
guidance scale (Dhariwal & Nichol, 2021). Guidance scales for strain targets were time-dependent
and equal to 200αt for strain targets and 400αt for random targets. Conditioning was switched on
in the middle of the generation process. Since each sample had the same length as the protein from
which the random or strain target was extracted, the potential differences observed in SSE cannot be
attributed to differences in the protein length distributions.

B.3.2 GENIE

To take samples with the Genie model we used an additional parameter η to downscale the noise
in the reverse process, as recommended in the Genie publication (Lin & AlQuraishi, 2023). We set
η = 0.4 which was shown to achieve the best trade-off between designability and diversity. We
found achieving the balance between the conditional parts of the score for dynamics and for the
structure to be the most problematic aspect to optimise. With the means of trial and error fine-tuning
of the guidance scales, we arrived at different values per each hinge target. The guidance scales for
the dynamics term and structure term were 3000 and 2500 for 6lys; 3000 and 2000 for 3adk; 2500
and 2000 for 2hhb. These constants were scaled by the time-dependent factors: αt for dynamics and√
1.5− αt for structure. Since we fine-tuned the guidance scales and their time dependencies, we

skipped the
√
1− ᾱt factor when converting score to noise. The conditioning was switched on in

the middle of the generation. Within the Kabsch algorithm in the structure conditioning, we found
the translation vector and rotation matrix to get the best alignment of the target residues with the
residues’ positions at t = 0, applied those transformations to the target and calculated RMSD. The
translation and rotation were recalculated each 5 time steps.
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C LOW QUALITY SAMPLES

The ‘low quality’ samples are those where the mean chain distance is outside [3.75, 3.85] Å interval
(proteins with mean chain distance more extreme being rare in nature (Voet & Voet, 2010)). Occa-
sionally during conditional sampling coordinate values increases by orders of magnitude along the
sampling trajectory, or even explodes to NaN values. This divergence effect has also been observed
in many conditional diffusion models (Lou & Ermon, 2023); in our case, this tends to happen when
the conditioning pushes a sample’s coordinates outside of the realm of observed samples for which
the denoiser was trained. Finding the right balance between the NMA-loss driven part of the score
and the unconditional part of the score is an important part of the conditioning process. These di-
verged samples are also filtered out during the evaluation process. In the end, about 20% of samples
in each category were filtered out due to low-quality chain distances.

D HINGE TARGETS DESCRIPTION

To extract targets with a prominent hinge motion we performed a literature survey. We identi-
fied the lysozyme (Gibrat & Gō, 1990), adenylate kinase (AdK) (Tama & Sanejouand, 2001), and
haemoglobin (Perahia & Mouawad, 1995) as three prominent examples of proteins with hinge-type
motions for which the lowest normal mode is also known to correlate strongly with functional mo-
tion. To extract the hinge motion, we perform an anisotropic elastic network formulation of normal
mode analysis with an invariant force field on alpha carbon atoms, using a distance cut-off of 13 Å.
The lowest non-trivial normal mode is then computed from the Hessian, and the 16 residues with
the largest displacement components are extracted as motifs to scaffold with the targeted motion.
The target motifs are shown in the top column of Fig. 1. For lysozyme and adenylate kinase hinges,
the newly sampled backbones had length max(hinge residue order) + 10, and for the haemoglobin
max(hinge residue order) + 20, where (hinge residue order) is the order of non-consecutive hinge
residues in the original backbone. Since haemoglobin is larger than the maximal backbone length
that can fit to genie, the haemoglobin hinge was modified - the backbone order for all hinge residues
was shifted down by 190 residues, additionally the number of residues between the hinge arms was
decreased by 250 residues.

