
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PYRAMIDKV: DYNAMIC KV CACHE COMPRESSION
BASED ON PYRAMIDAL INFORMATION FUNNELING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this study, we investigate whether attention-based information flow inside large
language models (LLMs) is aggregated through noticeable patterns for long context
processing. Our observations reveal that LLMs aggregate information through
Pyramidal Information Funneling where attention is scattering widely in lower
layers, progressively consolidating within specific contexts, and ultimately focusing
on critical tokens (a.k.a massive activation or attention sink) in higher layers.
Motivated by these insights, we developed PyramidKV, a novel and effective KV
cache compression method. This approach dynamically adjusts the KV cache
size across different layers, allocating more cache in lower layers and less in
higher ones, diverging from traditional methods that maintain a uniform KV cache
size. Our experimental evaluations, utilizing the LongBench benchmark, show
that PyramidKV matches the performance of models with a full KV cache while
retaining only 12% of the KV cache, thus significantly reducing memory usage.
In scenarios emphasizing memory efficiency, where only 0.7% of the KV cache
is maintained, PyramidKV surpasses other KV cache compression techniques,
achieving up to a 20.5 absolute accuracy improvement on TREC dataset. In the
Needle-in-a-Haystack experiment, PyramidKV outperforms competing methods in
maintaining long-context comprehension in LLMs; notably, retaining just 128 KV
cache entries enables the LLAMA-3-70B model to achieve 100.0 Acc. performance,
matching that of a full KV cache.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a;b; Jiang et al., 2023)
are integral to various natural language processing applications, including dialogue systems (Chiang
et al., 2023), document summarization (Fabbri et al., 2019a), and code completion (Roziere et al.,
2023). These models have recently been scaled up to handle long contexts (Fu et al., 2024; Ding
et al., 2024; Zhu et al., 2023; Chen et al., 2023), with GPT-4 processing up to 128K tokens and
Gemini-pro-1.5 handling 1M tokens. However, scaling LLMs to extremely long contexts naturally
leads to a significant delay due to the quadratic computation of attention over long contexts. A
common solution to mitigate such inference delays involves caching the key and value states (KV) of
previous tokens (Waddington et al., 2013), with the trade-off of requiring extensive GPU memory
storage. For instance, maintaining a KV cache for 100K tokens in LLaMA-2 7B requires over 50GB
of memory, while a 2K context requires less than 1GB of memory (Wu et al., 2024).

To tackle these memory constraints, recent studies have explored the optimization of KV caching,
including approaches such as low-rank decomposition of the KV cache (Dong et al., 2024) or
pruning non-essential KV cache (Zhang et al., 2024; Li et al., 2024; Ge et al., 2023). Notably, it
has been shown that maintaining merely 20% of the KV cache can preserve a substantial level of
performance (Zhang et al., 2024). Moreover, extreme compression of the KV cache for tasks of
longer contexts (e.g., retrieval augmented generation or RAG for short) can drastically improve
efficiency and further reduce resource use. However, questions about the universal applicability of
these strategies across all layers of an LLM remain open. (1) Are these KV cache strategies applicable
to all layers? (2) Is it computationally efficient to use the same KV cache size across layers as
previous studies have done? These considerations suggest a need for an in-depth, more nuanced
understanding of KV cache optimization in LLMs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Illustration of PyramidKV compared with existing KV cache compression methods. (a)
Full KV has all tokens stored in the KV cache in each layer; cache size increases as the input length
increases. (b) StreamingLLM (Xiao et al., 2023) only keeps few initial tokens with a fixed cache
size in each layer. (c) SnapKV (Li et al., 2024) and H2O (Zhang et al., 2024) keep a fixed cache
size across Transformer layers, and their selection is based on the attention score. (d) PyramidKV
maintains pyramid-like cache sizes, allocating more cache budget to lower layers and less to higher
layers. This approach to KV cache selection better aligns with the increasing attention sparsity
observed in multi-layer Transformers (§3).

To examine these questions, we aim to systematically investigate the design principles of the KV
cache compression across different layers, specifically tailored to the behaviors of the attention
mechanism. We first investigate how information flow is aggregated via attention mechanisms across
different layers in multi-document question answering (QA), a classic task involving long contexts.
Our analysis identifies a notable transition of attention distribution from a broad coverage of global
contexts to a narrow focus of local tokens over layers in LLMs. This pattern suggests an aggregated
information flow where information is initially gathered broadly and subsequently narrowed down to
key tokens, epitomizing the massive attention phenomenon. Our findings provide unique insights
beyond the previously documented “massive activation” (Sun et al., 2024) that very few activations
exhibit significantly larger values than others when calculating multi-head attention in LLMs and
“attention sink” (Xiao et al., 2023) that keeping the KV of initial tokens will largely recover the
performance of window attention.

Building on these insights on how information flows are aggregated through a pyramid pattern, we
design a novel and effective KV cache pruning approach that mirrors the geometric shape, named
PyramidKV. As shown in Figure 1, unlike the fixed-and-same length KV cache pruning common
in prior works (Zhang et al., 2024; Ge et al., 2023; Li et al., 2024), PyramidKV allocates more KV
cache to the lower layers where information is more dispersed and each KV holds less information
while reducing the KV cache in higher layers where information becomes concentrated in fewer key
tokens. To the best of our knowledge, PyramidKV is the first KV cache compression method with
varied cache retention across layers, tailoring cache amounts to the informational needs of each layer
and paving the way for future research.

We conducted comprehensive experiments on LongBench (Bai et al., 2023) using 17 datasets across
various tasks and domains with three backbone models (LLaMa-3-8B-Instruct, LLaMa-3-70B-Instruct
and Mistral-7B (Jiang et al., 2023)). The results show that PyramidKV preserves performance
using just 12.0% of the KV cache (KV Cache size = 2048) on the LongBench benchmark and
significantly outperforms other methods in extreme conditions, retaining only 0.7% of the KV cache.
Moreover, PyramidKV outperforms baseline models (H2O (Zhang et al., 2024), SnapKV (Li et al.,
2024), StreamingLLM (Xiao et al., 2023)) across all tested cache sizes (64, 96, 128, 256), with
its advantages most pronounced at smaller cache sizes. In the Needle In A Haystack experiment,
PyramidKV effectively maintains the long-context comprehension in LLMs, outperforming than
competing methods. Remarkably, with PyramidKV, retaining only 128 KV cache entries allows the
LLaMa-3-70B-Instruct model to achieve 100.0 Acc. performance, matching the performance of a
full KV cache.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Interpretation of LLMs Prior research has shown that attention matrices in LLMs are typically
sparse (Chen et al., 2024a; Xiao et al., 2023; Zhang et al., 2024), focusing disproportionately on a few
tokens. For instance, Xiao et al. (2023) identified an “attention sink” phenomenon, where maintaining
the Key and Value (KV) states of the first few tokens can substantially restore the performance of
windowed attention, despite these tokens not being semantically crucial. Similarly, Sun et al. (2024)
identified a “massive activations” pattern, where a minority of activations show significantly larger
values than others within LLMs. Interestingly, these values remain relatively constant across different
inputs and act as critical bias terms in the model.

Further explorations in this field reveal distinct patterns across various attention heads and layers.
Li et al. (2024) observed that certain attention heads consistently target specific prompt attention
features during decoding. Additionally, Wang et al. (2023) discovered that in In-Context Learning
scenarios, label words in demonstration examples serve as semantic anchors. In the lower layers
of an LLM, shallow semantic information coalesces around these label words, which subsequently
guide the LLMs’ final output predictions by serving as reference points. Recently, Wu et al. (2024)
revealed that a special type of attention head, the so-called retrieval head, is largely responsible for
retrieving information. Inspired by these findings that the attention mechanism exhibits varying
behaviors across different layers, we discovered that “Massive Activation” does not consistently
manifest across all layers in long context sequences; instead, it predominantly occurs in the upper
layers. Additionally, we identified a novel trend of information aggregation specific to long-context
inputs, which will be further explained in §3.

KV Cache Compression There has been a growing interest in addressing LLMs’ memory con-
straints on processing long context inputs. FastGen (Ge et al., 2023) introduces an adaptive KV cache
management strategy that optimizes memory use by tailoring retention tactics to the specific nature
of attention heads. This method involves evicting long-range contexts from heads that prioritize local
interactions, discarding non-special tokens from heads focused on special tokens, and maintaining a
standard KV cache for heads that engage broadly across tokens. SnapKV (Li et al., 2024) improves
efficiency by compressing KV caches via selecting/clustering significant KV positions based on their
attention scores. Heavy Hitter Oracle (H2O) (Zhang et al., 2024) implements a dynamic eviction
policy that effectively balances the retention of recent and historically significant tokens, optimizing
memory usage while preserving essential information. StreamingLLM (Xiao et al., 2023) enables
LLMs trained on finite attention windows to handle infinite sequence lengths without fine-tuning,
thus expanding the models’ applicability to broader contexts. LM-Infinite (Han et al., 2023) allows
LLMs pre-trained with 2K or 4K-long segments to generalize to up to 200M length inputs while
retaining perplexity without parameter updates.

While these approaches have significantly advanced the efficient management of memory for LLMs,
they generally apply a fixed KV cache size across all layers. In contrast, our investigations into the
attention mechanisms across different layers of LLMs reveal that the attention patterns vary from
layer to layer, making a one-size-fits-all approach to KV cache management suboptimal. In response
to this inefficiency, we propose a novel KV cache compression method, called PyramidKV that
allocates different KV cache budgets across different layers, tailored to the unique demands and
operational logic of each layer’s attention mechanism. This layer-specific strategy takes a significant
step toward balancing both memory efficiency and model performance, addressing a key limitation in
existing methodologies.

3 PYRAMIDAL INFORMATION FUNNELING

To systematically understand the attention mechanism over layers in LLMs for long-context inputs,
we conduct a fine-grained study focusing on the multi-document question answering (QA) task. The
model is presented with multiple interrelated documents and prompted to generate an answer for the
given query. The main target is to investigate how the model aggregates dispersed information within
these retrieved documents for accurate responses.

