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Abstract

Vision-language models (VLMs) are often eval-
uated on linguistic understanding—such as
verb recognition or object counting—using
handcrafted datasets with contrastive image-
caption pairs. However, these datasets rarely
capture the full complexity of real-world lan-
guage use. We propose a probing framework
based on post-retrieval analysis, which eval-
uates a model’s top-K retrievals, which re-
veals finer-grained weaknesses in model be-
havior. We evaluate four VLMs—CLIP, BLIP-
2, FLAVA, and SigLIP2—on two datasets:
SVO-Probes (probing subject-verb-object role
understanding) and VALSE-counting (prob-
ing numerical comprehension). To mitigate
the issue of incomplete retrieval dataset an-
notations, we complement traditional metrics
with three strategies: semantic-similarity suc-
cess@K, human evaluation, and GPT-40-based
assessment. Our findings show that while
VLMs achieve high image-text matching accu-
racy (> 80%), they struggle in top-K retrieval
settings—yverb and object understanding (suc-
cess@1 = 70%), but especially for counting
(success@1 ~ 35%). Furthermore, GPT-40
aligns moderately with human judgment on
verb but fails on counting tasks. We conclude
that standard evaluation methods may under-
estimate VLM capabilities, and post-retrieval
probing offers a more robust and nuanced view
of their linguistic understanding.

1 Introduction

Recent studies have used various probing methods
(like uch as image-text matching, visual question
answering or guided masking) to evaluate vision-
language models’ (VLMs) understanding of lin-
guistic constructs. Probing studies have investi-
gated specific capabilities, including spatial rela-
tions (Liu et al., 2023), verb understanding (Hen-
dricks and Nematzadeh, 2021; Benova et al., 2025),
counting (Parcalabescu et al., 2020, 2021), or word
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Figure 1: An example from the SVO-Probes dataset; an
image labeled with the positive caption: "A girl runs
on a bridge.", and with negative captions: "The man
will run on the bridge.", "A girl runs up a hill." . Other
captions in the dataset, which are semantically correct
but would be evaluated as incorrect in the standard re-
trieval setup, e.g.: " A woman running on the street.” or
"A person runs on the road."

order (Thrush et al., 2022; Ma et al., 2023a), draw-
ing intriguing conclusions. However, these studies
often rely on handcrafted datasets that may not fully
capture the complexity or breadth of the targeted
phenomena.

For example, image-text matching (ITM) results
have led to claims that modern VLMs, such as
BLIP-2, have effectively mastered verb understand-
ing (Bugliarello et al., 2023). Yet these evaluations
typically use manually constructed positive and
negative image-caption pairs designed to highlight
specific linguistic features (see Figure 1).

This reliance on hand-designed contrastive pairs
raises two key limitations: (1) they fail to capture
the full semantic space of incorrect interpretations —
it is possible to violate a concept in many ways that
these datasets do not test for, and (2) they do not
necessarily surface the most challenging ways to
test for each concept in a model. As a result, high
performance on image-text matching (ITM) tasks
may obscure significant weaknesses in fine-grained
linguistic understanding. A comprehensive dataset



of contrastive pairs would require annotators to
assess all possible combinations or possess prior
knowledge regarding which pairs are challenging
for a particular model.

To address this, we propose post-retrieval anal-
ysis: instead of evaluating a model’s binary pre-
dictions over fixed contrastive pairs, we examine
the top-K items retrieved by the model for a given
query. This setup surfaces near misses—false posi-
tives that the model finds highly similar to the true
positives—and provides a richer, more diagnostic
view of a model’s linguistic understanding and ro-
bustness.

However, retrieval-based evaluation introduces
its own principal challenge as observed, e.g., by Hu
etal. (2019); Chun et al. (2022): incomplete annota-
tions. Since most datasets label only a few “correct”
caption per image (or vice versa), valid but unla-
beled matches are treated as errors under standard
metrics like success@XK. As an example, for Fig-
ure 1 correct retrieval is considered "A girl runs
on a bridge." . If the model retrieved "A woman
running on the street.”, which is semantically cor-
rect, it would be evaluated as an error. To mitigate
this, we complement retrieval with three alternative
evaluation strategies: semantic similarity success
(an alternative to success @K), human annotation,
and GPT-40-based analysis—to better account for
unlabeled but valid matches and provide a more
accurate assessment.

We apply this framework to evaluate four
VLMs—CLIP (Ilharco et al., 2021), BLIP-2 (Li
et al., 2023), FLAVA (Singh et al., 2022) and
SigLIP2 (Tschannen et al., 2025)—on two probing
datasets: SVO-Probes (Hendricks and Nematzadeh,
2021), for testing verb-role comprehension, and
VALSE-counting (Parcalabescu et al., 2021), for
numerical understanding.

While the selected models perform well on
image-text matching on SVO-Probes (accuracy
over 80%) and not so well on VALSE-Counting (ac-
curacy 60%), they exhibit poor performance when
evaluated using retrieval with standard success@K.
The results improve when evaluating with semantic-
similarity success, however, the task proves to be
challenging even when evaluated by a human on a
subset of 100 samples from the datasets: for SVO-
Probes S, @1 is 60 — 80%, and the task is even
more challenging for VALSE-counting with S;, @1
30 — 50%). Also we argue that not just verb under-
standing make the task challenging, but also object
understanding.

While using GPT4-o as evaluator, we found mod-
erate agreement with human annotations for the
SVO-Probes dataset (F1 = 0.7252) but low agree-
ment for counting (F1 = 0.4495). Therefore, GPT
may be helpful for SVO-Probes, however, it seems
unlikely that it would be helpful for counting.

