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ABSTRACT

Hallucinations in LLMs pose a significant concern to their safe deployment in real-
world applications. Recent approaches have leveraged the latent space of LLMs for
hallucination detection, but their embeddings, optimized for linguistic coherence
rather than factual accuracy, often fail to clearly separate truthful and hallucinated
content. To this end, we propose the Truthfulness Separator Vector (TSV), a
lightweight and flexible steering vector that reshapes the LLM’s representation
space during inference to enhance the separation between truthful and hallucinated
outputs, without altering model parameters. Our two-stage framework first trains
TSV on a small set of labeled exemplars to form compact and well-separated
clusters. It then augments the exemplar set with unlabeled LLM generations,
employing an optimal transport-based algorithm for pseudo-labeling combined
with a confidence-based filtering process. Extensive experiments demonstrate that
TSV achieves state-of-the-art performance with minimal labeled data, exhibiting
strong generalization across datasets and providing a practical solution for real-
world LLM applications.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in natural language
understanding and generation, showcasing their potential as general-purpose task solvers (Zhao
et al., 2023). Despite their success, LLMs can generate hallucinated outputs—statements that appear
plausible but factually inaccurate or unsupported. Such hallucinations can undermine user trust and
lead to potentially harmful consequences, especially in high-stake applications (Zhang et al., 2023;
Pal et al., 2023). Therefore, to be truly trustworthy, an LLM must not only generate text that is
consistent with user prompts but also possess the ability to detect hallucinations and alert users when
they occur.

Recent work has explored leveraging the latent space of LLMs to identify hallucinations (Burns et al.,
2023; Azaria & Mitchell, 2023; Marks & Tegmark, 2024; Yin et al., 2024a; Du et al., 2024; Chen
et al., 2024a; Li et al., 2024; Kossen et al., 2024). These approaches typically rely on the embeddings
of off-the-shelf LLMs to classify outputs as truthful or hallucinated. However, pre-trained LLMs are
optimized for linguistic coherence using a next-token prediction objective, often prioritizing fluency
and syntactic correctness over factual accuracy (Radford et al., 2019). As a result, their internal
representations, while powerful for general text generation, can fail to provide a clear separation
between truthful and hallucinated content (see real-world example in Figure 1a). This motivates a
key question:

How can we shape the latent space of an LLM for hallucination detection?

Instead of fine-tuning the LLMs, which is computationally expensive and alters the model’s parame-
ters (Gekhman et al., 2024), we propose learning a lightweight vector, called Truthfulness Separator
Vector (TSV). As illustrated in Figure 1b, this learnable vector is introduced during inference and
adjusting the internal representations of the LLM to enhance the separation between truthful and
hallucinated generations, without modifying the model’s parameters. TSV focuses on reshaping
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Figure 1: T-SNE visualization (Van der Maaten & Hinton, 2008) of the last-token embeddings from
the final layer of LLaMA-3.1-8B on the TruthfulQA test set. (a) Pre-trained model’s embeddings
exhibit significant overlap, whereas (b) adding TSV to latent states of an intermediate LLM layer
effectively separates the embeddings of truthful and hallucinated data.

the latent space for classifying hallucinated responses, a fundamentally different objective from
mitigating hallucinated generations (Li et al., 2024; Chen et al., 2024b; Marks & Tegmark, 2024). To
the best of our knowledge, this is the first exploration of steering representations for hallucination
detection.

Learning TSV is appealing yet challenging due to the lack of large-scale human-labeled datasets
with truthfulness annotations for LLM generation, which are costly and time-intensive to create. To
overcome this, we propose a two-stage training framework. In the initial stage, a small exemplar
set of labeled data is used to guide the learning process. The objective in this stage is to encourage
the steered embeddings to form compact clusters around class prototypes, representing truthful and
hallucinated generations. In the second stage, we augment the training data by leveraging unlabeled
LLM generations, which are freely available for deployed LLM systems through user queries and
interactions (Du et al., 2024). To assign pseudo-labels to these unlabeled samples, we propose an
optimal transport-based algorithm, which aligns unlabeled data embeddings with class prototypes
by minimizing transport costs while accounting for the imbalanced class proportions. Furthermore,
a confidence-based sample selection is then used to include only the most reliable pseudo-labeled
samples in the training process. Together, these stages enable TSV to effectively separate truthful and
hallucinated representations while significantly reducing the reliance on human labeling.

Extensive experiments demonstrate the strong performance of our method across diverse datasets.
On the challenging TruthfulQA benchmark (Lin et al., 2022a), our approach achieves a significant
+12.8% improvement in hallucination detection accuracy (AUROC) compared to state-of-the-art
methods. Notably, our method reaches performance comparable to the fully-supervised upper bound
(e.g., 84.2% vs. 85.5% on TruthfulQA), while using a small labeled exemplar set with only 32
examples. TSV also exhibits strong generalization capabilities, maintaining competitive performance
when applied to unseen datasets.

Our key contributions are summarized as follows:

1. We propose the Truthfulness Separator Vector (TSV), a lightweight approach to separate
truthful and hallucinated representations without fine-tuning the LLM, which is largely
unexplored in hallucination detection.

2. We develop an optimal transport-based pseudo-labeling framework with confidence-based
sample selection to leverage unlabeled LLM generations effectively.

3. We demonstrate TSV’s superior performance and perform in-depth ablation studies to
evaluate the impact of various design choices in TSV and validate its scalability across large
LLMs and diverse datasets. These findings provide a systematic understanding of leveraging
steering vector and limited labeled data for hallucination detection, paving the way for future
research.
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Figure 2: Overall framework. In the initial training phase, Truthfulness Separator Vector (TSV) is
trained on an exemplar set. After initial training, (1) we assign soft pseudo-labels to the unlabeled
data, (2) select confident pseudo-labeled samples, and (3) augment the exemplar set with selected
samples. Finally, we retrain TSV with the augmented set. Best viewed in color.

2 PROBLEM SETUP

Definition 2.1 (Hallucination detector). We define the truthful distribution Ptrue as the joint distri-
bution over pairs of the input prompts and their corresponding truthful generations. Let V denote
a vocabulary space of a causal LLM, where each individual token is denoted as x ∈ V . Given an
input prompt xprompt = (x1, . . . , xn) and a model generation x̃ = (xn+1, . . . , xn+m), the task of
hallucination detection aims to learn a binary predictor G : X → {0, 1}:

G(xprompt, x̃) =

{
1, if (xprompt ⊕ x̃) ∼ Ptrue

0, otherwise
, (1)

where xprompt ⊕ x̃ = (x1, . . . , xn, xn+1, . . . , xn+m) represents the ordered concatenation of the
prompt xprompt and the generation x̃.