In particular, we focus on our analysis of the LLaMa (Touvron et al., 2023a;b) and visualize the
distribution and behavior of attention scores over layers. To assess the distinct behaviors of each

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Localized
Attention

Attention
Sink

Massive
Attention

Figure 2: Attention patterns of retrieval-augmented generation across layers in LlaMa (Touvron
et al., 2023a;b) reveal that in the lower layers, the model exhibits a broad-spectrum mode of attention,
distributing attention scores uniformly across all content. In the middle layers, attention becomes more
localized within each document, indicating refined information aggregation (dotted red triangular
shapes in layers 6 and 10). This culminates in the upper layers, where “massive attention” focuses on a
few key tokens (concentrated attention bars after layer 18), efficiently extracting essential information
for answers.

multi-head self-attention layer, we compute the average attention from all heads within each layer.
Figure 2 shows the attention patterns of one QA example over six different layers (i.e., 0, 6, 12, 18,
24, and 30).

We identify an approximately uniform distribution of attention scores from the lower layers (e.g.,
the 0th layer). This suggests that the model operates in a broad-spectrum mode at the lower layers,
aggregating information globally from all available content without prioritizing its attention on
specific input segments. Notably, a distinct transition to a more localized attention pattern within
each document emerges, as the model progresses to encode information at the middle layers (6th
to 18th layers). In this phase, attention is predominantly directed towards tokens within the same
document, suggesting a more refined aggregation of information within individual contexts.

This trend continues and intensifies in the upper layers (from the 24th to the 30th layer), where we
observed the emergence of ‘massive attention’ phenomena. In these layers, the attention mechanism
concentrates overwhelmingly on a few key tokens. This pattern of attention allocation, where
extremely high attention scores are registered, signifies that the model has aggregated the essential
information into these focal tokens. Such behavior underscores a sophisticated mechanism by which
LLMs manage and streamline complex and voluminous information, culminating in the efficient
extraction of the most pertinent data points necessary for generating accurate answers.

4 PYRAMIDKV

4.1 PRELIMINARIES AND PROBLEM FORMULATION

In an autoregressive transformer-based LLM, the generation of the i-th token requires that the
attention module computes the query, key, and value vectors for all previous i− 1 tokens. To speed

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

up the inference process and avoid duplicate computations, the key and value matrices are typically
stored in the GPU memory. While the KV cache enhances inference speed and reduces redundant
computations, it can consume significant memory when dealing with long input contexts. To optimize
memory usage, a strategy called KV cache compression is proposed (Zhang et al., 2024; Xiao et al.,
2023; Li et al., 2024), which involves retaining only a minimal amount of KV cache while preserving
as much information as possible.

In a language model with m transformer layers, we denote the key and value matrices in the l-th
attention layer respectively as Kl,V l ∈ Rn×d,∀l ∈ [0,m − 1] when encoding a sequence of n
tokens. The goal of KV cache compression is to seek two sub-matrices Kl

s,V
l
s ∈ Rkl×d from the

full matrices Kl and V l, given a cache budget kl < n for each layer l ∈ [0,m−1] while maximizing
performance preservation. That is, a language model with KV cache compression only uses Kl

s and
V l
s in the GPU memory for inference on a dataset D, and obtains a similar result to a full model

according to an evaluation scoring metric, i.e., score(Kl,V l,D) ≈ score(Kl
s,V

l
s ,D).

4.2 PROPOSED METHOD

In this section, we introduce our method, PyramidKV, based on the pyramidal information funneling
observed across different layers in §3. PyramidKV consists of two steps: (1) Dynamically allocating
different KV cache sizes/budgets across different layers (§4.2.1); and (2) Selecting important KV
vectors in each attention head for caching (§4.2.2).

4.2.1 KV CACHE SIZE/BUDGET ALLOCATION

Previous work on KV cache compression (Li et al., 2024; Zhang et al., 2024; Xiao et al., 2023) often
allocates a fixed KV cache size across LLM layers. However, as our analysis in §3 demonstrates,
attention patterns are not identical across different layers. Particularly dense attention is observed in
the lower layers, and sparse attention in higher layers. Therefore, using a fixed KV cache size across
different layers may lead to suboptimal performance. These approaches may retain many unimportant
tokens in the higher layers of sparser attentions while potentially overlooking many crucial tokens in
the lower layers of denser attentions.

Thus, we propose to increase compression efficiency by dynamically allocating the cache budgets
across layers to reflect the aggregated information flow based on attention patterns. Specifically,
PyramidKV allocates more KV cache to the lower layers where information is more dispersed
and each KV state contains less information, while reducing the KV cache in higher layers where
information becomes concentrated in a few key tokens.

Following the common practice in KV cache compression (Li et al., 2024; Xiao et al., 2023), we
first retain the KV cache for the last α tokens of the input across all layers, as these tokens have
been shown to contain the most immediate task-related information, where α is a hyperparameter,
controlling the number of last few tokens being included in the KV cache. For simplicity, we call these
tokens “instruction tokens”, which is also referred to as “local window” in previous literature (Zhang
et al., 2024; Li et al., 2024; Xiao et al., 2023).

Subsequently, given the remaining total cache budget ktotal =
∑

l∈[0,m−1] k
l that can be used over

all transformer layers (noted as m), we first determine the cache sizes for the top and bottom layers,
and use an arithmetic sequence to compute the cache sizes for the intermediate layers to form the
pyramidal shape. The key intuition is to follow the attention pattern in aggregated information flow,
reflecting a monotonically decreasing pattern of important tokens for attention from lower layers to
upper layers. We allocate km−1 = ktotal/(β ·m) for the top layer and k0 = (2 · ktotal)/m− km−1 for
the bottom layer„ where β is a hyperparameter to adjust the pyramid’s shape. The hyperparameter β
is still required to determine the top layer. Once the top layer is identified, the budget of the bottom
layer can be calculated by summing the budgets across all layers and equating this sum to the total
budget. Once the cache sizes of the bottom and top layers are determined, the cache sizes for all
intermediate layers are set according to an arithmetic sequence, defined as

kl = k0 − k0 − km−1

m− 1
× l. (1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2.2 KV CACHE SELECTION

Once the KV cache budget is determined for each layer, our method needs to select specific KV states
for caching within each layer in LLMs. As described in the previous section, the KV cache of the
last α tokens, referred to as instruction tokens, are retained across all layers. Following SnapKV (Li
et al., 2024), the selection of the remaining tokens is then guided by the attention scores derived from
these instruction tokens—tokens receiving higher attention scores are deemed more relevant to the
generation process and are thus their KV states are prioritized for retention in the GPU cache.

In a typical LLM, the attention mechanism in each head h is calculated using the formula:

Ah = softmax(Qh · (Kh)⊤/
√

dk), (2)

where dk denotes the dimension of the key vectors. Following (Li et al., 2024), we utilize a pooling
layer at Ah to avoid the risk of being misled by some massive activation scores.

To quantify the importance of each token during the generation process, we measure the level of
attention each token receives from the instruction tokens, and use this measurement to select important
tokens for KV caching. Specifically, we compute the score of selecting i-th token for retention in the
KV cache as shi in each attention head h by:

shi =
∑

j∈[n−α,n]

Ah
ij (3)

where [n− α, n] is the range of the instruction tokens. In each layer l and for each head h, the top kl

tokens with the highest scores are selected, and their respective KV caches are retained. All other
KV caches are discarded and will not be utilized in any subsequent computations throughout the
generation process.

5 EXPERIMENT

We conduct comprehensive experiments to evaluate the effectiveness of PyramidKV on performance
preserving and memory reduction. First, we introduce the experiment setup (§5.1) as backbone LLMs
(§5.1.1), the evaluation datasets (§5.1.2), and the baselines in comparison (§5.1.3). Next, we report
the performance in a memory-oriented scenario and a performance-oriented scenario experiments in
§5.2. We also do some insight experiment (§5.3) to test if the model can preserve the performance
on long-context inputs on the Needle-in-the-haystack experiment (§5.3.1). Finally, we discuss the
trade-off between memory, time, and performance in §5.3.2.

5.1 EXPERIMENT SETUP

We maintain a fixed constant KV cache size for each layer for the baseline methods. In contrast,
PyramidKV employs varying KV cache sizes across different layers. To ensure a fair comparison, we
adjusted the average KV cache size in PyramidKV to match that of the baseline models, to keep the
total memory consumption of all methods the same. In our experiment, we set β = 20 and α = 8.
We use the same prompt for each dataset in all the experiments.

5.1.1 BACKBONE LLMS

We compare PyramidKV against baselines using state-of-the-art open-sourced LLMs, namely LLaMa-
3-8B-Instruct, Mistral-7B-Instruct (Jiang et al., 2023) and LLaMa-3-70B-Instruct. Testing examples
are evaluated in a generative format, with answers generated by greedy decoding across all tasks to
ensure a fair comparison.

5.1.2 DATASETS

We use LongBench (Bai et al., 2023) to assess the performance of PyramidKV on tasks involving
long-context inputs. LongBench is a meticulously designed benchmark suite that tests the capabilities

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of language models in handling extended documents and complex information sequences. This
benchmark was created for comprehensive multi-task evaluation of long context inputs. It includes
17 datasets covering tasks such as single-document QA (Kočiskỳ et al., 2018; Dasigi et al., 2021),
multi-document QA (Yang et al., 2018; Ho et al., 2020), summarization (Huang et al., 2021; Zhong
et al., 2021; Fabbri et al., 2019b), few-shot learning (Li and Roth, 2002; Gliwa et al., 2019; Joshi
et al., 2017), synthetic, and code generation (Guo et al., 2023; Liu et al., 2023b). The datasets feature
an average input length ranging from 1,235 to 18,409 tokens (detailed average lengths can be found
in Table 1), necessitating substantial memory for KV cache management. For all these tasks, we
adhered to the standard metrics recommended by LongBench (Bai et al., 2023) (i.e., F1 for QA,
Rouge-L for summarization, Acc. for synthetic and Edit Sim. for code generation.) We refer readers
to more details at Appendix E.

5.1.3 BASELINES

We compare PyramidKV with three baselines, all of which keep the same KV cache size across
different layers, with different strategies for KV cache selection.

StreamingLLM (SLM) (Xiao et al., 2023) is an efficient framework that enables LLMs trained
with a finite length attention window to generalize to infinite sequence length without any fine-tuning.
They propose StreamingLLM based on the attention sink phenomenon that keeping the KV of the first
few tokens will largely recover the performance of window attention. StreamingLLM is a competitive
method to solve long-context tasks. In our experiments, to be consistent with other methods, we
simply keep the KV cache of the last α tokens and the first k − α tokens, as suggested in the paper.

