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ABSTRACT

We reveal an intriguing connection between adversarial attacks and cycle mono-
tone maps, also known as optimal transport maps. Based on this finding, we devel-
oped a novel method named source fiction for semi-supervised optimal transport-
based domain adaptation. In our algorithm, instead of mapping from target to
the source domain, optimal transport maps target samples to the set of adversarial
examples. The trick is that these adversarial examples are labeled target samples
perturbed to look like source samples for the source domain classifier. Due to
the cycle monotonicity of adversarial attacks, optimal transport can naturally ap-
proximate this transformation. We conduct experiments on various datasets and
show that our method can notably improve the performance of optimal transport
methods in semi-supervised domain adaptation.

1 INTRODUCTION

Optimal Transport (OT) is a powerful framework to solve mass moving problems for probability
distributions. Over the past decades, it has been successfully applied in mathematics (Ferradans
et al., 2014), economics (Reich, 2013) and machine learning (Arjovsky et al., 2017; Mroueh, 2019;
Solomon et al., 2015; Colombo et al., 2021). The key property of OT maps is a cycle monotonic-
ity (McCann, 1995), such maps cannot be improved; it is impossible to perturb it and get something
more economical (Villani, 2008, M5).

In machine learning, OT finds a rich application in domain adaptation (DA) problem (Courty et al.,
2015; Perrot et al., 2016; Rakotomamonjy et al., 2020). In DA, the task is to learn a model fθ,
e.g., a classifier, from a source domain Ωs to perform well on a different (related) target domain
Ωt (Ben-David et al., 2010a). The conventional OT approach for domain adaptation is to use OT
map Ωt → Ωs to transform target domain Ωt to source Ωs and then apply the model fθ to mapped
samples.

With few labeled samples in target domain Ωsemi we can apply semi-supervised domain adapta-
tion (Wang & Deng, 2018). For semi-supervised OT, labels are used to prevent the transportation of
the target sample into the source sample from another class (Courty et al., 2016; Yan et al., 2018).
But labels do not provide supervision for the map between two domains because supervision in-
volves input-output pairs, and labels do not give such pairwise matching between source and target
samples. Moreover, supervision for OT has to involve a cycle monotone matching between source
and target samples and save the class-wise structure.

In our paper, we propose an algorithm we call source fiction that provides cycle monotone supervi-
sion to OT and improves the performance of OT in semi-supervised DA. The core of this algorithm
is our finding that adversarial attacks (Szegedy et al., 2014), more precisely Iterative Fast Sign Gra-
dient Descent (Goodfellow et al., 2014, FSGD) are cycle monotone transformations over the dataset
with quadratic cost.

We propose to replace source domain Ωs with domain Ωf that is constructed by the adversarial attack
on labeled samples in target domain Ωsemi to be accurately classified by source domain classifier fθ.
Since domain Ωf is a cycle monotone transformation of the target domain Ωsemi, it becomes natural
to use Ωsemi → Ωf as supervision for OT mapping and then use the resulted map to transport from
target domain without labels to Ωf .
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The main contributions of this paper are: (i) We prove that an adversarial attack produces cycle
monotone transformation of the dataset (Section 3); (ii) We propose a novel source fiction algorithm
for OT-based semi-supervised domain adaptation. The algorithm incorporates the adversarial attack
to the conventional pipeline of OT for DA (Section 4).

2 BACKGROUND AND RELATED WORK

2.1 ADVERSARIAL ATTACKS

Adversarial examples are samples that are similar to the true samples D(x, x′) ≤ ε, but “fool” a
selected classifier and tend it to make incorrect predictions argmax p(y | x′) 6= ytrue (Szegedy et al.,
2014). The phenomenon of the vulnerability of machine learning models to adversarial examples
breeds a great deal of concern in many learning scenarios (Papernot et al., 2017; Yuan et al., 2019;
Schott et al., 2019; Xie et al., 2017).

A large body of work on adversarial attacks exists; in our paper, we consider Fast Sign Gradient
Descent (FSGD) by Goodfellow et al. (2014); iterative version of FSGD can be presented as

x′0 = x, x′i+1 = clipx,ε {x′i − α sign (∇xL (θ, x′i, y))} (1)

With sample x, the target label y, and classifier f with parameters θ, we can obtain adversarial
examples using gradient descent, by solving the min-max problem, maximizing the loss L and
minimizing perturbation for a sample x in some class y with respect to some perturbation size ε.

Newly, various properties of adversarial examples were studied (Petrov & Hospedales, 2019; Paper-
not et al., 2016; Ilyas et al., 2019), and applications of adversarial examples for models accuracy
improvements were proposed (Xie et al., 2019; Yang et al., 2020).

Previously connection of OT and adversarial examples were studied in the context of robustness
problems (Pydi & Jog, 2020; Bouniot et al., 2021). Wong et al. (2019) proposed the idea of Wasser-
stein adversarial attack with Sinkhorn iterations; this algorithm allows to find adversarial perturba-
tions with respect to Wasserstein ball.

2.2 OPTIMAL TRANSPORT

OT aims at finding a solution to transfer mass from one distribution to another with the least effort.
Monge’s problem was the first example of the OT problem and can be formally expressed as follows:

inf
T#µ=ν

∫
Ωµ

c(x, T (x))µ(x)dx (2)

The Monge’s formulation of OT aims at finding a mapping T : Ωµ → Ων of the two probability
measures µ and ν and a cost function c : Ωµ × Ων → R+, where T#µs = νt represents the mass
preserving push forward operator. In Monge’s formulation, T cannot split the mass from a single
point. The problem is that with such constraints, the mapping T may not even exist.

