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Abstract001

Vision-language models (VLMs) are often eval-002
uated on linguistic understanding—such as003
verb recognition or object counting—using004
handcrafted datasets with contrastive image-005
caption pairs. However, these datasets rarely006
capture the full complexity of real-world lan-007
guage use. We propose a probing framework008
based on post-retrieval analysis, which eval-009
uates a model’s top-K retrievals, which re-010
veals finer-grained weaknesses in model be-011
havior. We evaluate four VLMs—CLIP, BLIP-012
2, FLAVA, and SigLIP2—on two datasets:013
SVO-Probes (probing subject-verb-object role014
understanding) and VALSE-counting (prob-015
ing numerical comprehension). To mitigate016
the issue of incomplete retrieval dataset an-017
notations, we complement traditional metrics018
with three strategies: semantic-similarity suc-019
cess@K, human evaluation, and GPT-4o-based020
assessment. Our findings show that while021
VLMs achieve high image-text matching accu-022
racy (> 80%), they struggle in top-K retrieval023
settings—verb and object understanding (suc-024
cess@1 ≈ 70%), but especially for counting025
(success@1 ≈ 35%). Furthermore, GPT-4o026
aligns moderately with human judgment on027
verb but fails on counting tasks. We conclude028
that standard evaluation methods may under-029
estimate VLM capabilities, and post-retrieval030
probing offers a more robust and nuanced view031
of their linguistic understanding.032

1 Introduction033

Recent studies have used various probing methods034

(like uch as image-text matching, visual question035

answering or guided masking) to evaluate vision-036

language models’ (VLMs) understanding of lin-037

guistic constructs. Probing studies have investi-038

gated specific capabilities, including spatial rela-039

tions (Liu et al., 2023), verb understanding (Hen-040

dricks and Nematzadeh, 2021; Benova et al., 2025),041

counting (Parcalabescu et al., 2020, 2021), or word042

Figure 1: An example from the SVO-Probes dataset; an
image labeled with the positive caption: "A girl runs
on a bridge.", and with negative captions: "The man
will run on the bridge.", "A girl runs up a hill." . Other
captions in the dataset, which are semantically correct
but would be evaluated as incorrect in the standard re-
trieval setup, e.g.: " A woman running on the street." or
"A person runs on the road."

order (Thrush et al., 2022; Ma et al., 2023a), draw- 043

ing intriguing conclusions. However, these studies 044

often rely on handcrafted datasets that may not fully 045

capture the complexity or breadth of the targeted 046

phenomena. 047

For example, image-text matching (ITM) results 048

have led to claims that modern VLMs, such as 049

BLIP-2, have effectively mastered verb understand- 050

ing (Bugliarello et al., 2023). Yet these evaluations 051

typically use manually constructed positive and 052

negative image-caption pairs designed to highlight 053

specific linguistic features (see Figure 1). 054

This reliance on hand-designed contrastive pairs 055

raises two key limitations: (1) they fail to capture 056

the full semantic space of incorrect interpretations – 057

it is possible to violate a concept in many ways that 058

these datasets do not test for, and (2) they do not 059

necessarily surface the most challenging ways to 060

test for each concept in a model. As a result, high 061

performance on image-text matching (ITM) tasks 062

may obscure significant weaknesses in fine-grained 063

linguistic understanding. A comprehensive dataset 064
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of contrastive pairs would require annotators to065

