
Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Resurrecting Score11 in Siren:
What ever happened to the 1980s score languages?

Stephen Travis Pope stephen@heaveneverywhere.com
FASTLab and HeavenEverywhere, Ojai, California, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= jZcrF0wu12L

Abstract

This paper describes a “software archaeology” project in which a new interpreter was cre-
ated for the Score11 music representation, a popular 1980s music input language that was
frequently used with the Music11 non-real-time software sound synthesis package. The new
version runs within the Smalltalk-based Siren system, a library of software classes for mu-
sic representation, algorithmic composition and live interactive performance. The project
background is given, and the port of Score11 to the Siren environment is described and
evaluated.

1 Introduction

The first compositions of “computer music” involved the use of stochastic algorithmic composition programs
to create music scores for performance by traditional instruments (Hiller & Isaacson, 1959). The development
of what were called “music input languages” later progressed in parallel with the development of software
sound synthesis (SWSS) languages in the 1960s and 1970s (Pope, 1993b). In fact, the seminal Music-
V package (Mathews, 1969) incorporated a score preprocessing stage in which some form of algorithmic
composition or other score manipulation could be applied to generate the note list before the audio synthesis
begins (see (Mathews, 1969), p. 78ff).

The SCORE language is the work of Leland Smith, working at the CCRMA center at Stanford University
(Smith, 1972), (Smith, 1980); it was used as a score-generation pre-processor for CCRMA’s Mus10 system.
With the wide availability of the Music-11 system (Vercoe, 1978), Alexander Brinkman, working at the
Eastman School of Music in Rochester, NY wrote a version of SCORE (with some revisions) that he called
Score11 (Brinkman, 1981a), (Brinkman, 1981b).

This paper describes a project to create a new Score11 interpreter and integrate it into an interactive real-time
system in Smalltalk , (Pope, 2002); the motivation was both to recreate several of the author’s compositions
from the early 1980s, and to enable new works to be created using the powerful Score11 description language.

2 Score Languages of the 1970s

Before MIDI and real-time software synthesis were available, computer music was created by non-real-time
off-line software tools referred to as sound compilers or software sound synthesis (SWSS) packages (Pope,
1993b). In SWSS tools such as the “MusicN” family (for values of N = I-V, 10, 11, 360, etc.), sound is
computed by a non-real-time program that is configured by passing it two input files; one with the description
of digital signal processing graphs that constitute the instruments of the orchestra; and another (the score
or notelist) with a list of commands to play “notes” by activating the instrument definitions, passing them
the parameters they require. The SWSS system then writes the output audio samples in sequence to the
output sound file.

1

https://openreview.net/forum?id=jZcrF0wu12L

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

< This i s a comment .
< S c o r e l l Score f o r Te rp s i cho r e , Vo l t e 201

∗ f 1 0 512 10 1 ; < Genera te a S ine i n f u n c t i o n 1
< ∗ means in− l i n e Music11 code

tempo 50 300 ; < Tempo = 300 bea t s /min f o r 50 seconds

i n s t r u m e n t 1 0 108 ; < In s t r umen t 1 f o r 108 bea t s
< p3 = Rhythm = 3 ∗ 1/4 , 2 ∗ 1 / 8 . . .

p3 rhythm 4/// 8// 4//// 2// 1/ 4/// 8// 4//// 2// 1/ ;
< p4 = P i t ch = d5 , e , f s , e . . .

p4 no t e s d5/e/ f s /e/ f s /g/ f s /e/d/ f s /g/a/
d/e/ f s /e/ f s /g/ f s /e/d/ f s /e/d / ;

p5 74 ; < p5 = Ampl i tude (i n dB)
end ; < end o f i n s t r u m e n t

Figure 1: Score11 example for a melody from Praetorius’ Terpsichore

MusicN notelist files generally begin with a few lines that define the stored waveform and envelope functions
used by the orchestra, followed by one or more sections of note commands, which are performed in sequence.
There are standardized note command arguments for the required parameters—start time, duration, ampli-
tude and probably pitch—while the parameters that define the note’s other timbral/spatial characteristics
follow them. The parameters of each note in the notelist are listed as an array of numbers that are referred
to positionally (e.g., p5, p13) by the notelist reader. It is not unusual for instruments to have 20 or more
parameters, so notelists for even short and simple musical selections can grow large and difficult to manage.