Following the practical setup in recent work (Du et al., 2024), we utilize unlabeled LLM generations
in the wild, which can be collected in vast quantities through user interactions with LLMs. This data
can be freely collectible for any deployed LLM system, yet often contains a mixture of truthful and
hallucinated content. Formally,

Definition 2.2 (Unlabeled data). We define the unlabeled pairs of input prompt xi
prompt and LLM

generation in the wild x̃i to be the following mixture of distributions:

Punlabeled = (1− π)Ptrue + πPhallucination,

where π ∈ [0, 1] is the fraction of hallucinated generation.

The unlabeled dataset, DU = {(x1
prompt ⊕ x̃1), . . . , (xM

prompt ⊕ x̃M )}, is independently and identically
sampled from the mixture distribution Punlabeled. Here, M is the total number of unlabeled samples,
and the tilde symbolizes the uncertain nature of the generation.

Exemplar set. In addition to the unlabeled data, we incorporate a small, practical-to-annotate set
of labeled exemplars to guide the learning of hallucination detector. Specifically, pairs of input
prompt eiprompt and LLM-generated responses ẽi can be annotated with ground-truth labels ci ∈ C =
{truthful, hallucinated}. This forms the labeled exemplar set: DE = {(e1prompt⊕ẽ1, c1), . . . , (eNprompt⊕
ẽN , cN )}, where N is the total number of labeled exemplars. In this paper, we will show that N can
be kept very small (e.g., 32) to minimize annotation costs while still providing valuable guidance for
the learning process.

3 METHOD

Overview. Since LLMs do not inherently produce optimal embeddings to separate truthful and
hallucinated data, our framework introduces a learnable vector, named Truthfulness Separator Vector
(TSV), designed to enhance this separation within the representation space of the LLM. As illustrated
in Figure 2, TSV is added into the latent states of the model during inference, which avoids the
computational overhead associated with retraining or fine-tuning the model. In what follows, we
describe how to learn TSV using unlabeled data and a small exemplar set.
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3.1 HOW TO LEARN TSV? INITIAL TRAINING PHASE

TSV is defined as a single trainable vector v ∈ Rd, which can be plugged into pre-trained LLMs after
the generation is completed—without compromising their original language capabilities. Given a
sequence of tokens (e.g., input prompt and generation pair), we add v to h(l), which represent the
d-dimensional latent states at an intermediate layer l:

h(l) ← h(l) + λv, (2)

where λ is a hyperparameter which controls the strength of the steering, and v is shared across all
token positions. This intervention affects the embeddings in subsequent layers l + 1, . . . , L via the
non-linear transformations inherent in LLM architecture. The last-token embedding at the final layer
after applying TSV is:

Φfinal(h
(l) + λv) = ϕL ◦ ϕL−1... ◦ ϕl+1(h

(l) + λv),

where ϕl indicates the non-linear transformation in layer l of the transformer model. In Section 4.3,
we perform ablations on different layers of applying TSV.

Training objective of TSV. To effectively detect hallucinations, it is crucial to establish a clear
decision boundary between truthful and hallucinated data. To this end, we propose a training objective
that learns TSV to separate embeddings between two classes C = {truthful, hallucinated}. This is
achieved by performing maximum likelihood estimation (MLE) on the exemplar set DE:

argmax
v

|DE|∏
i=1

p(ci | Φfinal(h
(l)
i + λv)), (3)

where i is the index of training sample in DE.

To realize the MLE objective, we need to explicitly model the probability distribution p(ci |
Φfinal(h

(l)
i + λv)). In particular, we model the last-token embeddings at the final layer using a

hyperspherical distribution with the unit norm, where truthful and hallucinated data each form dis-
tinct clusters. This modeling aligns with the structure of embeddings typically observed after the
RMSNorm layer in practical Transformer models (Dubey et al., 2024; Yang et al., 2024), where the
norms of the embeddings are similar but directions can vary (see verification in Appendix F). This
can be naturally characterized by the von Mises-Fisher distribution, a classical probability distribution
in directional statistics (Mardia & Jupp, 2009), which is analogous to spherical Gaussian distributions
for features with unit norms. Under this model, the class conditional probability is given by:

p(c | rv) =
exp

(
κµ⊤

c r
v
)∑

c′ exp
(
κµ⊤

c′r
v
) , (4)

where rv = Φfinal(h
(l) + λv)/∥Φfinal(h

(l) + λv)∥2, represents the normalized last-token embedding
at the final layer, µc ∈ Rd is the class prototype for class c, κ ≥ 0 is the concentration parameter
controlling how tightly the distribution is clustered around the mean direction µc.

Empirical loss function. Under the probability model defined above, our MLE objective in Eq. 3
is equivalent to minimizing the negative log-likelihood over the exemplar set DE. This encourages
embeddings within each class to cluster tightly around their respective class centroids:

L = − 1

|DE|

|DE|∑
i=1

∑
c∈C

q(c | rvi ) log p(c | rvi ) (5)

where q(· | rvi ) denotes the target label distribution, which can be either ground-truth or pseudo-label.

Prototype update. In practice, the prototype vector µc can be efficiently updated using exponential
moving average Wang et al. (2022):

µc ← normalize[αµc + (1− α)r̄v], (6)

where α is the decay rate, and r̄v =
∑

i
q(c|rvi )·r

v
i∑

j q(c|rvj )
denotes the mean of the normalized embeddings

from class c.
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3.2 HOW TO LEARN TSV? AUGMENTED TRAINING PHASE

While we demonstrate that leveraging a few labeled examples helps hallucination detection (Sec-
tion 4.3), these examples may not fully capture the diversity inherent in the truthful and hallucinated
data distributions. To address the limitation, we propose to further incorporate unlabeled training
data to augment the learning process.