E DESIGNABILITY IN DYNAMICS CONDITIONING VS STRUCTURE
CONDITIONING

Since experimental verification of protein designs is time-consuming and expensive, the research
community has developed in silico methods to assess design success computationally. Many of
them fall under the framework of so-called self-consistency metrics (Trippe et al., 2023), meaning
that the designed structure is evaluated by predicting a sequence for it via inverse folding models
like ProteinMPNN (Dauparas et al., 2022), predicting the resulting structure via structure prediction
methods like AlphaFold2 (Jumper et al., 2021) or ESMFold (Lin et al., 2022) and comparing this
predicted structure to the designed one via structural similarity metrics.
The most common computational design criteria are the following:

• scTM > 0.5: the TM-score between the designed structure and the self-consistency pre-
dicted structure as described above. With the scTM-score ranging from 0 to 1, higher
numbers correspond to an increased likelihood of the input structure being designable. A
threshold of 0.5 is often chosen and the percentage of samples above this threshold is re-
ported.

• scRMSD < 2 Å: The scRMSD metric is similar to the scTM metric, however instead of
the TM-score the RMSD between the designed and predicted structure is calculated. It
is a much more stringent criterion than scTM since RMSD is a local metric that is more
sensitive to small structural differences.

• pLDDT > 70 and pAE < 10: Since both scTM and scRMSD rely on a structure prediction
method like AlphaFold2 to be reliable metrics, confidence metrics of these models like
pLDDT and pAE are used as additional metrics to ensure the reliability of self-consistency
metrics. Low scRMSD and high pLDDT have been linked to the experiment success of
designing the backbone (Bennett et al., 2022).
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scTm score alone is a good indicator of whether two structures are in the same fold and for that
reason, it has been used in previous works for assessing the general sample quality (Trippe et al.,
2023; Yim et al., 2023). However, more recent works such as Genie (Lin & AlQuraishi, 2023) apply
more stringent criteria of pLDDT > 70, pAE < 10, scTM > 0.5. In our experiments with hinge
targets, if those additional requirements were incorporated, the proportion of samples meeting those
criteria in joint conditioning dropped to 0.04 for 6lys, 0.15 for 3adk, and 0.0 for 2hhb. When we
incorporated the last most stringent criterion that scRMSD < 2 Å, those proportions dropped to 0.00,
0.04 and 0.0. Further investigation revealed that the lack of confidence in ESMFold predictions is
due to the difficulty in structure conditioning. When only the dynamics conditioning was used (with
the same guidance scale as when being part of the joint conditioning) the proportions of designable
structures without scRMSD criterion were 0.6 for 6lys, 0.82 for 3adk, 0.52 for 2hhb, and with
scRMSD criterion 0.41, 0.63 and 0.37 respectively.

To put these values into perspective, we note that low designability scores are not uncommon for
the models tackling motif scaffolding problem. The current state-of-the-art model, RFDiffusion,
has designability 0, or close to 0, for some of the more difficult functional site targets ((Watson
et al., 2022), Supplementary Methods Table 10). Since our targets were extracted from a flexible
part of the protein, consist of discontinuous motifs and have not been used as targets in the literature
elsewhere, it is difficult to assess what designability scores might be considered ‘good’ for those
targets. Moreover, we note that the confidence metric of AF2/ESMFold might not be well suited
for the assessment of the quality of the flexible regions. As observed in Bryant (2023), pLDDT is a
‘good’ metric if a single protein conformation is considered, however, it becomes less informative as
alternative conformations are included. The regions with lower pLDDT tend to be flexible regions
with conformational changes, which might explain why proteins with a hinge structure tend to have
lower pLDDT.

F SCORE-NOISE EQUIVALENCE

For completeness, we provide a short derivation of the score-noise equivalence

∇xt
log q(xt|x0) = ∇xt

logN
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
(20)

∇xt
logN

(
xt;
√
ᾱtx0, (1− ᾱt)I

)
= −∇xt

(xt −
√
ᾱtx0)

2

2(1− ᾱt)
(21)

−∇xt

(xt −
√
ᾱtx0)

2

2(1− ᾱt)
= − (xt −

√
ᾱtx0)

(1− ᾱt)
(22)

− (xt −
√
ᾱtx0)

(1− ᾱt)
= − ϵt√

1− ᾱt
(23)

G ADDITIONAL SAMPLES

Green arrows are the displacements of conditioned residues in the sampled protein, purple arrows
are the targets rotated to fit the green arrows best.
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(a) Conditional sample (NMA-loss 0.088) (b) Unconditional sample (NMA-loss
0.620)

Figure 7: Comparison of the conditional and unconditional sample for the same strain target.