Our main contributions are as follows:

1. We propose a retrieval-based probing frame-
work that surfaces nuanced errors in VLMs
behavior beyond contrastive relying on human
priors.

2. We introduce three evaluation strate-
gies—semantic similarity, human annotation,
and GPT-based scoring—to address annota-
tion incompleteness.

3. We benchmark four VLMs across two prob-
ing tasks, showing that retrieval-based prob-
ing provides a more diagnostic view of model
competence.

Results of our post-retrieval analysis indicate
that there is still substantial room for improvement.
Post-retrieval evaluation by humans measured suc-
cess@1 on SVO-Probes around 70% — contrary to
the findings with image-text matching. Moreover,
the analysis by GPT-40 of incorrectly retrieved ex-
amples suggests that the object understanding is
a similar if not more challenging as verb under-
standing. The results are even more sobering for
counting, with human evaluation success@1 of
only around 35%.

2 Related Work

Vision-Language Models (VLLMs) align visual
and textual modalities and are widely used for
tasks such as image-text retrieval, captioning, and
visual question answering. Prominent architec-
tures include dual encoders like CLIP (Radford
et al.,, 2021), FLAVA (Singh et al., 2022), and
SigLIP2 (Tschannen et al., 2025), as well as multi-
stage models such as BLIP-2 (Li et al., 2023),
LlaVA-NeXT (Liu et al., 2024) or GPT-4 (Ope-
nAl, 2024) that combine frozen vision encoders
with large language models. While these models
perform well on downstream tasks, there has been
concerns about their true linguistic competence.

Fine-grained benchmarks Probing methods typ-
ically rely on handcrafted datasets composed of
contrastive image-caption pairs designed to iso-
late specific linguistic features by foiling (Shekhar



et al., 2017). For instance, SVO-Probes tests verb-
role comprehension through subject, verb, and ob-
ject negatives (Hendricks and Nematzadeh, 2021),
while VALSE-counting focuses on numerical rea-
soning (Parcalabescu et al., 2021).

Beyond foiling, benchmarks like WinoGround
(Thrush et al., 2022) and CREPE (Ma et al., 2023b)
explore compositional grounding or VILMA (Ke-
sen et al., 2024) and CV-Probes (Benovi et al.,
2024) target verb phrase understanding through
contrastive captions. Despite their value, these
datasets often capture only narrow, synthetic vari-
ations and fail to represent the full diversity—or
ambiguity—of real-world inputs.

Unlike prior work, our approach leverages post-
retrieval analysis to assess model comprehension.
It was previously observed by (Hu et al., 2019;
Chun et al., 2022) that the retrieval evaluation
has principal challenges, which we address by
proposing alternative evaluation techniques. We
uncover systematic errors by analyzing the top-K
retrieved samples. Additionally, large language
models (LLMs) like GPT-40 have been explored as
scalable evaluators for retrieval (Alaofi et al., 2024,
Wang et al., 2024; Vykopal et al., 2025).

The Retrieval Task and Its Evaluation Image
and text retrieval are fundamental tasks in multi-
modal learning, where, given a query (an image or
a text), the goal is to retrieve the most relevant cor-
responding items (texts or images) from a database.
The output of a retrieval method is a list of samples
ranked by relevance, from which the top K samples
are used further.

Evaluation of retrieval is commonly performed
using success @K (S @K), which represents the pro-
portion of cases in which the top-K ranked samples
include at least one sample relevant to the query.
Other evaluation metrics are also commonly used,
e.g., recall@K or precision@K.

3 Probing through Post-Retrieval
Analysis

Existing probing approaches, such as image-text
matching (ITM) or visual question answering, rely
on curated datasets designed to isolate specific lin-
guistic constructs—e.g., verbs (Hendricks and Ne-
matzadeh, 2021; Benova et al., 2025), spatial rela-
tions (Liu et al., 2023), or counting (Parcalabescu
et al., 2020, 2021). These typically use contrastive
examples: a "positive" image-caption pair and a
minimal "negative" pair that alters one key com-
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ponent (example can be seen in Figure 1). While
useful, such datasets cover only a narrow slice of
possible errors, and their construction reflects hu-
man priors about what should be challenging.

The clear limitation of this approach is that while
such contrastive pairs are specific (i.e., they only
differ in the probed concept, so one will not see “A
flamingo flying over a lake.” as a negative for Fig-
ure 1, they do not exhaustively delineate the extent
of each concept. A model may succeed on curated
contrastive pairs but still fail on many semantically
valid variants not captured by the dataset. Fur-
thermore, negative examples may not represent the
most difficult edge cases.

As a result, it is perfectly possible for a model
to both (i) perform well on the specific contrastive
pairs formed by human annotators and (ii) fail on
a large number of other pairs (crucially, even on
pairs composed of images and captions from the
same dataset). To create a comprehensive dataset
of contrastive pairs, annotators would either need
to assess all possible combinations or possess some
prior knowledge regarding which pairs are likely
to be found challenging.

We propose an alternative: probing through post-
retrieval analysis. Instead of evaluating models
only on binary image-text match judgments, we
analyze the top-K retrieved items for each query.
These include both correct matches and close dis-
tractors. This lets us inspect not just whether a
model "gets it right," but what kinds of near-misses
it tends to make. The procedure for text retrieval
is described in (Algorithm 1). The same holds
algorithm holds for image retrieval.