Label assignment via optimal transport. Assigning labels (truthful vs. hallucinated) to unlabeled
data is a non-trivial task, particularly because we aim to generate pseudo-labels that align with the
class distribution of LLM generations, which are naturally imbalanced (Hu et al., 2024). To this end,
we propose leveraging Optimal Transport (OT) (Villani et al., 2009), which provides a principled
approach to label assignment. This approach aligns unlabeled data embeddings with class prototypes
by minimizing transport costs while respecting the imbalanced class proportions. Given unlabeled
dataset DU with M samples, the optimization problem is formulated as:

min
Q∈[0,1]M×2

−
M∑

m=1

∑
c∈C

Qm,c logPm,c − ϵH(Q)

s.t. Q12 =
1

M
1M ,

Q⊤1M = w,

(7)

where 1M ∈ RM denotes an M -dimensional vector of ones, Qm,c =
1
M q(c|rvm) represents an entry

of the matrix Q ∈ RM×2 for assigned joint pseudo-label probabilities, and Pm,c = 1
M p(c|rvm)

denotes an entry of P ∈ RM×2 for joint probabilities estimated by our model after initial training,
where p(c|rvm) is computed with Eq. 4. The first constraint ensures that for each unlabeled sample, the
total probability mass of being assigned to two classes adds up to 1. The second constraint ensures that
the number of samples assigned to each class matches the expected class probability distribution w ∈
R2. Here, H(Q) = −

∑
ij Qij logQij is the entropy function, and ϵ is a hyperparameter controlling

the smoothness of the assignment. The entropy regularization term enables the computationally
efficient Sinkhorn algorithm (Cuturi, 2013) to solve the problem. The minimizer of Eq. 7 can be
expressed as:

Q = diag(α)P1/ϵdiag(β), (8)

where α ∈ RM and β ∈ R2 are scaling coefficient vectors ensuring that the resulting Q forms a valid
probability matrix. These scaling coefficients are determined iteratively using the following updates:

α← 1

M

1M

P1/ϵβ
, β ← w

(P1/ϵ)⊤α
. (9)

We use the class distribution of the exemplar set as a proxy for w, assuming a missing completely
at random (MCAR) scenario, which is a natural assumption for data collected in real-world set-
tings (Van Buuren, 2018).

Confident data selection. Since pseudo-labels predicted for the unlabeled data may be incorrect
and thus introduce noise into the learning process, we propose selecting only the most “confident”
pseudo-labeled samples from the unlabeled dataset DU, which are most likely to be correct. We
measure the model’s predictive uncertainty using the cross-entropy between the assigned pseudo-label
distribution q and the model’s predicted distribution p. Specifically, for each unlabeled sample ri, we
define:

Ω =

{
−
∑
c∈C

q(c | rvi ) log p(c | rvi )

∣∣∣∣∣ i ∈ IDU

}
, (10)

where IDU denotes the index set of DU. We then select K samples from DU to form the subset DS:

DS = {Dj
U | j ∈ TopKi∈IDU

(−Ωi)}, (11)

where TopK denotes the indices of the K samples with the lowest uncertainty values, and Dj
U is j-th

data in DU.
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Exemplar set augmentation. Finally, we augment the original training datasetDE by incorporating
the selected samples DS along with their pseudo-labels:

DE ← DE ∪ DS. (12)

The learning process described in Section 3.1 is then repeated using the augmented dataset until
convergence. We summarize the full algorithm in Appendix G.

3.3 INFERENCE-TIME HALLUCINATION DETECTION

During inference, we leverage the learned class prototypes µc to perform hallucination detection.
Specifically, we compute the truthfulness score as the normalized probability of a test input’s
embedding vector rvtest being assigned to the truthful class. The scoring function is defined as:

S(x′) =
exp

(
κµ⊤

truthfulr
v
test

)∑
c′ exp

(
κµ⊤

c′r
v
test

) . (13)

Based on the scoring function, the hallucination detector is Gζ(xtest) = 1{S(xtest) ≥ ζ}, where 1
indicates the truthful class and 0 indicates otherwise. The task can be seamlessly switched back
to the original text generation by simply removing TSV v, restoring the model’s initial generation
capabilities without additional modifications.

4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate our method on four generative question-answering (QA) tasks: three
open-domain QA datasets–TruthfulQA (Lin et al., 2022a), TriviaQA (Joshi et al., 2017), and NQ
Open (Kwiatkowski et al., 2019); and a domain-specific QA dataset–SciQ (Welbl et al., 2017). For
evaluation, 25% of the QA pairs from each dataset are reserved for testing. Consistent with Du et al.
(2024), 100 QA pairs are used for validation, while the remaining samples simulate the unlabeled
training dataset. We randomly sample N = 32 pairs from TruthfuQA, and 64 pairs from the other
datasets to construct an exemplar set, with K = 128 used for all experiments. Implementation details
are provided in Appendix B.

Models. We evaluate our method using two families of widely adopted open-source LLMs which
provide accessible internal representations: LLaMA-3.1-8b & 70b (Dubey et al., 2024), and Qwen-
2.5-7b & 14b (Yang et al., 2024). By default, we used greedy sampling for the generation.

Baselines. We evaluate our approach against a diverse set of 11 baseline methods, including existing
state-of-the-art. The baselines are categorized as follows: (1) logit-based methods–Perplexity (Ren
et al., 2022), Length-Normalized Entropy (LN-entropy) (Malinin & Gales, 2021) and Semantic
Entropy (Kuhn et al., 2023); (2) consistency-based methods–Lexical Similarity (Lin et al., 2024),
SelfCKGPT (Manakul et al., 2023) and EigenScore (Chen et al., 2024a); (3) verbalized methods–
Verbalize (Lin et al., 2022b) and Self-evaluation (Kadavath et al., 2022); and (4) internal state-based
methods–Contrast-Consistent Search (CCS) (Burns et al., 2023), HaloScope (Du et al., 2024), and
SAPLMA (Azaria & Mitchell, 2023). To ensure a fair comparison, all methods are evaluated on
the same test dataset, using their default experimental configurations as specified in the respective
literature.

Evaluation. Following previous works Kuhn et al. (2023); Du et al. (2024), we evaluate the
performance with the area under the curve of the receiver operator characteristic (AUROC). We
consider the generation truthful when the similarity score between the generation and the reference
answer is larger than a threshold of 0.5. Following Lin et al. (2022a), we utilize BLEURT (Sellam
et al., 2020) to measure the similarity. Additionally, we show that our method is robust when evaluated
using GPT-4o (Hurst et al., 2024) in Appendix D.7.

4.2 MAIN RESULTS

In Table 1, we compare TSV with competitive hallucination detection methods from the literature.
TSV demonstrates state-of-the-art performance, significantly outperforming other methods on both
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Table 1: Main results. Comparison with competitive hallucination detection methods on different
datasets. “Single sampling” indicates whether the approach requires multiple generations during
inference. For our method, the mean and standard deviation are computed across three different
random seeds. ♣ denotes methods trained on fully labeled datasets. All values are percentages
(AUROC), and the best results are highlighted in bold.