(a) Conditional sample (NMA-loss 0.224) (b) Unconditional sample (NMA-loss
0.625)

Figure 8: Comparison of the conditional and unconditional sample for the same random target.

H JOINT STRUCTURAL MOTIF & DYNAMICS CONDITIONING WITH THE
IMPROVED GENIE MODEL

When using the original, guidance-based formulation for motif conditioning used in the main text,
we found that motif conditioning continued to be the primary difficulty. This made it harder to
perform and analyse NMA conditioning jointly with motif conditioning, because the NMA condition
only makes sense for a reasonably well formed motif.

We therefore sought to improve motif conditioning by using a Genie model that we re-trained with
the explicit motif conditioning, as proposed in Didi et al. (2023).

H.1 TARGET DEFINITION

We investigate the following question: Can we design a new backbone, such that the functional motif
and its key dynamical behavior, represented by the lowest non-trivial normal mode components of
the motif in the target structure, are preserved?

To test out a biologically relevant scenario we choose to model a dynamically relevant segment
spanning the two active site residues in hen-egg white lysozyme as target motif. Lysozyme was
chosen as a case study since during function (Bauer et al. (2019); Brooks & Karplus (1985)) it
undergoes a well-studied hinge motion, which is well captured by lowest non-trivial mode in normal
mode analysis. The motif is illustrated in Fig. 10 and consists of 22 residues of the original structure
(PDB: 6lyz, 129 residues), including the active site residues GLU-35 and ASP-52 (Vocadlo et al.
(2001); Held & van Smaalen (2014)). To obtain the NMA target for this motif, we perform an NMA
with an invariant force-field and with a 13 Å distance threshold on the Cα-backbone of the native
protein (6lyz) and extract the lowest non-trivial normal mode displacements for the motif residues
as NMA target.
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Figure 9: More samples with joint conditioning. Left column: 2 samples for the 6lys target. Middle
column: for 3adk target. Right column: for the 2hhb target.

0 10 20 30 40 50 60 70 80 90 100 110 120 128

KFESNFNTQATNRNTDGSTDYG

GLU-35

ASP-52

Figure 10: Target definition for the additional experiments and to illustrate a biological application.
The target motif (red) was chosen as the single segment connecting the two active site residues
(GLU-35, ASP-52) of hen-egg white lysozyme (PDB:6lyz), including two residues on either side
of the active site. This results in a target motif of 22 residues in length. The active site residues are
shown with side-chains, and the motif’s position in the overall sequence is marked on the bottom
bar.

H.2 MODELLING

Improved motif conditioning model We modify the unconditional Genie model (Lin &
AlQuraishi, 2023) in order to perform the conditional training, where the model is provided with
the motif coordinates for some of the training examples. We add an additional conditional pair fea-
ture network that takes the target motif coordinates and frames as input with zero-padding for all
non-motif coordinates and frames. The features of this motif-conditional pair feature network are
fused with the output of the original unconditional pair feature network in genie via concatenation
along the feature dimension, followed by a linear projection down to the channel size of the uncondi-
tional model. The remainder of the Genie model then proceeds unchanged. This minor architectural
modification means our conditional Genie network has 4.162M parameters while the unconditional
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Genie network has 4.087M parameters (∼ 1.8% fewer). The conditional Genie model was trained
for 4’000 epochs on 4 A100 GPUs (∼ 300 A100 hours in total). We stopped training at this point, as
we observed almost comparable performance to the publicly available model weights (which were
obtained after training for 50’000 epochs). We use these model for all the additional experiments in
this section. The model is trained according to algorithm 5 in Didi et al. (2023) and during train-
ing the model is shown a conditional sample for 80% of the time and an unconditional one for the
remaining 20%.