Algorithm 1 Probing through post-retrieval analysis

Data: dataset: an image-caption dataset
foreach image in dataset do
Rank captions by relevance to the image
Collect the top K samples
Compute evaluation metrics for the top K; // in sec.
3.1.1, 3.1.2, 3.1.3
Perform exploratory analysis on top K samples

Post-retrieval probing provides a window into
the model’s representational confusion. Are mis-
matches mostly due to subject swaps or verb mis-
use? One can conduct exploratory analysis on the
top K samples and perform a more detailed assess-
ment of the model’s capabilities, e.g., its ability to
correctly recognize the subject and the object of a
relation, recognize activities, count objects, etc.



3.1 Evaluation Metrics of Retrieval Tasks

Standard retrieval metrics such as success@K
or precision@K assume fully annotated datasets,
where all correct matches are labeled. In practice,
many semantically valid matches are unlabeled,
leading these metrics to underestimate model per-
formance. To address this, we introduce three com-
plementary evaluation strategies tailored for post-
retrieval probing.

3.1.1 Semantic-Similarity Success

This metric allows for soft matching by evaluating
how similar retrieved candidates are to the gold
reference. It is most helpful in evaluating the un-
derstanding of relations. Under semantic-similarity
success, match correctness is assessed by com-
paring the caption (query/candidate) against the
gold reference caption corresponding to the (candi-
date/query) image. Both captions are decomposed
into (subject, relation, object) triplets. We first
check if the verbs match exactly. If yes, we com-
pute cosine similarity between subject and object in
candidate-query pairs using ES-large embeddings.
If both exceed a threshold (we use 0.9), the can-
didate is considered a match - the similarity score
between both subjects and objects (woman vs. girl,
road vs. street) in Figure 1 surpasses a defined
threshold.

3.1.2 Human Judgment Success

We conduct human evaluation on a sample of top-K
text retrievals to establish ground-truth correctness.
Given a query (image or caption), annotators rate
whether each retrieved item is a valid match. This
captures real-world semantic plausibility beyond
what is labeled in the dataset.

Each item was annotated by three volunteers,
non-native English speakers with tertiary eduction.
Final correctness is determined by majority vote.
This serves both as a gold reference and as a bench-
mark to evaluate automated metrics (e.g., GPT-40
agreement).

3.1.3 GPT-40 Evaluation

To scale the evaluation process, we use GPT-40
(OpenAl, 2024) to classify whether a retrieved item
matches the query. GPT-40 is prompted with both
the query and the top-K retrieved items and asked
to label each as correct or incorrect. It can also
specify the type of mismatch (subject, verb, object)
for more detailed error analysis.

4 Experiments with Retrieval

We evaluate our post-retrieval probing method on
four vision-language models— CLIP FLAVA and
SiglIP2 (from transformers library) and BLIP-2
(from lavis library)—which represent a range of
multimodal architectures. We conduct experiments
on two public datasets: SVO-Probes, designed to
assess understanding of subject-verb-object struc-
ture, and VALSE-counting, which focuses on nu-
merical reasoning. We consider both image-to-
text and text-to-image retrieval, as well as standard
image-text matching.

4.1 SVO-Probes: Probing on Subjects, Verbs,
and Objects

The SVO-Probes dataset evaluates whether
VLMs understand the roles of subjects, verbs, and
objects in visual scenes. Each example consists
of a caption, a positive image, and a contrastive
negative image. The negative image in each triplet
corresponds to one of three types: subject negative,
verb negative, or object negative. This structured
format allows fine-grained probing of role compre-
hension. An example is shown in Figure 1. SVO-
Probes is commonly used to benchmark image-text
matching accuracy.

Verb understanding appears largely solved
with all models achieving over 80% accuracy on
image-text matching (see Table 1). Accuracy is
highest for object negatives, followed by subject
negatives, with verb negatives proving most dif-
ficult. BLIP-2 and SigL.IP2 outperform CLIP by
more than 3%, despite using CLIP as a backbone.
Overall, BLIP-2, FLAVA, and SigLIP2 perform
comparably well.

Overall Subject Verb  Object
CLIP 84.15 86.51 8198 88.98
BLIP-2 87.58 89.98 8527 92.80
FLAVA 87.07 88.44 8458 93.66
SigLIP2  87.45 86.40  86.07 92.50

Table 1: Accuracy of image-text matching on SVO-
Probes. The classification is based on which image
embedding (positive or negative image) has a higher
similarity score with the caption.

On a simple retrieval task, models perform
poorly when evaluated with traditional metrics,
however, performance improves when semantic-
similarity success is used. We begin with a simple
retrieval task to assess how challenging retrieval
evaluation is. We generate a query captions us-



ing the template: This is the image of {subject}.,
where {subject} is substituted from the dataset vo-
cabulary. Despite the simplicity of this setup, mod-
els in Table 2 achieve only 35 — 45% success@ 1
(S@1). However, when evaluated with semantic-
similarity success@1 (S;@1), scores rise dramati-
cally to 72 — 84%.

success @

1 5 10 20
CLIP 34.93 54.07 59.81 64.11
BLIP-2 4258 63.64 70.33  77.51
FLAVA  36.36 58.85 65.07 72.73
SiglLIP2  44.98 63.64 72.73 7799
semantic-similarity success @
CLIP 72.73 93.78 98.09 100
BLIP-2  84.69 97.13 99.52  99.52
FLAVA  74.16 98.09 100 100
SigLIP2  76.56 99.52 100 100

Table 2: Success@K and semantic-similarity suc-
cess @K evaluation with threshold 0.9 of image retrieval
on SVO-Probes dataset, using only captions created with
following template: "This is the image of {subject}."

