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ABSTRACT

AutoRegressive Visual Generation (ARVG) models retain an architecture compati-
ble with language models, while achieving performance comparable to diffusion-
based models. Quantization is commonly employed in neural networks to reduce
model size and computational latency. However, applying quantization to ARVG
remains largely underexplored, and existing quantization methods fail to generalize
effectively to ARVG models. In this paper, we explore this issue and identify
three key challenges: (1) severe outliers at channel-wise level, (2) highly dy-
namic activations at token-wise level, and (3) mismatched distribution information
at sample-wise level. To these ends, we propose PTQ4ARVG, a training-free
post-training quantization (PTQ) framework consisting of: (1) Gain-Projected
Scaling (GPS) mitigates the channel-wise outliers, which expands the quantiza-
tion loss via a Taylor series to quantify the gain of scaling for activation-weight
quantization, and derives the optimal scaling factor through differentiation. (2)
Static Token-Wise Quantization (STWQ) leverages the inherent properties of
ARVG, fixed token length and position-invariant distribution across samples, to
address token-wise variance without incurring dynamic calibration overhead. (3)
Distribution-Guided Calibration (DGC) selects samples that contribute most to
distributional entropy, eliminating the sample-wise distribution mismatch. Exten-
sive experiments show that PTQ4ARVG can effectively quantize the ARVG family
models to 8-bit and 6-bit while maintaining competitive performance. Code is
available at http://github.com/BienLuky/PTQ4ARVG

1 INTRODUCTION

Recently, motivated by the success of autoregressive generation in large language models
(LLMs) (Touvron et al., 2023; Liu et al., 2024a) and the rising demand from multimodal tasks (Ramesh
et al., 2021; Wang et al., 2021), research in visual generation has shifted back toward autoregressive
paradigms. A growing number of autoregressive visual generation (ARVG) models (Tian et al., 2024;
Wang et al., 2024; Yu et al., 2024; He et al., 2025; Yao et al., 2024; Chen et al., 2025; Liu et al.,
2024b; Li et al., 2024b) have emerged, surpassing state-of-the-art diffusion models (Li et al., 2025) in
image generation. However, the large model sizes and iterative token predictions impose substantial
memory and computational overhead, significantly limiting their applicability and generalization. For
instance, VAR-d30 (Tian et al., 2024), RAR-XXL (Yu et al., 2024), and MAR-Huge (Li et al., 2024b)
contain 2B, 1.5B, and 1B parameters, respectively, while the 3B-parameter PAR (Wang et al., 2024)
model requires more than 3 seconds to generate a single image.

Quantization discretizes floating-point parameters into integers, thereby reducing both model size
and computational cost. It is typically categorized into Quantization-Aware Training (QAT) (Li &
Gu, 2023; Liu et al., 2024c; Esser et al., 2019) and Post-Training Quantization (PTQ) (Li et al., 2022;
Liu et al., 2024d; 2025; Li et al., 2023b). While QAT maintains performance through full-model
retraining, it demands large amounts of training data and expensive resources. In contrast, PTQ
requires only a small calibration and does not rely on model training, making it more desirable for
compressing and accelerating ARVG models.
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Figure 1: Challenges of ARVG quantization. (a) Severe outliers at channel-wise level. (b)(c) Highly
dynamic activations at token-wise level. (d) Mismatched distribution information at sample-wise
level. Data from the RAR-B block "blocks.23".

To explore effective PTQ methods for ARVG models, we first examine the potential constraints
and challenges involved: ① Severe outliers at channel-wise level. The activations adjusted by
the AdaLN module, i.e., the inputs to the Multi-Head Self-Attention (MHSA) and Feedforward
Network (FFN), suffer from significant outliers at the channel-wise level. As shown in Fig. 1(a),
the activations exhibit extremely wide ranges and substantial variation across channels. ② Highly
dynamic activations at token-wise level. To preserve the bidirectional token dependencies (Tian
et al., 2024) of ARVG, the input to the AdaLN module contains positional embedding information,
which displays highly dynamic distributions along the token dimension, as shown in Fig. 1(b).
Additionally, as ARVG employs conditional information as the initial token, which are sensitive to
quantization, it results in the presence of sink tokens in the activations of all linear layers within
MHSA and FFN, as shown in Fig. 1(c). ③ Mismatched distribution information at sample-wise
level. As shown in Fig. 1(d), the network activations exhibit high similarity across input samples,
particularly for unconditional samples. This sample-wise redundancy leads to mismatched calibration
of quantization parameters. Notably, these challenges emerge across different layers of the network,
as shown in Fig. 2, necessitating layer-specific quantization strategies.

Despite previous efforts, the above challenges remain inadequately addressed. For challenge ①,
some methods (Ashkboos et al., 2024; Li et al., 2024a) alleviates activation outliers using rota-
tion transformation or low-rank decomposition; however, these approaches introduce additional
overhead (e.g., QuaRot (Ashkboos et al., 2024) incurs a 0.3× speedup loss on LLaMA2-13B-int4,
SVDQuant (Li et al., 2024a) incurs a 0.2× speedup loss on FLUX.1-dev-int4). Moreover, they rely
on customized CUDA kernels. By contrast, scaling-based methods (Li et al., 2024c; Shao et al.,
2023) address outliers with zero computational overhead. OmniQuant (Shao et al., 2023) optimizes
scaling factors via backpropagation, but suffers from training instability and expensive cost (e.g., 7.3
hours of training for LLaMA-30B on an A100-80G). On the other hand, existing training-free scaling
methods (Xiao et al., 2023; Wei et al., 2023; Li et al., 2023b) are empirically designed. For example,
SmoothQuant (Xiao et al., 2023) aligns the range of activations and weights via per-channel averages.
RepQ-ViT (Li et al., 2023b) enforces identical activation ranges across channels. Due to lack of
theoretical justification, these methods remain suboptimal and offer no guarantee of effectiveness.
For challenge ②, previous methods (Yao et al., 2022; Dettmers et al., 2022) for LLMs address highly
dynamic activations by employing dynamic token-wise quantization. Unfortunately, this introduces
additional calibration overhead during inference (e.g., LLM.int8 (Dettmers et al., 2022) incurs a
0.5× speedup loss on GPT-3-13B), and the min-max calibration results in accuracy degradation
(e.g., a 15.3 FID drop on dynamic token-wise quantization for VAR). ViDiT-Q (Zhao et al., 2024)
identifies token-wise variance in Diffusion Transformer (Peebles & Xie, 2023) models, but it adopts
the same dynamic strategy as used in LLMs. For challenge ③, current calibration strategies (Shang
et al., 2023; Li et al., 2023a; Liu et al., 2024d) focus on temporal-wise mismatch in diffusion models
(e.g., EDA-DM (Liu et al., 2024d) extracts samples from various timesteps), yet they fail to address
sample-wise mismatch in ARVG models.