Guidance schedule While motif scaffolding is now explicitly built into the denoiser, we still need
to condition on the NMA dynamics condition. We follow a reconstruction guidance (Chung et al.,
2022b) approach with a modulated step-function guidance schedule

γ(t) =

{
γ0(1− αt) if t < tstart

0 if t ≥ tstart
, (24)

with a guidance scale γ0 and starting point tstart. For tmax = 1000, we fixed tstart = 500 (i.e.
conditioning starts halfway through the reverse diffusion process) and identified γ0 = 500 as an
adequate guidance scale through a logarithmic scan of γ0 values. Similar to other work on diffusion
models for protein backbone generation, we reduce the noise scale by a factor η = 0.4, which
improves the quality of generated samples (Yim et al., 2023) for motif-only as well as motif+NMA
conditioning.

NMA loss The presence of a functional motif defines a reference coordinate system, namely the
coordinate system in which the coordinates of the to-be-scaffolded motif are given in. Notably,
this means that the normal mode displacements at the motif residues are also given in the motif’s
coordinate system. Any designed backbone should be invariant to translations, but equivariant to
rotations of this coordinate system, which correspond to rotations of the motif and the associated
displacement vectors.

To better comply with these symmetry requirements, we adapt the invariant loss lNMA in Eq. 15 to
make use of this reference coordinate system. Using the notation of the main text, yM ∈ Rm×3

and xM ∈ Rm×3 represent the target motif coordinates and sample motif coordinates for a motif of
m residues respectively. Similarly, vM (y) ∈ Rm×3 and vM (x) ∈ Rm×3 respectively refer to the
matrix of displacement vectors in the lowest non-trivial normal mode for the target and the sample.
The rotation matrix R(yM , xM ) transforms the coordinate frame of the target motif yM to that of
xM . With these definitions, the updated NMA loss for the additional experiments is

l′NMA = 2ldirection
(
R(yM , xM )vM (y), vM (x)

)
+ lmagnitude

(
R(yM , xM )vM (y), vM (x)

)
(25)

ldirection(v1, v2) = 1−
∣∣∣∣ v1
∥v1∥

· v2
∥v2∥

∣∣∣∣ = 1− | cos (v1, v2)| (26)

lmagnitude(v1, v2) = | ∥v1∥ − ∥v2∥ |. (27)

Here, v(y) and v(x) are understood as flattened vectors in R3m, and therefore ldirection directly cap-
tures the relative contributions of each residue’s displacement. The factor 2 was added to align the
min and max ranges of the two components of l′NMA. We obtain R(yM , xM ) through a differentiable
implementation of the Kabsch alignment algorithm (Kabsch, 1976) and v(x) from a differentiable
implementation of NMA on the sampled backbone x, which is then subset to the motif coordinates,
as in the main text. Guidance is then performed via

xt ← xt − γ(t)∇xt
l′NMA

(
R(yM , x̂M

0 (xt))v
M (y), vM (x̂0(xt))

)
, (28)

with x̂0(xt) indicating the current estimate of the denoised structure via Tweedie’s formula (Rob-
bins, 1956) as in reconstruction guidance (Chung et al., 2022b).

Evaluation pipeline The evaluation proceeds similarly as in the main body. For each Cα-only
backbone sample, we sampled 8 sequences with ProteinMPNN (Tsampling = 0.1). In those sequences,
the amino acid identities of the motif residues known from the lysozyme target were kept fixed, such
that only the scaffold was predicted by ProteinMPNN. Each of the 8 sequences is then re-folded with
ESMFold, and self-consistency scores (scNMA, scRMSD, scTM) are calculated with respect to the
original backbone sample. The original backbone sample is then paired with the ESMFold-ed design
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that had the lowest scRMSD (out of 8 ESMFold designs). We deemed the structure designable if it
met the criteria of scTM>0.5, scRMSD<2Å, with confidence threshold of pLDDT>70, pAE<10
for ESMFold predictions, which aligns with definitions in prior work (Watson et al., 2022; Yim
et al., 2023; Lin & AlQuraishi, 2023). Moreover, we evaluate an additional motif scaffolding metric,
scMOTIF-RMSD, which measures the RMSD between the motif residues in the designed structure
(after sequence design & ESMFold) and the target motif.