On the full image retrieval task, which in-
volves understanding subjects, verbs, and ob-
jects jointly, models perform poorly under stan-
dard metrics. The performance increases us-
ing semantic-similarity success, however, the
task is still very challenging. S@1 falls below
10% across the board in Table 3. When using
semantic-similarity success (Ss@1), performance
improves by roughly 12 percentage points. Still,
absolute scores remain low—Ss@1 hovers around
20%—indicating substantial difficulty with fine-
grained role comprehension. Among the models,
Sigl.IP2 performs best overall, particularly outper-
forming CLIP, while FLAVA shows modest gains
when evaluated semantically.

success @

1 5 10 20
CLIP 8.67 23.77 32.84 4259
BLIP-2 9.76 27.04 3791 49.84
FLAVA 8.61 24.35 35.65 46.74
SigLIP2  10.43 28.56 39.11 50.61
semantic-similarity success@
CLIP 20.28 45.14 56.41 66.73
BLIP-2 2261 52.40 65.22 75.66
FLAVA  24.90 54.60 66.93 77.39
SiglIP2 22.48 50.33 62.73 73.17

Table 3: Success@K and semantic-similarity suc-

cess@K evaluation with threshold 0.9 of image retrieval
on SVO-Probes dataset.

A breakdown of retrieval performance by role
reveals that subjects are the easiest to retrieve,
followed by verbs, with objects being the most
difficult. Analyzing retrieved samples by their
ground-truth captions Table 4, the percentage of
retrieved examples with the same subject than in
query is highest across models, followed by verbs
and then by objects. This pattern contrasts with
image-text matching, where object negatives were
the easiest to detect. Among the models, FLAVA
performs worst on subject and verb retrieval, while
its object retrieval is on par with BLIP-2.

K=1 K=5 K=10 K=20
Subject
CLIP 53.17% 47.75% 44.56% 41.28%
BLIP-2  53.32% 48.89% 46.28% 43.19%
FLAVA  50.88% 47.10% 44.42% 41.62%
SigLIP2  53.75% 48.84% 4587% 42.56%
Verb
CLIP 46.78% 41.01% 37.93% 34.69%
BLIP-2  45.14% 39.76% 36.68% 33.31%
FLAVA  43.64% 37.38% 34.17% 30.72%
SigLIP2  49.80% 43.21% 39.14% 35.07%
Object
CLIP 4325% 37.79% 33.73% 29.47%
BLIP-2  41.85% 36.31% 33.17% 29.27%
FLAVA  42.69% 36.87% 33.78% 30.02%
SigLIP2 48.73% 41.00% 36.47% 31.81%

Table 4: Subject, verb and object success@K on the
SVO-Probes dataset — i.e. how many of the top K re-
trieved images correctly match the query subject, verb
and object in their caption.

Text retrieval proves even more difficult than
image retrieval. This is likely due to the fine-
grained nature of the captions in SVO-Probes,
which often differ only in single word. SigL.IP2
with BLIP-2 model outperform the rest in Table 5.
Further analysis of retrieved captions confirms the
trend holds for text retrieval as well: subjects are
consistently easier to retrieve than objects. CLIP
performs worst across all roles in Table 6 —sug-
gesting broader difficulty in grounding fine-grained
linguistic elements in visual input.

4.2 VALSE: Probing on Counting Ability

VALSE-Counting The VALSE-Counting dataset
(Parcalabescu et al., 2021) focuses on numerical
reasoning by testing whether models can correctly
count objects in images. Each image is paired with
a caption specifying a quantity (e.g., "There are
exactly 3 giraffes"). This task assesses both object



success @

1 5 10 20

CLIP 6.47 20.46 3029 42.16
BLIP-2 13.23 35.32 47.11 59.51
FLAVA 5.63 17.22 2494  34.79
SigLIP2  13.42 35.95 48.14 61.16
semantic-similarity success @

CLIP 11.82 29.87 4093 5237
BLIP-2  24.99 47.39 58.12  67.62
FLAVA  17.42 38.19 50.00 60.56
SigLIP2  48.29 74.04 82.08 88.20

Table 5: Success@K and semantic-similarity suc-

cess@K evaluation with threshold 0.9 of text retrieval
on SVO-Probes dataset.

K=1 K=5 K=10 K=20
Subject
CLIP 46.18% 43.91% 41.92% 39.39%
BLIP-2  56.85% 52.01% 48.96% 45.50%
FLAVA  5093% 46.88% 44.10% 41.10%
SigLIP2  57.05% 5227% 48.83% 45.00%
Verb
CLIP 3454% 31.04% 28.95% 26.58%
BLIP-2  49.85% 43.76% 39.62% 35.37%
FLAVA  37.19% 32.28% 29.65% 26.66%
SigLIP2  51.54% 45.02% 40.71%  36.02%
Object
CLIP 31.23% 2894% 2694% 24.32%
BLIP-2  4430% 39.34% 35.88% 31.47%
FLAVA  3571% 31.94% 29.25% 26.02%
SigLIP2 45.68% 40.66% 36.62% 31.77%

Table 6: Subject, verb and object success at K across
SVO-Probes dataset — how many of the top K retrieved
captions have the query subject, query verb and query
object in them.

recognition and quantitative understanding. An
example is shown in Figure 2. VALSE has been
widely used to benchmark image-text matching.

Compared to verb understanding, counting
poses a significantly greater challenge. Image-
text matching accuracy on counting is consistently
lower than on SVO-Probes, with all models scoring
around 62-64% accuracy in Table 7. As image-text
matching is a binary classification, these results
suggest that VLMs struggle with numerical reason-
ing more than verb comprehension.