Starting with the Music-V package (Mathews, 1969), a score-preprocessing stage was defined as part of the
SWSS process; several techniques arose for this, ranging from “music input languages” with which one could
directly transcribe traditional Western music notation to more “programming-language-like” algorithmic
composition tools. Researchers at the CCRMA center at Stanford University developed a dialect of MusicV
called Mus10 (because it ran on a Digital Equipment Corp. [DEC] PDP-10 mainframe), and Leland Smith
implemented the SCORE program for creating Mus10 notelists based on (relatively) readable descriptions
of music material (Smith, 1972), (Smith, 1980); later in the 1980s, it was also used for high-quality music
typesetting on personal computers.

The attraction of SCORE was that it allowed easy transcription of music from common-practice Western
notation, as well as supporting all manner of serial, set-theoretic, stochastic and other compositional algo-
rithms, and also provided several non-standard representations for time/duration, pitch, loudness and other
common note parameters.

By 1980, the DEC PDP-11 mini-computer had become popular, and MusicV-style language called Music11
(Vercoe, 1978) was available from MIT (for an annual rental fee, which annoyed some users, since they
were generally academics); Alexander Brinkman proceeded to develop his Score11 program (based loosely
on Leland Smith’s SCORE program) for use with Music11 (Brinkman, 1981a), (Brinkman, 1981b).

3 The Structure of a Score11 file

A musical score in Score11 consists of one or more text blocks that describe sequences of notes for a single
instrument. The parameters of the instrument’s notes are given on separate lines, generally starting with
rhythms and pitches, and proceeding to the (possibly many) other parameters. Special keywords support
the convenient specification esp. of rhythm and pitch values. An annotated example is given in Figure 1
(Pope, 1993a) (from a score written in 1982 for music first published in 1610).

Figure 1 is an excerpt from a Score11 score for a melody from "Terpsichore" by Michael Praetorius (shown in
Figure 2, courtesy of the International Music Score Library Project, https://imslp.org). Score11 comments

2

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Figure 2: Common Western music notation for Figure 1

start with “<” and continue to the end of the line. The example’s single instrument block starts with the
instrument keyword and continues to the end keyword. Within the block, the statements define the data
for the rhythm (p3), pitch (p4) and amplitude (p5) of the notes using different representations; the keyword
rhythm introduces a list of note-duration values whereby a value of 4 denotes a quarter note and the number
of ‘/‘ characters after the numerical value shows how many times the value is repeated. Similarly, the notes
keyword allows one to use note names (with octave indications) for the p4 parameter to specify note pitch
by name. A constant value is assigned once, as in the amplitude (p5) value of 74 for all notes.

In addition to the ability to enter note data directly as in this example, Score11 has a wide array of facilities
for defining sets or sequences of values that can be repeated and transformed (e.g., a recurring phrase or a
12-tone row), and for defining static random selection ranges or dynamic “tendency masks” for values. A
few examples of these options are given in Figure 3, and one rendition of the last pitch set in Figure 3 might
look like the Hauer-Steffens notation shown in Figure 4.

4 The Port to Smalltalk and the Siren framework

The Siren system (Pope, 1992), (Pope, 2002) is a collection of software modules (classes) that encompasses:
(1) low-level music representation objects (duration, pitch, amplitude, timbre, spatialization, etc.),
(2) simple and composite musical events and event lists,
(3) objects that generate or modify event lists based on higher-level descriptions of compositional algorithms,
(4) real-time schedulers with which to perform event lists on their “instruments,” and
(5) tools for building graphical user interfaces to interact with the other Siren objects.

A schematic view of these objects is given in Figure 5, which comes from (Pope, 2002). Given Siren’s
abstractions for event lists and event generators, it was straightforward to create a new subclass of event
generator that parses an instrument block in a Score11 program and creates the corresponding Siren event
list. The most important feature to keep from the Score11 syntax is the format of the parameter value lists
shown in the examples above; it was decided that the “wrapper” text is relatively unimportant and could be
easily changed to transform a Score11 instrument block into a legal Smalltalk object constructor expression.

Another alternative would be to use the Smalltalk compiler framework to build a parser for Score11 programs,
but since the wrapper text is quite limited and simple, and Score11 programs tend to consist of many short
blocks, the current approach was adopted.

Figure 6 shows the class inheritance hierarchy for the Score11 class in Siren/Smalltalk starting at the top
with class Object; the tokens in parentheses after the class names are the given class’ instance (member)
variable names. One can see from Figure 6 that there are several levels of abstraction for the classes of
musical events, event lists and event generators; specifically, event lists are themselves events that have
collections of sub-events (an example of the object-oriented composite design pattern), and Score11 event
generators are specialized event lists that have generator and postProcessor instance variables to facilitate
their special event list creation methods.