To this end, we propose PTQ4ARVG, a training-free PTQ framework tailored for ARVG models. (1)
We conduct an in-depth analysis of scaling effects on quantization and propose Gain-Projected Scaling
(GPS), which mitigates channel-wise outliers and represents the first quantization scaling strategy
based on mathematical optimization. GPS accurately quantifies the gain of scaling for quantization
and derives the optimal scaling factor through mathematical differentiation. Specifically, we perform
Taylor expansion on the quantization loss of activations and weights separately. The gain of scaling
is defined as the reduction in activation quantization loss minus the increase in weight quantization
loss. By differentiating with respect to the scaling factor, we maximize this gain to obtain the optimal
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factor that minimizes overall quantization loss. (2) We introduce Static Token-Wise Quantization
(STWQ) that assigns fine-grained static quantization parameters to handle highly dynamic activations.
Since ARVG generates a fixed number of tokens, STWQ allows quantization parameters to be
set offline, introducing no online calibration overhead. Moreover, we reveal the position-invariant
distributions of token activations across samples, enabling STWQ with a percentile calibration to
ensure high accuracy. We also deploy the quantized model to demonstrate the compatibility of
STWQ with standard CUDA kernels. (3) We design Distribution-Guided Calibration (DGC), which
selects samples by evaluating their contribution to the overall distribution entropy. By eliminating
redundant samples, DGC enables accurate calibration with a distribution-matched samples. Overall,
our contributions are as follows:

• We identify three key challenges in quantizing ARVG models: (1) severe outliers at channel-
wise level, (2) highly dynamic activations at token-wise level, and (3) mismatched distribu-
tion information at sample-wise level.

• We propose PTQ4ARVG, which includes: (1) GPS leverages mathematical theory to derive
optimal scaling factors for outlier suppression, (2) STWQ addresses token-wise variance
without incurring additional calibration overhead, and (3) DGC selects samples that match
the real distribution to ensure accurate calibration.

• To the best of our knowledge, PTQ4ARVG is the first comprehensive PTQ framework for
ARVG family models. We conduct extensive experiments on VAR, RAR, PAR, and MAR,
demonstrating that PTQ4ARVG outperforms existing methods and effectively quantizes
models to 6-bit while preserving competitive accuracy.

2 RELATED WORK

AutoRegressive Visual Generation models (Tian et al., 2024; Wang et al., 2024; Yu et al., 2024; Li
et al., 2024b) have recently surpassed diffusion models in image generation. More compellingly, their
architectural compatibility with LLMs offers great potential for future multimodal integration. As
shown in Fig. 2, similar to LLMs, ARVG models rely on an autoregressive transformer architecture
to predict the next tokens. However, unlike LLMs with non-fixed token sequence lengths, ARVG
predicts a fixed number of tokens. In addition, ARVG enforces bidirectional token dependencies
by embedding conditioning into the network, which includes positional and class information.
Existing ARVG models typically use conditional information as initial token, but differ slightly in
token prediction granularity. For example, VAR (Tian et al., 2024) predicts scale tokens at once,
RAR (Yu et al., 2024) generates one token at a time, PAR (Wang et al., 2024) first predicts one
token sequentially–followed by parallel prediction of multiple non-local tokens, and MAR (Li et al.,
2024b) predicts multiple random tokens at once. While current models incorporate KV Cache
techniques to accelerate inference, the latency is still unsatisfactory. For instance, PAR-3B takes
more than 3 seconds to generate one image. Moreover, the challenge of large model size remains
unaddressed. These limitations significantly hinder the deployment and scalability of ARVG models
on resource-constrained devices.

Post-Training Quantization (Wu et al., 2024; Liu et al., 2024d; Li et al., 2024a; 2023b; Xiao et al.,
2023; Shao et al., 2023; Ashkboos et al., 2024; Zhang et al., 2025) reduces model size and accelerates
inference. For vision transformer models, RepQ-ViT (Li et al., 2023b) employs reparameterization
to address outlier activations. For diffusion models, EDA-DM (Liu et al., 2024d) optimizes the
quantization reconstruction loss and introduces a temporally aligned calibration. PTQ4DiT (Wu et al.,
2024) adjusts activation and weight distributions based on their correlation in temporal networks.
SVDQuant (Li et al., 2024a) isolates outliers via low-rank decomposition and designs customized
CUDA kernels to fuse related operations. For LLMs, SmoothQuant (Xiao et al., 2023) performs
per-channel equivalent scaling to balance the ranges of activations and weights. OS+ (Wei et al., 2023)
further aligns all activation channels to a common center. OmniQuant (Shao et al., 2023) optimizes
scaling factors via training, while QuaRot (Ashkboos et al., 2024) alleviates outliers based on rotation
transformation. Although these methods perform effectively for previous models, they do not work
well with ARVG models. SVDQuant relies on customized CUDA kernels and QuaRot introduces
extra inference overhead. EDA-DM and PTQ4DiT are tailored to the temporal nature of diffusion
models, making them incompatible with ARVG. In addition, other approaches are inadequate for
ARVG. LiteVAR (Xie et al., 2024) pioneers the quantization of VAR models, but it only assigns
higher precision to quantization-sensitive layers. Notably, to the best of our knowledge, our method
is the first comprehensive PTQ framework specifically designed for ARVG models.
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Figure 2: Overview of ARVG models. (Left) The autoregressive architecture, mechanism, and
challenges of ARVG. (Right) Existing ARVG models with different token prediction granularity.

3 PRELIMINARY

ARVG Architecture consists of L blocks, each containing a Multi-Head Self-Attention (MHSA),
a Feedforward Network (FFN), and an Adaptive LayerNorm (AdaLN), as shown in Fig. 2. The
AdaLN transforms the conditioning into shift and scale parameters to adjust the activation distribution,
thereby preserving bidirectional token dependencies and conditional guidance.

Quantization transforms a floating-point tensor x to an integer tensor x̄ using quantization parame-
ters: scale factor δ and zero point z. The uniform quantization can be formulated as:

x̄ = clamp(
⌊x
δ

⌉
+ z, 0, 2b − 1), δ =

Rx

2b − 1
, Rx = xup − xdown, z =

⌊
−xdown

δ

⌉
(1)

where ⌊·⌉ denotes the rounding-to-nearest operator, bit-width b determines the range of clamp
function, and Rx represents the quantization range [xup,xdown]. Min-max calibration calculates the
Rx using the minimum and maximum values of x. On the other hand, percentile and MSE calibration
utilize the percentile values and the minimum quantization error values of x, respectively. While
the min-max calibration is the fastest, it offers the lowest accuracy. To reduce inference overhead,
dynamic token-wise quantization in LLMs typically adopts min-max calibration.