assess all possible combinations or possess prior066

knowledge regarding which pairs are challenging067

for a particular model.068

To address this, we propose post-retrieval anal-069

ysis: instead of evaluating a model’s binary pre-070

dictions over fixed contrastive pairs, we examine071

the top-K items retrieved by the model for a given072

query. This setup surfaces near misses—false posi-073

tives that the model finds highly similar to the true074

positives—and provides a richer, more diagnostic075

view of a model’s linguistic understanding and ro-076

bustness.077

However, retrieval-based evaluation introduces078

its own principal challenge as observed, e.g., by Hu079

et al. (2019); Chun et al. (2022): incomplete annota-080

tions. Since most datasets label only a few “correct”081

caption per image (or vice versa), valid but unla-082

beled matches are treated as errors under standard083

metrics like success@K. As an example, for Fig-084

ure 1 correct retrieval is considered "A girl runs085

on a bridge." . If the model retrieved "A woman086

running on the street.", which is semantically cor-087

rect, it would be evaluated as an error. To mitigate088

this, we complement retrieval with three alternative089

evaluation strategies: semantic similarity success090

(an alternative to success@K), human annotation,091

and GPT-4o-based analysis—to better account for092

unlabeled but valid matches and provide a more093

accurate assessment.094

We apply this framework to evaluate four095

VLMs—CLIP (Ilharco et al., 2021), BLIP-2 (Li096

et al., 2023), FLAVA (Singh et al., 2022) and097

SigLIP2 (Tschannen et al., 2025)—on two probing098

datasets: SVO-Probes (Hendricks and Nematzadeh,099

2021), for testing verb-role comprehension, and100

VALSE-counting (Parcalabescu et al., 2021), for101

numerical understanding.102

While the selected models perform well on103

image-text matching on SVO-Probes (accuracy104

over 80%) and not so well on VALSE-Counting (ac-105

curacy 60%), they exhibit poor performance when106

evaluated using retrieval with standard success@K.107

The results improve when evaluating with semantic-108

similarity success, however, the task proves to be109

challenging even when evaluated by a human on a110

subset of 100 samples from the datasets: for SVO-111

Probes Sh@1 is 60 − 80%, and the task is even112

more challenging for VALSE-counting with Sh@1113

30− 50%). Also we argue that not just verb under-114

standing make the task challenging, but also object115

understanding.116

While using GPT4-o as evaluator, we found mod- 117

erate agreement with human annotations for the 118

SVO-Probes dataset (F1 = 0.7252) but low agree- 119

ment for counting (F1 = 0.4495). Therefore, GPT 120

may be helpful for SVO-Probes, however, it seems 121

unlikely that it would be helpful for counting. 122

Our main contributions are as follows: 123

1. We propose a retrieval-based probing frame- 124

work that surfaces nuanced errors in VLMs 125

behavior beyond contrastive relying on human 126

priors. 127

2. We introduce three evaluation strate- 128

gies—semantic similarity, human annotation, 129

and GPT-based scoring—to address annota- 130

tion incompleteness. 131

3. We benchmark four VLMs across two prob- 132

ing tasks, showing that retrieval-based prob- 133

ing provides a more diagnostic view of model 134

competence. 135

Results of our post-retrieval analysis indicate 136

that there is still substantial room for improvement. 137

Post-retrieval evaluation by humans measured suc- 138

cess@1 on SVO-Probes around 70% – contrary to 139

the findings with image-text matching. Moreover, 140

the analysis by GPT-4o of incorrectly retrieved ex- 141

amples suggests that the object understanding is 142

a similar if not more challenging as verb under- 143

standing. The results are even more sobering for 144

counting, with human evaluation success@1 of 145

only around 35%. 146

2 Related Work 147

Vision-Language Models (VLMs) align visual 148

and textual modalities and are widely used for 149

tasks such as image-text retrieval, captioning, and 150

visual question answering. Prominent architec- 151

tures include dual encoders like CLIP (Radford 152

et al., 2021), FLAVA (Singh et al., 2022), and 153

SigLIP2 (Tschannen et al., 2025), as well as multi- 154

stage models such as BLIP-2 (Li et al., 2023), 155

LlaVA-NeXT (Liu et al., 2024) or GPT-4 (Ope- 156

nAI, 2024) that combine frozen vision encoders 157

with large language models. While these models 158

perform well on downstream tasks, there has been 159

concerns about their true linguistic competence. 160

Fine-grained benchmarks Probing methods typ- 161

ically rely on handcrafted datasets composed of 162

contrastive image-caption pairs designed to iso- 163

late specific linguistic features by foiling (Shekhar 164
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et al., 2017). For instance, SVO-Probes tests verb-165

role comprehension through subject, verb, and ob-166

ject negatives (Hendricks and Nematzadeh, 2021),167

while VALSE-counting focuses on numerical rea-168

soning (Parcalabescu et al., 2021).169

Beyond foiling, benchmarks like WinoGround170

(Thrush et al., 2022) and CREPE (Ma et al., 2023b)171

explore compositional grounding or ViLMA (Ke-172

sen et al., 2024) and CV-Probes (Beňová et al.,173

2024) target verb phrase understanding through174

contrastive captions. Despite their value, these175

datasets often capture only narrow, synthetic vari-176

ations and fail to represent the full diversity—or177

ambiguity—of real-world inputs.178

Unlike prior work, our approach leverages post-179

retrieval analysis to assess model comprehension.180

It was previously observed by (Hu et al., 2019;181

Chun et al., 2022) that the retrieval evaluation182

has principal challenges, which we address by183

proposing alternative evaluation techniques. We184

uncover systematic errors by analyzing the top-K185

retrieved samples. Additionally, large language186

models (LLMs) like GPT-4o have been explored as187

scalable evaluators for retrieval (Alaofi et al., 2024;188

Wang et al., 2024; Vykopal et al., 2025).189

The Retrieval Task and Its Evaluation Image190

and text retrieval are fundamental tasks in multi-191

modal learning, where, given a query (an image or192

a text), the goal is to retrieve the most relevant cor-193

responding items (texts or images) from a database.194

The output of a retrieval method is a list of samples195

ranked by relevance, from which the top K samples196

are used further.197

Evaluation of retrieval is commonly performed198

using success@K (S@K), which represents the pro-199

portion of cases in which the top-K ranked samples200

include at least one sample relevant to the query.201

Other evaluation metrics are also commonly used,202

e.g., recall@K or precision@K.203

3 Probing through Post-Retrieval204

Analysis205

Existing probing approaches, such as image-text206

matching (ITM) or visual question answering, rely207

on curated datasets designed to isolate specific lin-208

guistic constructs—e.g., verbs (Hendricks and Ne-209

matzadeh, 2021; Benova et al., 2025), spatial rela-210

tions (Liu et al., 2023), or counting (Parcalabescu211

et al., 2020, 2021). These typically use contrastive212

examples: a "positive" image-caption pair and a213

minimal "negative" pair that alters one key com-214

ponent (example can be seen in Figure 1). While 215

useful, such datasets cover only a narrow slice of 216

possible errors, and their construction reflects hu- 217

man priors about what should be challenging. 218

The clear limitation of this approach is that while 219

such contrastive pairs are specific (i.e., they only 220

differ in the probed concept, so one will not see “A 221

flamingo flying over a lake.” as a negative for Fig- 222

ure 1, they do not exhaustively delineate the extent 223

of each concept. A model may succeed on curated 224

contrastive pairs but still fail on many semantically 225

valid variants not captured by the dataset. Fur- 226

thermore, negative examples may not represent the 227

most difficult edge cases. 228

As a result, it is perfectly possible for a model 229

to both (i) perform well on the specific contrastive 230

pairs formed by human annotators and (ii) fail on 231

a large number of other pairs (crucially, even on 232

pairs composed of images and captions from the 233

same dataset). To create a comprehensive dataset 234

of contrastive pairs, annotators would either need 235

to assess all possible combinations or possess some 236

prior knowledge regarding which pairs are likely 237

to be found challenging. 238

We propose an alternative: probing through post- 239

retrieval analysis. Instead of evaluating models 240

only on binary image-text match judgments, we 241

analyze the top-K retrieved items for each query. 242

These include both correct matches and close dis- 243

tractors. This lets us inspect not just whether a 244

model "gets it right," but what kinds of near-misses 245

it tends to make. The procedure for text retrieval 246

is described in (Algorithm 1). The same holds 247

algorithm holds for image retrieval. 248

Algorithm 1 Probing through post-retrieval analysis
Data: dataset: an image-caption dataset

1 foreach image in dataset do
2 Rank captions by relevance to the image

Collect the top K samples
Compute evaluation metrics for the top K; // in sec.
3.1.1, 3.1.2, 3.1.3