Heavy Hitter Oracle (H2O) (Zhang et al., 2024) is a KV cache compression policy that dynami-
cally retains a balance of recent and Heavy Hitter (H2) tokens. H2O keeps a fixed cache size of the
Key and Value matrix across Transformer layers. The selection process for the KV cache is driven by
attention scores, specifically utilizing the average attention scores from all queries across all tokens
to guide the selection.

SnapKV (SKV) (Li et al., 2024) automatically compresses KV caches by selecting clustered
important tokens for each attention head. This method discerns the attention patterns of the Key and
Value matrices using a localized observation window positioned at the end of the prompts. However,
unlike H2O, SnapKV employs a more nuanced clustering algorithm that includes a pooling layer.
Additionally, SnapKV captures attention signals using patterns from a localized window (Instruction
Tokens), rather than aggregating attention across all queries, allowing for more targeted and efficient
compression.

FullKV (FKV) caches all keys and values for each input token in each layer. All methods are
compared to the FullKV simultaneously.

5.2 MAIN RESULTS

The evaluation results from LongBench (Bai et al., 2023) are shown in Table 1 and Figure 3. In
Figure 3, we report the average score across datasets for 64, 96, 128, and 256 case sizes. In Table 1,
we report the results for two different KV cache sizes with 64 and 2048. These two sizes represent
two distinct operational scenarios—the memory-efficient scenario and the performance-preserving
scenario, respectively for a trade-off between memory and model performance. In Appendix M, we
report the results of KV cache sizes with 64, 96, 128 and 2048.

Overall, PyramidKV preserves the performance with only 12% of the KV cache and it consistently
surpasses other method across a range of KV cache sizes and different backbone models, with its
performance advantages becoming particularly pronounced in memory-constrained environments
where only about 0.8% of the KV cache from the prompt is retained. Upon examining specific tasks,
PyramidKV demonstrates a notably superior performance on the TREC task, a few-shot question
answering challenge. This suggests that the model effectively aggregates information from the
few-shot examples, highlighting the potential for further investigation into in-context learning tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 0 1 0 0 1 5 0 2 0 0 2 5 0
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0

Av
g.

Sc
ore

K V C a c h e S i z e

P e r f o r m a n c e C o m p a r i s o n
 S n a p K V
 S t r e a m i n g L L M
 H 2 O
 P y r a m i d K V

5 0 1 0 0 1 5 0 2 0 0 2 5 0

2 6

2 8

3 0

3 2

3 4

3 6

3 8

4 0

Av
g.

Sc
ore

 S n a p K V
 S t r e a m i n g L L M
 H 2 O
 P y r a m i d K V

P e r f o r m a n c e C o m p a r i s o n

K V C a c h e S i z e
5 0 1 0 0 1 5 0 2 0 0 2 5 0

3 5
3 6
3 7
3 8
3 9
4 0
4 1
4 2
4 3
4 4
4 5

Av
g.

Sc
ore

 S n a p K V
 S t r e a m i n g L L M
 H 2 O
 P y r a m i d K V

P e r f o r m a n c e C o m p a r i s o n

K V C a c h e S i z e
Figure 3: The evaluation results from LongBench (Bai et al., 2023) across 64, 96, 128 and 256
cache sizes at LLaMa-3-8B-Instruct (Left), Mistral-7B-Instruct (Middle) and LLaMa-3-70B-Instruct
(Right). The evaluation metrics are the average score of LongBench across datasets. PyramidKV
outperforms H2O (Zhang et al., 2024), SnapKV (Li et al., 2024) and StreamingLLM (Xiao et al.,
2023), especially in small KV cache sizes.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

LlaMa-3-8B-Instruct, KV Size = Full

FKV 25.70 29.75 41.12 45.55 35.87 22.35 25.63 23.03 26.21 73.00 90.56 41.88 4.67 69.25 58.05 50.77 41.46

LlaMa-3-8B-Instruct, KV Size = 64

SKV 19.86 9.09 27.89 37.34 28.35 18.17 15.86 20.80 16.41 38.50 85.92 36.32 5.22 69.00 51.78 48.38 33.05
H2O 20.80 11.34 27.03 37.25 30.01 17.94 18.29 21.49 19.13 38.00 84.70 37.76 5.63 69.33 53.44 50.15 33.89
SLM 17.44 8.68 22.25 35.37 31.51 15.97 15.46 20.06 14.64 38.00 72.33 29.10 5.42 69.50 46.14 45.09 30.43
Ours 21.13 14.18 30.26 35.12 23.76 16.17 18.33 21.65 19.23 58.00 88.31 37.07 5.23 69.50 52.61 45.74 34.76

LlaMa-3-8B-Instruct, KV Size = 2048

SKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 56.65 49.94 41.35
SLM 21.71 25.78 38.13 40.12 32.01 16.86 23.14 22.64 26.48 70.00 83.22 31.75 5.74 68.50 53.50 45.58 37.82
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.68 23.01 26.16 53.00 90.56 41.84 4.91 69.25 56.40 49.68 39.35
Ours 25.40 29.71 40.25 44.76 35.32 21.98 26.83 23.30 26.19 73.00 90.56 42.14 5.22 69.25 58.76 51.18 41.49

Mistral-7B-Instruct, KV Size = Full

FKV 26.90 33.07 49.20 43.02 27.33 18.78 32.91 24.21 26.99 71.00 86.23 42.65 2.75 86.98 56.96 54.52 42.71

Mistral-7B-Instruct, KV Size = 64

SKV 16.94 17.17 39.51 36.87 22.26 15.18 14.75 20.35 21.45 37.50 84.16 37.28 4.50 61.13 42.40 38.44 30.72
SLM 15.01 13.84 28.74 30.97 24.50 13.42 13.25 19.46 19.17 35.50 76.91 29.61 4.67 27.33 38.71 35.29 25.60
H2O 18.19 19.04 37.40 30.18 22.22 13.77 16.60 21.52 21.98 37.00 81.02 38.62 5.00 66.03 43.54 40.46 30.88
Ours 20.91 20.21 39.94 33.57 22.87 15.70 17.31 21.23 21.41 54.00 81.98 36.96 3.58 60.83 44.52 37.99 32.19

Mistral-7B-Instruct, KV Size = 2048

SKV 25.89 32.93 48.56 42.96 27.42 19.02 26.56 24.47 26.69 70.00 86.27 42.57 5.50 88.90 50.42 46.72 41.56
SLM 20.31 26.64 45.72 35.25 24.31 12.20 27.47 21.57 24.51 68.50 71.95 31.19 5.00 22.56 43.38 37.08 32.35
H2O 25.76 31.10 49.03 40.76 26.52 17.07 24.81 23.64 26.60 55.00 86.35 42.48 5.50 88.15 49.93 46.57 39.95
Ours 25.53 32.21 48.97 42.26 27.50 19.36 26.60 23.97 26.73 71.00 86.25 42.94 4.50 87.90 53.12 47.21 41.63

LlaMa-3-70B-Instruct, KV Size = Full

FKV 27.75 46.48 49.45 52.04 54.90 30.42 32.37 22.27 27.58 73.50 92.46 45.73 12.50 72.50 40.96 63.91 46.55

LlaMa-3-70B-Instruct, KV Size = 64

SKV 23.92 31.09 36.54 46.66 50.40 25.30 18.05 21.11 19.79 41.50 91.06 40.26 12.00 72.50 43.33 57.62 39.45
SLM 22.07 23.53 27.31 43.21 51.66 23.85 16.62 19.74 15.20 39.50 76.89 33.06 12.00 72.50 40.23 50.20 35.47
H2O 25.45 34.64 33.23 48.25 50.30 24.88 20.03 21.50 21.39 42.00 90.36 41.58 12.00 71.50 43.83 58.16 39.94
Ours 25.47 36.71 42.29 47.08 46.21 28.30 20.60 21.62 21.62 64.50 89.61 41.28 12.50 72.50 45.34 56.50 42.01

LlaMa-3-70B-Instruct, KV Size = 2048

SKV 26.73 45.18 47.91 52.00 55.24 30.48 28.76 22.35 27.31 72.50 92.38 45.58 12.00 72.50 41.52 69.27 46.36
SLM 26.69 41.01 35.97 46.55 52.98 25.71 27.81 20.81 27.16 69.00 91.55 44.02 12.00 72.00 41.44 68.73 43.96
H2O 27.67 46.51 49.54 51.49 53.85 29.97 28.57 22.79 27.53 59.00 92.63 45.94 12.00 72.50 41.39 63.90 45.33
Ours 27.22 46.19 48.72 51.62 54.56 31.11 29.76 22.50 27.27 73.50 91.88 45.47 12.00 72.50 41.36 69.12 46.55

Table 1: Performance comparison of PyramidKV (Ours) with SnapKV (SKV), H2O, StreamingLLM
(SLM) and FullKV (FKV) on LongBench for LlaMa-3-8B-Instruct, Mistral-7B-Instruct and LlaMa-
3-70B-Instruct. PyramidKV generally outperforms other KV Cache compression methods across
various KV Cache sizes and LLMs. The performance strengths of PyramidKV are more evident in
small KV Cache sizes (i.e. KV Size = 64). Bold text represents the best performance.

Notably, we initially observe the pyramidal attention patterns from the visualization analysis on the
multi-document QA task (Figure 2), but the pyramid heuristic has demonstrated its effectiveness on
a range of other LongBench tasks (e.g., single-document QA, In-Context Learning), suggesting its
promising generalizability beyond multi-document QA.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The performance advantage of PyramidKV increases as the KV cache memory decreases. By
focusing on optimizing budget allocation across layers, PyramidKV accurately allocates resources in
memory-constrained scenarios, ensuring that retained information is effectively preserved to maintain
model performance. Moreover, as in long bench results shown in Table 1, even in the performance-
preserving scenario (i.e., KV cache size = 2048), PyramidKV still improves the performance over
baseline methods and even outperforms the performance of FullKV.

Among the 16 datasets, the tasks where our proposed method performs slightly worse than the
baseline are mostly saturated (e.g., HotpotQA, Musique, etc under the LlaMa-3-8B-Instruct setting
with KV Size = 64, as shown in Table 1). In these cases, our method is only marginally inferior to the
baseline and remains competitive. Conversely, on tasks with greater potential for improvement (e.g.,
Qasper, MF-en, TREC, TriviaQA, etc under the same setting), our method significantly outperforms
the baseline. Consequently, the overall average performance of our method surpasses that of the
baselines. Notably, these tasks include several In-Context Learning tasks (i.e., TREC), our method
enjoys best performance gain at In-Context Learning tasks, where the method demonstrates the ability
to leverage provided examples to adapt effectively. The importance of In-Context Learning tasks lies
in their widespread use in real-world applications, where dynamic adaptation to new inputs is critical.