Equivalent Scaling is a per-channel transformation that offline shifts the quantization difficulty from
activations to weights. For a linear layer with X ∈ RT×n and W ∈ Rn×m, the output Y = XW ,
Y ∈ RT×m, where T is the number of tokens, n is the input channel, and m is the output channel.
The activation X divides a per-in-channel scaling factor s ∈ Rn, and weight W scales accordingly
in the reverse direction to maintain mathematical equivalence:

Y = (X ⊘ s)(s⊙W ) (2)

Since the s can be fused into the network weights offline, no additional overhead is introduced.

4 PTQ4ARVG

4.1 GAIN-PROJECTED SCALING

𝑅௫
௜ /𝑠௜ > 𝑅௫

௝
/𝑠௝𝑠௜ > 𝑠௝

Figure 3: When Ri
x > Rj

x, the
statistical results of Remark 1.

Previous methods primarily focused on distribution-based scaling,
relying on empirical intuition to address channel-wise outliers. Due
to lack of theoretical justification, these methods remain suboptimal
and offer no guarantee of effectiveness. To address the above limi-
tations, we propose Gain-Projected Scaling (GPS), which provides
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a mathematical interpretation of how scaling affects quantization, and derives the optimal scaling
factor through analytical differentiation:

Step 1: Quantization Loss. We begin by analyzing the weight-activation quantization loss E (x,W ).
For a linear layer with activation x ∈ R1×n, weight W ∈ Rn×m, and output y ∈ R1×m, y = xW ,
the overall quantization loss E (x,W ) can be formulated as:

E(x,W ) ≤ E[L(x̂,W )− L(x,W )] + E[L(x, Ŵ )− L(x,W )] (3)

The proof is reported in Appendix A.2. Here, x̂ and Ŵ denote the quantized values. The first and
second term in Eq. 3 represent the quantization loss of activation Ex and weight EW , respectively.

Step 2: Taylor Expansion. Similar to prior works AdaRound (Nagel et al., 2020) and BRECQ (Li
et al., 2021), we first approximate the weight quantization loss using a Taylor series expansion:

EW = E
[
L(x, Ŵ )− L(x,W )

]
≈ 1

2
∆W TH(W)∆W (4)

where H(W) = E
[
▽2

WL
]

is the Hessian matrix, ∆W represents the quantization errors of weights.
Furthermore, we derive the weight quantization loss for the output yk = xW:,k as follows:

EW:,k
≈ 1

2
∆W:,k

TH(W:,k)∆W:,k

≈ 1

2
▽2

yk
L · E

[
∆W1,k

2x1
2 +∆W2,k

2x2
2 + ...+∆Wn,k

2xn
2
] (5)

Here, ▽2
yk
L is the Hessian of the task loss w.r.t. yk. We approximate the Hessian loss using the

MSE loss, and safely omit the cross terms (please see Appendix A.3 for detail). In the same way, the
activation quantization loss for yk can be formulated as:

Ex ≈ 1

2
∆xTH(x)∆x ≈ 1

2
▽2

yk
L · E

[
W1,k

2∆x1
2 +W2,k

2∆x2
2 + ...+Wn,k

2∆xn
2
]

(6)

Step 3: Introducing Scaling. To clearly illustrate the impact of scaling on quantization, we simplify
the representations of activation x ∈ R1×2, weight W ∈ R2×3, output y ∈ R1×3, and scaling factor
s ∈ R1×2 as follows:

x = [ x1 x2 ] ,W =

[
W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

]
,y = [ y1 y2 y3 ] , s = [ s1 s2 ] (7)

Based on Eq. 5 and Eq. 6, the quantization losses of weight and activation for y1 are:

EW:,1
≈ 1

2
E
[
∆W1,1

2x1
2 +∆W2,1

2x2
2
]
, Ex ≈ 1

2
E
[
W1,1

2∆x1
2 +W2,1

2∆x2
2
]

(8)

where since ▽2
y1
L is identical in EW:,1

and Ex, we simplify their expressions accordingly. Fur-
thermore, we represent the quantization range of activations along the channel dimension as
Rx = [R1

x, R
2
x]. Since our method adopts a percentile calibration, the range after scaling becomes

R′
x = [R1

x/s1, R
2
x/s2]. The superscript “ ′ ” indicates the values after scaling.

Analyzing the impact of scaling on quantization. We quantify the impact of scaling on quantization
based on a remark that the activation channel with the largest range before scaling remains the largest
range after scaling, formally stated as Remark 1.

Remark 1. When Ri
x > Rj

x, it holds that si > sj and Ri
x/si > Rj

x/sj .

The remark is based on statistical observations: when Ri
x > Rj

x, over 98% of channels satisfy
si > sj , and more than 99.5% of channels satisfy Ri

x/si > Rj
x/sj , as shown in Fig. 3.

Without loss of generality, we assume R1
x > R2

x. Inspired by DilateQuant (Liu et al., 2024c), we
quantify the quantization error with ∆x = δx × c = Rx

2b−1
× c, where the c is a integer deviation

constant. Based on per-tensor activation quantization and Remark 1, the quantization error before
and after scaling can be formulated as:

Before : ∆x1 ≈ R1
x

2b − 1
× c1, ∆x2 ≈ R1

x

2b − 1
× c2 (9)

After : ∆x′
1 ≈ R1

x/s1
2b − 1

× c1 ≈ ∆x1/s1, ∆x′
2 ≈ R1

x/s1
2b − 1

× c2 ≈ ∆x2/s1 (10)

5



Published as a conference paper at ICLR 2026

Substituting Eq. 2 and Eq. 10 into Eq. 8, the activation quantization loss after scaling is written as:

E′
x ≈1

2
E
[
W ′

1,1
2
∆x′

1
2
+W ′

2,1
2
∆x′

2
2
]
≈ 1

2
E
[
(W1,1 · s1)2(∆x1/s1)

2
+ (W2,1 · s2)2(∆x2/s1)

2
]

≈1

2
E
[
W1,1

2∆x1
2 +

s2
2

s12
W2,1

2∆x2
2

]
(11)

Similarly, as proven in Appendix A.5, the weight quantization loss after scaling can be expressed as:

E′
W:,1

≈ 1

2
E
[
∆W1,1

2x1
2 +

s1
2

s22
∆W2,1

2x2
2

]
(12)

In general, s > 1 (by Rx > RW ) and s1 > s2 (by Remark 1), leading to E′
x < Ex and E′

W:,1
>

EW:,1 . Therefore, scaling reduces the activation quantization loss, and the gain can be defined as
gx = Ex − E′

x = s1
2−s2

2

2s12 W2,1
2∆x2

2. On the other hand, scaling increases the weight quantization

loss, and the added loss can be defined as gW:,1
= E′

W:,1
− EW:,1

= s1
2−s2

2

2s22 ∆W2,1
2x2

2.

