
Under review as a conference paper at ICLR 2023

MULTI TASK LEARNING OF DIFFERENT CLASS LABEL
REPRESENTATIONS FOR STRONGER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We find that the way in which class labels are represented can have a powerful
effect on how well models trained on them learn. In classification, the standard
way of representing class labels is as one-hot vectors. We present a new way of
representing class labels called Binary Labels, where each class label is a large bi-
nary vector. We further introduce a new paradigm, multi task learning on different
label representations. We train a network on two tasks. The main task is to classify
images based on their one-hot label, and the auxiliary task is to classify images
based on their Binary Label. We show that networks trained on both tasks have
many advantages, including higher accuracy across a wide variety of datasets and
architectures, both when trained from scratch and when using transfer learning.
Networks trained on both tasks are also much more effective when training data
is limited, and seem to do especially well on more challenging problems.

1 INTRODUCTION

All supervised learning problems involve three components, data, a model, and labels. A tremendous
amount of work has been done involving the first two parts, models, and data, but labels have been
mostly ignored. Deep learning architectures get ever more complicated (Villalobos et al., 2022), and
many excellent techniques exist to learn strong representations of the data that is fed into the model
(He et al., 2022a; Chen et al., 2020), but the labels themselves remain as simple as they were 20 years
ago. Let’s illustrate this point with a common deep learning task, image classification on ImageNet
(Deng et al., 2009). The leaderboard is full of algorithms that employ powerful unsupervised pre-
training methods to learn representations of the data, and make use of massive model architectures
with hundreds of layers and millions of weights. But if one surveys the top state of the art models,
the target labels are all simple one-hot encoded vectors (Yu et al., 2022; Wortsman et al., 2022; Chen
et al., 2022).

Recently, various alternative label representations have been proposed, where labels are represented
as dense vectors (Chen et al., 2021). While on some metrics, such as robustness and data efficiency,
these labels were able to outperform standard label representations, on other key metrics, such as
accuracy, they performed worse than one-hot labels. Additionally, these dense labels were slower at
inference time, for two reasons. First, because they added more weights to the networks that used
them, the forward pass takes slightly longer. Second, and more significant, is that classification on
dense labels is slower by definition since it involves comparing the network output with each label
to find the class with the nearest label, as opposed to one-hot labels with a softmax output where
the classification is done directly. Furthermore, these dense labels were much slower to converge,
often taking four times as many epochs. As such, choosing between these label representations is
essentially a trade off between opposing factors.

In this paper we explore the key idea of: given various ways of representing labels, why only choose
one? Every way of representing labels can become a different task for the network to learn. By
choosing to represent the same class labels in different ways, we are reusing the supervision to
create multiple learning tasks. We thus propose using recent work in the field of multi task learning
to train networks to recognize multiple representations of the same labels. We find that doing so
allows us to mitigate the tradeoff above.

From an intuitive perspective, it makes sense that learning multiple representations of the same
concept can be useful. To give an analogy from data structures, while linked lists and arrays represent

1



Under review as a conference paper at ICLR 2023

the same underlying data, each data structure has inherent advantages and disadvantages, and some
algorithms will rely on redundant data storage of both types to get the advantages of both. While
it may be novel to study explicit redundant label representations, they commonly exist implicitly.
Research on the human brain indicates we make heavy use of redundant representations (Pieszek
et al., 2013), and artificial neural networks are already doing this implicitly (Doimo et al., 2021).

We present a new label representation type, Binary labels, where each class label is represented as
a binary vector. This representation has key properties that led us to think it would create a useful
auxiliary task to improve accuracy, and indeed our experiments verify this.

We make the following main contributions:

1. We present the novel paradigm of using several label representations of a single label to
augment our network supervision and create auxiliary tasks for the network to learn

2. We present a new label representation type, Binary Labels
3. We present results that demonstrate the strength of our approach

We hope this will inspire further research on this topic.

2 RELATED WORK

We unite work from two areas, label representation, and multi task learning.