5.3 DISCUSSION AND INSIGHTS

5.3.1 PYRAMIDKV PRESERVES THE LONG-CONTEXT UNDERSTANDING ABILITY

We conduct the "Fact Retrieval Across Context Lengths" (Needle In A Haystack) experiment (Liu
et al., 2023a; Fu et al., 2024), which is a dataset designed to test whether a model can find key
information in long input sequences, to evaluate the in-context retrieval capabilities of LLMs when
utilizing various KV cache compression methods. For this purpose, we employ LlaMa-3-70B-
Instruct as our base, with context lengths extending up to 8k. We compared several KV cache
compression techniques (PyramidKV, SnapKV (Li et al., 2024), and H2O (Zhang et al., 2024)) at
cache sizes of 128 and full cache. The results, presented in Figure 4 1. The results demonstrate that
with only 128 KV cache retained, PyramidKV effectively maintains the model’s ability to understand
short contexts, and shows only modest degradation for longer contexts. In contrast, other KV cache
compression methods significantly hinder the performance of LLMs. Notably, for the larger model
(LlaMa-3-70B-Instruct), PyramidKV achieves 100.0 Acc. performance, matching the results of
FullKV, thereby demonstrating its ability to preserve long-context comprehension with a substantially
reduced KV cache. We adopt the haystack setting of haystack formed from a long corpus for the
Needle In A Haystack task as Wu et al. (2024).

5.3.2 PYRAMIDKV SIGNIFICANTLY REDUCES MEMORY WITH LIMITED PERFORMANCE
DROP

In this section, we study how sensitive the methods are with different sizes of KV cache. We report
the KV cache memory reduction in Table 2. We evaluate the memory consumption of LLaMa-3-8B-
Instruct. Specifically, we evaluate the memory consumption of all methods with a fixed batch size
of 1, a sequence length of 8192, and model weights in fp16 format. We observe that PyramidKV
substantially reduces the KV cache memory across different numbers of cache sizes.

We also present that the allocation strategy and score-based selection add minimal complexity in the
inference phase compared to the computation required for next-token predictions as Appendix K.

6 CONCLUSION

In this study, we investigate the intrinsic attention patterns of Large Language Models (LLMs)
when processing long context inputs. Our empirical analysis leads us to discover the existence
of Pyramidal Information Funneling. Motivated by this discovery, we design a novel KV cache

1Additional results with 64, 96 and 128 KV cache sizes with LlaMa-3-8B-Instruct at 8k context length,
LlaMa-3-70B-Instruct at 8k context length, and Mistral-7B-Instruct (Jiang et al., 2023) at 32k context length
are available in Appendix O

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test in
LlaMa-3-70B-Instruct with 8k context size in 128 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length.

cache size Memory Compression Ratio QMSum TREC TriviaQA PCount PRe Lcc

512 428M 6.3% 22.80 71.50 90.61 5.91 69.50 58.16
1024 856M 12.5% 22.55 71.50 90.61 5.91 69.50 58.16
2048 1712M 25.0% 22.55 72.00 90.56 5.58 69.25 56.79
Full 6848M 100.0% 23.30 73.00 90.56 5.22 69.25 58.76

Table 2: Memory reduction effect and benchmark result by using PyramidKV. We conducted a
comparison of memory consumption between the Llama-3-8B-Instruct model utilizing the Full KV
cache and the Llama-3-8B-Instruct model compressed with the PyramidKV.

compression approach PyramidKV that utilizes this information flow pattern. By leveraging the
Pyramidal Information Funneling into KV cache compression design, our method excels in memory-
constrained settings, preserves long-context understanding ability, and significantly reduces memory
usage with minimal performance trade-offs compared to the baselines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. arXiv preprint arXiv:2403.06764, 2024a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and Beidi Chen. Magicpig: Lsh sampling for
efficient llm generation, 2024b. URL https://arxiv.org/abs/2410.16179.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4599–4610, 2021.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753, 2024.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. In Anna
Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, pages 1074–1084, Florence, Italy, July
2019a. Association for Computational Linguistics. doi: 10.18653/v1/P19-1102. URL https:
//aclanthology.org/P19-1102.

Alexander Richard Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1074–1084,
2019b.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context. arXiv preprint arXiv:2402.10171,
2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. EMNLP-IJCNLP 2019, page 70, 2019.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range
pre-trained language model for code completion. arXiv preprint arXiv:2306.14893, 2023.

11

https://arxiv.org/abs/2410.16179
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/P19-1102
https://aclanthology.org/P19-1102

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6609–6625, 2020.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
1419–1436, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. arXiv preprint arXiv:2407.02490, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1601–
1611, 2017.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative
inference of large language models with dynamic kv cache management, 2024. URL https:
//arxiv.org/abs/2406.19707.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts, 2023a.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023b.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

12

https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Daniel Waddington, Juan Colmenares, Jilong Kuang, and Fengguang Song. Kv-cache: A scal-
able high-performance web-object cache for manycore. In 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, pages 123–130. IEEE, 2013.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun. Label
words are anchors: An information flow perspective for understanding in-context learning. arXiv
preprint arXiv:2305.14160, 2023.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyramid
kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2369–2380, 2018.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based multi-
domain meeting summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
5905–5921, 2021.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. Pose:
Efficient context window extension of llms via positional skip-wise training. arXiv preprint
arXiv:2309.10400, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A LIMITATIONS

Our experiments were limited to three base models: LLAMA-3-8B-Instruct, LLAMA-3-70B-Instruct
and Mistral-7B-Instruct. While these models demonstrated consistent trends, the robustness of
our findings could be enhanced by testing a broader array of model families, should resources
permit. Additionally, our research was conducted exclusively in English, with no investigations into
how these findings might be transferred to other languages. Expanding the linguistic scope of our
experiments could provide a more comprehensive understanding of the applicability of our results
globally. Based on our results at LongBench and Needle-in-a-HayStack experiment, PyramidKV
generally works decently in most of the language tasks (i.e., Single-Document QA, Multi-Document
QA, Summerization, Few-Shot In-Context Learning, etc.). Although we observe that PyramidKV
performs better in some tasks (i.e., Few-Shot In-Context Learning) compared with some other tasks
(i.e., Summerization), we have not observed cases that the decoding result collapses at some tasks.
This remains a new topic for future work to explore.

B FUTURE WORK

Our investigation on PyramidKV highlights considerable opportunities for optimizing KV cache
compression by adjusting the number of KV caches retained according to the distinct attention
patterns of each layer (or even for each head). For instance, the retention of KV cache for each layer
could be dynamically modified based on real-time analysis of the attention matrices, ensuring that
the compression strategy is consistently aligned with the changing attention dynamics within LLMs.
Furthermore, our experiments indicate that PyramidKV significantly surpasses other methods in
few-shot learning tasks, suggesting promising applications of KV cache in in-context learning. This
approach could potentially enable the use of more shots within constrained memory limits.

Attention Weights Heatmap Layer 30

Localized
Attention

Attention
Sink

Massive
Attention

Figure 5: Attention patterns of retrieval-augmented generation across layers in Mistral-7B-Instruct
model (Jiang et al., 2023)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Attention Weights Heatmap Layer 30Attention Weights Heatmap Layer 24

Localized
Attention

Attention
Sink

Massive
Attention

Figure 6: Attention patterns of retrieval-augmented generation across layers in Mixtral-8x7B-Instruct
Mixture-of-Experts model.

C PYRAMIDAL INFORMATION FUNNELING

Figure 5 and Figure 6 shows the attention patterns of one QA example over six different layers (i.e.,
0, 6, 12, 18, 24, and 30) for Mistral-7B-Instruct model and Mixtral-8x7B-Instruct Mixture-of-Experts
model. Figure 5 and Figure 6 demonstrate that the Pyramidal Information Funneling phenomenon is
also evident in both the Mistral model and Mixtral model . The results reveal that, akin to Llama-like
models, Mistral exhibit a progressively narrowing attention focus across layers. This supports the
universality of the Pyramidal Information Funneling phenomenon across diverse model families. We
hope this addresses your concern and underscores the generalizability of our findings.

Our analysis uniquely examines attention metrics across all transformer layers, from 0 to 30, leading
to the discovery of a key phenomenon we term Pyramidal Information Funneling.

Lee et al. (2024) conducted a limited investigation into attention patterns, focusing only on the lower
layer (layer 0) and a single upper layer (layer 18). While Lee et al. (2024) noted that attention
becomes more skewed in upper layers, it did not provide a fine-grained observation of attention
patterns across all layers. In contrast, our study reveals several novel findings:

• Localized Attention: We observe that attention progressively narrows its focus, targeting
specific components within the input sequence.

• Massive Attention Mechanism: In the upper layers, attention heavily concentrates on a
small set of critical tokens. Notably, these tokens are not limited to the leading positions,
as observed in Lee et al. (2024), but also appear at regular intervals across the sequence.
The discrepancy arises from differences in input settings, with Lee et al. (2024) identifying
massive attention only at the initial tokens.

These insights motivated us to propose a token-selection method based on the highest attention scores
in the upper layers, rather than solely relying on tokens from earlier positions.

To the best of our knowledge, Chen et al. (2024b) has not analyzed attention patterns across
transformer layers.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Illustration of PyramidKV. At the lower level of the transformer, the PyramidKV selects
more keys and values based on the exhibited average attention pattern. Fewer keys and values at the
higher level are selected based on the massive activation pattern, where we observe that attention
scores are concentrated over local regions.

Therefore, although Lee et al. (2024) and Chen et al. (2024b) are considered contemporaneous with
our work, making a comparison unnecessary, the perspective of our observation is considered novel
compared with Lee et al. (2024) and Chen et al. (2024b). Moreover, although Lee et al. (2024)
also observed attention patterns, the method we proposed based on our observations is significantly
different from Lee et al. (2024), further highlighting the novelty of our work.

D DETAILS OF PROPOSED METHOD

Based on the pyramidal information funneling observed across different layers, PyramidKV consists
of two steps: (1) Dynamically allocating different KV cache sizes/budgets across different layers;
and (2) Selecting important KV vectors in each attention head for caching as Figure 7.