Step 4: Closed-form solution of scaling factor. We model a scaling gain function to derive the
optimal scaling factor:

g(s2) = gx − gW:,1
=

1

2
(W2,1

2∆x2
2 +∆W2,1

2x2
2 − s2

2

s12
W2,1

2∆x2
2 − s1

2

s22
∆W2,1

2x2
2) (13)

Here, s1 denotes the scaling factor for the channel with the largest activation range. We calculate
it using s1 =

√
R1

x/R
1
W , which ensures that R1

x
′
= R1

W
′. In conclusion, we reformulate the

problem of determining all scaling factors into solving the remaining scaling factors based
on s1. Specifically, s2 is optimized with respect to s1 to maximize g(s2). Clearly, this is a convex
optimization problem, which can be solved by taking the derivative:

g′(s2) = − s2
s12

W2,1
2∆x2

2 +
s1

2

s23
∆W2,1

2x2
2 ⇒ s2 = s1

√
|∆W2,1x2|√
|W2,1∆x2|

(14)

The above derivation only minimizes the quantization loss of y1. We further extend it to y yields:

g(s2) =
1

2

m∑
i=1

(W2,i
2∆x2

2+∆W2,i
2x2

2)− s2
2

2s12

m∑
i=1

W2,i
2∆x2

2 − s1
2

2s22

m∑
i=1

∆W2,i
2x2

2 (15)

s2 = s1

√∑m
i=1 |∆W2,ix2|√∑m
i=1 |W2,i∆x2|

(16)

Based on Eq. 16, we maximize scaling gain to obtain the optimal scaling factor that minimizes overall
quantization loss. The Algorithm of GPS is illustrated in Appendix F. It is worth noting that different
▽2

yk
L are unobservable and exhibit slight variations. Fortunately, prior optimization studies (Nagel

et al., 2020; Li et al., 2021; Wei et al., 2022) assume them to be a common constant, which does not
affect the optimization results. We follow the same assumption in our method.

4.2 STATIC TOKEN-WISE QUANTIZATION

di
st

rib
ut

io
n

tokens dimension

di
st

rib
ut

io
n

class: 0-100

class: 100-200

Figure 4: Inputs of AdaLN in RAR-B
from different sample class. The distri-
bution remains invariant across samples.

We reveal that ARVG models exhibit highly dynamic ac-
tivations at token-wise level, characterized by: (1) input
of the AdaLN module showing variation along the token
dimension (Fig. 1(b)). (2) input of linear layers exist-
ing sink tokens (Fig. 1(c)). This phenomenon is further
analyzed in Appendix H. LLMs also exhibit token-wise
activation variation. However, due to the variable token se-
quence lengths and position-uncertain token distributions,
only dynamic token-wise quantization (Shao et al., 2023;
Dettmers et al., 2022) with online min-max calibration can
be applied. This method not only introduces additional
overhead during inference but also leads to inaccurate
calibration.
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In sharp contrast, ARVG models exhibit two distinctive properties: fixed token sequence lengths and
position-invariant distribution across samples (as shown in Fig. 4). Building on these properties,
we propose Static Token-Wise Quantization (STWQ), which sets quantization parameters by offline
percentile calibration. Specifically, as shown in Appendix Fig. 9, (1) STWQ assigns quantization
parameters along the token sequence for AdaLN module. (2) STWQ separately assigns quantization
parameters for the sink tokens and normal tokens of linear layers. As reported in Table 5, STWQ
introduces no additional calibration overhead while preserving accuracy.

4.3 DISTRIBUTION-GUIDED CALIBRATION

Current calibration research focuses on temporal-wise redundancy in diffusion models. DiTFas-
tAttn (Yuan et al., 2024) and LiteVAR (Xie et al., 2024) are the first to recognize sample-wise
redundancy. They leverages this property for model caching. However, we find that the sample-wise
redundancy also results in mismatched calibration, significantly hindering accurate quantization. To
address this, we propose Distribution-Guided Calibration (DGC), which employs Mahalanobis
distance to measure the distributional entropy ρ of a sample x with respect to a sample set:

ρ(x) =
√
(x− u)TS−1(x− u) (17)

where u and S represent the mean and covariance of the sample set, respectively. DGC selects the
top 50% of samples with the highest distributional entropy as the calibration.

5 EXPERIMENT

Models and Metrics. We assess the quantization capabilities of our method on four ARVG models:
VAR (Tian et al., 2024), RAR (Yu et al., 2024), PAR (Wang et al., 2024), and MAR (Li et al., 2024b).
All models generate 50K images on ImageNet (Deng et al., 2009) and are evaluated using FID (Heusel
et al., 2017), sFID, IS (Salimans et al., 2016), and Precision. We also deploy the quantized models on
an RTX 3090 GPU to assess real-world acceleration and compression performance.

Table 1: Comparative results for VAR and RAR models.
VAR-d16 VAR-d24Bit Width Methods IS ↑ FID ↓ sFID ↓ Precision ↑ IS ↑ FID ↓ sFID ↓ Precision ↑

FP - 283.21 3.60 8.27 0.85 317.16 2.33 8.24 0.82
SmoothQuant 229.87 4.29 13.39 0.79 246.68 4.42 12.66 0.77

RepQ* 211.21 4.36 13.33 0.76 240.18 4.74 14.10 0.76
OS+ 230.41 4.11 12.22 0.79 250.61 4.14 12.93 0.77

OmniQuant 226.92 4.19 12.49 0.79 244.46 5.20 14.98 0.76
QuaRot 231.38 3.99 11.38 0.79 257.71 3.40 13.34 0.77

SVDQuant 229.36 4.11 12.72 0.78 253.78 3.29 12.38 0.76

W8A8

Ours 230.04 4.06 12.23 0.79 252.70 3.36 13.24 0.77
SmoothQuant 101.55 18.54 17.22 0.57 178.43 7.93 12.80 0.65

RepQ* 109.97 16.30 15.57 0.59 160.65 8.84 15.45 0.66
OS+ 123.38 13.54 12.68 0.64 191.61 6.54 13.40 0.67

OmniQuant 98.27 22.19 19.44 0.57 115.02 18.35 23.40 0.61
QuaRot 155.76 8.96 13.26 0.67 200.58 5.90 13.68 0.70