2.1 LABEL REPRESENTATION

There are many scenarios where it makes sense for a network performing image classification to
output a dense representation as opposed to a softmax vector. For example, in few-shot learning,
a common approach, often termed embedding learning, is to learn a lower dimensional representa-
tion of the input, such that similar images are near each other in the embedding space (Wang et al.,
2020a). It is also common to use autoencoders to try and learn image representations, which usu-
ally involves some sort of dense intermediate representation that is used to reconstruct the original
(Pinaya et al., 2020). While both of these methods involve networks that output a representation,
they do not make any attempt to generate or make use of alternative label representations. Indeed,
relatively little research has been conducted on the labels themselves or more specifically, their rep-
resentation, aside from (Chen et al., 2021), where several alternative methods were proposed. They
reported gains on robustness and data efficiency. However convergence was much slower, and accu-
racy was slightly lower than when using standard softmax labels. Aside form that, the closes work
is label smoothing (Szegedy et al., 2016; Sun et al., 2017), although as (Chen et al., 2021) note, it is
quite different.

2.2 MULTI-TASK LEARNING

Multi task learning, first proposed in 1997 (Caruana, 1997), has gained traction as a powerful way
of training a single network to learn multiple tasks at the same time (Crawshaw, 2020; Ruder, 2017;
Zhang & Yang, 2021; Vandenhende et al., 2021). Often times, doing so leads to gains on both tasks,
and recent work has explored what sorts of tasks are best learned together (Standley et al., 2020).
Auxiliary learning is a subtopic in multi task learning that deals specifically with learning a main
task, which we care about, and auxiliary tasks, whose only purpose is to increase performance for
the main task (Vafaeikia et al., 2020; Liebel & Körner, 2018).

We make use of several standard tools from multitask learning. We use a shared trunk approach
(Crawshaw, 2020), such that all tasks share a backbone network, but have different output heads.
When combining the losses of different tasks, we explored several popular methods including PC-
Grad (Yu et al., 2020), GradNorm (Chen et al., 2018), GradVac (Wang et al., 2020b), and Mtadam
(Malkiel & Wolf, 2020), but ultimately settled on Metabalance (He et al., 2022b), which is specif-
ically aimed at auxiliary learning 1. We also assign weights to each task, such that the sum of all
weights on all tasks sum to 1.

1We believe we caught a small mistake in the Metabalance paper, and notified the author. The version we
use is slightly different in that it requires two forward passes to correctly compute the gradients

2



Under review as a conference paper at ICLR 2023

While we make use of and build off of work in the field of Multi Task Learning, we are unaware of
any work that tries to learn different representations of the same task simultaneously. The closest
work, supervised autoencoders (Le et al., 2018), attempts to learn classification and image recon-
struction at the same time. While this is an example of automatically generating an auxiliary task,
and applying the tools of multi task learning, the auxiliary task is not simply a different representa-
tion of the main classification task, but something entirely different (input reconstruction).

Another related method is Semantic Softmax (Ridnik et al., 2021), which uses a hierarchical dataset
to generate one-hot softmax labels for each level of the hierarchy, and trains on them together.
However, this method requires additional supervision: the class hierarchy needs to be given, and
in most datasets, we are given no such hierarchy. Furthermore, the various labels are learning to
classify at different levels of the hierarchy, and thus are distinct classification tasks all represented
as one-hot softmax vectors, as opposed to our work where each classification task is identical, just
using different label representations.

3 MULTI TASK LEARNING OF MULTIPLE REDUNDANT LABEL
REPRESENTATIONS

It is well known that learning multiple tasks, when the two tasks are deeply related, often leads
to improved performance on both tasks (Standley et al., 2020). It thus makes sense that training a
network to learn two different label representations of the same class would be useful. In this case
the two tasks are not just related, they are identical, with the only difference being the chosen label
representation method.

Lets define our approach more formally. First, we will start with the standard way of doing things.
Lets say we are given a labeled dataset where there are n classes, where each class label is provided
as a number in the range of 0 to n − 1. Say we have a dataset of I samples, where Xi, yi denotes
the ith input and label respectively.

We define some function f that maps these labels to the representations we would like the network
to learn. In the standard approach, this simply is a one-hot encoding, but in principle this function
can be anything. We further define a loss function L, and a network N .

The goal is to minimize the total loss, given as:

I∑
i=0

L[N(Xi), f(yi)]

This is how networks are normally trained. The only thing noteworthy is that we explicitly defined
f , the function that converts the class label to the one-hot representation that the network learns.

In the redundant representation multi task learning setting that we propose, we extend the above. We
may have several such functions f0 − fT−1, where T is the number of tasks we are trying to learn.
Each function takes in a number, in range 0 to n− 1 representing the class, and produces a label.

Correspondingly, our network has one backbone N , with T output heads h0 − hT−1. We will use
Nht

(Xi) to denote the output of the tth head on input Xi.