H.3 RESULTS
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Figure 11: scMOTIF-RMSD vs scRMSD for 150 motif-only and 43 motif+NMA samples (not
filtered for designability criteria). While the chosen target (two paired anti-parallel beta sheets con-
nected to the end of a helix) turns out to be a difficult problem for the model, the best samples that
achieve lowest scMOTIF-RMSD and scRMSD values stem from joint motif+NMA conditioning,
highlighting that the dynamics-conditioning can successfully work the motif scaffolding.

The analysis of the NMA loss of the Genie generated Cα-only backbone and scNMA-score of the
ESMFold design confirmed that the dynamics conditioning indeed results in the Cα backbones that
match the target, however there is no clear direct correspondence scNMA-scores to the original
backbone NMA-loss for the dynamics-conditioned samples. Surprisingly, we found while motif
conditioning improved upon making the structure conditioning inherent to the conditional Genie
model, performing the motif scaffolding was still challenging to the model. In the remainder of this
discussion, we call all the structure-only conditioned samples motif-only, and all jointly structure
and dynamics conditioned - motif+NMA.

Discussion of the motif scaffolding success rate As a first part of the evaluation, we calculated
the proportion of Genie generated backbones of the motif-only and motif+NMA samples that meet
the designability criteria and have backbone design motif-RMSD< 1Å. Out of 150 motif-only sam-
ples, 1 is designable and has motif-RMSD< 1Å, while 2 out of 43 motif+NMA ones are. More-
over, the scMOTIF-RMSD, that is RMSD to the motif structure after folding inferred sequences for
said backbone with ESMFold, does not achieve values lower than 1Å for any of motif+NMA and
motif-only conditioned samples. Figure 11 shows in detail how scMOTIF-RMSD correlates with
scRMSD.

We believe this is a combination of (1) the limited training and capacity of our model and (2) the
challenging nature of our target motif, which is a segment of 2 paired, anti-parallel beta-sheets
connected to the end of a helix. To these points into context, our model was trained for the motif-
scaffolding task for 300 A100 GPU-hours, compared to state-of-the-art models such as RFDiffusion,
which are trained for over 25′000s of GPU hours when considering the RosettaFold2 pre-training.
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Figure 12: Distribution of the NMA-loss of the designed backbones. The distribution of the mo-
tif+NMA conditioned backbones is strongly enriched towards low NMA-loss values when compared
to the distribution of motif-only backbone samples. Only 2/150 (∼ 1.3%) of motif-only backbones
achieve origNMA-loss < 0.5, as opposed to 10/43 (∼ 23%) for motif+NMA – corresponding to
a roughly 17x-fold enrichment, while achieving comparable motif scaffolding performance (c.f.
Fig. 11). Note that the bars were stacked to avoid overlapping bars from being invisible.

Yet, despite the significantly higher model capacity of RFDiffusion (42 Mio. parameters) as well as
the longer training, design success rates (according to the criteria outlined above) of RFDiffusion
can also at or below 1% for some challenging, contiguous functional motifs (e.g. targets 5WN9 or
4JHW in the RFDiffusion benchmark in the supplementary material of Watson et al. (2022)). It is
therefore possible that the in-silico success rates for our model with a lower capacity are be below
the detection threshold for this particular motif scaffolding problem.

Nonetheless, the ESMFold designed backbones achieving the lowest scMOTIF-RMSD and the
lowest scRMSD belong to the motif+NMA conditioned group, which illustrates that our NMA-
conditioning approach has no discernable negative impact on the designability of samples. We
believe it is therefore still meaningful to gleam insights from this set of samples, despite the chal-
lenging nature of the motif-scaffolding for our chosen target.