SVDQuant 130.15 12.53 15.36 0.60 195.83 6.23 13.12 0.70

W6A6

Ours 162.85 8.34 12.63 0.68 204.02 5.51 12.73 0.71
Bit Width Methods RAR-B RAR-XL

FP - 292.80 1.96 6.16 0.82 308.54 1.54 5.31 0.80
SmoothQuant 242.97 2.80 7.76 0.78 229.06 3.35 8.33 0.74

RepQ* 211.64 4.37 9.70 0.73 212.13 4.22 8.89 0.71
OS+ 256.01 2.50 7.93 0.78 238.01 3.13 8.53 0.73

OmniQuant 281.12 2.23 7.21 0.81 283.67 1.68 5.92 0.78
QuaRot 250.54 3.41 13.07 0.77 279.09 2.06 6.47 0.79

SVDQuant 164.69 11.94 22.09 0.69 279.94 1.86 5.85 0.76

W8A8

Ours 283.47 2.21 7.22 0.82 304.18 1.58 5.57 0.80
SmoothQuant 31.04 63.77 42.08 0.36 30.00 63.70 40.84 0.36

RepQ* 18.96 82.31 49.57 0.43 22.50 77.11 44.70 0.30
OS+ 57.92 40.14 24.58 0.45 19.82 84.63 54.38 0.30

OmniQuant 148.89 11.66 12.89 0.67 150.35 13.31 13.23 0.64
QuaRot 18.86 101.60 38.43 0.32 43.32 54.40 40.40 0.42

SVDQuant 8.97 125.51 65.60 0.39 200.80 5.41 7.75 0.68

W6A6

Ours 206.17 5.13 12.68 0.75 250.70 2.79 6.70 0.76
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Table 2: Comparative results for PAR models.
PAR-XL-4× PAR-XXL-4×Bit Width Methods IS ↑ FID ↓ sFID ↓ Precision ↑ IS ↑ FID ↓ sFID ↓ Precision ↑

FP - 259.2 2.61 - 0.82 263.2 2.35 - 0.82
SmoothQuant 8.28 132.17 79.50 0.06 4.35 207.84 152.22 0.15

RepQ* 6.44 138.97 114.35 0.06 5.90 188.37 101.15 0.14
OS+ 7.31 128.72 93.63 0.07 4.89 192.82 125.03 0.14

OmniQuant 215.71 3.55 7.78 0.78 224.87 3.05 6.73 0.78
SVDQuant 213.98 3.80 7.79 0.78 222.74 2.91 6.83 0.78

W8A8

Ours 219.50 3.55 7.71 0.79 232.16 2.95 6.60 0.79
SmoothQuant 8.08 146.52 69.36 0.05 4.90 175.21 131.43 0.17

RepQ* 5.82 157.07 132.66 0.05 4.04 210.32 139.97 0.12
OS+ 7.27 138.78 86.01 0.06 4.05 194.58 144.41 0.22

OmniQuant 15.72 107.29 53.01 0.20 15.15 113.72 73.68 0.18
SVDQuant 102.03 19.52 18.19 0.60 101.71 18.80 20.56 0.63
SQ+STWQ 107.33 13.26 7.09 0.59 94.27 14.69 7.73 0.59

RepQ*+STWQ 72.96 23.04 9.93 0.50 82.35 20.74 12.96 0.54

W6A6

Ours 113.33 12.87 6.80 0.62 119.19 11.05 7.17 0.63

Table 3: Comparative results for MAR models.
MAR-B MAR-L MAR-HBit Width Methods IS ↑ FID ↓ Precision ↑ IS ↑ FID ↓ Precision ↑ IS ↑ FID ↓ Precision ↑

FP - 281.7 2.31 0.82 296.0 1.78 0.81 303.7 1.55 0.81
OS+ 169.43 5.94 0.69 224.64 2.87 0.73 248.27 2.84 0.73

QuaRot 173.55 6.82 0.70 178.99 7.57 0.68 175.23 9.07 0.68
SVDQuant 165.47 6.40 0.69 190.18 5.19 0.68 233.13 4.21 0.71W8A8

Ours 279.97 2.36 0.82 284.02 1.92 0.80 294.66 1.67 0.79
OS+ 109.83 13.56 0.61 141.75 11.02 0.62 174.49 8.44 0.65

QuaRot 140.71 11.97 0.66 137.59 13.85 0.63 122.76 17.79 0.62
SVDQuant 51.95 36.14 0.46 30.19 68.52 0.33 10.47 142.37 0.18W6A6

Ours 249.14 2.99 0.78 254.13 3.12 0.76 261.35 2.62 0.75

Quantization and Comparison Settings. PTQ4ARVG applies 6-bit (W6A6) or 8-bit (W8A8)
quantization to all linear layers and matrix multiplications in ARVG models. To highlight the effi-
ciency, PTQ4ARVG only selects 128 samples for calibration. Additionally, our method introduces no
additional overhead during inference and does not rely on customized CUDA kernel designs. Since no
dedicated quantization framework exists for ARVG models, we compare it with representative quanti-
zation approaches, including SmoothQuant (Xiao et al., 2023), OS+ (Wei et al., 2023), RepQ* (Li
et al., 2023b), OmniQuant (Shao et al., 2023), Quarot (Ashkboos et al., 2024), and SVDQuant (Li
et al., 2024a). Notably, all methods are evaluated under their default settings.

5.1 MAIN RESULTS

VAR and RAR Model. As reported in Table 1, our method significantly outperforms both training-
free OS+ and training-based OmniQuant, improving FID by 35.01 and 6.53 on 6-bit RAR-B, respec-
tively. Compared to the rotation-based QuaRot, our method demonstrates greater advantages at lower
bit-widths. Moreover, due to the distinct activation distributions and autoregressive architecture of
ARVG, SVDQuant cannot retain the advantages it demonstrates on diffusion models.
PAR and MAR Model. As reported in Table 2 and Table 3, the OmniQuant and SVDQuant fail at
6-bit precision, while our method maintains competitive performance. Notably, we do not compare
against QuaRot, as PAR does not meet its requirements: “ The formula holds when the number of
heads and the dimension of each head are both powers of 2 ”. More results, including the larger
models and W4A8 tasks, are provided in Appendix J.

5.2 ABLATION STUDY
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Figure 5: Visualizing the Advan-
tages of GPS on VAR-d16 at 6-
bit precision.

We conduct ablation studies using SmoothQuant as the baseline.
As reported in Table 4, our method consistently improves quanti-
zation performance, demonstrating the effectiveness of each pro-
posed component. In the following, we perform a more fine-
grained analysis of each method individually.