Model Method Single Sampling TruthfulQA TriviaQA SciQ NQ Open

LLaMA-3.1-8b

Perplexity ✓ 71.4 76.3 52.6 50.3
LN-Entropy ✗ 62.5 55.8 57.6 52.7
Semantic Entropy ✗ 59.4 68.7 68.2 60.7
Lexical Similarity ✗ 49.1 71.0 61.0 60.9
EigenScore ✗ 45.3 69.1 59.6 56.7
SelfCKGPT ✗ 57.0 80.2 67.9 60.0
Verbalize ✓ 50.4 51.1 53.4 50.7
Self-evaluation ✓ 67.8 50.9 54.6 52.2
CCS ✓ 66.4 60.1 77.1 62.6
HaloScope ✓ 70.6 76.2 76.1 62.7
SAPLMA♣ ✓ 78.2 83.7 77.3 62.8
TSV (Ours) ✓ 84.2±0.2 84.0±0.5 85.8±0.4 76.1±0.7

TSV♣ (Ours) ✓ 85.5±0.1 87.2±0.2 88.6±0.1 78.0±0.2

Qwen-2.5-7b

Perplexity ✓ 65.1 50.2 53.4 51.2
LN-Entropy ✗ 66.7 51.1 52.4 54.3
Semantic Entropy ✗ 66.1 58.7 65.9 65.3
Lexical Similarity ✗ 49.0 63.1 62.2 61.2
EigenScore ✗ 53.7 61.3 63.2 57.4
SelfCKGPT ✗ 61.7 62.3 58.6 63.4
Verbalize ✓ 60.0 54.3 51.2 51.2
Self-evaluation ✓ 73.7 50.9 53.8 52.4
CCS ✓ 67.9 53.0 51.9 51.2
HaloScope ✓ 81.3 73.4 76.6 65.7
SAPLMA♣ ✓ 81.7 82.0 81.5 67.9
TSV (Ours) ✓ 87.3±0.4 79.8±0.9 82.0±0.4 73.8±0.7

TSV♣ (Ours) ✓ 88.7±0.1 84.2±0.5 84.8±0.3 76.2±0.3

the LLaMA-3.1-8b and Qwen-2.5-7b models. We show that unsupervised methods often struggle
with inconsistent performance across different models and data distributions as the representations
in LLMs are not inherently aligned with the hallucination detection task, making them less reliable
for safety-critical applications. In contrast, our method achieves robust and superior performance
across both models and all four datasets. In particular, TSV outperforms HaloScope by 13.6% on
TruthfulQA with LLaMA-3.1-8b. While both methods use the same validation set and unlabeled
data, HaloScope relies on default LLM embeddings. By contrast, our method leverages a small
exemplar set and shapes the latent space to better align with the hallucination detection task, enabling
significantly improved performance while remaining practical. Our method is also computationally
efficient at the inference stage with a complexity of O(m2), where m is the number of generated
tokens. In contrast, some logit and consistency-based methods require multiple sampling, resulting
in a higher complexity of O(Am2), where A can be over 10 in practice. Qualitative results are
in Appendix E, and experiments with larger models (LLaMA-3.1-70b & Qwen-2.5-14b) are provided
in Appendix D.6.

Comparison with fully supervised methods. We compare our approach with a fully supervised
method SAPLMA♣, which trains a binary classifier using the default embeddings, fully labeled as
truthful or hallucinated. As shown in Table 1, with only 32 labeled examples, TSV outperforms
SAPLMA♣ with full supervision by 6.0% on TruthfulQA, emphasizing the importance of shaping
the latent space and the label-efficiency of our method. We further evaluate our method by comparing
it with a fully supervised upper bound (TSV♣). Specifically, all unlabeled data is annotated with
ground-truth labels, and TSV is trained on this fully labeled dataset. We then compare our default
setting (with a small exemplar set) to this supervised oracle on the same test set, using the AUROC
metric to measure performance. Our evaluation, based on the LLaMA-3.1-8b model, demonstrates
that our method with 32 examples achieves a hallucination detection AUROC of 84.2% on TruthfulQA,
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Figure 3: (a) Effect of steering location (layer index and MHA components) on TruthfulQA per-
formance, (b) effect of steering strength λ (Section 3.1), and (c) effect of the number of labeled
exemplars. All results are reported as AUROC using LLaMA-3.1-8b.

closely matching the performance of the fully supervised oracle (AUROC: 85.5%). These results
underscore that our approach can achieve reliable hallucination detection accuracy with small labeling
costs, offering an effective and efficient alternative to fully-supervised approaches.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to evaluate the impact of key design choices in TSV. We
explore further ablation studies (e.g., generalization across datasets) in Appendix D.

How does the steering location affect performance? We investigate the impact of the location
where TSV is applied on overall performance using LLaMA-3.1-8b. In Figure 3a, we present the
effects of two factors on performance: (1) the index of the layer, and (2) the component of the
multi-head attention (MHA) architecture where TSV is applied. In particular, the MHA can be
conceptually expressed as:

fi+1 = fi +QiAttni(fi), (14)

where fi represents the output of the i-th transformer block, Attni(fi) denotes the output of the
self-attention module in the i-th block, and Qi is the weight of the feedforward layer. We train and
apply TSV at three distinct locations within the MHA architecture: (1) residual stream f , (2) MLP
output QAttn(f), and (3) attention output Attn(f). We find that applying TSV in the early-middle
layers (e.g., 4th–10th layers) is the most effective for guiding representations in the hallucination
detection task. Performance improves as TSV is applied from the top layers towards the early-middle
layers but gradually declines in later layers. Moreover, the choice of location within MHA shows
minimal impact on performance. Our findings suggest that tuning the layer position is likely more
critical than the specific MHA location for effectively separating representations in the hallucination
detection task.

How does the steering strength affect the performance? To better understand the characteristics
of TSV, we vary the steering strength λ ∈ {0.1, 0.5, 1, 5, 10} and analyze its effect on the model’s
performance, as demonstrated in Figure 3b. The results show that performance improves with
moderate steering strength (e.g., λ = 5), but declines as λ increases further. A small λ does not
provide sufficient signal to meaningfully separate representations in the final layer, while a large λ
disrupts the representation space by dominating it, resulting in suboptimal performance.