We also define T loss functions, L0 − LT−1, with each one corresponding to a task.

The goal is to minimize the loss on all of these tasks, given as:

I∑
i=0

(
T−1∑
t=0

Lt(Nht
(Xi), ft(yi))

)

Thus, instead of training the network to recognize just one representations, we may utilize several
representations together, learning them all at the same time by treating them as different tasks.
The tasks all share the main network parameters, but each task has a different head that learns the

3



Under review as a conference paper at ICLR 2023

representation specific to it. In this way we are reusing our single supervision source to generate
many related tasks.

We further can define T task weights, w0 to wT−1, with the constraints that all weights are positive,
and that

∑T
t=0 wt = 1. The loss we want to minimize then becomes:

I∑
i=0

(
T−1∑
t=0

wt ∗ Lt(Nht
(Xi), ft(yi))

)

It should be noted, that although the high level goal is to minimize the above, when calculating the
gradients for backpropogation, often times better results are achieved by using more clever combi-
nation techniques than addition (Crawshaw, 2020).

Figure 1: Multi task learning on two label representations

4



Under review as a conference paper at ICLR 2023

To make this an auxiliary learning problem, we can define one task, t0 as the main task, and the rest
as auxiliary. After training is finished, we can discard all the heads of the auxiliary tasks, and are
left with a network with one output head trained on t0.

Figure 1 compares a softmax classification architecture, a dense label classification architecture, and
a multi task learning architecture training on 2 representations, one softmax, one dense.

4 BINARY LABELS

Binary labels, as the name implies, are vectors of bits, with each value being either a 0 or a 1. Thus,
each class is represented as a binary vector of length E, where E is the embedding dimension.

While Binary Labels might seem like a strange choice to represent class labels, there are actually
intuitive factors that motivate this representation as a useful auxiliary task to improve accuracy.

To illustrate why this representation is useful, consider a single dimension of the embedding space.
For this dimension, each class label will either be a 0, or a 1, by definition. This splits the classes
into two groups, the group of classes that were labeled 1 in this dimension, and the group labeled
0. What this means is that the neuron that learns to output this dimension of the label space is
being trained on a binary classification task, where the classes in the dataset have been split into
two groups. Now lets consider the binary labels as a whole. For a set of labels of dimension E,
the network is being trained on E binary classification tasks, each one potentially of a different split
of the classes. Another way of thinking about this is that each bit is learning the commonalities
between a different set of classes that are grouped together

Intuitively, having each dimension solve a different binary classification problem makes sense as
an auxiliary task, since we can expect the network to learn useful features that distinguish between
subgroups of classes that may not have been learned otherwise.

The number of ways we can divide all classes into 2 groups increases exponentially with the number
of classes. For example, if we only have four classes, A B C D, the following binary labels would
cover all 7 possible divisions (see figure 2).

Figure 2: Binary Labels

Note, each column represents the same division even if all the bits are inverted.

5



Under review as a conference paper at ICLR 2023

In general, for N classes, we can divide them into
(
N
N
2

)
evenly split groups, and if we also consider

unevenly split groups, this becomes
∑N/2

k=1

(
N
K

)
groups.

If N is small, it is feasible to use all of these divisions. As seen in figure 2, when N is 4, there are
only 7 such groups, 3 of which are evenly split. When N is 10, there are 252 evenly split groups,
and 637 total groups.

In these cases, when N is small, the binary labels could be carefully constructed to utilize every
division. However, as N gets large, this is infeasible. For example, with 20 classes, we already have
184756 evenly split divisions, far too many for us to attempt to learn each one.

Thus, for a large number of classes, we wish to only sample from the number of possible divisions.
One very easy way of doing this is by simply randomly generating the binary labels, where each bit
in each label has equal probability of being a 0 or 1.

In summary, the motivation behind using Binary labels as an auxiliary task is that it teaches the
network to distinguish between the classes in many different ways, and this may provide useful
features that can increase accuracy on the main task.

5 EXPERIMENTAL SETUP

We ran three sets of experiments. In the first, we demonstrate the usefulness of this method when
training from scratch. We then demonstrate that our method leads to accuracy gains when perform-
ing transfer learning as well. Finally, we analyze data efficiency, and compare Binary Labels with
other auxiliary label representations.