Ablation Study on GPS. We compare GPS with distribution-
based scaling methods on RAR-B at 6-bit precision. Specifically,
using PTQ4ARVG as the baseline, we replace GPS with different
scaling methods, as reported in Table 6. Here, SQ+RepQ* denotes
first applying SmoothQuant, followed by RepQ*. As can be seen,
our mathematically-derived scaling method outperforms previous approaches. Furthermore, to
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Table 4: Efficacy of different component in this paper.
Method RAR-B VAR-d16

GPS STWQ DGC Bit Width IS ↑ FID ↓ sFID ↓ Precision ↑ IS ↑ FID ↓ sFID ↓ Precision ↑
✗ ✗ ✗ 31.04 63.77 72.08 0.36 101.55 18.54 17.22 0.57
✓ ✗ ✗ 62.47 36.51 24.53 0.46 127.13 13.32 14.41 0.64
✓ ✓ ✗ 183.21 6.67 12.74 0.71 161.36 8.75 13.53 0.69
✓ ✓ ✓

W6A6

206.17 5.13 12.68 0.75 162.85 8.34 12.63 0.69

validate the optimality of our scaling factor sGPS, we introduce random perturbations within the
range [−0.3sGPS,+0.3sGPS] to sGPS, and conduct a 100 times experiments. As shown in Fig. 5, sGPS
achieves the best quantization performance.

Table 5: Ablation experiments of STWQ.
Method IS↑ FID↓ Precision↑ Time (ms) Speedup

FP 283.21 3.60 0.85 1163.0 1.000×
SQ (w/o TW) 101.55 18.54 0.57 397.1 2.929×
SQ+DTWQ 73.05 30.14 0.49 473.9 2.457×
SQ+STWQ 151.60 10.41 0.67 397.9 2.922×

Table 6: Ablation experiments of GPS.
Scaling Method IS ↑ FID ↓ Precision ↑

SmoothQuant 135.40 10.26 0.68
RepQ* 92.44 33.79 0.59
OS+ 161.63 7.71 0.69

SQ+RepQ* 170.07 7.43 0.70
GPS (ours) 206.17 5.13 0.75

Ablation Study on STWQ. We compare STWQ with dynamic token-wise quantization (DTWQ)
on 6-bit VAR-d16. As reported in Table 5, STWQ outperforms DTWQ in accuracy. Additionally,
we deploy the quantized network (8-bit). With a batch size of 100 and a sequence length of
256, DTWQ results in a 0.47× reduction in speedup compared to the case without token-wise
quantization. In contrast, STWQ maintains quantization efficiency while preserving high accuracy.
The slight differences in speedup arise from operator scheduling rather than dynamic calibration.

(b) FID score (c) Precision score(a) IS score 

Random Uniform Ours

Figure 6: Ablation experiments of DGC on RAR-B with 6-bit
quantization. The x-axis denotes different calibration size.

Ablation Study on DGC. Pre-
vious calibration for diffusion
models focused on addressing
temporal-wise mismatch. In con-
trast, DGC, from a novel perspec-
tive, eliminates sample-wise mis-
match to improve performance.
We compare our method with
random and uniform sampling
methods, as shown in Fig. 6.
DGC not only achieves high accuracy but also maintains strong robustness, as evidenced by consistent
improvements across all metrics with larger calibration sizes.
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Figure 7: The PyTorch implementation of PTQ4ARVG on RTX 3090 GPU.
Speedup and Memory Saving. In this section, we deploy the 8-bit RAR-L and VAR-d20 to evaluate
the real acceleration and compression performance. We use a standard CUDA kernel to deploy the
decoder network. Inference latency and peak memory usage are evaluated with a batch size of 100
across varying token sequence lengths. As shown in Fig. 7, PTQ4ARVG achieves a 3.01× speedup
and a 1.92× reduction in peak memory on VAR-d20 when the sequence length is 256.

6 CONCLUSION

In this paper, we focus on introducing the quantization techniques into the realm of ARVG models.
Our study reveals the quantization challenges of ARVG models across the channel, token, and sample
dimensions. Correspondingly, we propose PTQ4ARVG, a training-free and hardware-friendly PTQ
framework tailored for ARVG models. Specifically, (1) we propose a novel theory-based scaling
strategy that quantifies scaling gains in quantization and derives the optimal scaling factor via differen-
tiation to address channel outliers. (2) Leveraging ARVG properties, we offline-assign finer-grained
quantization parameters to handle highly dynamic token activations. (3) We eliminate redundant
samples based on distribution entropy to obtain a distribution-matched calibration. Experiments show
that PTQ4ARVG advances in accuracy for ARVG family compared to existing methods, making
ARVG models more practical for deployment in resource-constrained environments. We hope our
work will further advance the research and applicability of ARVG models.
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PTQ4ARVG: Supplementary Materials

A PROOF

A.1 QDrop’s Proof of E(x,W )

The quantization-dequantization process of a activation x can be represented as:

Quant : x̄ = clamp
(⌊x

δ

⌉
+ z

)
, DeQuant : x̂ = δ · (x̄− z) ≈ x (18)

where x̄ denotes the integer value. The introduction of quantization error to x can be expressed as
x̂ = x(1 + u(x)), where u can be defined as:

u =
x̂

x
− 1 =

(x̄− z) · δ
(x̄− z + c) · δ

− 1 =
x̄− z

x̄− z + c
− 1 =

−c

x̄− z + c
(19)

here, c denotes the deviation of the integer value, which is affected by bit-width and rounding error,
and can thus be treated as a constant.

Furthermore, Consider matrix-vector multiplication, The quantized output can be expressed as
ŷ = x̂Ŵ = x

(
Ŵ ⊙ (1 + V (x))

)
, given by

x̂Ŵ =

x⊙

 1 + u1(x)
1 + u2(x)

. . .
1 + un(x)


 Ŵ = x

Ŵ ⊙

 1 + u1(x) . . . 1 + un(x)
1 + u1(x) . . . 1 + un(x)

. . .
1 + u1(x) . . . 1 + un(x)


 (20)

As can be seen, by taking Vi,j (x) = uj (x), quantization error on the activation vector (1 + u(x))
can be transplanted into perturbation on weight (1 + V (x)). Thus, the error caused by weight-
activation quantization can be briefly expressed as:

E(x,W ) =E
[
L(x̂, Ŵ )− L(x,W )

]
(21)

=E
[
L
(
x(1 + u(x)), Ŵ

)
− L(x,W )

]
(22)

=E
[
L
(
x, Ŵ ⊙ (1 + V (x))

)
− L(x,W )

]
(23)

A.2 Proof of E(x,W )

The E(x,W ) can be formulated as:

E (x,W ) = E
[
L(x̂, Ŵ )− L(x,W )

]
= E [L(x+∆x,W +∆W )− L(x,W )] (24)