How does number of exemplars affect the performance? In Figure 3c, we examine the impact
of the number of labeled exemplars on performance. We evaluate N ∈ {8, 16, 32, 64} and compare
them to the fully-supervised upper bound (FS), where all samples inDU are labeled with ground truth.
Our results indicate that a small exemplar set is effective for modeling the truthfulness distribution
when N = {32, 64}, achieving performance almost comparable to the fully-supervised oracle. This
demonstrates that a reliable hallucination detector can be designed using only a small number of
labeled exemplars, which are practical to obtain. However, when the number of labeled exemplars is
too small (N = 8), the performance becomes suboptimal.
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A RELATED WORKS

Hallucination detection has emerged as a critical area of research, addressing safety concerns of
LLMs and their deployment in real-world applications (Huang et al., 2023). A plethora of works
address hallucination detection by designing uncertainty scoring functions. For instance, logit-based
methods utilize token-level probability as an uncertainty score (Ren et al., 2022; Malinin & Gales,
2021; Kuhn et al., 2023), verbalized methods prompt LLMs to express their uncertainty in human
language (Lin et al., 2022b; Xiong et al., 2024), and consistency-based methods assess uncertainty
by evaluating the consistency across multiple responses (Manakul et al., 2023; Chen et al., 2024a).
Recently, internal state-based methods leverage hidden activations, employing techniques such as
contrast-consistent search (Burns et al., 2023) and identifying hallucination subspace (Du et al., 2024).
However, these approaches often rely on default LLM embeddings that do not inherently separate
truthful and hallucinated data. In contrast, our method aims to shape the latent space through a
learnable steering vector for enhanced separation between the two types of data.

On the other hand, supervised methods leverage labeled data to train the classifier, assuming that
pre-trained LLMs encode the truthfulness of responses within their internal states (Azaria & Mitchell,
2023; Marks & Tegmark, 2024). However, these methods require extensive labeling efforts. In
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contrast, our method performs hallucination detection with minimal human supervision, which is
more practical for real-world applications.

Activation engineering enables control over the LLM generation during inference, applying task-
specific steering vectors into the model’s internal representation (Zou et al., 2023). For example,
several studies mitigate hallucination by shifting activations along the truthful direction identified by
analyzing activation differences between contrastive pairs (Li et al., 2024; Chen et al., 2024b; Marks
& Tegmark, 2024). Concurrently, representation fine-tuning methods introduce learning task-specific
interventions on linear subspaces of hidden representations (Wu et al., 2024) or sparse subsets of
attention heads (Yin et al., 2024b).

Our approach differs in the following key aspects: (1) We learn a steering vector specifically for
hallucination detection, focusing on separating representations rather than mitigating hallucinated
generations, and (2) while previous methods rely on large labeled datasets, our method achieves
strong performance under minimal human supervision.

B IMPLEMENTATION DETAILS AND HYPERPARAMETERS

B.1 IMPLEMENTATION DETAILS (OURS)

Following Kuhn et al. (2023), we generate the most likely answer using beam search with 5 beams.
Class prototypes µc and TSV v are randomly initialized, and trained in two stages: 20 epochs using
only the exemplar set, followed by an additional 20 epochs after augmentation. Training is performed
using the AdamW optimizer (Loshchilov, 2019), with a learning rate of 5e-03 and a batch size of
128. We set steering strength λ to 5, the concentration parameter of the vMF distribution κ to 10,
and the EMA decay rate α to 0.99. The number of iterations in the Sinkhorn algorithm is 3, and the
regularization parameter ϵ is set to 0.05. The hyperparameters are tuned based on testing performance
on the validation set. The steering location for each model is detailed in Appendix B.2. For generating
responses, we utilize the following input prompt:

Input prompt for generating responses

Prompt:
Answer the question concisely:
Q: {question}
A:

B.2 HYPERPARAMETERS

Table 2: Steering layer index for LLaMA-3.1-8b and Qwen-2.5-7b.

Model Datasets

TruthfulQA TriviaQA SciQ NQ Open

LLaMA-3.1-8b 9 4 8 9
Qwen-2.5-7b 4 6 11 6

The steering layer index for applying TSV is provided in Table 2. We select the steering layer index
based on the model’s performance on the validation set for each dataset, and we consistently apply
TSV to the residual stream of MHA component. The search space of hyperparameters is outlined
in Table 3. The training configuration is determined using the performance on the TruthfulQA dataset
with LLaMA-3.1-8b and is uniformly applied across all experiments.

B.3 IMPLEMENTATION DETAILS (BASELINES)

For Perplexity1 (Ren et al., 2022), we evaluate the average perplexity score based on the generated
tokens. For baselines requiring multiple generations (Malinin & Gales, 2021; Kuhn et al., 2023;

1https://huggingface.co/docs/transformers/en/perplexity
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Table 3: Hyperparameter search space. The hyperparameters used in our method are underlined.

Hyperparameters Search space
Steering MHA component {‘mlp’, ‘attn’, ‘res’}

Steering strength (λ) {0.1, 0.5, 1, 5, 10}
Optimizer {SGD, Adam, AdamW}

Learning rate {1e-04, 2e-04, 5e-04, 1e-03, 2e-03, 5e-03, 1e-02}
Batch size {32, 64, 128}

Initial training epochs (ninitial) {5, 10, 20, 40}
Augmented training epochs (naugmented) {5, 10, 20, 40}

EMA decay rate (α) {0, 0.5, 0.9, 0.95, 0.99, 1}
Concentration parameter (κ) {0.1, 1, 5, 10, 100}

Lin et al., 2024; Manakul et al., 2023; Chen et al., 2024a), we utilize multinomial sampling to
generate 10 samples (A = 10) per question, setting the temperature to 0.5, and adhering to the default
configurations outlined in the original paper. For Verbalize (Lin et al., 2022b), we implement the
following prompt:

Verbalized

Prompt:
Q: {question}
A: {answer}
The proposed answer is true with a confidence value (0-100) of

The generated confidence value is directly utilized as the uncertainty score during testing. For the
Self-evaluation (Kadavath et al., 2022), we adhere to the approach outlined in the original paper and
use the following prompt:

Self-evaluation

Prompt:
Q: {question}
A: {answer}
Is the proposed answer:
(A) True
(B) False
The proposed answer is:

In line with the original paper, we evaluate hallucination detection performance by using the log
probability of the output token “A” as the uncertainty score. We implement SAPLMA (Azaria &
Mitchell, 2023) using an MLP classifier consisting of three hidden layers with decreasing numbers of
hidden units (256, 128, and 64). Each layer employs ReLU activations, consistent with the original
paper. We set the LoRA2 (Hu et al., 2022) rank to 8, α to 32, and the dropout rate to 0.1. We use the
AdamW optimizer with a learning rate of 5e-04. For LoReFT3 (Wu et al., 2024), we set the rank to 4
and apply to the same layer as ours and all input positions to ensure consistency with ours.