The Score11 class in Siren acts like a map or dictionary; instances are created with an instrument number
and time-span as shown in the assignment to variable s11 in Figure 7. Once the Score11 instance is cre-
ated, parameter mappings can be added that associate a symbolic parameter name with an expression that

3

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

< I n t e r p o l a t i o n between v a l u e s .
< E x p o n e n t i a l r i t a r d a n d o ove r 20 bea t s (p3 doub l e s)
p3 movex 20 . 1 . 2 ;

< Crescendo f o r 5 bea t s (amp l i t ude from 10 to 100) ,
< then Diminuendo f o r 5 bea t s
p5 move 5 10 100 / 5 100 10 ;

< Using s e t s o f v a l u e s .
< Choose at random f o r 10 bea t s from a C−major
< t r i a d , then f o r 12 bea t s from a D−major one
p4 s e t s 10 c5 e g / 12 d5 f s a ;

< Constant and random v a l u e s .
< p8 w i l l a lways be 100 .3 (i . e . , c o n s t a n t v a l u e)
p8 1 0 0 . 3 ;

< p9 w i l l be between 3 and 8 .5 100\% of the t ime
< (i . e . , random s e l e c t i o n range)
p9 1 3 8 . 5 ;

< p11 w i l l be s e l e c t e d to be between 10 and 40 50\%
< of the t ime and between 40 and 45 50\% of the t ime
p11 . 5 10 40 . 5 40 45 ;

< Random s e l e c t i o n r ange s and moves combined
< to c r e a t e tendency masks ; no t e s chosen at
< random ove r 20 bea t s ; s t a r t i n g range = c2−c3 ;
< f i n a l range i s un i s on c5
p4 mo 20 c2 c3 c5 c5 ;

Figure 3: Score11 examples using alternative methods for specifying parameter values

Figure 4: Hauer-Steffens notation for a structure with a dynamic tendency mask for pitch, as in the last
expression of Fig. 3

4

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Figure 5: The components of the Siren library (from the documentation of an early-1990s version of MODE)

Object ()
Abs t r a c tEven t (p r o p e r t i e s)

Dura t i onEvent (d u r a t i o n rea lT ime)
MusicEvent (p i t c h l o u d n e s s v o i c e)

E v e n t L i s t (e v e n t s i n d e x s t a r t e d A t)
EventGene ra to r ()

Score11 (s t a r t s top i n s t r u m e n t g e n e r a t o r s
p o s t P r o c e s s o r s paramMap)

Figure 6: Class inheritance hierarchy for the Score11 class in Siren/Smalltalk

5

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

c h o r a l e 1
" Score f o r a Bach c h o r a l e −− s e e

h t tp : // s c o r e s . c ca rh . org / bach / c h o r a l e / c h o r a l e s . pdf #28"
"To t e s t , e x e cu t e [Score11 c h o r a l e 1] and i n s p e c t the r e s u l t . "

| s11 e l i s t | " Dec l a r e v a r i a b l e s "
" I n s t r umen t 1 b l o ck f o r 9 bea t s "

s11 := ((Score11 i n s t r : 1 from : 0 to : 9)
" p3 = dur i n bea t s ; q u a r t e r and h a l f no t e s "

add : #p3 −> (#rh −> ’4/////2// ’) ;
" p4 = cho rd s ; ’ f 3 : a4 ’ means 2 p i t c h e s at once "

add : #p4 −> (#no −> ’ f3 : a4 : c : f / f 4 : c5 : f : a6/e4 : c5 : g : g/
eb4 : c : f : a5/d4 : d : f : bb5/c4 : g : e5 : c/ f4 : c : f 5 : a / ’) ;

" p5 = ampl r a t i o − random 0.25 to 0 . 3 "
add : #p5 −> #(1.0 0 .25 0 . 3) ;

" G l i s s r a t i o , c o n s t a n t 1 . 0 mapped to s ymbo l i c paramete r name"
add : #p6 −> 1.0 mapTo : #g l i s s : ;

"L/R p o s i t i o n i s a l l o ve r the map"
add : #p7 −> #(1.0 1 .0 −1.0) mapTo : #pos : ;

" Modulat ion i n d e x i s between 4 and 5"
add : #p8 −> #(1.0 4 .0 5 . 0) mapTo : #modInd :

) . "End o f c o n s t r u c t o r f o r s11 "
s11 tempo : 100 . " Speed i t up"
s11 du : 303 . " Duty c y c l e s e t s even t dur to 3 x IO I "

" Genera te the even t l i s t i n t o the v a r i a b l e e l i s t "
e l i s t := s11 e v e n t L i s t .