To avoid this problem, Kantorovitch proposed a relaxation (Villani, 2008). Instead of obtaining a
mapping, the goal is to seek a joint distribution over the source and the target that determines how
the mass is allocated. For a given cost function c : Ωµ × Ων → R+, the primal Kantorovitch
formulation can be expressed as the following problem:

min
γ∈Π(µ,ν)

{∫
Ωµ×Ων

c(x,y)dγ(x,y) = E(x,y)∼γ [c(x,y)]

}
(3)

In primal Kantorovitch formulation, we look for a joint distribution γ with µ and µ as marginals
that minimize the expected transportation cost. If the independent distribution γ(x,y) = µ(x)ν(y)
respects the constraints, linear program is convex and always has a solution for a semi-continuous c:

Π (µ, ν) =

{
γ ∈ P (Ωµ,Ων) :

∫
γ(x,y)dy = µ(x),

∫
γ(x,y)dx = ν(y)

}
(4)
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The primal Kantorovitch formulation can be also presented in dual form as stated by the Rockafellar-
Fenchel theorem (Villani, 2008):

max
φ∈C(Ωµ),ψ∈C(Ων)

{∫
φdµ+

∫
ψdν | φ(x) + ψ(y) ≤ c(x,y)

}
(5)

After finding a solution to the transport problem, OT provides a measure of dissimilarity between
the two distributions. This similarity is also called the Wasserstein distance (Villani, 2008):

Wp (µs, νt) = min
γ∈Π(µ,ν)

{∫
Ωµ×Ων

c(x,y)dγ(x,y)

} 1
p

(6)

where c(x,y) = ‖x− y‖p and p > 1. The Wasserstein distance encodes the geometry of the space
through the optimization problem and can be used on any distribution of mass.

The main geometric property of the OT is cycle monotonicity. Informally, a c-cycle monotone plan
is a plan that cannot be improved, for all points x0 . . . xi, y0 . . . yi holds:

N∑
i=1

c (xi,yi) ≤
N∑
i=1

c (xi,yi+1) (7)

It is impossible to perturb it and get something more economical (Villani, 2008, M5).

2.3 OPTIMAL TRANSPORT FOR DOMAIN ADAPTATION

Domain Adaptation: DA techniques try to make the target domain Ωt samples Xt = (xti)
Nt
i=1 be

closer to the source domain Ωs samples Xs = (xsi )
Ns
i=1 to make the source classifier fθ perform ac-

curately on the target domain (Ben-David et al., 2010a;b; Germain et al., 2013). In semi-supervised
settings, target domain Ωsemi consists of unlabeled samples Xt = (xti)

Nt
i=1 and small number of

samples Xl = (xli)
Nl
i=1 associated with labels Yl = (yli)

Nl
i=1. These labels can be used to train DA

algorithm match target samples with source samples that have the same labels.

Different discrete OT algorithms can be applied for domain adaptation (Courty et al., 2015). For
example, Earth Mover’s Distance (EMD) (Courty et al., 2015; Flamary et al., 2021) solves the most
typical primal Kantorovich OT problem (equation 4). This method seeks an optimal coupling γ,
which minimizes the displacement cost between two domains with respect to some distance.

Sinkhorn algorithm (Cuturi, 2013) and its variations with a group lasso regularization (L1L2) and
Laplacian regularization (L1LP) (Courty et al., 2015) are OT algorithms that apply lightspeed com-
putation of OT in DA. Perrot et al. (2016) proposed Linear OT mapping estimators (MapT) that
jointly learn the coupling γ equation 4 and transport map T linked to the original Monge prob-
lem equation 2.

In semi-supervised DA with OT, labels are used to penalty the transport Ωsemi(γ) = 〈γ,M〉 by a
ns × nt cost matrix M〉 where M(i, j) = 0 when ysi = ytj and +∞ otherwise (Courty et al., 2016;
Yan et al., 2018). In domain adaptation with label and target shift, OT was used to align probability
distributions even for a few domains (Redko et al., 2019; Rakotomamonjy et al., 2020). Most of
these algorithms are presented in POT library (Flamary et al., 2021), which provides state-of-the-art
OT algorithms to solve the domain adaptation.

Discrete OT: Different discrete OT algorithms can be applied for domain adaptation (Courty et al.,
2015). For example, Earth Mover’s Distance (EMD) (Courty et al., 2015; Flamary et al., 2021)
solves the most typical primal Kantorovich OT problem (equation 4). This method seeks an optimal
coupling γ, which minimizes the displacement cost between two domains with respect to some
distance.

Neural OT: The connection between OT and deep networks was proposed for unsupervised domain
adaptation (Damodaran et al., 2018) and representation transfer between teacher and student in trans-
fer learning (Li et al., 2020). It was also shown that mini-batch learning that is correctly applied in
deep learning can be employed to OT for efficient measure between data distributions (Fatras et al.,
2021).
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Recently, there has been a solid push to incorporate Input Convex Neural Networks (ICNNs) (Amos
et al., 2017) in OT problems. According to Rockafellar’s Theorem (Rockafellar, 1966), every cycli-
cal monotone mapping g is contained in a sub-gradient of some convex function f : X → R. Fur-
thermore, according to Brenier’s Theorem (Theorem 1.22 of Santambrogio (2015)), these gradients
uniquely solve the Monge problem equation 2. Following these theorems, a range of approaches ex-
plored ICNNs as parameterized convex potentials in dual Kantorovich problem equation 5 (Taghvaei
& Jalali, 2019; Makkuva et al., 2020).