Here, x̂ and Ŵ denote the quantized values, ∆x and ∆W represent the quantization errors of the
activations and weights, respectively. As proven in QDrop (Wei et al., 2022), E(x,W ) admits the
form:

E(x,W ) = E
[
L
(
x, Ŵ ⊙ (1 + V (x))

)
− L(x,W )

]
(25)

For convenience, we reproduce QDrop’s derivation in Appendix A.1. Evidently, the activation
quantization error can be accumulated into the weight quantization error. Therefore, the intermediate
state L(x, Ŵ ) can be inserted into the Eq. 25:

E(x,W ) = E
[
L
(
x, Ŵ ⊙ (1 + V (x))

)
− L(x, Ŵ ) + L(x, Ŵ )− L(x,W )

]
≤ E

[
L
(
x, Ŵ ⊙ (1 + V (x))

)
− L(x, Ŵ )

]
+ E

[
L(x, Ŵ )− L(x,W )

]
≤ E

[
L(x̂, Ŵ )− L(x, Ŵ )

]
+ E

[
L(x, Ŵ )− L(x,W )

] (26)

At this point, the E(x,W ) is decomposed into the activation quantization loss Ex (the first term in
Eq. 26) and the weight quantization loss EW (the second term in Eq. 26).
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Extensive prior studies (Xiao et al., 2023; Liu et al., 2024c; Li et al., 2023b) have shown that, compared
to activation quantization error, the weight quantization error is minimal (W ≈ Ŵ ) under the weight-
activation quantization. To simplify the derivation, we approximate the activation quantization
loss, Êx = E

[
L(x̂, Ŵ )− L(x, Ŵ )

]
, using activation error with the full-precision weights, Ex =

E [L(x̂,W )− L(x,W )]. The rationale for this approximation is given in Appendix A.4. Note that
in our code implementation we still compute the activation quantization loss via the Êx. Finally,
the quantization loss E(x,W ) is formulated as follows:

E(x,W ) ≤ E [L(x̂,W )− L(x,W )] + E
[
L(x, Ŵ )− L(x,W )

]
(27)

A.3 Proof of EW:,k

Inspired by AdaRound (Nagel et al., 2020), we approximate the weight quantization loss using the
mean-squared error (MSE) loss, as formulated below:

EW:,k
≈ 1

2
∆W:,k

TH(W:,k)∆W:,k (28)

≈ 1

2
E
[
▽2

yk
L ·∆W:,k

TxTx∆W:,k

]
(29)

≈ 1

2
▽2

yk
L ·∆W:,k

TE
[
xTx

]
∆W:,k (30)

≈ 1

2
▽2

yk
L · E[(x∆W:,k)

2] (31)

where ▽2
yk
L is the Hessian of the task loss w.r.t. yk. We further demonstrate that the cross terms are

negligible and can therefore be safely omitted, as justified by the following analysis:

EW:,k
≈ 1

2
▽2

yk
L · E[(x∆W:,k)

2]

≈ 1

2
▽2

yk
L · E [(x∆W:,k) · (x∆W:,k)]

(a)
≈ 1

2
▽2

yk
L · E

[
(∆W:,k

TxT ) · (x∆W:,k)
]

≈ 1

2
▽2

yk
L · E

[
∆W:,k

T (xTx)∆W:,k

]
≈ 1

2
▽2

yk
L · E

 n∑
i=1

n∑
j=1

∆Wi,k∆Wj,kxixj


≈ 1

2
▽2

yk
L ·

n∑
i=1

n∑
j=1

E [∆Wi,k∆Wj,k]xixj

(b)
≈ 1

2
▽2

yk
L · E

[
∆W1,k

2x1
2 +∆W2,k

2x2
2 + ...+∆Wn,k

2xn
2
]

(32)

where (a) since x∆W:,k ∈ R1, its transpose equals itself; (b) due to the inherent randomness
of rounding-to-nearest quantization, each ∆Wi,k,∆Wj,k ∈ ∆W:,k is independent and satisfies
E[∆Wi,k∆Wj,k] = E[∆Wi,k]E[∆Wj,k] = 0 when i ̸= j. Therefore, for i ̸= j, i.e., in the case of
cross terms, these terms can be safely omitted.

A.4 Proof of Ex ≈ Êx

According to Eq. 6, Ex and Êx can be expressed as:

Ex = E [L(x̂,W )− L(x,W )] (33)

≈ 1

2
▽2

y L · E
[
W1,k

2∆x1
2 +W2,k

2∆x2
2 + ...+Wn,k

2∆xn
2
]

(34)
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Êx = E
[
L(x̂, Ŵ )− L(x, Ŵ )

]
(35)

≈ 1

2
▽2

y L · E
[
Ŵ 2

1,k∆x2
1 + Ŵ 2

2,k∆x2
2 + · · ·+ Ŵ 2

n,k∆x2
n

]
≈ 1

2
▽2

y L · E
[(
W1,k

2 + 2W1,k∆W1,k +∆W1,k
2
)
∆x2

1

+
(
W2,k

2 + 2W2,k∆W2,k +∆W2,k
2
)
∆x2

2

+ . . .

+
(
Wn,k

2 + 2Wn,k∆Wn,k +∆Wn,k
2
)
∆x2

n

]
(36)

Since ∆W is small and E [∆W ] = 0, we neglect the higher-order terms in Êx. Therefore, Ex can
be numerically approximated by Êx.

A.5 Proof of E′
W:,1

Since weights are quantized per output channel, The quantization range of weight W:,1 is denoted as
R1

W . We also observe that: when si > sj , the new quantization range R1
W

′ is better approximated
by R1

W · si (as shown in Fig. 8). So the quantization error for weight before and after scaling can be
expressed as:

Before : ∆W1,1 ≈ R1
W

2b − 1
× c3, ∆W2,1 ≈ R1

W

2b − 1
× c4 (37)

After : ∆W1,1
′ ≈ R1

W · s1
2b − 1

× c3 ≈ ∆W1,1 · s1,∆W2,1
′ ≈ R1

W · s1
2b − 1

× c4 ≈ ∆W2,1 · s1 (38)

Substituting Eq. 2 and Eq. 38 into Eq. 8, the weight quantization loss after scaling can be written as:

E′
W:,1

≈1

2
E
[
∆W ′

1,1
2
x′
1
2
+∆W ′

2,1
2
x′
2
2
]

≈1

2
E
[
(∆W1,1 · s1)2(x1/s1)

2
+ (∆W2,1 · s1)2(x2/s2)

2
]

≈1

2
E
[
∆W1,1

2x1
2 +

s1
2

s22
∆W2,1

2x2
2

] (39)

B EXPERIMENT DETAILS

푅�
’ ≈ 푅� ∙ 푠�

Figure 8: When si > sj , over
99% of output channels satisfy∣∣RW

′ −RW · si
∣∣<|RW · si · 5%|.