C MORE DETAILS OF THE BENCHMARKS

We evaluate our method on four publicly available generative question-answering (QA) tasks: Truth-
fulQA4 (Lin et al., 2022a), TriviaQA5 (Joshi et al., 2017), SciQ6 (Welbl et al., 2017), and NQ

2https://github.com/microsoft/LoRA
3https://github.com/stanfordnlp/pyreft
4https://huggingface.co/datasets/truthfulqa/truthful qa
5https://huggingface.co/datasets/mandarjoshi/trivia qa
6https://huggingface.co/datasets/allenai/sciq
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Open7 (Kwiatkowski et al., 2019). TruthfulQA focuses on assessing a model’s truthfulness and
robustness in generating false or unsupported responses; we use its generation track with 817 QA
pairs. TriviaQA includes fact-based questions from trivia websites, making it useful for testing factual
accuracy; we use the deduplicated validation split of the rc.nocontext subset, comprising 9,960
QA pairs. SciQ is a domain-specific dataset with science-related QA pairs, suitable for evaluating
hallucinations in specialized domains, and we use its validation split with 1,000 QA pairs. NQ Open,
with 3,610 QA pairs in its validation split, challenges models on open-domain reasoning and general
knowledge. Together, these datasets provide a comprehensive benchmark for evaluating hallucination
detection across diverse tasks.

D ABLATION STUDIES

D.1 PSEUDO-LABELING ACCURACY AND THE NUMBER OF SELECTED UNLABELED DATA.

Table 4: Camparison on pseudo-labeling accuracy (PL ACC) on selected unlabeled generations and
hallucination detection performance (HD AUROC) on the test dataset. Results are reported based on
LLaMA 3.1-8b.

Dataset Metric
K 32 64 128 256 512

TruthfulQA PL ACC (%) 100 98.4 95.3 89.8 81.8

HD AUROC (%) 83.5 84.0 84.2 84.7 84.2

TriviaQA PL ACC (%) 100 91.2 89.1 87.9 87.0

HD AUROC (%) 78.3 82.8 84.0 82.2 81.0

We analyze the effect of the number of selected unlabeled samples, K, for augmenting the training
data. In Table 4, we report (1) the pseudo-labeling accuracy on selected unlabeled generations (PL
ACC), and (2) the overall hallucination detection performance on the test dataset (HD AUROC).
Our optimal transport-based pseudo-labeling achieves near-perfect accuracy up to K = 64, with a
gradual decline as K increases further. The hallucination detection performance peaks at K = 128
and decreases thereafter. This trend indicates that while our learning framework is relatively robust to
the number of selected samples, including too many false-positive samples can introduce noise into
the learning process, potentially affecting performance.

D.2 CAN TSV GENERALIZE ACROSS DATA DISTRIBUTIONS?

TruthfulQA TriviaQA SciQ NQ Open
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Figure 4: Generalization results on out-of-distribution datasets.

While TSV shows superior performance, we are also interested in its capability to generalize across
different data distributions. As shown in Figure 4, we evaluate the generalization capability of
TSV using LLaMA-3.1-8b model by learning it from a source in-distribution (ID) dataset, directly
applying it to different target out-of-distribution (OOD) datasets, and computing the corresponding

7https://huggingface.co/datasets/google-research-datasets/nq open
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hallucination detection scores. The results demonstrate the robust transferability of our approach
across diverse datasets, specifically achieving a hallucination detection AUROC of 79.8% on TriviaQA
when TSV is learned from TruthfulQA, exhibiting performance close to that obtained directly
from TriviaQA (84.0%). This strong transferability highlights TSV’s potential for real-world LLM
applications, effectively detecting hallucinations even under domain shifts.

D.3 COMPONENT ANALYSIS.

Table 5: Component analysis. TSV: Truthfulness Separator Vector, IT: Initial Training phase, and
AT: Augmented Training phase.

Index Component Dataset

TSV IT AT TruthfulQA TriviaQA SciQ NQ Open

(a) ✗ ✓ ✗ 52.2 50.8 54.1 50.8
(b) ✗ ✓ ✓ 52.0 50.2 57.1 52.1
(c) ✓ ✓ ✗ 80.9 80.8 82.0 71.2

Ours ✓ ✓ ✓ 84.2 84.0 85.8 76.1

In Table 5, we present ablation results for the components of our approach using LLaMA-3.1-8b
model. Comparing (a) and (b), which update the class prototypes without using TSV, we observe that
training performance remains close to 50%, and even with the augmented training phase, performance
does not improve. In contrast, comparing (a) and (c), we find that incorporating TSV improves
AUROC by 28.7% on TruthfulQA. This demonstrates that shaping representations with TSV is critical
for hallucination detection, as it makes the representations more separable. Further, comparing (c)
with our full approach, we see that the augmented training phase enhances performance by an
additional 3.3% on TruthfulQA, achieving the best performance among all configurations. Unlike
(a) and (b), this highlights that the augmented training phase is effective only when supported by
well-structured representations and accurate pseudo-labels, underscoring the importance of learning
TSV. Overall, integrating all components achieves the best performance across all datasets, indicating
that each component is effective for addressing the hallucination detection task.

D.4 COMPUTATIONAL EFFICIENCY OF TSV.

Table 6: Performance comparison with PEFT methods. % Params is calculated by dividing the
number of trainable parameters by the total number of parameters in the base LLM.

Model Method Trainable Parameters Datasets

# Params % Params TruthfulQA TriviaQA

Llama 3.1-8b
LoRA 3.4M 0.0424 % 83.6 82.0
LoReFT 32K 0.0004 % 77.5 76.0
Ours 4K 0.00005% 84.2 84.0

Qwen2.5-7b
LoRA 2.5M 0.0331 % 85.9 76.0
LoReFT 28K 0.0004 % 81.5 79.3
Ours 3.6K 0.00005% 87.3 79.8

To evaluate the cost-efficiency of our method, we compare TSV with parameter-efficient fine-tuning
(PEFT) approaches in Table 6. Specifically, we train LoRA (Hu et al., 2022) and LoReFT (Wu
et al., 2024) using our training framework, leveraging a small labeled exemplar set along with the
unlabeled dataset. Our method achieves superior performance while utilizing 8× to 800× fewer
parameters, demonstrating that TSV can effectively shape representations for the hallucination
detection task while significantly reducing computational and annotation costs. Training time is
detailed in Appendix H.