5.1 DATASETS

For the training from scratch experiments, we evaluate our model on five datasets, Cifar-100
(Krizhevsky et al., 2009), Caltech101 (Fei-Fei et al., 2004), Sun397 (Xiao et al., 2010), FGVC-
Aircraft (Maji et al., 2013), and Stanford Cars (Krause et al., 2013). Stanford Cars is particularly
interesting since Resnets do surprisingly poorly on this dataset when trained from scratch 2.

5.2 MODELS

On Cifar-100, we evaluated three models, VGG19 (Simonyan & Zisserman, 2014), ResNet32, and
ResNet110 (He et al., 2016). This choice was mostly made because we wanted to reproduce and
improve upon the experiments of (Chen et al., 2021), where exactly these networks were used on
Cifar-100. For the other datasets, we used Resnext-50 (Xie et al., 2017), Resnet-50 and Resnet-101
(He et al., 2016).

For the transfer learning experiments, we used Caltech101 and FGVC-Aircraft, and evaluated on
Resnet-50, Resnet-101, VIT-B16 (Dosovitskiy et al., 2020), Beit-B16 (Bao et al., 2021), and MLP-
Mixer-B16 (Tolstikhin et al., 2021).

5.3 DATA EFFICIENCY

For the final experiments, where we analyzed how Binary Labels compare with other label represen-
tations in the realm of data efficiency, we used VGG19 and Resnet-110, trained on Cifar-100, once
again to be consistent with (Chen et al., 2021).

5.4 MULTI TASK ARCHITECTURE AND SETUP

In all of our multi-task experiments, we trained the network on two tasks. The main task was to
predict the standard softmax one-hot labels, and the auxiliary task was to predict Binary Labels.
While the exact value of E, the embedding dimension for the Binary Labels, is somewhat arbitrary,

2While we did not find anything in the literature pointing this out, several open source implementations
of Resnets on Stanford Cars confirm this. See for example https://github.com/eqy/PyTorch-Stanford-Cars-
Baselines

6



Under review as a conference paper at ICLR 2023

in all of our experiments in this paper, E was equal to 4096, so that we would be directly comparable
to (Chen et al., 2021), where labels were given as 64x64 matrices.

Each network that we trained had to be modified for the multi-task setting. We kept the standard
softmax output as the head that predicts one-hot labels, which we defined as the main task. For
predicting Binary Labels, the auxiliary task, we appended to each network a dense label head. After
training was done, this head was discarded, and the final networks that were produced are architec-
turally equivalent to the standard architectures, and so all comparisons are completely fair. (This
also means that at inference time, our networks are just as fast as the baseline). Accuracy is reported
on the main task. The dense label head is similar to the decoders used in (Chen et al., 2021), except
that we added a single fully connected layer to the end. For loss, we used cross entropy for the
softmax heads, and binary cross entropy for the binary label heads.

There is also an important hyperparameter at play here, the weight we assign each task. For the
experiments below, we tried two weighting schemes, and report the higher value. The two task
weights used were [0.5,0.5], representing equal weighing on both tasks, and [0.9, 0.1], where we
give clear priority to the main task and less priority to the auxiliary task.

6 RESULTS

6.1 TRAINING FROM SCRATCH

We present the results of the training from scratch experiments below.

The goal of these experiments was to demonstrate the value of multi task learning on redundant label
representations, and specifically to demonstrate that Binary Labels generate a useful auxiliary task.
For all experiments, 3 runs were averaged. We report an increase in accuracy for all architectures
and datasets tested.

On Cifar-100, to be consistent with (Chen et al., 2021), we used the same models with the same
hyper parameters such as learning rate, weight decay, batch size and number of epochs.

The results on Cifar-100 are below:

Table 1: Results on Cifar-100 (accuracy %)

Network Standard MTL Binary Labels error reduction
VGG19 70.765 71.57 2.7%

Resnet32 69.375 69.7975 1.3%
Resnet110 71.72 72.36 2.2%

While the accuracy gains on Cifar-100 were modest, we also ran experiments on Stanford Cars,
Caltech-101, Sun-397, and FGVC-Aircraft, with much larger gains. For these experiments, we used
Resnet50, Resnext50, and Resnet101. We trained for 90 epochs, with an initial learning rate of 0.1
that was relaxed by 0.1 every 30 epochs. We present the results below:

Table 2: Results on four other datasets (accuracy %)
Dataset

Cars Caltech Sun Aircraft
Network Baseline Ours Baseline Ours Baseline Ours Baseline Ours
Resnet50 13.27 27.11 63.95 72.63 27.74 39.26 56.38 63.52
Resnext50 6.38 41.15 67.37 71.03 30.5 39.86 44.4 54.55
Resnet101 17.29 31.9 68.55 72.98 30.58 37.42 52.66 68.26

The accuracy gains here are quite strong across a wide range of datasets and models, demonstrating
that our method can be used as a general accuracy enhancement. Of particular note are the results
on Stanford Cars, where the baseline networks struggled to learn anything.