3 Perform exploratory analysis on top K samples

Post-retrieval probing provides a window into 249

the model’s representational confusion. Are mis- 250

matches mostly due to subject swaps or verb mis- 251

use? One can conduct exploratory analysis on the 252

top K samples and perform a more detailed assess- 253

ment of the model’s capabilities, e.g., its ability to 254

correctly recognize the subject and the object of a 255

relation, recognize activities, count objects, etc. 256
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3.1 Evaluation Metrics of Retrieval Tasks257

Standard retrieval metrics such as success@K258

or precision@K assume fully annotated datasets,259

where all correct matches are labeled. In practice,260

many semantically valid matches are unlabeled,261

leading these metrics to underestimate model per-262

formance. To address this, we introduce three com-263

plementary evaluation strategies tailored for post-264

retrieval probing.265

3.1.1 Semantic-Similarity Success266

This metric allows for soft matching by evaluating267

how similar retrieved candidates are to the gold268

reference. It is most helpful in evaluating the un-269

derstanding of relations. Under semantic-similarity270

success, match correctness is assessed by com-271

paring the caption (query/candidate) against the272

gold reference caption corresponding to the (candi-273

date/query) image. Both captions are decomposed274

into (subject, relation, object) triplets. We first275

check if the verbs match exactly. If yes, we com-276

pute cosine similarity between subject and object in277

candidate-query pairs using E5-large embeddings.278

If both exceed a threshold (we use 0.9), the can-279

didate is considered a match - the similarity score280

between both subjects and objects (woman vs. girl,281

road vs. street) in Figure 1 surpasses a defined282

threshold.283

3.1.2 Human Judgment Success284

We conduct human evaluation on a sample of top-K285

text retrievals to establish ground-truth correctness.286

Given a query (image or caption), annotators rate287

whether each retrieved item is a valid match. This288

captures real-world semantic plausibility beyond289

what is labeled in the dataset.290

Each item was annotated by three volunteers,291

non-native English speakers with tertiary eduction.292

Final correctness is determined by majority vote.293

This serves both as a gold reference and as a bench-294

mark to evaluate automated metrics (e.g., GPT-4o295

agreement).296

3.1.3 GPT-4o Evaluation297

To scale the evaluation process, we use GPT-4o298

(OpenAI, 2024) to classify whether a retrieved item299

matches the query. GPT-4o is prompted with both300

the query and the top-K retrieved items and asked301

to label each as correct or incorrect. It can also302

specify the type of mismatch (subject, verb, object)303

for more detailed error analysis.304

4 Experiments with Retrieval 305

We evaluate our post-retrieval probing method on 306

four vision-language models— CLIP FLAVA and 307

SigLIP2 (from transformers library) and BLIP-2 308

(from lavis library)—which represent a range of 309

multimodal architectures. We conduct experiments 310

on two public datasets: SVO-Probes, designed to 311

assess understanding of subject-verb-object struc- 312

ture, and VALSE-counting, which focuses on nu- 313

merical reasoning. We consider both image-to- 314

text and text-to-image retrieval, as well as standard 315

image-text matching. 316

4.1 SVO-Probes: Probing on Subjects, Verbs, 317

and Objects 318

The SVO-Probes dataset evaluates whether 319

VLMs understand the roles of subjects, verbs, and 320

objects in visual scenes. Each example consists 321

of a caption, a positive image, and a contrastive 322

negative image. The negative image in each triplet 323

corresponds to one of three types: subject negative, 324

verb negative, or object negative. This structured 325

format allows fine-grained probing of role compre- 326

hension. An example is shown in Figure 1. SVO- 327

Probes is commonly used to benchmark image-text 328

matching accuracy. 329

Verb understanding appears largely solved 330

with all models achieving over 80% accuracy on 331

image-text matching (see Table 1). Accuracy is 332

highest for object negatives, followed by subject 333

negatives, with verb negatives proving most dif- 334

ficult. BLIP-2 and SigLIP2 outperform CLIP by 335

more than 3%, despite using CLIP as a backbone. 336

Overall, BLIP-2, FLAVA, and SigLIP2 perform 337

comparably well. 338

Overall Subject Verb Object

CLIP 84.15 86.51 81.98 88.98
BLIP-2 87.58 89.98 85.27 92.80
FLAVA 87.07 88.44 84.58 93.66
SigLIP2 87.45 86.40 86.07 92.50

Table 1: Accuracy of image-text matching on SVO-
Probes. The classification is based on which image
embedding (positive or negative image) has a higher
similarity score with the caption.

On a simple retrieval task, models perform 339

poorly when evaluated with traditional metrics, 340

however, performance improves when semantic- 341

similarity success is used. We begin with a simple 342

retrieval task to assess how challenging retrieval 343

evaluation is. We generate a query captions us- 344
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ing the template: This is the image of {subject}.,345

where {subject} is substituted from the dataset vo-346

cabulary. Despite the simplicity of this setup, mod-347

els in Table 2 achieve only 35 − 45% success@1348

(S@1). However, when evaluated with semantic-349

similarity success@1 (Ss@1), scores rise dramati-350

cally to 72− 84%.351

success@
1 5 10 20

CLIP 34.93 54.07 59.81 64.11
BLIP-2 42.58 63.64 70.33 77.51
FLAVA 36.36 58.85 65.07 72.73
SigLIP2 44.98 63.64 72.73 77.99

semantic-similarity success@

CLIP 72.73 93.78 98.09 100
BLIP-2 84.69 97.13 99.52 99.52
FLAVA 74.16 98.09 100 100
SigLIP2 76.56 99.52 100 100

Table 2: Success@K and semantic-similarity suc-
cess@K evaluation with threshold 0.9 of image retrieval
on SVO-Probes dataset, using only captions created with
following template: "This is the image of {subject}."