Our decision to use an arithmetic sequence is driven by three key factors:

• Alignment with Pyramidal Information Funneling Pattern: Empirical observations
reveal a pyramidal information funneling pattern, where lower layers exhibit dispersed
attention while higher layers concentrate on fewer tokens. Inspired by this, we adopt the
arithmetic sequence design to align with this natural progression.

• Superior Empirical Performance: Through extensive experimentation across diverse
datasets, we compared various methods, including the arithmetic sequence and adaptive
approaches. Results consistently showed that the arithmetic sequence method outperformed
others.

• Computational Efficiency: The arithmetic sequence method introduces minimal computa-
tional overhead compared to adaptive approaches, which require dynamically computing
cache budgets across layers.

To perform KV cache eviction, we use torch.gather. Below, we outline the memory allocation and
release process of torch.gather:

• Index Selection: Identify the positions of the elements to extract from the input tensor.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Memory Location Calculation: Compute the specific memory locations of the elements to
be extracted using the strides of the input tensor across each dimension.

• Output Tensor Creation: Allocate memory to create a new output tensor and copy the
selected elements to their corresponding positions in the output tensor.

• Memory Management: Since torch.gather is not an in-place operation, it creates a new
tensor to store the results, while the memory of the original input tensor is released.

The speed-up offered by PyramidKV is complementary to that achieved through tensor parallelism and
pipeline parallelism, as these approaches are not mutually exclusive. PyramidKV can be seamlessly
integrated with both tensor parallelism and pipeline parallelism.

E DETAILS OF EVALUATION

We use LongBench (Bai et al., 2023) to assess the performance of PyramidKV on tasks involving
long-context inputs. LongBench is a meticulously designed benchmark suite that tests the capabilities
of language models in handling extended documents and complex information sequences. This
benchmark was created for multi-task evaluation of long context inputs.

We present the details of metrics, language and data for LongBench at Table 3.

We run all the experiments on NVIDIA A100.

Dataset Source Avg len Metric Language #data

Single-Document QA
NarrativeQA Literature, Film 18,409 F1 English 200
Qasper Science 3,619 F1 English 200
MultiFieldQA-en Multi-field 4,559 F1 English 150

Multi-Document QA
HotpotQA Wikipedia 9,151 F1 English 200
2WikiMultihopQA Wikipedia 4,887 F1 English 200
MuSiQue Wikipedia 11,214 F1 English 200

Summarization
GovReport Government report 8,734 Rouge-L English 200
QMSum Meeting 10,614 Rouge-L English 200
MultiNews News 2,113 Rouge-L English 200

Few-shot Learning
TREC Web question 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web 8,209 F1 English 200
SAMSum Dialogue 6,258 Rouge-L English 200

Synthetic Task
PassageCount Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200

Code Completion
LCC Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository 4,206 Edit Sim Python/Java 500

Table 3: An overview of the dataset statistics in LongBench (Bai et al., 2023). ‘Source’ denotes
the origin of the context. ‘Accuracy (CLS)’ refers to classification accuracy, while ‘Accuracy (EM)’
refers to exact match accuracy.

F LICENSE

LongBench: MIT

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

G HANDLE ROTARY EMBEDDING AFTER TOKENS ARE REMOVED
IN PYRAMIDKV

We keep the rotary embedding unchanged after tokens are removed, so that LLMs can still capture
the exact position information even if the tokens are removed. StreamingLLM (Xiao et al., 2023)
shows that rolling kv cache with the correct relative position is crucial for maintaining performance.
This is because StreamingLLM is designed to mainly handle unlimited context sizes, where con-
texts exceed the LLM’s fixed context length. Without changing the rotary embedding after token
removal, LLMs would receive rotary embedding of a non-monotonic position sequence. For ex-
ample, after the first KV cache compression, LLMs might receive the input position embedding as
[0, 1, 2, 3, 3096, 3097, · · · , 4096], and the position embedding of the generated sequences could be
[1005, 1006, 1007, · · ·]. The position sequence of [0, 1, 2, 3, 3096, . . . , 4096, 1005, 1006, 1007, · · ·]
is a non-monotonic sequence, which may negatively hurts the performance. In contrast, our targeting
settings will not process unlimited context size. For example, given a input sequence of 4012 length,
after KV cache compression, the position sequence would be [0, 4, 6, 16, · · · , 3927, 3987, 4012], and
the position sequence of the generated tokens would be [4013, 4014, · · ·]. By keeping the rotary
embedding unchanged after the tokens are removed, the LLM avoids non-monotonic position se-
quences, and the LLM can capture the exact position information even if the tokens are shifted. Our
preliminary results show that rolling KV cache with the correct relative position will slightly decrease
the performance.

H ABLATION STUDY

In this section, we present an ablation study for hyperparameters and allocation strategies.

Based on our observations of the attention pattern, we find that a relatively stable, linear arithmetic
decrease aligns more closely with the underlying structure of the pattern. We conduct experiments
comparing various allocation strategies.

We conducted hyperparameter testing on the original development sets of 16 datasets in LongBench.
The parameter β demonstrated remarkable stability, showing minimal sensitivity to varying hyper-
parameter settings, which highlights its robustness. Conversely, α consistently produced superior
results when set to 8 or 16. Consequently, these values were adopted for subsequent experiments. In
Appendix H.2 and H.3, we further analyzed the impact of hyperparameter selection on KV cache
budget allocation across different layers. The experiments reaffirmed that β had negligible influence
on the outcomes, underscoring its stability. Meanwhile, α continued to deliver optimal results at
values of 8 and 16.

H.1 ALLOCATION SRATEGIES

Based on our observations of the attention pattern, we find that a relatively stable, linear arithmetic
decrease aligns more closely with the underlying structure of the pattern.

We conduct experiments comparing various pyramidal allocation strategies (i.e., linear decay strategy,
geometric decay strategy and exponential decay strategy) with a cache size of 64 as Table 4 to confirm
that a linear strategy is indeed optimal or preferable.

We also propose three adaptive allocation baselines, which are based on the entropy, Gini coefficient,
and sparsity of the attention values at each layer. The weight of each layer is calculated based on its
corresponding metric (entropy, Gini coefficient, or sparsity), and the budget is allocated accordingly.
Specifically:

• Entropy-based allocation: Layers with higher entropy receive higher weights. Each layer’s
entropy is calculated based on the the layer’s attention.

• Gini coefficient-based allocation: Layers with higher Gini coefficients receive higher
weights. Each layer’s Gini coefficient is calculated based on the the layer’s attention

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The empirical results as Table 4 consistently showed that the linear strategy outperformed its counter-
parts, establishing it as the most effective approach for our use case. The experiment strengthens the
rationale for choosing the specific allocation method.

Stra.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Geo. 20.51 15.04 29.4 34.93 26.41 16.6 18.32 21.68 18.81 52 87.51 36.15 5.18 69.17 53.11 44.91 34.36
Exp. 20.58 14.82 28.74 34.34 26.24 16.11 18.41 21.63 18.75 52.00 87.94 36.26 5.19 69.17 54.34 43.21 34.23
Lin. 21.13 14.18 30.26 35.12 23.76 16.17 18.33 21.65 19.23 58.00 88.31 37.07 5.23 69.50 52.61 45.74 34.76
Entropy. 18.12 14.12 27.22 33.21 21.16 15.16 17.76 19.87 17.09 51 87.31 34.29 5.09 68.91 50.12 42.98 32.71
Gini. 17.92 14.61 28.21 32.67 19.98 15.98 16.20 19.29 18.21 51.00 86.21 34.97 5.11 65.51 51.98 43.37 32.58

Table 4: Ablation study of allocation strategies.

H.2 HYPER PARAMETER α

We present the study of α for LlaMa-3-8B-Instruct in 128 KV cache size budget at Table 5.We find
that a small alpha value (i.e., 8, 16) leads to better performance than a larger alpha value (i.e., 24, 32,
40, 48).

α

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

8 21.40 16.92 31.62 38.45 28.72 18.59 19.96 22.49 20.96 66.50 89.35 38.43 5.92 69.00 57.86 51.80 37.37
16 23.37 16.21 33.93 38.24 27.28 20.57 19.71 21.93 20.86 60.00 88.75 38.34 5.48 69.12 57.84 53.42 37.19
24 22.85 14.51 32.26 38.38 28.36 20.33 19.55 21.72 20.72 54.50 88.71 38.46 5.48 69.50 56.83 53.65 36.61
32 23.01 14.54 31.68 38.86 29.90 19.16 19.20 21.83 20.52 49.50 87.01 38.01 5.75 69.50 57.02 54.54 36.25
40 21.70 13.06 30.14 36.78 27.34 18.88 18.72 21.37 19.79 44.00 87.74 38.43 6.08 69.25 56.11 53.89 35.21
48 21.51 12.30 29.77 39.04 26.76 17.97 18.65 21.20 20.29 44.50 87.73 38.44 5.51 69.25 56.73 53.88 35.22

Table 5: Ablation on α.

H.3 HYPER PARAMETER β

One topic we want to analyze for our ablation study is the selection of β, which can determine the
staircase. The smaller β is, the gentler the staircase is; the larger β is, the steeper the staircase is. We
want to investigate the effect of β step size on the final result. Results on 128 KV cache size and
LlaMa-3-8B-Instruct are shown in Table 6. The results at Table 6 show that using a relatively small
value of β yields better outcomes, and PyramidKV is generally robust to the selection of β.

β

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

20 21.40 16.92 33.79 39.73 28.72 18.59 19.86 22.48 20.95 66.50 89.35 38.39 5.92 69.00 56.49 47.95 37.25
18 21.71 16.24 33.59 39.89 27.94 18.38 19.76 22.32 21.20 66.50 88.98 38.93 5.46 69.50 56.47 49.23 37.25
16 21.74 14.86 33.64 39.18 28.17 18.77 19.57 22.25 21.48 66.50 89.69 38.87 5.82 69.50 57.02 50.11 37.32
14 22.53 16.31 33.50 40.50 28.15 19.26 19.66 22.39 21.38 65.50 90.02 38.56 5.75 69.50 57.51 49.71 37.51

Table 6: Ablation on β.