Figure 7: Score11 example as a Smalltalk method

describes the parameter values using the keywords of Score11 scores. A trivial example of this would be the
expression,

aScore add : #p6 −> 1.0 mapTo : #g l i s s :

which sets p6 to 1.0 and maps it to the gliss property.

The first few parameters have default mappings; p3, p4, and p5 are mapped to rhythm (which determines the
event start/stop times and inter-onset intervals), pitch and amplitude respectively. For parameters beyond
the basics, the mapTo: message is used to tell the interpreter which named property to assign based on the
parameter data expression.

The example in Figure 7 shows a Bach chorale as notated in the new Score11 version; note that Smalltalk
comments are enclosed in double quotes as in “This is a comment.”

The eventList message sent to a Score11 object in the last line of the example creates and returns an event
list based on the receiver object’s maps of generators and postProcessors. In this process, the p3 parameter
is first used to create a list of events with start times and durations only; after that, the other generators in
the score’s map are iterated over to add other properties to the events. Lastly, the postProcessors are used
to transform, filter or otherwise manipulate the event list’s items as described next.

The various Score11 representations for musical parameters (rh, no, mo, etc.) are implemented by simple
generator methods that each iterate over the events in the event list and assign a named property (since Siren
doesn’t use positional parameters) using their policies, be they simple lists of values or complex generational
algorithms. The methods for the handling of value sets and static or dynamic tendency masks within a
parameter statement are actually quite simple. Figure 8 below shows the simplest example—the method
that handles mapping constant-value parameters to the events in an event list.

Given an event list, Siren supports general-purpose post-processing using the message,

6

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

w r i t e C o n s t : p r o p e r t y from : v a l i n t o : e L i s t
" Parse and p r o c e s s the cons tant −v a l u e keyword to

g e n e r a t e e v e n t s "
"E . g . , aScore11 add : (#p5 −> 7 0) ; "

| e v t s | " Dec l a r e a va r name"
e v t s := e L i s t e v e n t s . " Get the l i s t o f e v t s "
e v t s do : " Event l oop "

[: eAss | | tN | " Loop arg & temp"
" Get ev t s t a r t t ime "

tN := eAss t ime asSec v a l u e .
" I f e v t t ime i n range , a s s i g n p r o p e r t y "

(tN >= s t a r t and : [tN <= stop]) i f T r u e :
[eAss even t per fo rm : p r o p e r t y w i th : v a l]]

Figure 8: Example Score11 class generator method to process a constant-value parameter

a n E v e n t L i s t app l yB lock : aB lockOpe ra t i on
toProp : propName
from : s t a r t
to : s top

wherein the argument aBlockOperation is a function or closure that will be evaluated for each event in the
list, as in,

a n E v e n t L i s t app l yB lock : [: e v t |
(B o h l e n P i e r c e S c a l e r o o t : P i t c h C l a s s mi)

neares tNoteTo : e v t p i t c h asHz v a l u e]
toProp : #p i t c h
from : 24 to : 34 .

which will round the eventList’s note pitches between 24 and 34 beats to the nearest pitches on a Bohlen-
Pierce scale rooted on E.

Among the motivations to port Score11 to Siren was the availability of the other Siren components: the
additional event generator classes, the general-purpose Smalltalk programming language for manipulating
event lists, and the GUI components that are bundled with Siren. The applyBlock example above shows the
power of event list processing using standard Smalltalk data and control structures. These have proven very
useful in developing extended musical fragments with the system. There are many more examples in the
Siren source code (Pope, 2022), and several of these will be given in the presentation of this paper.

5 Discussion

Just as there are several more modern software sound synthesis packages than MusicV in common us-
age (Pope, 1993b), music input languages and general-purpose music representations are also still active
areas of R&D. Mikel Kuehn’s nGen (http://mikelkuehn.com/index.php/ng) is a modern Score11-like pre-
processor used with Csound (https://csound.com); unfortunately nGen is not open-source. CommonMusic
(http://commonmusic.sourceforge.net) and SuperCollider (McCartney, 2002) are both examples of a music
input language built into a flexible programming language. Sadly, however, none of these systems combines
the terseness of Score11 with the power and flexibility of a general-purpose programming language.