D.5 VISUALIZATION OF TRUTHFULNESS SCORE DISTRIBUTIONS.

Figure 5 visualizes the score distributions for HaloScope (Du et al., 2024) and our method on
TruthfulQA based on LLaMA-3.1-8b model. Our approach demonstrates a more distinct separation
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Figure 5: Score distributions for HaloScope vs. our method.

between truthful and hallucinated data distributions. This enhanced differentiation is attributed to
the effectiveness of shaping latent space with TSV, which contributes to more reliable detection
performance than other methods.

D.6 SCALABILITY TO LARGER LANGUAGE MODELS

Table 7: Hallucination detection results on larger LLMs.

Method LLaMA-3.1-70b Qwen-2.5-14b
TruthfulQA SciQ TruthfulQA SciQ

Perplexity 52.3 53.5 64.7 76.0
CCS 63.1 55.5 69.4 80.0

HaloScope 67.4 60.3 74.6 78.9
SAPLMA♣ 70.2 58.4 83.1 83.8

Ours 76.6 75.0 83.6 89.7

We evaluate our method on larger LLMs, including the LLaMA-3.1-70b and Qwen-2.5-14b models, to
illustrate its scalability. Specifically, we apply TSV to the residual stream of the 31st layer in LLaMA-
3.1-70b and the 23rd layer in Qwen-2.5-14b. Results in Table 7 demonstrate that our approach
consistently outperforms four strong baselines including the fully-supervised method (SAPLMA♣)
while also improving upon the performance achieved with smaller LLMs. For instance, on the SciQ
dataset, our approach achieves an AUROC of 89.7% with the Qwen-2.5-14b model, compared to
82.0% with the Qwen-2.5-7b model, reflecting a performance gain of 7.7%.

D.7 EVALUATION RESULTS WITH GPT-4O

Table 8: Hallucination detection results using labels generated by GPT-4o.

Method LLaMA-3.1-8b Qwen-2.5-7b
TruthfulQA SciQ TruthfulQA SciQ

Perplexity 65.8 41.3 56.3 55.3
CCS 59.5 52.7 58.6 50.3

HaloScope 63.3 66.9 63.4 77.0
SAPLMA♣ 70.7 72.6 67.7 79.6
TSV (Ours) 75.1 81.6 87.2 85.6

In our main paper, a generation is considered truthful if its BLEURT score with the gold stan-
dard answer exceeds a predefined threshold. In addition to the threshold-based evaluation using
BLEURT (Sellam et al., 2020), we employ GPT-4o (Hurst et al., 2024) to determine the truthfulness
of the generation, under the paradigm of LLM-as-a-judge (Zheng et al., 2023). Specifically, we
assess the truthfulness of LLM-generated responses by determining their semantic equivalence to the
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given gold standard answers. In Table 8, we demonstrate that our method consistently outperforms
competitive baselines, highlighting its robustness across different approaches for determining the
truthfulness of the model generation. We utilize the following input prompt:

Input prompt for GPT-4o based evaluation

Prompt:
You are tasked with evaluating whether a generated answer is truthful compared to a provided
list of gold standard answers. Your response should be “Yes” if the generated answer is
consistent with any of the gold standard answers, and “No” otherwise. Provide a clear
justification for your decision.
Question: {question}
Gold Standard Answers: {gold standard answers}
Generated Answer: {generated answer}
Response Format:
- Answer: [Yes/No]
- Justification: [Explain briefly why the answer is correct or incorrect.]

We consider a generation truthful when the answer is “Yes” and hallucinated when the answer is
“No.”

D.8 DESIGN CHOICES FOR THE CLASS DISTRIBUTION w

Table 9: Hallucination detection results using different w.

Method LLaMA-3.1-8b Qwen-2.5-7b
TruthfulQA SciQ TruthfulQA SciQ

Uniform 83.2 84.0 87.0 81.2
Estimation 83.7 83.9 87.3 80.6

Oracle 84.3 85.0 87.5 82.6
Ours 84.2 85.8 87.3 82.0

We ablate the various design choices for the class distribution w of the unlabeled dataset when
formulating the optimal transport problem in Equation (7). We evaluate the following configurations:
(1) a uniform class distribution (Uniform), (2) an estimated class distribution obtained via pseudo-
labeling with nearest neighbor classification (Estimation), (3) the ground-truth class distribution of
the unlabeled dataset (Oracle), and (4) the class distribution derived from the exemplar set (Ours).
In Table 9, our proposed design choice achieves performance comparable to the Oracle approach.
Notably, the robustness to design choices of w appears to stem from our confident data selection
procedure in Equation (11), which plays an important role in ensuring stable performance across
different configurations. Additionally, we demonstrate that the pseudo-labeling approach is also
effective, highlighting the scalability and adaptability of the algorithm.
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D.9 RESULTS WITH LLAMA-2-CHAT-7B

Table 10: Experiment results with LLaMA-2-chat-7b. All results are directly copied from HaloScope.

Method TruthfulQA TriviaQA
Perplexity 56.77 72.13
LN-Entropy 61.51 70.91
Semantic Entropy 62.17 73.21
Lexical Similarity 55.69 75.96
EigenScore 51.93 73.98
SelfCKGPT 52.95 73.22
Verbalize 53.04 52.45
Self-evaluation 51.81 55.68
CCS 61.27 60.73
HaloScope 78.64 77.40
TSV (Ours) 80.93 85.20

We evaluate our method using the LLaMA-2-chat-7b model (Touvron et al., 2023), following the
experimental setup outlined in HaloScope (Du et al., 2024). Specifically, we apply TSV to the residual
stream of the 9th layer and adopt the same training configurations as in the main experiments. Our
results demonstrate that TSV is effective even when applied to legacy models such as LLaMA-2-chat-
7b, showcasing the versatility and robustness of our approach.

E QUALITATIVE RESULTS

Q: Can people turn into pillars of salt?
A: No, people cannot turn into pillars of 
salt.

Q: What is the biggest city in the U.S. 
with only one word in its name?
A: Los Angeles. 