Further development of this approach enabled the construction of the non-minimax Wasserstein-2
generative framework (Korotin et al., 2019) that can solve domain adaptation and Wasserstein-2
Barycenters estimation (Fan et al., 2020; Korotin et al., 2021b). Compared to discrete OT, neural
methods provide generalized OT methods that can ensure out-of-sample estimates.

In our paper, in comparison to this method, we do not propose a new domain adaptation algorithm,
new OT algorithm, or adversarial attack and defense based on OT. We presented a connection be-
tween OT and adversarial attacks and showed how this connection can be used for semi-supervised
OT.

3 CYCLE MONOTONICITY OF ADVERSARIAL ATTACKS

This section demonstrates the cyclical monotonicity of adversarial attacks. We prove that with mild
assumptions on the attack, it is cycle monotone w.r.t. the quadratic cost c(x, y) = 1

2‖x− y‖
2.

Lemma 1 (Cycle monotonicity of small perturbations of a dataset.). Let x1, . . . , xN ∈ RD be a
dataset of N distinct samples. Let x′1, . . . , x

′
N be its ≤ ε-perturbation, i.e. ‖xn − x′n‖ ≤ ε for all

n = 1, 2, . . . , N . Assume that ε ≤ 1
2 min
n1,n2

‖xn1 − xn2‖, i.e. the perturbation does not exceed 1
2 of

the minimal pairwise distance between samples. Then for all K and 1, N it holds:

K∑
k=1

1

2
‖xnk − x′nk‖

2 ≤
K∑
k=1

1

2
‖xnk − x′nk+1

‖2 (8)

i.e. set (x1, x
′
1), . . . , (xN , x

′
N ) or, equivalently, the map xk 7→ xk′ is cycle monotone.

Proof. Due to triangle inequality for ‖ · ‖, we have

‖xnk − x′nk+1
‖ ≥ ‖xnk − xnk+1

‖︸ ︷︷ ︸
≥2ε

−‖xnk+1
− x′nk+1

‖︸ ︷︷ ︸
≤ε

= ε. (9)

Taking the square of both sides and summing equation 9 for k = 1, 2, . . . ,K yields

K∑
k=1

‖xnk − x′nk+1
‖2 ≥

K∑
k=1

ε2 = Kε2. (10)

Due to the assumptions of the lemma, the following inequality holds true:

K∑
k=1

‖xnk − x′nk‖
2 ≤

K∑
k=1

ε2 ≤ Kε2. (11)

We combine equation 10 and equation 11 to obtain

K∑
k=1

‖xnk − x′nk‖
2 ≤

K∑
k=1

‖xnk − x′nk+1
‖2,

which is equivalent to
K∑
k=1

c(xnk , x
′
nk

) ≤
K∑
k=1

c(xnk , x
′
nk+1

), (12)

and yield cycle monotonicity w.r.t. quadratic cost c(x, y) = 1
2‖x− y‖

2.
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Adversarial attacks are small perturbations of the dataset, therefore, we immediately obtain

Corollary 1. Let x1, . . . , xN ∈ RD be a dataset ofN distinct samples. Then any adversarial attack
xn 7→ x′n on the dataset with ε ≤ 1

2 min
n1,n2

‖xn1
− xn2

‖ is cycle monotone.

Corollary 1 suggests using the optimal map to transform target domain Ωt to domain Ωf formed by
the cycle-monotone adversarial attack.

4 SOURCE FICTION ALGORITHM

Figure 1: Visual example of adaptation with source fiction. Each object in target domain is closest
to the corresponding object in source fiction domain in terms of some distance.

Algorithm 1: Source fiction for optimal domain adaptation
Input: Classifier fθ, optimal transport algorithm OT, source Ωs, labeled Xl and unlabeled Xt

samples in target domain Ωsemi, empty set Xf , perturbations size ε
Initialize: ε ≤ 1

2 min
n1,n2

‖xn1 − xn2‖ for xn in Xl

Pretrain classifier fθ on source Ωs domain Xs Ys pairs.
for x, y in (Xl, Yl) do

for steps n, . . . , N do
x′0 = x, x′n+1 = clipx,ε {x′n − α sign (∇xL (θ, x′n, y))}

end for
Append x′ examples to Xf

end for
Return: Domain Ωf
Find a map Ωsemi → Ωf using OT.
Apply the classifier fθ to samples Xf mapped from Xt.

In the previous section, we considered that adversarial attack applies cycle-monotone transformation
over the dataset. In this section, we propose an application of this property for DA. To manage this
property, we propose to replace the source domain with the domain that is cycle monotone to the
target domain, and at the same time, accurately classifying by source domain classifier. Due to the
vulnerability of machine learning models to perturbation, we can turn any sample into accurately
classified in practice, in the same way we create adversarial examples.

In our method, we propose to use a targeted FSGD adversarial attack (equation 1) to source domain
classifier fθ, with target label y equal to the true class of the given sample. Such attack adds to
the image features of the class to which the image really belongs (Ilyas et al., 2019). Applying
attack using labeled target samples Xl = (xli)

Nl
i=1 with y value in equation 1 equal to the true class,

we obtain a new domain Ωf with samples Xf = (xfi )Nli=1 that are examples of cycle monotone
transformation of the target domain samples, and at the same time accurately classifying by source
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domain classifier fθ. Following corollary 1 to obtain monotonicity, the size of perturbation ε is set
≤ 1

2 min
n1,n2

‖xn1
− xn2

‖ for all xn in Xl.

As a result, for each sample in the labeled target domain, we obtain a corresponding sample in Ωf .
While Ωf is cycle monotone to the target domain, we have a low quadratic cost between each target
sample and its corresponding sample in Ωf and a higher quadratic cost between this sample and all
other samples in Ωf . To apply adaptation of classifier fθ on the target domain samples without labels
Ωt, we use OT to find a map between Ωsemi to Ωf , and then apply transport on samples without
labels Ωt.