On the full image retrieval task, which in-352

volves understanding subjects, verbs, and ob-353

jects jointly, models perform poorly under stan-354

dard metrics. The performance increases us-355

ing semantic-similarity success, however, the356

task is still very challenging. S@1 falls below357

10% across the board in Table 3. When using358

semantic-similarity success (Ss@1), performance359

improves by roughly 12 percentage points. Still,360

absolute scores remain low—Ss@1 hovers around361

20%—indicating substantial difficulty with fine-362

grained role comprehension. Among the models,363

SigLIP2 performs best overall, particularly outper-364

forming CLIP, while FLAVA shows modest gains365

when evaluated semantically.366

success@
1 5 10 20

CLIP 8.67 23.77 32.84 42.59
BLIP-2 9.76 27.04 37.91 49.84
FLAVA 8.61 24.35 35.65 46.74
SigLIP2 10.43 28.56 39.11 50.61

semantic-similarity success@

CLIP 20.28 45.14 56.41 66.73
BLIP-2 22.61 52.40 65.22 75.66
FLAVA 24.90 54.60 66.93 77.39
SigLIP2 22.48 50.33 62.73 73.17

Table 3: Success@K and semantic-similarity suc-
cess@K evaluation with threshold 0.9 of image retrieval
on SVO-Probes dataset.

A breakdown of retrieval performance by role 367

reveals that subjects are the easiest to retrieve, 368

followed by verbs, with objects being the most 369

difficult. Analyzing retrieved samples by their 370

ground-truth captions Table 4, the percentage of 371

retrieved examples with the same subject than in 372

query is highest across models, followed by verbs 373

and then by objects. This pattern contrasts with 374

image-text matching, where object negatives were 375

the easiest to detect. Among the models, FLAVA 376

performs worst on subject and verb retrieval, while 377

its object retrieval is on par with BLIP-2. 378

K=1 K=5 K=10 K=20

Subject

CLIP 53.17% 47.75% 44.56% 41.28%
BLIP-2 53.32% 48.89% 46.28% 43.19%
FLAVA 50.88% 47.10% 44.42% 41.62%
SigLIP2 53.75% 48.84% 45.87% 42.56%

Verb

CLIP 46.78% 41.01% 37.93% 34.69%
BLIP-2 45.14% 39.76% 36.68% 33.31%
FLAVA 43.64% 37.38% 34.17% 30.72%
SigLIP2 49.80% 43.21% 39.14% 35.07%

Object

CLIP 43.25% 37.79% 33.73% 29.47%
BLIP-2 41.85% 36.31% 33.17% 29.27%
FLAVA 42.69% 36.87% 33.78% 30.02%
SigLIP2 48.73% 41.00% 36.47% 31.81%

Table 4: Subject, verb and object success@K on the
SVO-Probes dataset – i.e. how many of the top K re-
trieved images correctly match the query subject, verb
and object in their caption.

Text retrieval proves even more difficult than 379

image retrieval. This is likely due to the fine- 380

grained nature of the captions in SVO-Probes, 381

which often differ only in single word. SigLIP2 382

with BLIP-2 model outperform the rest in Table 5. 383

Further analysis of retrieved captions confirms the 384

trend holds for text retrieval as well: subjects are 385

consistently easier to retrieve than objects. CLIP 386

performs worst across all roles in Table 6 —sug- 387

gesting broader difficulty in grounding fine-grained 388

linguistic elements in visual input. 389

4.2 VALSE: Probing on Counting Ability 390

VALSE-Counting The VALSE-Counting dataset 391

(Parcalabescu et al., 2021) focuses on numerical 392

reasoning by testing whether models can correctly 393

count objects in images. Each image is paired with 394

a caption specifying a quantity (e.g., "There are 395

exactly 3 giraffes"). This task assesses both object 396
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success@
1 5 10 20

CLIP 6.47 20.46 30.29 42.16
BLIP-2 13.23 35.32 47.11 59.51
FLAVA 5.63 17.22 24.94 34.79
SigLIP2 13.42 35.95 48.14 61.16

semantic-similarity success@

CLIP 11.82 29.87 40.93 52.37
BLIP-2 24.99 47.39 58.12 67.62
FLAVA 17.42 38.19 50.00 60.56
SigLIP2 48.29 74.04 82.08 88.20

Table 5: Success@K and semantic-similarity suc-
cess@K evaluation with threshold 0.9 of text retrieval
on SVO-Probes dataset.

K=1 K=5 K=10 K=20

Subject

CLIP 46.18% 43.91% 41.92% 39.39%
BLIP-2 56.85% 52.01% 48.96% 45.50%
FLAVA 50.93% 46.88% 44.10% 41.10%
SigLIP2 57.05% 52.27% 48.83% 45.00%

Verb

CLIP 34.54% 31.04% 28.95% 26.58%
BLIP-2 49.85% 43.76% 39.62% 35.37%
FLAVA 37.19% 32.28% 29.65% 26.66%
SigLIP2 51.54% 45.02% 40.71% 36.02%

Object

CLIP 31.23% 28.94% 26.94% 24.32%
BLIP-2 44.30% 39.34% 35.88% 31.47%
FLAVA 35.71% 31.94% 29.25% 26.02%
SigLIP2 45.68% 40.66% 36.62% 31.77%

Table 6: Subject, verb and object success at K across
SVO-Probes dataset – how many of the top K retrieved
captions have the query subject, query verb and query
object in them.

recognition and quantitative understanding. An397

example is shown in Figure 2. VALSE has been398

widely used to benchmark image-text matching.399

Compared to verb understanding, counting400

poses a significantly greater challenge. Image-401

text matching accuracy on counting is consistently402

lower than on SVO-Probes, with all models scoring403

around 62–64% accuracy in Table 7. As image-text404

matching is a binary classification, these results405

suggest that VLMs struggle with numerical reason-406

ing more than verb comprehension.407

Models perform poorly on image retrieval408

and even poorer on text retrieval for counting409

understanding. Image retrieval results in Table 8410

show S@1 around 10-14%. Surprisingly, it is411

slightly better than understanding in SVO-Probes.412

Unlike SVO-Probes, semantic similarity success413

Figure 2: An example from the VALSE-Counting
dataset; an image labeled with the positive caption:
”There are exactly 3 of the animals giraffes.”; and with
a negative caption: ”There are exactly 14 of the ani-
mals giraffes.”. Other semantically correct captions in
the dataset that would be evaluated as incorrect in the
standard retrieval setup include e.g.: ”There is exactly 1
zebra.”