Models perform poorly on image retrieval
and even poorer on text retrieval for counting
understanding. Image retrieval results in Table 8
show S@1 around 10-14%. Surprisingly, it is
slightly better than understanding in SVO-Probes.
Unlike SVO-Probes, semantic similarity success
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Figure 2: An example from the VALSE-Counting
dataset; an image labeled with the positive caption:
“There are exactly 3 of the animals giraffes.”; and with
a negative caption: “There are exactly 14 of the ani-
mals giraffes.”. Other semantically correct captions in
the dataset that would be evaluated as incorrect in the
standard retrieval setup include e.g.: “There is exactly 1
zebra.”

Model Overall
CLIP 61.90%
BLIP-2  63.80%
FLAVA  63.80%
SigLIP2  63.10%

Table 7: Image-Text Matching on VALSE dataset.

is not meaningful for counting. The task requires
precise numerical accuracy, not conceptual overlap.
This limits the usefulness of approximate match-
ing methods like S;@QK for evaluating counting
performance.

Model S@l S@5 S@10 S@20
CLIP 11.02 30.15 4286 55.81
BLIP-2 1029 2942 4080 54.24
FLAVA  11.14 34.02 4722 62.83
SigLIP2 14.65 3535 4758 61.74

Table 8: Success@K for image retrieval on VALSE-
counting.

Model S@l S@5 S@10 S@20
CLIP 6.20 2020 2850 38.70
BLIP-2 930 2420 3550 46.50
FLAVA 630 1950 31.00 42.00
SigLIP2 920 23.80 3440 49.40

Table 9: Success@K for text retrieval on VALSE-
counting.



4.3 Human and GPT Evaluation

Human evaluation suggest that text retrieval
performance is better than success@K showed;
however, the subject-verb-object understanding
and counting comprehension are still very chal-
lenging tasks. To assess how well retrieval re-
sults align with human expectations, we randomly
sampled 100 queries from both datasets. For each
image query, the top-10 retrieved items were anno-
tated by three human raters, who judged whether
each caption was a valid match. Final labels were
determined via majority vote. The results for both
datasets are shown in Table 12. A significant in-
crease (for SVO-Probes in some cases, a 60% point
difference, for VALSE-counting a 20 — 35%) in
performance can be seen for all models once a
human annotator evaluated them. SiglLIP2 is the
best-performing model for subject-verb-object un-
derstanding, with S, @1 = 79.79%. while FLAVA
is the best for counting with S, @1 = 49%. The
Fleiss’ Kappa between three human annotators was
0.641 for SVO-Probes and for VALSE-counting it
was 0.743, which suggest that counting is an easier
task for humans and they agree more on the answer.

GPT can only approximate the human judg-
ment process for subject-verb-object under-
standing, as the counting task also represents
a substantial challenge for GPT model. It is
important to note that some examples could not
be evaluated by GPT as the model assumed they
where violating the rules of use. We report the per-
formance in Table 12 only for examples that could
also be evaluated by GPT. For each query, we used
prompt that can be seen in Appendix A, to eva-
lute the models. The Table 12 shows that GPT-40
slightly underestimates the performance of models
on SVO-Probes, while it strongly overestimates it
for VALSE-counting. We then measured GPT-40’s
agreement with human annotations using the F1
score with majority human vote as ground truth.
The F1 score for SVO-Probes is 0.73, however, the
F1 score for VALSE-counting is 0.45, suggesting
that for GPT the verb understanding task is easier
than counting.

An example of retrieved examples and their hu-
man and GPT evaluation can be seen in the Ap-
pendix in F. The evaluations were also carried out
for image retrieval task, the results can be seen
in Appendix B, however for the sake of time and
resources only one annotator evaluated results for
image retrieval.

SVO-Probes VALSE-counting

K=1 K=5 K=10 K=1 K=5 K=10

S@K 8.70 19.57 29.35 4.00 12.00 23.00
Sp @K 68.48 96.74 100.00 33.00 65.00 82.00
Sg@K 4891 92.39 97.83 67.00 92.00 96.00

P@K 8.70 391 2.93 4.00 2.60 2.50
P, @K 68.48 61.74 57.50 33.00 20.60 19.90
Pg@K 4891 46.52 43.48 67.00 47.00 38.00

CLIP

S@K 15.62 41.67 52.12 10.00 24.00 31.00
Sp @K 77.08 94.79 96.88 31.00 71.00 80.00
Sy @K 69.79 92.71 95.83 63.00 87.00 98.00

BLIP-2

P@K 15.62 8.33 542 10.00 4.80 3.20
P, @K 77.08 68.33 62.29 31.00 24.60 19.20
Py@K 69.79 53.75 46.15 63.00 49.00 41.80

S@K 6.25 22.92 31.25 1.00 16.00 33.00
Sy @K 61.46 90.62 95.83 49.00 80.00 88.00
Sy @K 58.33 92.71 100.00 83.00 97.00 99.00

FLAVA

P@K 6.25 4.58 3.12 1.00 3.40 4.00
P, @K 61.46 53.33 48.02 49.00 30.60 27.80
Pg,@K 58.33 4521 38.02 83.00 58.00 50.30

S@K 18.09 43.62 58.51 9.00 20.00 30.00
Sy @K 79.79 96.81 96.81 36.00 65.00 83.00
Sy @K 75.53 95.74 98.94 71.00 89.00 96.00

P@K 18.09 8.72 5.85 9.00 4.00 3.20
Py @K 79.79 70.43 66.91 36.00 20.80 19.20
Pg4@K 75.53 58.51 49.89 71.00 45.00 38.30

SigLIP2

Table 10: Results of text retrieval on a subset of 100
samples from SVO-Probes and VALSE-count. Standard
success (S@K), success with human evaluation (S;, @K)
and success with GPT4-o evaluation (S, @K). The F1
score between human majority vote and GPT evalua-
tion is 0.7252 for SVO-Probes and 0.4495 for VALSE-
counting. Cohen’s kappa between human majority vote
and GPT evaluation is 0.4543 for SVO-Probes and
0.2302 for VALSE-counting.