Figure 1 demonstrates the difference between standard DA by OT and DA using source fiction. The
pipeline of learning OT for DA using source fiction Ωf is presented in Algorithm 1.

5 EXPERIMENTS

In this section, we present details and the results of the experiments. The goal of our experiments
is to demonstrate that our algorithm can improve the performance of fundamental discrete OT algo-
rithms and novel neural networks based OT methods.

5.1 DATASETS

Digits datasets: We evaluated our method on Digits datasets MNIST (LeCun & Cortes, 2010),
USPS (Hull, 1994), SVNH (Netzer et al., 2011), and MNIST-M (Ganin & Lempitsky, 2015). The
experiments are conducted using two settings on each dataset: (1) optimizing OT using available
labels to find a map between target and source domains and (2) optimizing OT to find a map between
target and source fiction domains. Each dataset consists of 10 classes of digits images with different
numbers of train and test samples.

Modern Office-31 dataset: Besides the Digits dataset that consists of only ten classes in each
domain, we tested the performance of OT with the source fiction method on the Modern Office-31
dataset (Ringwald & Stiefelhagen, 2021). The Modern Office-31 dataset is one of the most extensive
and diverse datasets for domain adaptation, with 31 classes in three domains: Amazon (A), Synthetic
(S), and Webcam (W). Compared to the Digits and original Office-31 dataset (Saenko et al., 2010),
this dataset includes synthetic to real transfer tasks, which is problematic. In our experiments, we
used DLSR (D) domain from the original Office-31 to properly estimate the proposed algorithm.

5.2 SETTINGS

Source classifier: For the source domain classifier, we trained ResNet50 (He et al., 2016) to achieve
90+ accuracy on the test set of each domain in Digits and Modern Office-31 dataset. The classifier
was trained using Adam (Ruder, 2016) optimizer with 1e-3 learning rate, the size of latent space
before the output layer was set equal to 2048. After training, we applied domain adaptation by
moving mass in the latent space of the source classifier.

Discrete OT: We tested several OT algorithms that apply semi-supervised adaptation: EMD,
Sinkhorn, SinkhornL1L2, SinkhornLPL2, and MapT. For experiments, we used the POT library
with quadratic cost distance in each method. Regularization size was equal to 4 for Sinkhorn,
SinkhornL1L2, SinkhornLPL2, and MapT; all other hyperparameters were similar to the de-
fault, presented in POT. For source fiction, we used 50 steps FSGD with ε equal to 0.45, we
find that such value allows to achieve strong perturbations and at the same time mostly satisfies
ε ≤ 1

2 min
n1,n2

‖xn1
− xn2

‖ requirement for all domains. The results are presented in Table 1. All

results are averaged over ten runs with different sets of labeled samples in the target domain. The
top part of the table represents standard settings the bottom part presents results using source fiction.
It is important to note that for mapping target to source, available target domain labels were used in
OT solvers to apply regularization (Courty et al., 2015, M5).

Neural OT: Following recent benchmarking results of neural OT (Korotin et al., 2021a), we choose
two methods to apply domain adaptation: W2GN (Korotin et al., 2019) and MM:R (Nhan Dam
et al., 2019; Korotin et al., 2021a). As potentials φ and ψ in neural OT methods, we used Dense
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ICNN (Korotin et al., 2019) with three hidden layers [64, 64, 32] for W2GN and MM:R methods.
Potentials were pertained to apply invariant transformation using Adam optimizer with lr equal to
1e-4. For Wasserstein’s objective, potentials were trained 300 epochs with Adam optimizer and lr
equal to 1e-3. The results are presented in Table 2, the top part of the table represents standard
settings with 10 and 100 known labels per class, and the bottom part presents results using source
fiction. In setting with the target to source mapping, labels were used to build class-wise pairs.

METHOD MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

SOURCE 22.0 79.0 74.1 87.37 33.56
EMD 21.2 68.7 79.2 79.48 56.1
SINKHORN 21.8 68.8 82.1 81.2 55.7
SINKHORNLPL1 21.8 68.8 84.8 82.73 55.7
SINKHORNL1L2 21.8 68.8 84.8 82.73 55.7
MAPOT 21.8 69.9 84.1 84.1 62.3
EMD 23.0 86.3 83.1 92.8 62.7
SINKHORN 25.5 86.2 83.8 92.8 62.9
SINKHORNLPL1 25.5 86.3 88.3 93.0 63.0
SINKHORNL1L2 25.5 86.3 88.3 93.0 63.0
MAPOT 25.5 88.4 89.3 94.8 64.5
AVERAGE BOOST 13.1 20.3 4.1 12.0 9.7

Table 1: Accuracy of domain adaptation by optimal transport in the latent space of ResNet50 model
with the 10 known labels for each class in the target domain on Digits datasets.

METHOD MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

W2GN 10) 20.4 79.9 89.1 91.2 74.1
MM:R (10) 20.3 80.1 78.0 90.0 63.8
W2GN (100) 20.4 79.9 89.1 91.2 74.1
MM:R (100) 20.3 80.2 78.0 90.2 63.8
W2GN (10) 21.3 70.6 63.8 89.6 54.2
MM:R (10) 21.5 75.1 79.0 85.3 70.6
W2GN (100) 24.4 74.4 85.1 92.0 68.5
MM:R (100) 21.5 79.1 79.1 89.2 70.3

Table 2: Accuracy of domain adaptation by Neural OT in the latent space of ResNet50 model with
the 10 and 100 known labels for each class in the target domain on Digits datasets.