Model Overall

CLIP 61.90%
BLIP-2 63.80%
FLAVA 63.80%
SigLIP2 63.10%

Table 7: Image-Text Matching on VALSE dataset.

is not meaningful for counting. The task requires 414

precise numerical accuracy, not conceptual overlap. 415

This limits the usefulness of approximate match- 416

ing methods like Ss@K for evaluating counting 417

performance. 418

Model S@1 S@5 S@10 S@20

CLIP 11.02 30.15 42.86 55.81
BLIP-2 10.29 29.42 40.80 54.24
FLAVA 11.14 34.02 47.22 62.83
SigLIP2 14.65 35.35 47.58 61.74

Table 8: Success@K for image retrieval on VALSE-
counting.

Model S@1 S@5 S@10 S@20

CLIP 6.20 20.20 28.50 38.70
BLIP-2 9.30 24.20 35.50 46.50
FLAVA 6.30 19.50 31.00 42.00
SigLIP2 9.20 23.80 34.40 49.40

Table 9: Success@K for text retrieval on VALSE-
counting.
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4.3 Human and GPT Evaluation419

Human evaluation suggest that text retrieval420

performance is better than success@K showed;421

however, the subject-verb-object understanding422

and counting comprehension are still very chal-423

lenging tasks. To assess how well retrieval re-424

sults align with human expectations, we randomly425

sampled 100 queries from both datasets. For each426

image query, the top-10 retrieved items were anno-427

tated by three human raters, who judged whether428

each caption was a valid match. Final labels were429

determined via majority vote. The results for both430

datasets are shown in Table 12. A significant in-431

crease (for SVO-Probes in some cases, a 60% point432

difference, for VALSE-counting a 20 − 35%) in433

performance can be seen for all models once a434

human annotator evaluated them. SigLIP2 is the435

best-performing model for subject-verb-object un-436

derstanding, with Sh@1 = 79.79%. while FLAVA437

is the best for counting with Sh@1 = 49%. The438

Fleiss’ Kappa between three human annotators was439

0.641 for SVO-Probes and for VALSE-counting it440

was 0.743, which suggest that counting is an easier441

task for humans and they agree more on the answer.442

GPT can only approximate the human judg-443

ment process for subject-verb-object under-444

standing, as the counting task also represents445

a substantial challenge for GPT model. It is446

important to note that some examples could not447

be evaluated by GPT as the model assumed they448

where violating the rules of use. We report the per-449

formance in Table 12 only for examples that could450

also be evaluated by GPT. For each query, we used451

prompt that can be seen in Appendix A, to eva-452

lute the models. The Table 12 shows that GPT-4o453

slightly underestimates the performance of models454

on SVO-Probes, while it strongly overestimates it455

for VALSE-counting. We then measured GPT-4o’s456

agreement with human annotations using the F1457

score with majority human vote as ground truth.458

The F1 score for SVO-Probes is 0.73, however, the459

F1 score for VALSE-counting is 0.45, suggesting460

that for GPT the verb understanding task is easier461

than counting.462

An example of retrieved examples and their hu-463

man and GPT evaluation can be seen in the Ap-464

pendix in F. The evaluations were also carried out465

for image retrieval task, the results can be seen466

in Appendix B, however for the sake of time and467

resources only one annotator evaluated results for468

image retrieval.469

SVO-Probes VALSE-counting

K=1 K=5 K=10 K=1 K=5 K=10

C
L

IP

S@K 8.70 19.57 29.35 4.00 12.00 23.00
Sh@K 68.48 96.74 100.00 33.00 65.00 82.00
Sg@K 48.91 92.39 97.83 67.00 92.00 96.00

P@K 8.70 3.91 2.93 4.00 2.60 2.50
Ph@K 68.48 61.74 57.50 33.00 20.60 19.90
Pg@K 48.91 46.52 43.48 67.00 47.00 38.00

B
L

IP
-2

S@K 15.62 41.67 52.12 10.00 24.00 31.00
Sh@K 77.08 94.79 96.88 31.00 71.00 80.00
Sg@K 69.79 92.71 95.83 63.00 87.00 98.00

P@K 15.62 8.33 5.42 10.00 4.80 3.20
Ph@K 77.08 68.33 62.29 31.00 24.60 19.20
Pg@K 69.79 53.75 46.15 63.00 49.00 41.80

FL
AV

A

S@K 6.25 22.92 31.25 1.00 16.00 33.00
Sh@K 61.46 90.62 95.83 49.00 80.00 88.00
Sg@K 58.33 92.71 100.00 83.00 97.00 99.00

P@K 6.25 4.58 3.12 1.00 3.40 4.00
Ph@K 61.46 53.33 48.02 49.00 30.60 27.80
Pg@K 58.33 45.21 38.02 83.00 58.00 50.30

Si
gL

IP
2

S@K 18.09 43.62 58.51 9.00 20.00 30.00
Sh@K 79.79 96.81 96.81 36.00 65.00 83.00
Sg@K 75.53 95.74 98.94 71.00 89.00 96.00

P@K 18.09 8.72 5.85 9.00 4.00 3.20
Ph@K 79.79 70.43 66.91 36.00 20.80 19.20
Pg@K 75.53 58.51 49.89 71.00 45.00 38.30

Table 10: Results of text retrieval on a subset of 100
samples from SVO-Probes and VALSE-count. Standard
success (S@K), success with human evaluation (Sh@K)
and success with GPT4-o evaluation (Sg@K). The F1
score between human majority vote and GPT evalua-
tion is 0.7252 for SVO-Probes and 0.4495 for VALSE-
counting. Cohen’s kappa between human majority vote
and GPT evaluation is 0.4543 for SVO-Probes and
0.2302 for VALSE-counting.