I INTEGATION WITH MINFERENCE

We would like to clarify that PyramidKV and MInference Jiang et al. (2024) are complementary
approaches addressing different aspects of KV cache optimization. Specifically:

• MInference focuses on accelerating the generation of KV caches during the pre-filling stage
of LLM inference.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• In contrast, PyramidKV targets efficient KV cache management during LLM decoding.

To evaluate their respective strengths, we compared PyramidKV and MInference on Longbench using
a KV cache size of 128. The results demonstrated the superior performance of PyramidKV.

Furthermore, we demonstrate that MInference and PyramidKV can be seamlessly integrated to
achieve highly efficient inference while maintaining performance comparable to full attention. The
results of MInference combined with PyramidKV, evaluated on Longbench with a KV cache size of
128, as PyramidKV + MInference hybrid approach.

Stra.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

PyramidKV 23.99 20.61 38.28 43.23 31.62 20.94 21.27 22.69 22.83 71 90.48 39.86 5.83 69.25 56.94 50.16 39.31
MInference 19.74 30.63 40.41 44.28 35.22 20.65 28.43 23.35 26.75 72.00 87.90 42.78 6.30 64.00 58.76 5.06 38.86
M. + P. 20.04 31.74 39.98 43.10 35.21 21.60 27.41 23.06 26.76 73.00 88.03 43.36 6.28 64.00 58.57 45.42 40.47

Table 7: Comparison between PyramidKV, MInference and MInference-PyramidKV hybrid method.

In summary, we demonstrate that PyramidKV outperforms MInference on Longbench. Furthermore,
when integrated with MInference, PyramidKV enhances its performance even further.

J COMPARISON WITH PYRAMIDINFER

Our work differs from PyramidInfer in two key aspects:

• Decay Strategy: While PyramidInfer Yang et al. (2024) employs a geometric decay strategy,
our method adopts an arithmetic decay strategy. We argue that the relatively stable and
linear nature of arithmetic decay better aligns with the behavior of the attention mechanism.
This strategy is derived from empirically observed attention patterns, aiming to closely
match them. Notably, our approach also achieves superior results, as demonstrated in the
experimental results presented in the table below.

• Token Selection: PyramidInfer discards tokens in earlier layers, preventing them from being
reconsidered in later layers. In contrast, our method allows previously discarded tokens to
be re-evaluated in higher layers, recognizing that these tokens may still hold relevance at
different stages of the model’s processing.

• Pyramidal Information Funneling Pattern: A key contribution of our work lies in iden-
tifying and leveraging the pyramidal information funneling phenomenon within attention
mechanisms. Through in-depth analysis, we observe that attention tends to disperse in
earlier layers and progressively concentrates on crucial tokens in higher layers. This insight
forms the foundation of our arithmetic decay strategy, ensuring that our method aligns more
naturally with these intrinsic patterns.

Despite some similarities between the two approaches, these differences lead to significantly distinct
outcomes. As shown in Table 8, our method consistently outperforms PyramidInfer, highlighting the
effectiveness of our design choices.

Stra.

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

Pyramidinfer 20.42 12.77 25.21 35.81 25.83 16.88 18.27 21.78 18.52 51.00 88.54 35.76 5.61 69.25 53.21 44.12 33.94
PyramidKV 21.13 14.18 30.26 35.12 23.76 16.17 18.33 21.65 19.23 58.00 88.31 37.07 5.23 69.50 52.61 45.74 34.76

Table 8: Comparison between PyramidKV and Pyramidinfer.

K PYRAMIDKV WILL CAUSE MINIMAL EXTRA INFERENCE OVERHEAD.

The allocation strategy and score-based selection add minimal complexity in the inference phase
compared to the computation required for next-token predictions as Table 9. Each row shows the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

setting of using a specific “[Prompt length, Generation length]” combination. We show the inference
speed comparison between total inference time, time for allocation strategy and time for score-based
selection on LlaMa-3-8B-Instruct. Each cell is the latency measured in seconds. Furthermore, our
budget allocation can be calculated before inference, requiring only a one-time computation. Thus,
PyramidKV will cause minimal extra inference overhead.

Prompt Length Generation Length Inference Time Allocation Time Selection Time

512 512 18.26 0.0000003 0.0194
512 1024 34.69 0.000002 0.0133
512 2048 70.69 0.000003 0.013
512 4096 138.62 0.000005 0.013

1024 512 17.32 0.000002 0.0131
1024 1024 34.67 0.000002 0.01288
1024 2048 70.21 0.000005 0.01296
1024 4096 138.61 0.000003 0.01297
2048 512 17.48 0.000004 0.0128
2048 1024 34.78 0.000006 0.0129
2048 2048 69.50 0.000003 0.01297
2048 4096 138.59 0.000003 0.013
4096 512 17.58 0.000002 0.013
4096 1024 34.93 0.000004 0.0129
4096 2048 69.65 0.000002 0.013
4096 4096 138.87 0.000002 0.013

Table 9: Extra inference overhead of PyramidKV

L INFERENCE SPEED COMPARISON

PyramidKV does not require extra computation time for budget allocation at inference by design.
We show the inference speed comparison between PyramidKV and baselines on LlaMa-3-8B-
Instruct as Table 10. Each row shows the setting of using a specific “[Prompt length, Generation
length]” combination. Each cell is the latency measured in seconds. PyramidKV does not sacrifice
the speed. PyramidKV provides performance improvement and memory saving while runs at a
comparable speed compared with baselines (i.e. SnapKV (Li et al., 2024), StreamingLLM (Xiao
et al., 2023) and H2O (Zhang et al., 2024)). That’s because the allocation strategy requires very
limited additional complexity in the inference/generation phase compared with computation required
for generation as Appendix K.

Prompt Length Generation Length H2O SnapKV StreamingLLM PyramidKV

512 512 18.47 18.25 18.96 18.26
512 1024 35.10 34.76 36.20 34.69
512 2048 70.21 69.60 72.35 70.69
512 4096 140.80 139.42 146.37 138.62
1024 512 17.63 17.34 18.12 17.32
1024 1024 35.16 34.61 36.17 34.67
1024 2048 71.02 69.17 72.37 70.21
1024 4096 140.51 138.83 146.09 138.61
2048 512 17.64 19.54 18.22 17.48
2048 1024 35.09 34.76 36.29 34.78
2048 2048 70.84 69.56 72.46 69.50
2048 4096 140.16 139.55 145.22 138.59
4096 512 17.75 17.67 18.40 17.58
4096 1024 35.20 35.08 36.46 34.93
4096 2048 70.02 69.26 72.58 69.65
4096 4096 139.87 138.57 144.98 138.87

Table 10: Performance comparison across different configurations and methods.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

M PYRAMIDKV EXCELS IN ALL KV CACHE SIZE LIMITATION

The evaluation results from LongBench(Bai et al., 2023) are shown in Table 11, Table 12, andTable 13.
We report the results using LlaMa-3-8B-Instruct, LlaMa-3-70B-Instruct and Mistral-7B-Instruct(Jiang
et al., 2023) for different KV cache sizes.

Overall, PyramidKV consistently surpasses other method across a range of KV cache sizes and
different backbone models, with its performance advantages becoming particularly pronounced in
memory-constrained environments. Upon examining specific tasks, PyramidKV demonstrates a
notably superior performance on the TREC task, a few-shot question answering challenge. This
suggests that the model effectively aggregates information from the few-shot examples, highlighting
the potential for further investigation into in-context learning tasks.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

LlaMa-3-8B-Instruct, KV Size = Full

FKV 25.70 29.75 41.12 45.55 35.87 22.35 25.63 23.03 26.21 73.00 90.56 41.88 04.67 69.25 58.05 50.77 41.46

LlaMa-3-8B-Instruct, KV Size = 64

SKV 19.86 9.09 27.89 37.34 28.35 18.17 15.86 20.80 16.41 38.50 85.92 36.32 5.22 69.00 51.78 48.38 33.05
H2O 20.80 11.34 27.03 37.25 30.01 17.94 18.29 21.49 19.13 38.00 84.70 37.76 5.63 69.33 53.44 50.15 33.89
SLM 17.44 8.68 22.25 35.37 31.51 15.97 15.46 20.06 14.64 38.00 72.33 29.10 5.42 69.50 46.14 45.09 30.43
Ours 21.13 14.18 30.26 35.12 23.76 16.17 18.33 21.65 19.23 58.00 88.31 37.07 5.23 69.50 52.61 45.74 34.76

LlaMa-3-8B-Instruct, KV Size = 96

SKV 20.45 10.34 31.84 37.85 28.65 18.52 17.90 21.26 19.07 41.50 86.95 37.82 5.08 69.12 54.69 51.31 34.51
H2O 21.55 11.21 28.73 37.66 30.12 18.47 19.57 21.57 20.44 38.50 87.63 38.47 5.60 69.00 54.51 50.16 34.57
SLM 18.67 8.43 24.98 38.35 30.59 16.37 17.33 19.84 18.41 41.00 73.92 29.38 5.80 69.50 47.15 45.61 31.58
Ours 21.67 15.10 33.50 39.73 26.48 17.47 19.64 22.28 20.49 61.50 87.38 38.18 6.00 69.25 55.30 46.78 36.29

LlaMa-3-8B-Instruct, KV Size = 128

SKV 21.19 13.55 32.64 38.75 29.64 18.73 18.98 21.62 20.26 45.00 88.36 37.64 5.13 68.85 55.84 51.82 35.50
H2O 22.12 13.20 31.61 37.79 32.71 18.45 20.32 22.02 21.10 38.50 87.75 39.14 5.83 69.50 55.06 50.97 35.37
SLM 18.61 9.65 25.99 37.95 29.39 16.34 18.03 20.11 20.08 43.50 74.08 29.86 5.90 69.50 47.47 45.60 32.00
Ours 21.40 16.92 33.79 39.73 28.72 18.59 19.86 22.48 20.95 66.50 89.35 38.39 5.92 69.00 56.49 47.95 37.25

LlaMa-3-8B-Instruct, KV Size = 2048

SKV 25.86 29.55 41.10 44.99 35.80 21.81 25.98 23.40 26.46 73.50 90.56 41.66 5.17 69.25 56.65 49.94 41.35
SLM 21.71 25.78 38.13 40.12 32.01 16.86 23.14 22.64 26.48 70.00 83.22 31.75 5.74 68.50 53.50 45.58 37.82
H2O 25.56 26.85 39.54 44.30 32.92 21.09 24.68 23.01 26.16 53.00 90.56 41.84 4.91 69.25 56.40 49.68 39.35
Ours 25.40 29.71 40.25 44.76 35.32 21.98 26.83 23.30 26.19 73.00 90.56 42.14 5.22 69.25 58.76 51.18 41.49