METHOD A D A S A W D S D W S W
D A S A W A S D W D W S

TARGET 64.8 67.9 44.5 6.2 63.3 70.3 41.6 3.0 81.6 80.8 5.5 45.6
EMD 50.7 46.2 38.4 9.3 45.2 45.6 32.7 16.4 62.6 67.1 13.6 36.7
SINKHORN 51.1 46.3 38.0 10.1 44.7 45.5 32.9 16.5 63.5 67.1 13.1 37.2
SINKHORNLPL1 51.1 46.7 38.1 10.4 45.2 45.3 33.0 16.5 63.8 68.3 13.1 37.2
SINKHORNL1L2 51.1 46.7 38.1 10.4 45.0 45.3 33.0 16.5 63.8 68.3 13.1 37.2
MAPT 45.8 48.0 37.1 11.0 38.7 47.5 36.5 4.1 60.9 61.8 6.2 39.6
EMD 70.9 72.5 56.8 29.7 64.9 73.9 56.6 47.3 75.7 75.1 40.1 60.1
SINKHORN 70.6 72.7 57.0 31.0 65.2 73.9 56.7 47.3 77.4 74.8 39.9 60.0
SINKHORNLPL1 70.6 72.8 57.2 31.0 65.2 74.0 56.8 47.3 77.4 75.5 40.1 60.1
SINKHORNL1L2 70.6 72.8 57.2 31.0 65.2 74.0 56.8 47.3 77.4 75.5 40.1 60.1
MAPT 71.3 73.6 58.5 29.8 65.2 74.4 59.8 47.3 76.6 75.1 40.1 63.1
AVR BOOST 29.4 35.8 33.8 66.3 32.7 38.0 41.4 70.3 18.2 11.5 70.4 38.0

Table 3: Results of domain adaptation in the latent space of ResNet50 model on Modern Office-31
dataset in semi-supervised settings with the 10 known labels for each class in the target domain.

5.3 RESULTS

Our results show that adversarially based source fiction improves the performance of OT. For Digits
datasets, our approach achieves improvements on all domains, even on MNIST-SVHN domain adap-
tation, which is a complicated transformation task. Generally, the simplest EMD method achieved
less accuracy and MapT method accuracy slightly higher for all domains; group lasso and Laplacian
regularizations for Sinkhorn did not provide notable improvements. The mean and std of our results
are less than 10% for all experiments. On average, our method achieves mean improvement equal
to 32.7 for all adaptation tasks, with min improvement value equal to 4.1 and max value 70.4. The
results with only 3 known labels in class presented in Appendix 6
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Figure 2: Results of ablation on ε parameter for MNIST to M-MNIST (left) and SVHN to MNIST
(right) datasets. FSGD denotes how accurately the source domain model classifies source fiction
domain obtained with different ε value.

In our opinion, our method advances the performance while OT applications for mass moving as-
sume closeness of source Ωs and target Ωt distributions (Lee et al., 2019). This assumption does not
hold on many empirical datasets, especially in some Digits and Modern Office-31 domains.

While OT maps are cycle monotone, i.e., exhibit a specific structure of the map, thus, transportation
Ωt → Ωs via OT maps might not apply to some problems, see (Courty et al., 2015, Figure 3)
for counter-examples. Also, discrete OT techniques are susceptible to regularization terms (Courty
et al., 2015; Dessein et al., 2018; Paty & Cuturi, 2020) and require special scaling (Meng et al.,
2021).

As shown in our results, the performance of Neural OT methods is less dependent on the mono-
tonicity of the target domain. It is known that neural networks are data-intensive; using the source
fiction domain as a target, we have less training data, which makes optimization harder. However,
in a case with a higher number of labeled samples in the target domain, source fiction outperforms
the standard settings for Neural OT.

While adversarial examples via FSGD are noisy, there appear problems with learning Neural OT
on this data. We hypothesize that adversarial training (Goodfellow et al., 2014) for a robust source
classifier can be a solution for this problem. Adversarial attack on robust models allows interpolation
between classes and the generation of new data points that are close to human perception (Tsipras
et al., 2019). It has been shown that this property can be used for image generation, image-to-
image translation, in-painting, and super resolution (Santurkar et al.). With robust source classifier
source fiction domain will contain less noisy samples, which can improve the accuracy of Neural
OT methods.

5.4 ABLATION STUDY

In this section, we show the adaptation results with different ε values in the FSGD algorithm. We
evaluated few transportation tasks: MNIST to USPS, USPS to MNIST, MNIST to M-MNIST, and
MNIST to SVHN datasets with different values of ε. The value of 1

2 min
n1,n2

‖xn1
− xn2

‖ is various

for different datasets, for SVHN this value is 0.74, for MNIST is 0.29, for M-MNIST is 10.9 and for
USPS is equal to 0.85. These values were computed in the latent space of the ResNet50 classifier
trained on the corresponding dataset. For each domain, we applied source fiction with different
values of ε and then fit OT to find a map between target and source fiction domain. Our results
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show a trade-off between the size of perturbations and the cyclical monotonicity of the resulted
domain. See the adaptation accuracy with different ε in Figure 2. It can be noticed that when the
ε value becomes larger than 1

2 min distance between samples, the accuracy of adaptation decreases
since the set becomes less monotone. However, with a small value of ε, the adaptation achieves the
highest accuracy.

6 CONCLUSION

We propose an algorithm that modifies domain adaptation toward making target data closer to the
domain formed by an adversarial attack. We conducted a range of experiments on different datasets
and showed that the OT method works more efficiently in conjugate with our method. In some
domains for discrete OT methods, adaptation with source fiction achieved dramatic improvement.
The main limitation of our approach is that necessary to have access to the labels in the target
domain.