4.3.1 Post-Retrieval Error Analysis of 470

SVO-Probes 471

To better understand the types of errors made by 472

VLMs, we perform a qualitative analysis of the 473

top-K retrievals on the SVO-Probes dataset. Given 474

the moderate agreement between human raters and 475

GPT-4o F1 = 0.73, we use GPT-4o to label re- 476

trievals as correct, or incorrect due to one of three 477

reasons: subject (the subject in the caption does 478

not match the image), verb (the activity described 479

in the caption does not match the image), or object 480

(other details in the caption do not align with the 481

image) mismatch. 482

We analyze the top 10 retrieved captions for 100 483

randomly sampled image queries across the mod- 484

els. For each retrieval, GPT-4o identifies the type 485

of error when a mismatch occurs. Our findings 486

in Appendix C reveal consistent patterns: Subject 487

mismatches are the least frequent across all models, 488

suggesting that models grasp subject identity more 489

reliably than actions or objects. Object errors are 490

the most frequent among incorrect retrievals, par- 491

ticularly for CLIP and in text retrieval for BLIP-2 492

and SigLIP2. Verb errors are also common, es- 493

pecially for FLAVA. This aligns with our earlier 494

quantitative results and confirms that strong image- 495

7



text matching scores do not guarantee robust role496

comprehension. The ability to retrieve topically497

similar but incorrect items (e.g., matching subject498

and activity but not the object) highlights semantic499

ambiguity and model brittleness—critical aspects500

not captured by standard evaluation.501

To further test this, we treat the top-K retrievals502

themselves as a comprehensive contrastive dataset503

and re-run ITM on these examples using BLIP-2504

and FLAVA—both of which have dedicated ITM505

heads. We evaluate these matches using human an-506

notations as ground truth (in Appendix D). While507

BLIP-2 and FLAVA previously achieved over 80%508

ITM accuracy on the full SVO-Probes dataset, their509

performance drops to 50% on the retrieved exam-510

ples. Crucially, these examples include: (i) true511

positives; and (ii) false positives that are the most512

likely to be confused with true positives by a spe-513

cific model. This striking drop illustrates that stan-514

dard ITM evaluation can mask important model515

failures, particularly in subject-verb-object ground-516

ing, and highlights the diagnostic value of post-517

retrieval probing.518

5 Conclusion519

In this work, we introduced a probing framework520

based on post-retrieval analysis to better assess the521

linguistic understanding of vision-language models.522

Unlike standard methods, our approach does not523

rely on handcrafted contrastive pairs. Instead, it524

leverages the retrieval task, recognizing that the top-525

K retrieved items include both true positives and526

close false positives—offering a more diagnostic527

view of model behavior.528

Our evaluation across two targeted datasets,529

SVO-Probes and VALSE-Counting, revealed sig-530

nificant gaps in model performance that are ob-531

scured by image-text matching scores. While all532

models achieved over 80% accuracy in image-text533

matching tasks, their success@1 dropped below534

10% on both datasets. Semantic similarity metrics535

partially recovered this performance, suggesting536

that many "errors" are due to incomplete annota-537

tion rather than model failure.538

To address annotation incompleteness, we also539

evaluted retrieval with human judgment and GPT-540

4o scoring—which better capture the range of valid541

retrievals. GPT-4o achieved moderate agreement542

with humans (F1 = 0.73) for SVO-Probes, demon-543

strating potential as a scalable evaluation proxy.544

However, for VALSE-counting the F1 score was545

0.45, indicating counting task is a substantial chal- 546

lenge for the GPT model and can not be used as 547

evaluation proxy. 548

By subjecting top-K retrievals to further analysis, 549

we uncovered systematic model weaknesses in role 550

understanding and numeric reasoning. These in- 551

sights highlight the need for deeper, retrieval-based 552

probing methods to build more robust multimodal 553

AI systems. Analysis also showed that models con- 554

sistently retrieved subjects more accurately than 555

verbs or objects, contradicting image-text match- 556

ing patterns where object negatives were easiest for 557

models to classify. On counting tasks, all models 558

struggled. 559

Limitations 560

While our post-retrieval probing framework offers 561

new insights into the linguistic behavior of vision- 562

language models, it also has several limitations. 563

First, our analysis is limited to two 564

datasets—SVO-Probes and VALSE- 565

Counting—that are synthetic and constrained in 566

structure. While they target key linguistic phenom- 567

ena, they may not fully capture the diversity or 568

ambiguity found in real-world multimodal data. 569

Second, although we introduced alternative eval- 570

uation strategies—semantic similarity, human an- 571

notation, and GPT-4o—they each have their trade- 572

offs. Semantic similarity depends on thresholding 573

and fails in tasks like counting; GPT-4o, while scal- 574

able, does not always align perfectly with human 575

judgment. 576

Additionally, we evaluated only pretrained mod- 577

els, with architecture suitable for encoding of cap- 578

tions and images, and therefore capable of doing 579

retrieval task using cosine similarity as similarity 580

score. Finally, all experiments were conducted in 581

English, limiting the generalizability of findings to 582

multilingual settings. 583

We leave these avenues for future work. 584

Computational Resources 585

For inference and evaluation, our experiments 586

were run on NVIDIA GeForce RTX 3060 Lap- 587

top GPU (6GB VRAM). Total compute was ap- 588

proximately 50 GPU hours (mostly from running 589

retrieval across two datasets, multiple times per 590

model). 591
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Appendix712

A Prompting GPT-4o for Retrieval713

Evaluation714

To scale up retrieval evaluation, we use GPT-4o715

to assess whether each top-K retrieved item (im-716

age or caption) is a correct match for a given query.717

For SVO-Probes and VALSE-counting datasets, we718

prompt GPT-4o with the query and each retrieved719

item, asking it to classify them as correct or incor-720

rect. For incorrect matches, GPT-4o is instructed721

to specify the error type.722

The full prompt used for caption-based queries723

is shown below. A similar structure is applied for724

image-based queries in both datasets.