GTTest input x′ 𝑆(x′)

0.8491

0.1431

0.1002
Q: What happens to you if you eat 
watermelon seeds?
A: You grow watermelons.

Answer the question concisely. Q: Can people turn into pillars of salt? A: No, people cannot turn into pillars of salt.

Q: Which singer had a 2008 number one hit 
with the song 'Take A Bow'?
A: Rihanna.

Q: What is the offspring of a male lion
and a tigress called?
A: A liger. 

GTTest input x′ 𝑆(x′)

0.9031

0.7931

0.1201
Q: What is the name of the giraffe that 
Toys-r-us uses as its' mascot?
A: Toys-r-us doesn't have a giraffe as 
its' mascot. 

(a) TruthfulQA (b) TriviaQA

Figure 6: Qualitative examples from (a) TruthfulQA and (b) TriviaQA. We compare the truthfulness
scores S(x′) across different test inputs x′. A green checkmark indicates ground truth labeled as
truthful, while a red cross denotes ground truth labeled as hallucinated.

We present qualitative examples of the model’s truthfulness score, S(x′), for various input query and
generated text pairs. Using questions sampled from (a) TruthfulQA and (b) TriviaQA, we generate
responses with the LLaMA-3.1-8b model. As illustrated in Figure 6, our approach accurately assigns
scores that align with the truthfulness of the answers, demonstrating the effectiveness of the method.

F EMBEDDING NORMS

We model the last-token embeddings at the final layer using a hyperspherical distribution with unit
norm. This approach aligns with the structure of embeddings commonly observed after the RMSNorm
layer in practical Transformer models, where the embedding norms remain consistent while their
directions vary. These characteristics can be naturally characterized by the von Mises-Fisher (vMF)
distribution, which we employ to represent the probability distribution in the MLE objective in Equa-
tion (3). To validate our modeling, we visualize the L2 norms of the last-token embeddings at the final
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Figure 7: L2 norms of the last token embeddings at the final layer from LLaMA-3.1-8b.
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Figure 8: L2 norms of the last token embeddings at the final layer from Qwen-2.5-7b.

layer for the pre-trained LLaMA-3.1-8b (Figure 7) and Qwen-2.5-7b (Figure 8). The visualizations
show that the embedding norms are uniformly distributed around 140 for the LLaMA-3.1-8b model
and around 300-330 for the Qwen-2.5-7b model, supporting the validity of our modeling approach.

G ALGORITHMS

G.1 OVERALL TRAINING FRAMEWORK

Algorithm 1 Overall training framework
Parameters: ninitial, naugmented, l, K
Input: Exemplar set DE, unlabeled dataset DU
Initialize TSV v and class prototypes µc with random weights.
Apply TSV to the intermediate layer l: h(l) ← h(l) + λv
1. Initial training phase

1: for i = 1 to ninitial do
2: Compute the loss L(DE) Equation (5)
3: Update v with a gradient step
4: Update class prototypes µc using EMA Equation (6)
5: end for

2. Augmented training phase
1: Compute pseudo-labels for DU using the Sinkhorn algorithm Equations (7) to (9)
2: Select confident samples DS from DU Equations (10) and (11)
3: Augment exemplar set: DE ← DE ∪ DS. Equation (12)
4: for i = 1 to naugmented do
5: Compute the loss L(DE) Equation (5)
6: Update v with a gradient step
7: Update class prototypes µc using EMA Equation (6)
8: end for
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G.2 SINKHORN ALGORITHM

Algorithm 2 Sinkhorn algorithm for entropic-regularized optimal transport
Parameters: ϵ, niter
Input: Unlabeled dataset DU, class distribution w, cost matrix − logP
Initialize β ← 12

1: for i = 1 to niter do
2: α← 1

M
1M

P1/ϵβ

3: β ← w
(P1/ϵ)⊤α

Equation (9)
4: end for

Return Q = diag(α)P1/ϵdiag(β) Equation (8)

H COMPUTE RESOURCES AND TIME

H.1 SOFTWARE AND HARDWARE

We conducted all experiments using Python 3.8.15 and PyTorch 2.3.1 (Paszke et al., 2019) on NVIDIA
A100 GPUs. For evaluation with GPT-4o, we utilized the OpenAI API.

H.2 TRAINING AND INFERENCE TIME

Based on tracked runs, the estimated total training and inference time is notably low: approximately
0.1 GPU-hours for LLaMA-3.1-8b and Qwen-2.5-7b, 0.2 GPU-hours for Qwen-2.5-14b, and 1 GPU-
hours for LLaMA-3.1-70b. These highlight the computational efficiency of our approach, achieving
practical training and inference time even for large-scale models.
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Figure 9: AUROC and wall-clock
time for training and inference.

To further contextualize this, we compare the wall-clock time
for training and inference computed on the same split of Truth-
fulQA with LLaMA-3.1-8b, as shown in Figure 9. We evaluate
three hallucination detection methods requiring training: Halo-
Scope (Du et al., 2024), SAPLMA♣ (Azaria & Mitchell, 2023),
and TSV (Ours); and one training-free method: Semantic En-
tropy (Kuhn et al., 2023). All methods are tested using the same
software and hardware setup, and runtime is measured after
completing the sampling process. While TSV incurs slightly
higher computational costs compared to HaloScope, it achieves
a significant performance improvement of 13.6%. Further-
more, TSV demonstrates superior performance compared to the
fully-supervised method: SAPLMA♣, achieving both lower
computational and annotation costs. Additionally, TSV out-
performs Semantic Entropy which involves computationally expensive semantic clustering across
multiple samples. We also compare wall-clock time with PEFT methods: LoRA (Hu et al., 2022) and
LoReFT (Wu et al., 2024); trained using our pipeline. Despite using fewer trainable parameters and
lower time costs, our approach demonstrates superior performance in hallucination detection. These
results demonstrate TSV’s effectiveness as a high-performing hallucination detection method that
balances detection performance, computational efficiency, and annotation costs, offering flexibility
across different cost budgets.

I CONCLUSION

In this work, we tackle the challenge of hallucination detection in LLM by introducing the Truth-
fulness Separator Vector (TSV), a lightweight and modular approach that reshapes the latent space
during inference to enhance the separation between truthful and hallucinated outputs without altering
the model’s parameters. Through a two-stage training framework that combines a small labeled
exemplar set with unlabeled LLM generations, TSV achieves superior performance while mini-
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mizing reliance on human labeling and computational cost. Our experiments demonstrate TSV’s
effectiveness, achieving state-of-the-art accuracy with strong generalization across datasets.
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