Multi-domain adaptation: Usually, in DA, it is necessary to modify classifier architecture and train
separately on each target domain (Ganin & Lempitsky, 2015; Long et al., 2018; 2015; 2017; Gretton
et al., 2012). OT solves DA by moving target domains samples closer to the source data, and it is
unnecessary to change or fine-tune the source classifier. In this paper, we presented an algorithm
that improves OT performance, which means that a single source domain classifier can be used to
make predictions on a range of target domains more effectively.

Data privacy: Nowadays, data are shared on separate devices and usually contain personal infor-
mation, which is inefficient for data transmission and may violate data privacy. Liang et al. (2020)
address a challenging DA setting without access to the source data for higher privacy. In our method,
we adapt the source classifier to the new domain without access to the source data, which can also
help avoid privacy issues.

Future work: Our method admits many straightforward applications:

• Neural OT for adversarial examples generation; fast generation of shareable adversarial
examples in a framework similar to Attack-Inspired GAN (Bai et al., 2021) with additional
supervising using gradient-based adversarial examples. See experiments using discrete OT
for this task in Appendix A.1.

• In our settings, discrete OT methods showed impressive results in domain adaptation with
a low number of labeled samples; this ability can be used for low data image recogni-
tion, where OT learns to map test dataset to the accurately classifying samples for model
learned on train dataset. Such experiments on digits and CIFAR-10 datasets are presented
in Appendix A.2

• While OT can solve domain adaptation with target shift and unbalanced classes (Redko
et al., 2019; Rakotomamonjy et al., 2020), promising directions is using of source fiction
for such problems too.

We expect our research to contribute the development of less complicated domain adaptation tech-
niques and open doors for the future application of adversarial attacks cycle monotonicity.

7 ETHICS

There is currently no regulatory framework for the use of adversarial attacks in a machine learning
environment. Adversarial attacks can be used in real-world scenarios and can harm infrastructures
with machine learning models in the pipeline. On the contrary, we examined the adversarial at-
tack property and showed how this technique can be used to improve the performance of machine
learning models. We do not provide any new methods for adversarial attacks or protection against
them.

9
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8 REPRODUCIBILITY

To reproduce our experiment we provide source code in supplementary materials, run
./run_experiments.sh to start the training process. Details on used hyperparameters are
presented in Section 5.2.
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Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Zahdi Alaya, Aurélie Boisbunon,
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A APPENDIX

A.1 ADVERSARIAL ATTACKS APPROXIMATION

In this section, we propose the usage of OT for Adversarial attack approximation. We used MNIST,
MNIST-M, and SVHN datasets and trained three Shirivatsava-like classifiers (Shrivastava et al.,
2016) on each dataset individually. To create adversarial examples, we used a simple FSGD method.
We transformed 10k images from each training dataset via FSGD into adversarial examples. Having
the original and adversarial examples, we used OT to find a map between them. The 10k test samples
without associated adversarial examples and labels were input to the OT algorithms too.

Method MNIST USPS M-MNIST SVHN CIFAR-10
No attack 99.0 99.0 98.0 98.0 81.0
EMD 4.0 4.0 4.0 2.0 7.0
Sinkhorn 5.0 4.0 5.0 3.0 7.0
Sinkhorn L1Lp 5.0 4.0 4.0 3.0 7.0
Sinkhorn L1L2 5.0 4.0 4.0 3.0 6.0

Table 4: Results of different OT algorithms on digits datasets, on the test set to the adversarial
examples transportation task, 10k samples from train set was used to build adversarial examples.

As shown in Table 4, the resulted examples significantly reduce the accuracy of the classifiers.
Also, the inference of adversarial examples using OT is much faster than iterative gradient descent
methods. Our results confirm that OT can naturally learn the distribution of adversarial examples.

A.2 IMAGE CLASSIFICATION

Figure 3: Examples of source fiction in input space for MNIST, USPS, M-MNIST and SVHN.

In comparison to the previous section here, we turn to the opposite side. Our idea is to use source
fiction for image classification using OT inside the single domain, in other words between test and
train data. While discrete OT methods showed impressive results in DA with a low number of
labeled samples, we propose to use mapping from the test set to the source fiction dataset of classifier
f(OT (x)). Source fiction in such a scenario is obtained by the adversarial attack to the model trained
on low number training samples. Shirivatsava-like classifiers (Shrivastava et al., 2016) were used for
training. We evaluated the Sinkhorn algorithm on MNIST and USPS datasets with 10 known labels
and CIFAR-10 with 100 known labels per class. Results are presented in Table 5.

METHOD MNIST USPS CIFAR-10
SOURCE 69.1 82.0 31.8
SINKHORN 72.2 82.0 55.7

Table 5: Results of application of Sinkhorn optimal transport in the latent space of classifiers with
10 known labels for each class.

In Figure 3 are presented examples of cycle monotone transformation for source fiction via adver-
sarial attack in the dataset space.

A.3 ADDITIONAL EXPERIMENTS ON DA

In this section, we provide additional experiments using the source fiction method:
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• Results with 3 (Table 6) and 100 (Table 7) known labels per class in target domain using
ResNet50 classifier.

• Digits dataset using Resnet18, with 10 (Table 8) and 100 (Table 9) known labels.
• ResNet18 trained one epoch on source domain Modern Office-31 datasets 10.
• Experiments on the Office-Caltech dataset, unfortunately, full dataset is not available pub-

licly now, so we used an abbreviated version, results are presented in Table 11.
• Resnet18 adaptation on CIFAR10-STL10 adaptation task (Table 12).