Assess if given images are correct retrievals for the text
query provided caption.
For each image, evaluate if it is correct. If it is incorrect,
mention the specific category that best describes the error:
- **Subject incorrect**: The subject in the caption does
not match the image. - **Verb incorrect**: The activity
described in the caption does not match the image. - **Ob-
ject incorrect**: Other details (e.g., objects or contextual
elements) in the caption do not align with the image.
# Steps
1. For each image, evaluate its correctness based on text
query. 2. If the image aligns well with the caption, classify
it as ‘correct‘. 3. If it is incorrect, determine the category
of the error: - **Subject incorrect** - **Verb incorrect** -
**Object incorrect** 4. Output results using a structured,
simple list.
# Output Format
The results should be listed in this format: -
⟨image_number⟩: ⟨classification⟩
For example: ‘1: correct‘ ‘2: verb incorrect‘ ‘3: object
incorrect‘.

Table 11: Prompt for GPT-4o.

725

B Image retrieval results726

This section presents success@K results for image-727

to-text retrieval on both SVO-Probes and VALSE-728

counting, using standard evaluation, human annota-729

tion, and GPT-4o assessment. The results are based730

on 100 randomly sampled image queries for each731

dataset.732

As shown in Table 12, human evaluation consis-733

tently yields much higher success@K than standard734

metrics, revealing the impact of incomplete dataset735

annotation. GPT-4o estimates closely align with hu-736

man scores in SVO-Probes but deviate significantly737

in counting tasks.738

We also report precision@K for completeness.739

SVO-Probes VALSE-counting

K=1 K=5 K=10 K=1 K=5 K=10

C
L

IP

S@K 10.87 26.09 35.87 9.20 25.29 35.63
Sh@K 64.13 88.04 96.74 24.14 67.82 78.16
Sg@K 65.22 96.74 100.00 52.87 72.41 79.31

P@K 10.87 5.43 4.13 9.20 5.06 3.79
Ph@K 64.13 57.83 51.74 24.14 25.98 22.64
Pg@K 65.22 55.65 46.96 52.87 33.33 20.80

B
L

IP
-2

S@K 11.24 30.34 39.33 9.30 27.91 38.37
Sh@K 74.16 94.38 95.51 25.58 60.47 74.42
Sg@K 69.66 97.75 98.88 52.33 70.93 72.09

P@K 11.24 6.07 4.04 9.30 5.58 4.07
Ph@K 74.16 67.64 59.89 25.58 20.23 17.91
Pg@K 69.66 57.98 48.20 52.33 30.70 18.14

FL
AV

A

S@K 8.79 25.27 35.16 10.47 29.07 37.21
Sh@K 72.53 94.51 94.51 29.07 69.77 81.40
Sg@K 67.03 94.41 98.80 54.65 74.42 80.23

P@K 8.79 5.05 3.52 10.47 6.05 4.07
Ph@K 72.53 60.88 56.92 29.07 24.88 22.21
Pg@K 67.03 54.07 47.14 54.65 37.44 21.98

Si
gL

IP
2

S@K 13.40 30.93 42.27 11.63 30.23 44.19
Sh@K 74.23 93.81 95.88 26.74 52.33 61.63
Sg@K 79.38 91.75 95.88 59.30 74.42 77.91

P@K 13.40 6.19 4.43 11.63 6.05 4.77
Ph@K 74.23 68.45 62.16 26.74 19.07 14.53
Pg@K 79.38 63.71 57.63 59.30 36.05 19.53

Table 12: Results of image retrieval on a subset of 100
samples from SVO-Probes and VALSE-count. Standard
success (S@K), success with human evaluation (Sh@K)
and success with GPT4-o evaluation (Sg@K). The F1
score between human annotator and GPT evaluation for
SVO-Probes is 0.7628 and for VALSE-counting it is
0.4056.

C Post-retrieval analysis on SVO-Probes 740

dataset 741

Using GPT-4o, we categorize errors in top 10 text 742

and image retrievals from SVO-Probes into three 743

types: subject, verb, and object incorrect. Table 13 744

shows the percentage of retrievals falling into each 745

category across models. 746

This breakdown offers deeper insight into model 747

behavior. Across all models, object mismatches 748

dominate the errors, followed by verbs, with sub- 749

jects being the most reliably retrieved. This con- 750

firms that even when models retrieve semantically 751

close items, fine-grained role comprehension re- 752

mains a challenge. 753

D Image-Text Matching with BLIP2 and 754

FLAVA Using Retrieved Samples 755

To evaluate how models perform on their own re- 756

trieval outputs, we apply the image-text matching 757

(ITM) heads of BLIP-2 and FLAVA to the top-K 758

retrieved items. Human annotations are used to 759

judge correctness. 760

Table 16 shows that while both models score 761

over 80% ITM accuracy on the full dataset, perfor- 762

mance drops to 50% on retrieved examples. Since 763

these contain both true positives and hard false pos- 764

itives, this result underscores that ITM accuracy 765
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Image retrieval Text retrieval
C

L
IP

Correct 46.96% 43.48%
Subject incorrect 7.5% 15.98%

Verb incorrect 18.59% 19.35%
Object incorrect 19.02% 21.20%

B
L

IP
2

Correct 48.20% 46.05%
Subject incorrect 6.40% 11.04%

Verb incorrect 20.34% 21.36%
Object incorrect 15.17% 21.55%

FL
AV

A

Correct 48.82% 38.02%
Subject incorrect 7.42% 17.60%

Verb incorrect 22.80% 24.69%
Object incorrect 11.18% 19.58%

Si
gL

IP
2 Correct 57.63% 49.89%

Subject incorrect 10.93% 15.64%
Verb incorrect 19.28% 16.38%

Object incorrect 11.96% 18.09%

Table 13: Analysis of correct and incorrect samples,
retrieved by different models. The classification was
done using GPT-4o model.

alone does not reflect deeper linguistic understand-766

ing.

Image retrieval Text retrieval

BLIP2 59.70% 49.60%
FLAVA 56.50% 52.90%

Table 14: Image-text matching accuracy on examples
retrieved by specific model.