4.3.1 Post-Retrieval Error Analysis of
SVO-Probes

To better understand the types of errors made by
VLMs, we perform a qualitative analysis of the
top-K retrievals on the SVO-Probes dataset. Given
the moderate agreement between human raters and
GPT-40 F'1 = 0.73, we use GPT-40 to label re-
trievals as correct, or incorrect due to one of three
reasons: subject (the subject in the caption does
not match the image), verb (the activity described
in the caption does not match the image), or object
(other details in the caption do not align with the
image) mismatch.

We analyze the top 10 retrieved captions for 100
randomly sampled image queries across the mod-
els. For each retrieval, GPT-4o identifies the type
of error when a mismatch occurs. Our findings
in Appendix C reveal consistent patterns: Subject
mismatches are the least frequent across all models,
suggesting that models grasp subject identity more
reliably than actions or objects. Object errors are
the most frequent among incorrect retrievals, par-
ticularly for CLIP and in text retrieval for BLIP-2
and SigLIP2. Verb errors are also common, es-
pecially for FLAVA. This aligns with our earlier
quantitative results and confirms that strong image-



text matching scores do not guarantee robust role
comprehension. The ability to retrieve topically
similar but incorrect items (e.g., matching subject
and activity but not the object) highlights semantic
ambiguity and model brittleness—critical aspects
not captured by standard evaluation.

To further test this, we treat the top-K retrievals
themselves as a comprehensive contrastive dataset
and re-run I'TM on these examples using BLIP-2
and FLAVA—both of which have dedicated ITM
heads. We evaluate these matches using human an-
notations as ground truth (in Appendix D). While
BLIP-2 and FLAVA previously achieved over 80%
ITM accuracy on the full SVO-Probes dataset, their
performance drops to 50% on the retrieved exam-
ples. Crucially, these examples include: (i) true
positives; and (i) false positives that are the most
likely to be confused with true positives by a spe-
cific model. This striking drop illustrates that stan-
dard ITM evaluation can mask important model
failures, particularly in subject-verb-object ground-
ing, and highlights the diagnostic value of post-
retrieval probing.

5 Conclusion

In this work, we introduced a probing framework
based on post-retrieval analysis to better assess the
linguistic understanding of vision-language models.
Unlike standard methods, our approach does not
rely on handcrafted contrastive pairs. Instead, it
leverages the retrieval task, recognizing that the top-
K retrieved items include both true positives and
close false positives—offering a more diagnostic
view of model behavior.

Our evaluation across two targeted datasets,
SVO-Probes and VALSE-Counting, revealed sig-
nificant gaps in model performance that are ob-
scured by image-text matching scores. While all
models achieved over 80% accuracy in image-text
matching tasks, their success@1 dropped below
10% on both datasets. Semantic similarity metrics
partially recovered this performance, suggesting
that many "errors" are due to incomplete annota-
tion rather than model failure.

To address annotation incompleteness, we also
evaluted retrieval with human judgment and GPT-
40 scoring—which better capture the range of valid
retrievals. GPT-4o achieved moderate agreement
with humans (£'1 = 0.73) for SVO-Probes, demon-
strating potential as a scalable evaluation proxy.
However, for VALSE-counting the F1 score was

0.45, indicating counting task is a substantial chal-
lenge for the GPT model and can not be used as
evaluation proxy.

By subjecting top-K retrievals to further analysis,
we uncovered systematic model weaknesses in role
understanding and numeric reasoning. These in-
sights highlight the need for deeper, retrieval-based
probing methods to build more robust multimodal
Al systems. Analysis also showed that models con-
sistently retrieved subjects more accurately than
verbs or objects, contradicting image-text match-
ing patterns where object negatives were easiest for
models to classify. On counting tasks, all models
struggled.

Limitations

While our post-retrieval probing framework offers
new insights into the linguistic behavior of vision-
language models, it also has several limitations.
First, our analysis is limited to two
datasets—SVO-Probes and VALSE-
Counting—that are synthetic and constrained in
structure. While they target key linguistic phenom-
ena, they may not fully capture the diversity or
ambiguity found in real-world multimodal data.

Second, although we introduced alternative eval-
uation strategies—semantic similarity, human an-
notation, and GPT-40—they each have their trade-
offs. Semantic similarity depends on thresholding
and fails in tasks like counting; GPT-40, while scal-
able, does not always align perfectly with human
judgment.

Additionally, we evaluated only pretrained mod-
els, with architecture suitable for encoding of cap-
tions and images, and therefore capable of doing
retrieval task using cosine similarity as similarity
score. Finally, all experiments were conducted in
English, limiting the generalizability of findings to
multilingual settings.

We leave these avenues for future work.

Computational Resources

For inference and evaluation, our experiments
were run on NVIDIA GeForce RTX 3060 Lap-
top GPU (6GB VRAM). Total compute was ap-
proximately 50 GPU hours (mostly from running
retrieval across two datasets, multiple times per
model).
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Appendix

A Prompting GPT-40 for Retrieval
Evaluation

To scale up retrieval evaluation, we use GPT-40
to assess whether each top-K retrieved item (im-
age or caption) is a correct match for a given query.
For SVO-Probes and VALSE-counting datasets, we
prompt GPT-40 with the query and each retrieved
item, asking it to classify them as correct or incor-
rect. For incorrect matches, GPT-4o0 is instructed
to specify the error type.

The full prompt used for caption-based queries
is shown below. A similar structure is applied for
image-based queries in both datasets.

Assess if given images are correct retrievals for the text
query provided caption.