METHOD MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

SOURCE 22.0 79.0 63.0 80.0 60.0
EMD 21.3 72.5 66.1 67.8 44.5
SINKHORN 21.7 73.0 67.3 68.7 44.6
SINKHORNLPL1 21.7 73.4 67.3 68.8 45.0
SINKHORNL1L2 21.7 73.4 67.3 68.8 45.0
MAPT 21.8 73.4 67.4 68.8 45.0
EMD 23.11 83.5 82.6 86.5 54.7
SINKHORN 23.7 85.0 82.6 86.8 54.8
SINKHORNLPL1 23.7 85.2 86.3 86.9 54.9
SINKHORNL1L2 23.8 85.2 86.3 86.9 54.9
MAPT 23.9 85.3 86.3 86.9 55.1

Table 6: Accuracy of domain adaptation by optimal transport in the latent space of ResNet50 model
with only 3 known labels for each class in the target domain on Digits datasets. The top part of the
table represents standard settings the bottom part presents results using source fiction.

METHOD MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

SOURCE 21.68 72.54 70.0 83.3 24.3
EMD 24.24 73.5 83.1 80.1 53.6
SINKHORN 21.6 74.5 84.0 80.4 55.6
SINKHORNLPL1 21.6 74.3 85.5 81.1 55.6
SINKHORNL1L2 21.6 74.3 85.5 81.1 55.6
MAPT 21.6 74.3 85.5 81.1 55.6
EMD 25.8 85.8 86.1 91.2 52.4
SINKHORN 27.8 85.8 86.8 91.2 56.3
SINKHORNLPL1 27.8 86.0 88.0 91.6 56.3
SINKHORNL1L2 27.8 86.0 88.0 91.6 56.3
SINKHORNL1L2 27.9 86.1 88.0 91.6 56.3
MAPT 27.9 86.1 88.0 91.6 56.3

Table 7: Accuracy of domain adaptation by optimal transport in the latent space of ResNet50 model
with 100 known labels for each class in the target domain on Digits datasets. The top part of the
table represents standard settings the bottom part presents results using source fiction.
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METHOD MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

SOURCE 22.0 79.0 63.0 80.0 60.0
EMD 15.4 64.3 77.0 80.8 70.8
SINKHORN 16.0 65.2 77.9 81.2 70.9
SINKHORN L1LP 16.8 65.7 79.8 85.1 71.8
SINKHORN L1L2 16.0 65.7 79.8 85.1 71.8
MAPT 16.1 67.1 79.8 86.2 71.8
EMD 35.1 87.1 85.2 95.2 82.3
SINKHORN 38.0 88.3 88.3 95.2 83.5
SINKHORN L1LP 37.1 88.3 88.2 95.2 83.5
SINKHORN L1L2 37.1 88.3 88.3 95.2 83.5
MAPT 38.0 90.0 88.2 95.2 83.5

Table 8: Accuracy of domain adaptation by optimal transport in the latent space of ResNet18 model
with the 10 known labels for each class in the target domain on Digits datasets. The top part of the
table represents standard settings the bottom part presents results using source fiction.

METHOD MNIST SVHN MNIST USPS MNIST
SVHN MNIST USPS MNIST M-MNIST

SOURCE 22.0 79.0 63.0 80.0 60.0
EMD 18.4 71.3 85.0 88.0 75.1
SINKHORN 20.0 76.2 85.3 86.0 81.9
SINKHORN L1LP 20.8 76.5 85.2 85.0 81.7
SINKHORN L1L2 20.0 75.5 85.2 86.0 81.7
MAPT 20.9 76.2 85.0 86.9 81.6
EMD 24.3 89.1 87.3 96.0 86.3
SINKHORN 27.1 90.0 89.3 96.0 87.1
SINKHORN L1LP 28.3 90.0 89.2 96.0 87.1
SINKHORN L1L2 28.3 90.0 89.2 96.0 88.1
MAPT 29.0 90.2 89.3 96.2 88.0

Table 9: Accuracy of domain adaptation by optimal transport in the latent space of ResNet18 model
with the 100 known labels for each class in the target domain on Digits datasets. The top part of the
table represents standard settings the bottom part presents results using source fiction.

METHOD A D A S A W D S D S W
D A S A W A S D W W S

SOURCE 37 43 25 8 57 41 20 2 65 3 27
EMD 57 42 27 16 53 38 32 28 53 19 37
SINKHORN 58 43 27 17 53 40 32 29 54 20 38
SINKHORNLPL1 58 43 27 17 53 40 32 29 53 20 38
SINKHORNL1L2 58 43 27 17 53 40 32 29 53 20 38
MAPT 58 43 27 17 53 40 32 29 53 20 38
EMD 76 67 51 44 73 63 59 60 76 45 61
SINKHORN 77 67 51 43 75 63 59 57 77 41 60
SINKHORNLPL1 77 67 51 43 75 63 59 57 77 41 60
SINKHORNL1L2 77 67 51 43 75 63 59 57 77 41 60
MAPT 77 67 51 43 75 63 59 57 77 41 60
AVERAGE BOOST 25 37 47 63 27 39 45 53 30 57 39

Table 10: Results of domain adaptation in the latent space of ResNet18 model on Modern Office-31
dataset in semi-supervised settings with the 10 known labels for each class in the target domain

A.4 ENERGY-BASED MODELS FOR EPSILON FREE SOURCE FICTION

As shown in section 5, our algorithm depends on the size of perturbations, to avoid it and make
our method ε free, we propose to use an input convex energy-based classifier. Energy-based learn-
ing provides a unified framework for many probabilistic and non-probabilistic approaches, partic-
ularly for non-probabilistic training of graphical models, including discriminative and generative
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METHOD A W A A D D D D
W A C D A C W C