7



Under review as a conference paper at ICLR 2023

We also want to note, Binary Labels were the only auxiliary label representation type we tested on
that gave accuracy improvements. The other label representations from (Chen et al., 2021) lead to
decreases in accuracy. We further note that Binary labels only led to accuracy improvements when
trained as an auxiliary task. As a main task, or as the only task, the accuracy when using Binary
Labels decreased as compared with the baseline. Thus, the benefit of Binary Labels is only realized
when used in the context of our approach.

6.2 TRANSFER LEARNING

We also demonstrate the usefulness of our technique when using transfer learning.

All networks were pretrained on ImageNet. We used Resnet50, Resnet101, VIT-B16, Beit-B16, and
MLP-Mixer, representing a large range of SOTA network architectures. We trained on Caltech-101
and FGVC-Aircraft. Training was done for 60 epochs, using the same hyperparameters as (Ridnik
et al., 2021). Again, we present the average of three runs. The results are given below:

Table 3: Transfer learning results (accuracy %)
Dataset

Caltech Aircraft
Network Baseline Ours Baseline Ours
Resnet50 95.6 96.17 71.99 75.14
Resnet101 96.5 96.9 71.52 76.45
VIT-B16 96.62 96.5 82.97 83.86
Beit-B16 96.94 97.07 84.79 85.9
MLP-Mixer 82.39 83.91 27.67 24.82

As these results demonstrate, our method is a useful accuracy enhancer when doing transfer learning
as well. We also note that the lower the baseline accuracy is (i.e. the more challenging a task is for
a given network), the more our method seems worthwhile, with the exception of MLP-Mixer on the
Aircraft dataset, where both models did very poorly, but ours did worse. Once again, we want to
point out that Binary Labels were the only label representation that led to accuracy improvement,
and even then only when used as an auxiliary task.

6.3 DATA EFFICIENCY

While Binary Labels were superior to the other label representations given in (Chen et al., 2021)
when it came to accuracy, we now explore another key metric: data efficiency. Data efficiency has
been widely researched in the context of meta learning and few shot learning (Thrun & Pratt, 2012;
Vilalta & Drissi, 2002; Vanschoren, 2018; Wang & Yao, 2019), and indeed, (Chen et al., 2021)
noted that they did not see accuracy improvements when training on their label representations,
but reported strong gains in data efficiency. Thus, it is only natural to see how Binary Labels fair
when it comes to data efficiency. We compare them with random labels generated from a uniform
distribution, since this representation achieved strong efficiency gains in (Chen et al., 2021). Results
are on Cifar-100, using the same hyper parameters as above, with one difference: taks weights are
[0.1,0.9], where we give more weight to the auxiliary task of learning the dense labels. We found
when it comes to data efficiency, these parameters lead to stronger results.

We present results from training on 1%, 2%, 4%, and 8% of the dataset:

8



Under review as a conference paper at ICLR 2023

Table 4: Data efficiency: training on small percentages of the dataset (accuracy %)
Percentage 1% 2%
Network Baseline Binary Random Baseline Binary Random
VGG19 1.86 9.24 7.93 4.4 13.03 12.39
Resnet110 4.3 6.32 6.11 8.5 9.25 8.83
Percentage 4% 8%
Network Baseline Binary Random Baseline Binary Random
VGG19 9.4 18.36 18.03 17.4 30 22.23
Resnet110 15.31 16.11 13.05 25.1 25.61 23.66

The results are quite interesting. While both multi task methods generally did better than the base-
line, Binary Labels outperformed random labels, and the difference was far more pronounced on
VGG-19 than Resnet-110. Given that state of the art models rely heavily on large amounts of train-
ing data (Krizhevsky et al., 2009; Russakovsky et al., 2015; Kuznetsova et al., 2020), something
generally not available for real world problems, this is a very useful property.