For each image, evaluate if it is correct. If it is incorrect,
mention the specific category that best describes the error:
- **Subject incorrect**: The subject in the caption does
not match the image. - **Verb incorrect**: The activity
described in the caption does not match the image. - **Ob-
Jject incorrect™*: Other details (e.g., objects or contextual
elements) in the caption do not align with the image.

# Steps

1. For each image, evaluate its correctness based on text
query. 2. If the image aligns well with the caption, classify
it as ‘correct’. 3. If it is incorrect, determine the category
of the error: - **Subject incorrect™* - **Verb incorrect™* -
**QObject incorrect** 4. Output results using a structured,
simple list.

# Output Format

The results should be listed in this format: -
(image_number): {classification)

For example: ‘1: correct* ‘2: verb incorrect‘ ‘3: object
incorrect".

Table 11: Prompt for GPT-4o0.

B Image retrieval results

This section presents success @K results for image-
to-text retrieval on both SVO-Probes and VALSE-
counting, using standard evaluation, human annota-
tion, and GPT-40 assessment. The results are based
on 100 randomly sampled image queries for each
dataset.

As shown in Table 12, human evaluation consis-
tently yields much higher success@K than standard
metrics, revealing the impact of incomplete dataset
annotation. GPT-40 estimates closely align with hu-
man scores in SVO-Probes but deviate significantly
in counting tasks.

We also report precision@K for completeness.
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SVO-Probes VALSE-counting

K=1 K=5 K=10 K=1 K=5 K=10

S@K
Sy @K
Sg@K

P@K
Pj, @K
P, @K

10.87
64.13
65.22
10.87
64.13
65.22

26.09
88.04
96.74
543
57.83
55.65

35.87
96.74
100.00
4.13
51.74
46.96

9.20
24.14
52.87

9.20
24.14
52.87

25.29
67.82
72.41
5.06
25.98
33.33

35.63
78.16
79.31
3.79
22.64
20.80

CLIP

S@K
S, @K
Sy @K

P@K
P, @K
P, @K

11.24
74.16
69.66
11.24
74.16
69.66

30.34
94.38
97.75
6.07
67.64
57.98

39.33
95.51
98.88
4.04
59.89
48.20

9.30
25.58
52.33

9.30
25.58
52.33

27.91
60.47
70.93
5.58
20.23
30.70

38.37
74.42
72.09
4.07
17.91
18.14

BLIP-2

S@K
S, @K
Sy @K

P@K
P, @K
P, @K

8.79
72.53
67.03

8.79
72.53
67.03

25.27
94.51
94.41
5.05
60.88
54.07

35.16
94.51
98.80
3.52
56.92
47.14

10.47
29.07
54.65
10.47
29.07
54.65

29.07
69.77
74.42
6.05
24.88
37.44

37.21
81.40
80.23
4.07
2221
21.98

FLAVA

S@K
Sj, @K
Sq@K

P@K
P, @K
Pg4@K

13.40
74.23
79.38
13.40
74.23
79.38

30.93
93.81
91.75

6.19
68.45
63.71

4227
95.88
95.88
4.43
62.16
57.63

11.63
26.74
59.30
11.63
26.74
59.30

30.23
52.33
74.42
6.05
19.07
36.05

44.19
61.63
7791
477
14.53
19.53

SigLIP2

Table 12: Results of image retrieval on a subset of 100
samples from SVO-Probes and VALSE-count. Standard
success (S@K), success with human evaluation (S;, @K)
and success with GPT4-o evaluation (S, @K). The F1
score between human annotator and GPT evaluation for
SVO-Probes is 0.7628 and for VALSE-counting it is
0.4056.

C Post-retrieval analysis on SVO-Probes
dataset

Using GPT-40, we categorize errors in top 10 text
and image retrievals from SVO-Probes into three
types: subject, verb, and object incorrect. Table 13
shows the percentage of retrievals falling into each
category across models.

This breakdown offers deeper insight into model
behavior. Across all models, object mismatches
dominate the errors, followed by verbs, with sub-
jects being the most reliably retrieved. This con-
firms that even when models retrieve semantically
close items, fine-grained role comprehension re-
mains a challenge.

D Image-Text Matching with BLIP2 and
FLAVA Using Retrieved Samples

To evaluate how models perform on their own re-
trieval outputs, we apply the image-text matching
(ITM) heads of BLIP-2 and FLAVA to the top-K
retrieved items. Human annotations are used to
judge correctness.

Table 16 shows that while both models score
over 80% ITM accuracy on the full dataset, perfor-
mance drops to 50% on retrieved examples. Since
these contain both true positives and hard false pos-
itives, this result underscores that ITM accuracy



Image retrieval ~ Text retrieval

Correct 46.96% 43.48%

& Subject incorrect 7.5% 15.98%
o Verbincorrect 18.59% 19.35%
Object incorrect 19.02% 21.20%
Correct 48.20% 46.05%

g Subject incorrect 6.40% 11.04%
5 Verb incorrect 20.34% 21.36%
Object incorrect 15.17% 21.55%

< Correct 48.82% 38.02%
> Subject incorrect 7.42% 17.60%
S Verbincorrect 22.80% 24.69%
" Object incorrect 11.18% 19.58%
« Correct 57.63% 49.89%
&  Subject incorrect 10.93% 15.64%
%  Verbincorrect 19.28% 16.38%
v Object incorrect 11.96% 18.09%

Table 13: Analysis of correct and incorrect samples,
retrieved by different models. The classification was
done using GPT-40 model.

alone does not reflect deeper linguistic understand-
ing.