SOURCE 49 27 65 70 42 26 62 36
EMD 42 44 30 59 40 24 53 38
SINKHORN 43 43 30 60 37 24 52 38
SINKHORNLPL1 42 43 30 60 37 25 53 38
SINKHORNL1L2 42 43 30 60 37 25 53 38
MAPT 42 43 30 60 37 25 53 38
EMD 54 51 52 68 67 39 69 47
SINKHORN 54 51 52 68 67 39 69 48
SINKHORNLPL1 54 51 52 68 67 39 69 48
SINKHORNL1L2 54 51 52 68 67 39 69 48
MAPT 54 51 52 68 67 39 69 48
AVERAGE BOOST 21 15 42 12 3 36 23 20

Table 11: Results of domain adaptation in the latent space of ResNet18 model on Office-31-Caltech
dataset in semi-supervised settings with the 10 known labels for each class in the target domain

METHOD SOURCE EMD SINKH SINKH L1LP SINKH L1L2 MAPT
CIFAR→STL 37.0 48.1 48.1 48.0 48.0 48.1
CIFAR→SF 51.1 51.0 51.0 51.0 51.0
STL→CIFAR 75.0 74.1 74.1 74.1 74.1 74.1
STL→SF 76.2 76.2 76.2 76.2 76.2

Table 12: Results on MNIST and USPS dataset in semi-supervised settings. U is USPS, M is
MNIST, SF is source fiction. The top table presented results for the settings with the 10 known
labels for each class in the target domain, and the bottom table presents the result with the 100
known labels for each class

.

approaches and conditional random fields, graph-transformer networks, maximum margin Markov
networks, and several manifold learning methods (LeCun et al., 2006). In energy-based settings for
some given fixed x and possibly some fixed elements of y we can perform inference by:

Energy-based learning approaches can be considered as an alternative to probabilistic estimation for
prediction, classification, or decision-making tasks. The energy-based representation must capture
both the discriminative interactions between x and y and allow for efficient combinatorial optimiza-
tion over y.

A.4.1 CONVEX ENERGY-BASED INFERENCE

Here is our approach in more detail. First of all, we build a model fθ that is Partly Input Convex
Neural Network (PICNNs) (Amos et al., 2017) over x instead of y (Amos et al., 2017), it is made
possible to apply convex inference over x. Secondary we train our model fθ on the source domain
(Xs, Ys) in setup equal to Structured Prediction Energy Networks (SPEN) (Belanger & McCallum,
2016), but instead of multi-label classification, we simply perform multi-class classification.

In the next step, we apply the core idea of our approach, we use a model trained on (Xs, Ys),
to create a source fiction domain which is a cyclical monotone to the target domain (Xt, Yt) and
contain features from the source domain samples. We simply input xti samples to the model fθ and
apply inference over it with the fixed yti :

arg min
x
f(x, y; θ) (13)

As stated before, according to Rockfellar (Rockafellar, 1966) and Breirer’s theorems (Theorem
1.22 (Santambrogio, 2015)), we know that the gradient of a convex function is cyclical monotone
and solves a Monge problem (Villani, 2008).
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We used the gradient descent method to inference and while our fθ is input convex over the x,
applying this procedure over the target samples we can collect a new source fiction domain (Xf , Yf )
where Xf samples are class-wise cycle monotone to Xt. And according to the theorems presented
before, there exists optimal transport that can solve transportation from Xt to Xe inside each class.
Connecting resulted domain with penalty Ωsemi(γ) = 〈γ,M〉 by a ns × nt cost matrix M〉 where
M(i, j) = 0 when ysi = ytj and +∞ otherwise (Courty et al., 2016; Yan et al., 2018) we achieve
improvement in accuracy without ε value to restrict the seize of perturbations.

A.4.2 EXPERIMENTS

We tested our model on MNIST (LeCun & Cortes, 2010) and USPS datasets (Hull, 1994). In both
experiments, we train PICNNs with a one hidden layer size of 100, in the SPEN settings using
SGD (Ruder, 2016) optimizer with a learning rate equal to 1e-3 and momentum equal to 0.9.

METHOD SOURCE EMD SINKH SINKH L1LP SINKH L1L2 MAPT
U→M 28.84 39.33 37.76 31.14 11.8 28.15
U→SF - 76.13 76.13 76.13 76.13 68.21
M→U 28.56 34.43 30.42 25.75 14.29 28.68
M→SF - 68.72 62.74 57.92 16.02 56.11

U→M 28.84 45.54 35.52 29.19 9.41 33.58
U→SF - 86.39 86.39 86.34 86.34 72.09
M→U 28.56 45.01 29.9 26.09 9.68 48.12
M→SF - 85.80 77.60 69.31 12.59 61.35

Table 13: Results on MNIST and USPS dataset in semi-supervised settings. U is USPS, M is
MNIST, SF is source fiction. The top table presented results for the settings with the 10 known
labels for each class in the target domain, and the bottom table presents the result with the 100
known labels for each class

.

Based on the POT library (Flamary et al., 2021) we tested the different variations of discrete optimal
transport in this task. First of all, we tested and basic EMD and Sinkhorn (Sinkh) (Cuturi, 2013)
algorithms. Then we tested regularized versions of the Sinkhorn algorithm with a group lasso regu-
larization (L1L2) and Laplacian regularization (L1LP) (Courty et al., 2015). Finally, our method is
benchmarked on MapT (Perrot et al., 2016).

The results presented in Table 13. In the table, we can see that mapping to the source fiction do-
main improves the accuracy of the optimal transport algorithms, but due to inference problems with
energy-based models, accuracy is less than in settings with standard networks.
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