Table 11: Performance comparison of PyramidKV (Ours) with SnapKV (SKV), H2O, StreamingLLM
(SLM) and FullKV (FKV) on LongBench for LlaMa-3-8B-Instruct. PyramidKV generally out-
performs other KV Cache compression methods across various KV Cache sizes and LLMs. The
performance strengths of PyramidKV are more evident in small KV Cache sizes. Bold text represents
the best performance.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

Mistral-7B-Instruct, KV Size = Full

FKV 26.90 33.07 49.20 43.02 27.33 18.78 32.91 24.21 26.99 71.00 86.23 42.65 2.75 86.98 56.96 54.52 42.71

Mistral-7B-Instruct, KV Size = 64

SKV 16.94 17.17 39.51 36.87 22.26 15.18 14.75 20.35 21.45 37.50 84.16 37.28 4.50 61.13 42.40 38.44 30.72
SLM 15.01 13.84 28.74 30.97 24.50 13.42 13.25 19.46 19.17 35.50 76.91 29.61 4.67 27.33 38.71 35.29 25.60
H2O 18.19 19.04 37.40 30.18 22.22 13.77 16.60 21.52 21.98 37.00 81.02 38.62 5.00 66.03 43.54 40.46 30.88
Ours 20.91 20.21 39.94 33.57 22.87 15.70 17.31 21.23 21.41 54.00 81.98 36.96 3.58 60.83 44.52 37.99 32.19

Mistral-7B-Instruct, KV Size = 96

SKV 19.92 18.80 43.29 39.66 23.08 15.94 16.65 21.26 21.47 43.50 83.48 39.74 4.00 60.10 45.53 41.12 32.47
SLM 15.15 15.48 31.44 30.03 23.93 12.73 16.76 19.15 19.19 41.50 75.31 28.71 5.00 28.48 38.92 36.05 26.37
H2O 19.44 20.81 38.78 32.39 21.51 14.43 17.68 22.40 21.99 38.00 82.51 39.94 6.06 77.48 45.18 42.43 32.67
Ours 20.35 21.87 41.15 34.94 21.85 15.81 18.21 21.66 21.43 65.00 83.60 39.60 4.50 67.80 45.83 39.38 34.08

Mistral-7B-Instruct, KV Size = 128

SKV 19.16 21.46 43.52 38.60 23.35 16.09 17.66 21.84 21.47 47.50 84.15 40.24 5.00 69.31 46.98 42.97 34.96
SLM 16.57 14.68 32.40 30.19 22.64 12.34 18.08 18.96 19.19 43.50 74.22 29.02 4.50 29.48 39.23 36.16 27.57
H2O 21.20 21.90 41.55 33.56 21.28 12.93 18.59 22.61 21.99 39.00 82.37 40.44 6.00 83.19 46.41 42.66 34.73
Ours 21.75 22.03 44.32 34.06 22.79 15.77 18.58 21.89 21.43 66.00 83.46 39.75 4.50 66.90 46.96 41.28 35.72

Mistral-7B-Instruct, KV Size = 2048

SKV 25.89 32.93 48.56 42.96 27.42 19.02 26.56 24.47 26.69 70.00 86.27 42.57 5.50 88.90 50.42 46.72 41.56
SLM 20.31 26.64 45.72 35.25 24.31 12.20 27.47 21.57 24.51 68.50 71.95 31.19 5.00 22.56 43.38 37.08 32.35
H2O 25.76 31.10 49.03 40.76 26.52 17.07 24.81 23.64 26.60 55.00 86.35 42.48 5.50 88.15 49.93 46.57 39.95
Ours 25.53 32.21 48.97 42.26 27.50 19.36 26.60 23.97 26.73 71.00 86.25 42.94 4.50 87.90 53.12 47.21 41.63

Table 12: Performance comparison of PyramidKV (Ours) with SnapKV (SKV), H2O, StreamingLLM
(SLM) and FullKV (FKV) on LongBench for Mistral-7B-Instruct. PyramidKV generally outperforms
other KV Cache compression methods across various KV Cache sizes and LLMs. The performance
strengths of PyramidKV are more evident in small KV Cache sizes. Bold text represents the best
performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.
NrtvQA

Qasper
MF-en

HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206

LlaMa-3-70B-Instruct, KV Size = Full

FKV 27.75 46.48 49.45 52.04 54.9 30.42 32.37 22.27 27.58 73.5 92.46 45.73 12.5 72.5 40.96 63.91 46.55

LlaMa-3-70B-Instruct, KV Size = 64

SKV 23.92 31.09 36.54 46.66 50.40 25.30 18.05 21.11 19.79 41.50 91.06 40.26 12.00 72.50 43.33 57.62 39.45
SLM 22.07 23.53 27.31 43.21 51.66 23.85 16.62 19.74 15.20 39.50 76.89 33.06 12.00 72.50 40.23 50.20 35.47
H2O 25.45 34.64 33.23 48.25 50.30 24.88 20.03 21.50 21.39 42.00 90.36 41.58 12.00 71.50 43.83 58.16 39.94
Ours 25.47 36.71 42.29 47.08 46.21 28.30 20.60 21.62 21.62 64.50 89.61 41.28 12.50 72.50 45.34 56.50 42.01

LlaMa-3-70B-Instruct, KV Size = 96

SKV 25.78 35.71 42.13 50.38 51.46 26.68 19.61 21.40 21.98 48.50 92.11 41.21 12.00 72.00 44.85 59.05 41.55
SLM 23.31 29.46 29.21 41.85 45.92 23.00 18.42 19.71 18.57 45.00 76.79 33.54 12.00 72.50 40.49 50.73 36.28
H2O 25.30 35.13 35.54 47.39 50.61 26.20 20.87 21.80 22.93 41.00 90.47 43.42 12.00 72.00 43.84 59.86 40.52
Ours 25.47 37.61 44.00 47.33 45.36 27.91 21.05 21.60 22.31 66.00 91.45 42.36 12.00 72.50 45.12 56.88 42.43

LlaMa-3-70B-Instruct, KV Size = 128

SKV 26.22 37.49 45.70 50.86 52.82 28.50 20.38 21.72 22.56 53.00 91.61 41.43 12.00 71.50 45.06 60.50 42.58
SLM 24.25 29.12 29.24 40.20 46.28 21.80 19.55 19.42 20.61 48.00 76.60 33.21 12.00 72.50 40.65 51.03 36.53
H2O 25.61 35.02 37.74 47.77 51.16 26.87 20.57 20.78 23.33 42.00 91.65 43.85 12.00 72.50 43.50 59.67 40.88
Ours 26.06 40.35 45.67 50.20 52.78 29.36 22.31 22.02 23.69 71.00 92.27 44.33 12.00 72.50 45.90 59.55 44.37

LlaMa-3-70B-Instruct, KV Size = 2048

SKV 26.73 45.18 47.91 52.00 55.24 30.48 28.76 22.35 27.31 72.50 92.38 45.58 12.00 72.50 41.52 69.27 46.36
SLM 26.69 41.01 35.97 46.55 52.98 25.71 27.81 20.81 27.16 69.00 91.55 44.02 12.00 72.00 41.44 68.73 43.96
H2O 27.67 46.51 49.54 51.49 53.85 29.97 28.57 22.79 27.53 59.00 92.63 45.94 12.00 72.50 41.39 63.90 45.33
Ours 27.22 46.19 48.72 51.62 54.56 31.11 29.76 22.50 27.27 73.50 91.88 45.47 12.00 72.50 41.36 69.12 46.55

Table 13: Performance comparison of PyramidKV (Ours) with SnapKV (SKV), H2O, StreamingLLM
(SLM) and FullKV (FKV) on LongBench for LlaMa-3-70B-Instruct. PyramidKV generally out-
performs other KV Cache compression methods across various KV Cache sizes and LLMs. The
performance strengths of PyramidKV are more evident in small KV Cache sizes. Bold text represents
the best performance.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

With a small budget, our proposed method enables more effective allocation, better preserving useful
attention information. Second, with a large budget, such allocation becomes less critical, as it is
sufficient to cover the necessary information. To further illustrate this phenomenon, we have included
an ablation study titled "Attention Recall Rate Experiment" as Figure 8. The results show that with a
small budget, PyramidKV improves the attention recall rate (the percentage of attention computed
using the keys retrieved by the method and the query, relative to the attention computed using all keys
and the query.). However, with a larger budget (i.e., 2k KV Cache Size), the improvement decreases.
For 64, 128, 256, 512, 1024 and 2048 KV Cache sizes, PyramidKV’s average attention recall rate
improvements are 1.87%, 0.64%, 0.61%, 0.56%, 0.47% and 0.36%.

Figure 8: Attention recall rate (the percentage of attention computed using the keys retrieved by the
method and the query, relative to the attention computed using all keys and the query.) comparison of
PyramidKV and SnapKV.

N LONGBENCH RESULTS FOR 128 CONTEXT LENGTH

We conducted additional experiments using Llama-3-8B-Instruct-Gradient-1048k with a sequence
length of 128k as Table 14. The results, summarized in the table below, showcase the model’s
performance with extended context lengths. These findings provide further validation of the scalability
and robustness of our approach.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code Avg.

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

SnapKV 6.10 8.14 23.12 8.87 10.54 5.59 20.27 17.95 18.07 50.50 82.78 34.67 3.50 49.25 45.39 41.68 26.65
H2O 3.47 7.49 14.17 7.30 8.74 4.55 24.13 17.83 21.91 61.50 81.45 23.60 3.55 41.80 43.25 38.51 25.20
StreamingLLM 3.47 7.49 14.17 7.30 8.74 4.55 19.21 17.83 21.91 61.50 78.21 23.60 3.55 41.80 43.25 38.51 24.69
PyramidKV 5.41 8.42 22.61 9.71 10.73 5.82 20.37 18.24 18.32 54.00 85.33 34.60 3.50 52.75 47.23 42.58 27.48

Table 14: Comparison of PyramidKV with baselines at 128k context length.