Text retrieval

49.60%
52.90%

Image retrieval

59.70%
56.50%

BLIP2
FLAVA

Table 14: Image-text matching accuracy on examples
retrieved by specific model.

E Instructions for Annotators

Following instructions were provided for each an-
notator before the annotation process.

Your task is to annotate the relation between the
image and captions. Could the caption conceivably
describe the image? Does the caption match the
image? More than one caption can be correct for
a given image. The annotation schema has three
options (Yes - No - ?), and “?” with a meaning
that you can not tell. Try to use “?” only in cases
when you are really not sure about the relationship
between image and caption.

* Yes (Relevant) - The caption could match the
image fully.

* No (Irrelevant) - The caption contains some
part that does not match the image. The sub-
ject, verb, object or the number is incorrect
(if the image shows man and the caption men-
tions “woman”, the pair is incorrect, if the im-
age shows a man on a red carpet and the cap-
tion mentions “actor”’, assume general knowl-
edge that the man is in fact an actor.)
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* 7 (Can not tell) You can not tell. Please choose
this option only when you are really in the
middle of yes and no. Always try to choose
“yes” or “no”.

The expected time for evaluating one pair of
an image and caption is approximately 5 seconds,
while each document contains multiple pairs of
the same image and different captions. Your task
is to evaluate the relevance between each caption
provided and the image, which is at the top of the
web page.

Registration and annotating data

1. First of all, it is necessary to register into the
annotation tool, which can be accessed at this
URL. To register, you need to input an email
address and password. Then click on “Reg-
ister”. It is necessary to remember the email
and password because these credentials will
be used to log into the system using the same

user interface.

. Login - To log into the system, provide your
email address and password and click on the
“Login” button.

. After logging into the system, you will see the
interface below, where you should click on
“List of documents 2” to get into the list of all
social media posts that should be annotated

. The list of all images for annotating is shown
below

. You are supposed to annotate the data based
on the information provided.

Process

* Checking the image - In the annotation tool,
you will see the image. Please check it care-
fully. You can enlarge it by clicking on the
image.

Read a caption - For each image, there will be
multiple captions, but the number of captions
differs for each image. Please, read carefully
the caption and based on the image, annotate
the relevance between caption and image as
mentioned above. By selecting one of the
options (Yes, No, ?7) you will annotate the
specific pair of caption and image. After pro-
viding annotations for each caption (take each



caption as an individual task, multiple cap-
tions can be relevant for one image), click the
SUBMIT button at the bottom of the page,
other.

Four examples of retrieval were also shown as
part of instructions, together with correct annota-
tions and rational.

F Examples of Human and GPT
evaluation of retrieval

We provide examples of top-10 caption retrievals
from the SVO-Probes dataset, along with correct-
ness labels from human annotators and GPT-4o.
These examples illustrate the kinds of captions re-
trieved and how human and LLM judgments agree
or differ.

Each row shows a retrieved caption and binary
labels from both evaluators. #indicates a match
between the image and caption; ¥indicates a mis-
match. These examples highlight GPT-40’s general
alignment with human intuition in SVO-Probes,
and also showcase challenging cases.
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CLIP BLIP-2 FLAVA
Order Caption Human GPT Caption Human GPT Caption Human
1 ‘A man is jumping off a cliff. v v A person jumps near the sea. v v A man is jumping off a cliff. v
2 A man jumps off a rock v v Boys jumping off of a rock x x Boy is jumping from a rock. v
3 a man walking on an edge x x couple jump on the beach x x The man sits on the rock. x
4 Boy is jumping from a rock. v v The woman jumps off the rock. x x A man stands on the rock. x
5 A man is climbing a cliff. x x A couple jumps on the beach. x x the person rests on the rock x
6 The man is standing at the edge of a cliff. x x A person jumps at the sea. v x A man is climbing a rock. x
7 aman is about to jump into the water v v A man takes a jump into the sea. v v a man jumping in the background v
8 A man jumps off a rock. v v The woman jumps the cliff. x x The girl is climbing a rock. x
9 A person climbing to the top of a cliff x x The couple jumps on the beach. x x A person sitting on a cliff x
10 a person takes a jump v v Boy is jumping from a rock. v v The woman jumps off the rock. x

Table 15: CLIP, BLIP-2, and FLAVA retrieved the top 10 captions for image from the SVO-Probes dataset. The
columns Human and GPT contain human and GPT-40 annotations for specific captions, whether or not they match
the image.
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CLIP BLIP-2 FLAVA
Order Caption Human GPT Caption Human GPT Caption Human GP
1 this person makes the image x x A couple kiss in a meadow. v v A couple standing on the meadow v v
2 A couple expecting a baby v v A couple standing in a meadow. v v The couple is standing in the field kissing. v v
3 the person looks nice v v A couple standing on the meadow v v A couple are sitting at a field. x x
4 The woman is using a camera. x x A couple walking in the meadow. % % A couple is embracing each other. v v
5 A woman is expecting a baby. v v A couple walking on the meadow % % A man and woman are kissing. v v
6 The woman has a look on her face. v v A couple expecting a baby v v A man kissing a woman. v v
7 The woman will lie in bed with her child. x x A couple sits in a meadow. % % A couple is laying in the grass. x x
8 The woman will take a photo with her camera. x x A couple walks through a meadow. x x The woman stood in the grass. v %
9 the child runs in the field x x A couple lies in the meadow. x x The man stands in the field. v x
10 The people look like a happy pair. v v The couple is standing in the field kissing. v v A couple kisses the other. v v

Table 16: CLIP, BLIP-2, and FLAVA retrieved the top 10 captions for image from the SVO-Probes dataset. The
columns Human and GPT contain human and GPT-40 annotations for specific captions, whether or not they match
the image.
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