Discussion of the scNMA-score The distribution of NMA-loss in the motif+NMA and motif-only
Genie backbone samples is consistent with our previous findings that the dynamics-conditioning
leads to the targeted dynamics in the raw backbone (Figure 12). Only 2/150 (∼ 1.3%) of motif-
only backbones achieve origNMA-loss < 0.5, as opposed to 10/43 (∼ 23%) for motif+NMA –
corresponding to a roughly 17x-fold enrichment, while achieving comparable motif scaffolding per-
formance (c.f. Fig. 11). However, much of this benefit appears to disappear in the process in
inverse-folding and the subsequent re-folding. Joint motif+NMA conditioning still increases the
relative chance of obtaining a sample with a low scNMA-score (3/43 ∼ 7% of samples below 0.5)
as compared to motif-only conditioning (3/150 ∼ 2% below 0.5), roughly 3-fold, but the difference
is much less pronounced than for the NMA-loss of the designed backbone (original NMA-loss).
Figure 13 shows the scNMA-loss distribution for the motif+NMA and motif-only ESMFold de-
signs. The best sample with low original NMA-loss is therefore not guaranteed to have similarly
low scNMA-score. The pipeline inverse-folding and re-folding has also a surprising effect on the
motif-only samples. Samples with high values of original NMA-loss are occasionally corrected to
better NMA scores in the pipeline and match the targeted motif’s dynamics better. Still, the in-
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Figure 13: Distribution of the self-consistency NMA score (scNMA-score) of the backbone samples
against structures obtained from inferring a sequence for each backbone via ProteinMPNN and
refolding it via ESMFold. Joint motif+NMA conditioning increases the relative chance of obtaining
a sample with a low scNMA-score (3/43 ∼ 7% of samples below 0.5) as compared to motif-only
conditioning (3/150 ∼ 2% below 0.5) by roughly 3-fold, however the difference is much less
pronounced than for the original NMA-loss. Again, the bars were stacked to avoid overlapping bars
from being invisible.

troduction of the dynamics conditioning increases the relative chance of obtaining a sample with a
low scNMA-score as compared to motif-only sampling. We leave the interesting question of how
to retain high NMA-scores through inverse folding and re-folding pipelines as an interesting future
work.

Lastly, we investigate how the scNMA-score correlates with the scMOTIF-RMSD. While the region
where scMOTIF-RMSD<1Å remains unachievable for both motif+NMA and motif-only samples
as previously discussed, the best samples (scMOTIF-RMSD and scNMA as low as possible) from
all samples taken belong to the dynamics-conditioned subset.

H.4 ADDITIONAL ALPHAFOLD2 DESIGNS

To give a visual intuition of the scores introduced above, we show the AlphaFold2 (AF2) designs of
the Genie backbones - one motif-only conditioned, and one motif+NMA conditioned. Those back-
bones were deemed designable and close to designable by ESMFold - their scRMSD and pLDDT re-
spectively were 1.923 Å, 73.6 for motif-only conditioned sample and 1.897 Å, 68.1 for motif+NMA
conditioned sample. We repeated the inverse-folding and folding steps for these two selected sam-
ples with state-of-the-art AF2, and we computed the self-consistency scores again. The Cα-only
backbones derived from the AF2 designs are presented in the Figures 15 and 16. The displacement
vectors in the lowest normal mode are attached to the points of the conditioned residues.
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Figure 14: scNMA-score vs scMOTIF-RMSD for the motif+NMA and motif-only samples. We
focus on samples with scMOTIF-RMSD < 4 as for structures with larger differences in the motif,
the scNMA-scores likely become meaningless. As a consequence, 17 out of 43 and 29 out of
150 motif+NMA and motif-only samples are shown - the remaining are the outliers in the region
scMOTIF-RMSD> 4Å.

Figure 15: Backbone of an AF2 re-folded sequence obtained via ProteinMPNN from a motif+NMA
conditioned raw backbone. Purple arrows are the displacements of the conditioned residues in the
current structure, purple are the target rotated to the motif’s frame of reference. Arrows are scaled
up for visual clarity. Scores obtained with folding with AF2: scRMSD= 1.49, pLDDT= 80.6,
scMOTIF-RMSD=2.30. Original NMA-loss= 0.087, scNMA-score=0.29.
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Figure 16: Backbone of an AF2 re-folded sequence obtained via ProteinMPNN from a motif-only
conditioned raw backbone. Purple arrows are the displacements of the conditioned residues in the
current structure, purple are the target rotated to the motif’s frame of reference. Arrows are scaled
up for visual clarity. Scores obtained with folding with AF2: scRMSD= 1.52, pLDDT= 81.6,
scMOTIF-RMSD=2.07. Original NMA-loss=1.88, scNMA-score= 0.64.
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