O PYRAMIDKV PRESERVES THE LONG-CONTEXT UNDERSTANDING ABILITY

We perform Fact Retrieval Across Context Lengths (“Needle In A HayStack”) (Liu et al., 2023a;
Fu et al., 2024) to test the in-context retrieval ability of LLMs after leveraging different KV cache

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

methods. We conducted the Needle-in-a-Haystack experiment using various LLMs (i.e., Mistral-7B-
Instruct-32k, LLaMA-3-8B-Instruct-8k, and LLaMA-3-70B-Instruct-8k), various KV cache sizes
(i.e., 64, 96, and 128) and various methods (i.e., FullKV, PyramidKV, H2O and StreamingLLM).
PyramidKV achieves Acc. performance closest to FullKV, while other methods show significant
decreases. It is worth noting that PyramidKV with 128 KV cache size achieves the same 100.0 Acc.
performance compared with FullKV with 8k context size for LLaMA-3-70B-Instruct.

Figure 9, Figure 10, Figure 11 show the results of Mistral-7B-Instruct (Jiang et al., 2023) with
different cache size (64, 96 and 128, respectively).

Figure 12, Figure 13, Figure 14 show the results of LlaMa-3-8B-Instruct with different cache size
(64, 96 and 128, respectively).

Figure 15, Figure 16, Figure 17 show the results of LlaMa-3-70B-Instruct with different cache size
(64, 96 and 128, respectively).

Model Length KV Cache Full KV Acc. PyramidKV Acc. SnapKV Acc. H2O Acc.

Mistral-7B 32k 64 100.00 80.50 43.90 48.40
Mistral-7B 32k 96 100.00 90.50 72.20 59.10
Mistral-7B 32k 128 100.00 91.60 80.10 64.90

LLaMa-3-8B 8k 64 100.00 92.90 62.00 31.90
LLaMa-3-8B 8k 96 100.00 95.80 80.70 44.20
LLaMa-3-8B 8k 128 100.00 97.40 87.40 49.10

LLaMa-3-70B 8k 64 100.00 99.60 76.20 47.30
LLaMa-3-70B 8k 96 100.00 98.60 94.40 69.90
LLaMa-3-70B 8k 128 100.00 100.00 98.60 82.30

Table 15: Recall Accuracy performance from Fact Retrieval Across Context Lengths (“Needle In A
HayStack”)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 9: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test
in Mistral-7B-Instruct with 32k context size in 64 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length. PyramidKV
mitigates the negative impact of KV cache compression on the long-context understanding capability
of LLMs.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 10: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test
in Mistral-7B-Instruct with 32k context size in 96 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length. PyramidKV
mitigates the negative impact of KV cache compression on the long-context understanding capability
of LLMs.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 11: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test
in Mistral-7B-Instruct with 32k context size in 128 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length. PyramidKV
mitigates the negative impact of KV cache compression on the long-context understanding capability
of LLMs.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 12: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test
in LlaMa-3-8B-Instruct with 8k context size in 64 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length. PyramidKV
mitigates the negative impact of KV cache compression on the long-context understanding capability
of LLMs.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

LLaMA-3-8B - 8K Context Size

0
0
0
0

n
”
“
°

1

5
己
乙4
U已
8

怠忒式武l，忒轰专为梦裙武武尽武恐念印梦分女梦烧沉武禹冉光炎羚沙泸沁令穸拭成，史忠气歹忒恐和守戍艾式心专守忒式武冉绿忒念专捻恁忒冉仓

(a) FullKV, KV Size = Full, ace 100.0

0
0
0
0

”
“
”
“

芒'-
t
5
8

拭悉屯史·"'忒武韦守拭，，，尽哎武冉女穿拭森击吩梦沉心心持沁武9令戍忒必咕梦沉忠节梦試沁令扰壳农忒式戍中心心式武忒式武武武勺知琛坑书岱

(b)PyramidKV, KV Size=96, ace 95.8

O
O
O
n

”
“
3
"

芒
．
匕
少j

5
d
父．一

式蚐梦戍穸忒恐和心心令孚沁约守泰沁心梦拭寿蚐梦慈式和梦没试式和籽求求森齿帮拭禹心专守表专忒寿令忒沁令式武式武武戎武忠忠女穿求

(c) SnapKV, KV Size=96, ace 80.7

0
0

0
-

”
“
为
“

芒
.
巳
g

5
d

父

拭史尽史知克专守拭炙岛钧梦斟式，武炙梦忒武式守表试炙和牧泸沁韦守求，忍忒式心心心屯守忒沁令忒武共森蚐梦試心知籽拭

(d) H20, KV Size=96, ace 44.2

needle_llama_64
Figure 13: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test
in LlaMa-3-8B-Instruct with 8k context size in 96 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length. PyramidKV
mitigates the negative impact of KV cache compression on the long-context understanding capability
of LLMs.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 14: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test
in LlaMa-3-8B-Instruct with 8k context size in 128 KV cache size. The vertical axis of the table
represents the depth percentage, and the horizontal axis represents the token length. PyramidKV
mitigates the negative impact of KV cache compression on the long-context understanding capability
of LLMs.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure 15: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test in
LlaMa-3-70B with 8k context size in 64 KV cache size. The vertical axis of the table represents
the depth percentage, and the horizontal axis represents the token length. PyramidKV mitigates the
negative impact of KV cache compression on the long-context understanding capability of LLMs.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 16: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test in
LlaMa-3-70B with 8k context size in 96 KV cache size. The vertical axis of the table represents
the depth percentage, and the horizontal axis represents the token length. PyramidKV mitigates the
negative impact of KV cache compression on the long-context understanding capability of LLMs.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 17: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test in
LlaMa-3-70B with 8k context size in 128 KV cache size. The vertical axis of the table represents
the depth percentage, and the horizontal axis represents the token length. PyramidKV mitigates the
negative impact of KV cache compression on the long-context understanding capability of LLMs.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

P ATTENTION PATTERNS ACROSS HEADS IN THE BOTTOM LAYER

Retrieval heads are predominantly located in the higher layers. Notably, no retrieval heads are
observed in bottom layers. To further investigate, we conducted additional experiments on the bottom
layer to analyze the attention patterns of the heads as Figure 18. Our findings indicate the absence of
"massive attention" in any individual head.

Figure 18: Attention patterns of retrieval-augmented generation across heads in the bottom layer in
LlaMa.

Q PYRAMIDKV IMPLEMENTATION AT VLLM

To help compare the vLLM implementation with the vanilla dense attention backend in terms
of throughput, we perform the experiment. We present the throughput comparison between the
PyramidKV vLLM implementation and the vanilla dense attention backend in a setting where the
inputs have varying context lengths without shared prefixes.

In Figure Figure 19, we plot the throughput of the LlaMa 8b model by varying length. We observe
that relative throughput under compression decreases as the new input context length approaches the
limit, causing new sequences to wait longer before being added to the decoding batch.

500 1000 2000 4000 6000 8000 10000 12000
Input Length

0

250

500

750

1000

1250

1500

1750

Th
ro

ug
hp

ut
 (

to
k/

se
c)

Performance of PyramidKV across different input context lengths
PyramidKV - Keep 64%
PyramidKV - Keep 32%
dense attention backend

Figure 19: Throughout performance of PyramidKV across different input context lengths using
LlaMa-3-8b model.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

We find that allocating/releasing/moving/accessing very small chunks of memory may cause ineffi-
ciency and fragmentation in a naive implementation of PyramidKV at vLLM. As PyramidKV applies
different allocation budgets for different layers. The top layers have less budget, while the bottom
layers have more budget. The application of KV cache eviction with different budgets across layers
at the standard paged attention frameworks (i.e., vLLM) is ineffective as it only reduces the cache
size proportionally to the layer with the lowest compression rate, and all evictions beyond this rate
merely increase cache fragmentation.

However, the problem could be solved by adapting paged attention to page out cache on a per-layer
basis. We expand the block tables of each sequence to include block tables for each layer of the
cache so that they can be retrieved for each layer’s KV cache during attention without the use of fixed
memory offsets.

The implementation of PyramidKV is orthogonal to multi-gpu setting at vLLM because vLLM
shards attention by head in tensor parallel, so the performance bonus would not change too much
with tensor parallel or pipeline parallel. Each TP rank will have it’s corresponding heads of size
(num_heads/tp_size). To help see the performance of PyramidKV implementation at vLLM
compared with the vLLM dense attention backend at tensor parallel and pipeline parallel, we perform
the experiment as Figure 20. We present the throughput comparison between PyramidKV vLLM
implementation and vanilla dense attention backend at PP=1, TP=1; PP=1, TP=2; PP=1, TP=4; PP=2,
TP=2 settings

Results show that the performance bonus remains similar with tensor parallel and pipeline parallel.
Tensor parallelism demonstrates significant improvements when the degree is increased from 1 to 2.
Notably, the result also reveals a non-linear relationship between the number of GPUs and throughput;
doubling the GPU count did not yield a proportional doubling of throughput.

PP=1, TP=1 PP=1, TP=2 PP=1, TP=4 PP=2, TP=2
Multi-GPU Settings

0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (

to
ke

n/
se

c)

Performance of PyramidKV in Multi-GPU settings
PyramidKV - Keep 32%
PyramidKV - Keep 64%
Dense Attention Backend

Figure 20: Throughout performance of PyramidKV across different multi-GPU settings using
LlaMa-3-8b model at 8k context size.

37

	Introduction
	Related Work
	Pyramidal Information Funneling
	PyramidKV
	Preliminaries and Problem Formulation
	Proposed Method
	KV Cache Size/Budget Allocation
	KV Cache Selection

	Experiment
	Experiment Setup
	Backbone LLMs
	Datasets
	Baselines

	Main Results
	Discussion and Insights
	PyramidKV Preserves the Long-Context Understanding Ability
	 PyramidKV Significantly Reduces Memory with Limited Performance Drop

	Conclusion
	Limitations
	Future Work
	Pyramidal Information Funneling
	Details of Proposed Method
	Details of Evaluation
	License
	Handle Rotary Embedding after Tokens are Removed in PyramidKV
	Ablation Study
	Allocation Srategies
	Hyper Parameter
	Hyper Parameter

	Integation with MInference
	Comparison with PyramidInfer
	PyramidKV will cause minimal extra inference overhead.
	Inference Speed Comparison
	PyramidKV Excels in all KV Cache Size Limitation
	LongBench results for 128 context length
	PyramidKV Preserves the Long-Context Understanding Ability
	Attention Patterns across heads in the Bottom Layer
	PyramidKV Implementation at vLLM