Andre Bartetzki’s CMask (https://www.bartetzki.de/en/software.html) was a powerful front-end for Csound
that used tendency masks similar to Score11’s. It appears to no longer be maintained. Another project named
“Score” is incorporated in Steven Yi’s excellent Blue package for Csound (https://github.com/kunstmusik);

7

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

Figure 9: Score11 in Siren (cream-colored windows), with a yellow UNIX shell window running a CSL-
based synthesis server that responds to OSC messages, and a black Kontakt MIDI sampler screen, both for
real-time playback

it incorporates many of the features of Score11 together with a GUI for compositional objects and a Clojure-
based extension mechanism.

The greatest drawback with the port presented here is the fact that Smalltalk has a small user base; never-
theless, there are new Smalltalk implementations and platform ports every year. It remains the author’s tool
of choice by virtue of its stability, portability and productivity, to say nothing of its syntactical simplicity
and beauty, comprehensive class library, and integrated development environment.

Compared to the original tools with which Score11 was used (i.e., those found on UNIX on a PDP-11), the
modern environment is both much more comfortable (e.g., the Smalltalk development tools), and supports
real-time performance of scores due to Siren’s support for both MIDI and OSC output (at the same time).
The screen shot in Figure 9 shows an exemplary working setup; the yellow-tinted windows are VisualWorks
Smalltalk, and one sees several kinds of tools: code browsers, editors, control panels and on-line documen-
tation. The yellow window at the center-top is a UNIX shell window with a sound synthesis server running;
it displays system usage messages. The black-background window at the lower-right is the GUI of Kontakt
MIDI Sampler; both of these synthesis servers (OSC and MIDI) can be triggered by the same Siren event
list and run in real time.

The Siren package is the latest in a line of Smalltalk-based frameworks for music and audio processing going
back to the mid-1980s. The earliest version was called the HyperScore ToolKit and ran on Xerox Smalltalk-80
V2.3; this was then ported to the VisualWorks implementation and renamed the Musical Object Development
Environment (MODE) around 1990. In the late-1990s, the entire system was ported to Squeak Smalltalk
and renamed Siren. Siren was ported back to VisualWorks, which has been the main platform for almost 20
years. Currently a port to the CUIS Smalltalk implementation (https://cuis.st) is underway and will appear
on the Siren github repository when available.

8

Published in FAST Workshop on Smalltalk Related Technologies (11/2022)

6 Conclusions

The new Score11 interpreter in the Siren/Smalltalk system has achieved the stated goals of (1) allowing
the recreation of “ancient” (early 1980s) scores written for the original Score11/Music11 system, and (2)
enabling the use of the algorithmic composition facilities of Score11 for new pieces (WIP). The fact that the
resulting scores are simply Siren event list objects means that all manner of further processing, interaction
and performance are made easy.

References
Alexander Brinkman. Data structures for a music-11 preprocessor. In Proceedings of the International

Computer Music Conference. ICMA, 1981a.

Alexander Brinkman. Score11 Reference Manual. https://www.esm.rochester.edu/ears/docs/score11/index.html,
1981b.

Lejaren Hiller and Leonard Isaacson. Experimental Music: Composition With an Electronic Computer.
McGraw-Hill, 1959.

Max V. Mathews. The Technology of Computer Music. MIT Press, 1969.

J. McCartney. Rethinking the computer music language: Supercollider. Computer Music Journal, 26(4):
61–68, 2002.

Stephen T. Pope. The interim dynapiano: An integrated tool and instrument for composers. Computer
Music Journal, 16(3), 1992.

Stephen T. Pope. Music composition and scoring by computer. In Music Processing. A-R Editions, 1993a.

Stephen T. Pope. Machine tongues xv: Three packages for software sound synthesis. Computer Music
Journal, 17(2):23–54, 1993b.

Stephen T. Pope. Music and sound processing in squeak using siren. In Squeak: Open Personal Computing
and Multimedia. Prentice-Hall, 2002.

Stephen T. Pope. Siren version 9 GitHub Repository. https://github.com/stpope/Siren9, 2022.

Leland Smith. Score: A musician’s approach to computer music. Journal of the Audio Engineering Society,
20:7–14, 1972.

Leland Smith. The score program for musical input to computers. In Proceedings of the International
Computer Music Conference. ICMA, 1980.

Barry L. Vercoe. The MUSIC-11 Language for Digital Sound Synthesis. Reference manual. MIT Experi-
mental Music Studio, 1978.

9

	Introduction
	Score Languages of the 1970s
	The Structure of a Score11 file
	The Port to Smalltalk and the Siren framework
	Discussion
	Conclusions