7 CONCLUSION AND FUTURE DIRECTIONS

We present a completely new paradigm: Using alternative label representations to generate auxil-
iary tasks that are then learned in parallel, using techniques from multi task learning. We propose
Binary Labels as a simple method of obtaining an auxiliary task, and achieve strong results. Our
experiments demonstrate that this is an exciting new direction.

However, this is an entirely new learning paradigm, and there remains a lot to be explored. We
propose the following questions, and we think exploring them can lead to even stronger results than
the ones presented in this paper:

1. What types of label representations make for good auxiliary tasks? Can we improve upon
the Binary Labels presented here?

2. It is possible different representations are useful depending on the goal. Can we find repre-
sentations that help with accuracy, robustness, efficiency, convergence, etc. ?

3. In this paper, we only explored using two different label representations and training on
two tasks. However, it is possible a larger number would lead to better results. We would
like to explore this direction as well, especially considering that different representations
may help us in different ways (i.e. accuracy vs robustness).

4. We found that the benefits of the auxiliary task was very sensitive to how we combined the
loss functions. What is the ideal way to do this?

5. For the dense label heads, we used the decoder from (Chen et al., 2021), with an additional
fully connected layer. We tried other schemes that were not as useful. Even though these
output heads are discarded after training, the question remains: what output head for dense
labels produces the strongest results?

REFERENCES

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Boyuan Chen, Yu Li, Sunand Raghupathi, and Hod Lipson. Beyond categorical label representations
for image classification. arXiv preprint arXiv:2104.02226, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

9



Under review as a conference paper at ICLR 2023

Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian
Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled multilingual
language-image model. arXiv preprint arXiv:2209.06794, 2022.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. arXiv preprint
arXiv:2009.09796, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Diego Doimo, Aldo Glielmo, Sebastian Goldt, and Alessandro Laio. Representation mitosis in wide
neural networks. arXiv preprint arXiv:2106.03485, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. Computer Vision
and Pattern Recognition Workshop, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022a.

Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, and James Caverlee. Metabalance:
Improving multi-task recommendations via adapting gradient magnitudes of auxiliary tasks. In
Proceedings of the ACM Web Conference 2022, pp. 2205–2215, 2022b.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset v4.
International Journal of Computer Vision, 128(7):1956–1981, 2020.

Lei Le, Andrew Patterson, and Martha White. Supervised autoencoders: Improving generalization
performance with unsupervised regularizers. Advances in neural information processing systems,
31, 2018.

Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. arXiv preprint
arXiv:1805.06334, 2018.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Itzik Malkiel and Lior Wolf. Mtadam: Automatic balancing of multiple training loss terms. arXiv
preprint arXiv:2006.14683, 2020.

10



Under review as a conference paper at ICLR 2023

Marika Pieszek, Andreas Widmann, Thomas Gruber, and Erich Schröger. The human brain main-
tains contradictory and redundant auditory sensory predictions. PLoS One, 8(1):e53634, 2013.

Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, and Andrea Mechelli. Autoencoders.
In Machine learning, pp. 193–208. Elsevier, 2020.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, pp. 9120–9132. PMLR, 2020.

Xu Sun, Bingzhen Wei, Xuancheng Ren, and Shuming Ma. Label embedding network: Learning
label representation for soft training of deep networks. arXiv preprint arXiv:1710.10393, 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:24261–
24272, 2021.

Partoo Vafaeikia, Khashayar Namdar, and Farzad Khalvati. A brief review of deep multi-task learn-
ing and auxiliary task learning. arXiv preprint arXiv:2007.01126, 2020.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE transactions
on pattern analysis and machine intelligence, 2021.

Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002.

Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and Marius Hobbhahn.
Machine learning model sizes and the parameter gap. arXiv preprint arXiv:2207.02852, 2022.

Yaqing Wang and Quanming Yao. Few-shot learning: A survey. 2019.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few examples:
A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–34, 2020a.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating
and improving multi-task optimization in massively multilingual models. arXiv preprint
arXiv:2010.05874, 2020b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

11



Under review as a conference paper at ICLR 2023

Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pp. 3485–3492. IEEE, 2010.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1492–1500, 2017.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 2021.

12


	Introduction
	Related Work
	Label Representation
	Multi-task Learning

	Multi task learning of multiple redundant label representations
	Binary Labels
	Experimental setup
	Datasets
	Models
	Data efficiency
	Multi Task Architecture and Setup

	Results
	Training From Scratch
	Transfer Learning
	Data Efficiency

	Conclusion and Future Directions