767

E Instructions for Annotators768

Following instructions were provided for each an-769

notator before the annotation process.770

Your task is to annotate the relation between the771

image and captions. Could the caption conceivably772

describe the image? Does the caption match the773

image? More than one caption can be correct for774

a given image. The annotation schema has three775

options (Yes - No - ?), and “?” with a meaning776

that you can not tell. Try to use “?” only in cases777

when you are really not sure about the relationship778

between image and caption.779

• Yes (Relevant) - The caption could match the780

image fully.781

• No (Irrelevant) - The caption contains some782

part that does not match the image. The sub-783

ject, verb, object or the number is incorrect784

(if the image shows man and the caption men-785

tions “woman”, the pair is incorrect, if the im-786

age shows a man on a red carpet and the cap-787

tion mentions “actor”, assume general knowl-788

edge that the man is in fact an actor.)789

• ? (Can not tell) You can not tell. Please choose 790

this option only when you are really in the 791

middle of yes and no. Always try to choose 792

“yes” or “no”. 793

The expected time for evaluating one pair of 794

an image and caption is approximately 5 seconds, 795

while each document contains multiple pairs of 796

the same image and different captions. Your task 797

is to evaluate the relevance between each caption 798

provided and the image, which is at the top of the 799

web page. 800

Registration and annotating data 801

1. First of all, it is necessary to register into the 802

annotation tool, which can be accessed at this 803

URL. To register, you need to input an email 804

address and password. Then click on “Reg- 805

ister”. It is necessary to remember the email 806

and password because these credentials will 807

be used to log into the system using the same 808

user interface. 809

2. Login - To log into the system, provide your 810

email address and password and click on the 811

“Login” button. 812

3. After logging into the system, you will see the 813

interface below, where you should click on 814

“List of documents 2” to get into the list of all 815

social media posts that should be annotated 816

4. The list of all images for annotating is shown 817

below 818

5. You are supposed to annotate the data based 819

on the information provided. 820

Process 821

• Checking the image - In the annotation tool, 822

you will see the image. Please check it care- 823

fully. You can enlarge it by clicking on the 824

image. 825

• Read a caption - For each image, there will be 826

multiple captions, but the number of captions 827

differs for each image. Please, read carefully 828

the caption and based on the image, annotate 829

the relevance between caption and image as 830

mentioned above. By selecting one of the 831

options (Yes, No, ?) you will annotate the 832

specific pair of caption and image. After pro- 833

viding annotations for each caption (take each 834

12



caption as an individual task, multiple cap-835

tions can be relevant for one image), click the836

SUBMIT button at the bottom of the page,837

other.838

Four examples of retrieval were also shown as839

part of instructions, together with correct annota-840

tions and rational.841

F Examples of Human and GPT842

evaluation of retrieval843

We provide examples of top-10 caption retrievals844

from the SVO-Probes dataset, along with correct-845

ness labels from human annotators and GPT-4o.846

These examples illustrate the kinds of captions re-847

trieved and how human and LLM judgments agree848

or differ.849

Each row shows a retrieved caption and binary850

labels from both evaluators. Ëindicates a match851

between the image and caption; éindicates a mis-852

match. These examples highlight GPT-4o’s general853

alignment with human intuition in SVO-Probes,854

and also showcase challenging cases.855
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CLIP BLIP-2 FLAVA
Order Caption Human GPT Caption Human GPT Caption Human GPT

1 A man is jumping off a cliff. Ë Ë A person jumps near the sea. Ë Ë A man is jumping off a cliff. Ë Ë
2 A man jumps off a rock Ë Ë Boys jumping off of a rock é é Boy is jumping from a rock. Ë é
3 a man walking on an edge é é couple jump on the beach é é The man sits on the rock. é é
4 Boy is jumping from a rock. Ë Ë The woman jumps off the rock. é é A man stands on the rock. é é
5 A man is climbing a cliff. é é A couple jumps on the beach. é é the person rests on the rock é é
6 The man is standing at the edge of a cliff. é é A person jumps at the sea. Ë é A man is climbing a rock. é é
7 a man is about to jump into the water Ë Ë A man takes a jump into the sea. Ë Ë a man jumping in the background Ë Ë
8 A man jumps off a rock. Ë Ë The woman jumps the cliff. é é The girl is climbing a rock. é é
9 A person climbing to the top of a cliff é é The couple jumps on the beach. é é A person sitting on a cliff é é
10 a person takes a jump Ë Ë Boy is jumping from a rock. Ë Ë The woman jumps off the rock. é é

Table 15: CLIP, BLIP-2, and FLAVA retrieved the top 10 captions for image from the SVO-Probes dataset. The
columns Human and GPT contain human and GPT-4o annotations for specific captions, whether or not they match
the image.
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CLIP BLIP-2 FLAVA
Order Caption Human GPT Caption Human GPT Caption Human GPT

1 this person makes the image é é A couple kiss in a meadow. Ë Ë A couple standing on the meadow Ë Ë
2 A couple expecting a baby Ë Ë A couple standing in a meadow. Ë Ë The couple is standing in the field kissing. Ë Ë
3 the person looks nice Ë Ë A couple standing on the meadow Ë Ë A couple are sitting at a field. é é
4 The woman is using a camera. é é A couple walking in the meadow. é é A couple is embracing each other. Ë Ë
5 A woman is expecting a baby. Ë Ë A couple walking on the meadow é é A man and woman are kissing. Ë Ë
6 The woman has a look on her face. Ë Ë A couple expecting a baby Ë Ë A man kissing a woman. Ë Ë
7 The woman will lie in bed with her child. é é A couple sits in a meadow. é é A couple is laying in the grass. é é
8 The woman will take a photo with her camera. é é A couple walks through a meadow. é é The woman stood in the grass. Ë é
9 the child runs in the field é é A couple lies in the meadow. é é The man stands in the field. Ë é
10 The people look like a happy pair. Ë Ë The couple is standing in the field kissing. Ë Ë A couple kisses the other. Ë Ë

Table 16: CLIP, BLIP-2, and FLAVA retrieved the top 10 captions for image from the SVO-Probes dataset. The
columns Human and GPT contain human and GPT-4o annotations for specific captions, whether or not they match
the image.
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