In this section, we present detailed experimental implementa-
tions. The pre-training models of VAR, RAR, PAR, and MAR
are obtained from the official websites. PTQ4ARVG focuses
on quantizing the decoder network. We empoly channel-wise
asymmetric quantization for weights and layer-wise asymmetric
quantization for activations. After scaling, PTQ4ARVG fuses all
scaling factors into the network weights, ensuring zero additional
overhead during inference. More specifically, we fuse the scaling
factors into the AdaLN weights for RAR and VAR models, and
into the weights of attention_norm and ffn_norm for the PAR and
MAR models. For experimental evaluation, we use the ADM’s
TensorFlow evaluation suite guided-diffusion to evaluate FID,
sFID, IS, and Precision.

C BASELINE DETAILS

This section provides detailed implementation specifics for all baseline methods to facilitate re-
producibility and comparison. The primary configuration settings are reported in Table 7. For
scaling-based baselines, we apply them to all ARVG layers that can absorb scaling factors, specif-
ically the qkv and fc1 layers, and absorb the shifting and scaling factors into the network prior
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to inference. For rotation-based methods, since ARVG cannot absorb rotation factors offline, the
rotations are computed online during inference. All baselines, consistent with our method, quantize
all linear layers and matrix multiplications, including the KV cache, and without relying on custom
CUDA kernels. The baselines employ a randomly sampled calibration set of size 128. The specific
implementation details are as follows:

SmoothQuant. SmoothQuant is a training-free method. In our reproduction, we strictly align all
settings with the open-source implementation: channel-wise quantization for weights, layer-wise
quantization for activations, and the default smoothing factor set to 0.5.

OS+. OS+ is a training-free method. We reproduce the standard OS+, applying channel-wise
quantization for weights and layer-wise quantization for activations, without fine-tuning integration.
All settings are strictly aligned with the open-source implementation: the shifting factors are computed
from the per-channel min and max values; a grid search is used to determine the scaling threshold t
that minimizes output error, and channels exceeding t are scaled to obtain the final scaling factors.

RepQ. RepQ is a training-free method. We reproduce RepQ based on the open-source implementation.
The procedure is as follows: first, channel-wise activation quantization parameters are calibrated
using the calibration set; next, shifting and scaling factors are computed to unify the activation ranges
across channels; finally, the channel-wise activation quantization parameters are reparameterized
into layer-wise parameters while preserving channel-wise weight quantization. For ARVG softmax
activations, we use its log

√
2 quantizer.

OmniQuant. OmniQuant is a training-based method. Its trainable parameters include two weight
clipping factors and two equivalent transformation factors. We retain the default parameter initial-
ization and training architecture. The learning rates for the weight clipping factors and equivalent
transformation factors are set to 5× 10−3 and 1× 10−2, respectively. Training is conducted with
a batch size of 32 over 20 epochs on a calibration set of 128 images. We apply channel-wise
quantization for weights and dynamic token-wise quantization for activations.

SVDQuant. SVDQuant is a training-free method. It first transfers activation outliers to the weights
using a smoothing factor, then represents these outliers in a rank-r branch matrix via singular value
decomposition. For evaluation convenience, we do not integrate the branch matrix into the Nunchaku
engine; instead, it is computed online during inference and added to the quantized weights. This
simplification does not affect method performance. We set the smoothing factor to 0.5 and the rank to
32, using dynamic token-wise quantization for activations and channel-wise quantization for weights
to match the default settings. Notably, while SVDQuant leaves some layers of diffusion models
unquantized, in our reproduction, all ARVG layers are quantized to maintain consistency across all
baselines and our method.

QuaRot. QuaRot is a training-free method. It mitigates activation outliers using rotation factors based
on randomized Hadamard transforms. It exploits the rotation invariance of LayerNorm by applying
a pair of inverse rotations to the layer’s input and output, thereby reducing input outliers without
altering the layer output. However, in ARVG, the adjacent layers use adaptive LayerNorm, which
does not preserve rotation invariance. As a result, the rotation factors cannot be absorbed offline
before inference. Therefore, we apply the rotation factors online during inference to handle outliers.
Activations are quantized using dynamic token-wise quantization and weights using channel-wise
quantization, consistent with the original method.

Table 7: Implementation details of baselines and PTQ4ARVG.

Method Weight Quant Activation Quant Training Calibration Online Compute
SmoothQuant channel-wise layer-wise No 128 random No

OS+ channel-wise layer-wise No 128 random No
RepQ* channel-wise layer-wise No 128 random No

OmniQuant channel-wise dynamic token-wise Yes 128 random No
SVDQuant channel-wise dynamic token-wise No 128 random Yes

QuaRot channel-wise dynamic token-wise No 128 random Yes
PTQ4ARVG channel-wise STWQ No 128 DGC No
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D OVERVIEW OF PTQ4ARVG
In this section, we provide an intuitive visualization of PTQ4ARVG in Fig. 9. Our method addresses
the challenges across different layers. It is worth noting that the quantization parameters in STWQ
are statically set rather than calibrated dynamically during inference.
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Figure 9: Overview of PTQ4ARVG.

E EMPIRICAL ANALYSIS OF APPROXIMATION BIASES

In this section, we conduct empirical analyses on the three approximations involved in GPS to
demonstrate their validity and generality. The three approximations we analyze are:

(1) Hessian approximation of activation–weight quantization loss, omitting the MSE cross term. A
theoretical justification for this approximation is provided in Appendix A.3.

(2) Upper-bound approximation of overall quantization error, where the activation quantization loss
Êx = E

[
L(x̂, Ŵ )− L(x, Ŵ )

]
is approximated by Ex = E [L(x̂,W )− L(x,W )]. A theoretical

justification for this approximation is provided in Appendix A.4.

(3) Scaling quantization error approximation, in which the estimated activation quantization error
after scaling is used to approximate the true scaled quantization error. This approximation builds
upon the error–estimation strategy validated in DilateQuant Liu et al. (2024c).

GPS is only applied to the qkv and fc1 layers, where the scaling factors can be absorbed. We
evaluate the approximation biases of these two layers across various models and input distributions.
Specifically, we meansure this bias on RAR, VAR, PAR, and MAR using 64 samples. We compute
the error (Approximations 2 and 3) using the L1 norm, while the loss (Approximation 1) is computed
using the MSE to account for cross-term effects. As a result, the numerical values of the loss and the
error approximations reported in the table differ. The results are summed over the sample and token
dimensions and averaged over the channel dimension.

As shown in Table 8, all three approximations exhibit small biases across different models, layers,
and input distributions, empirically supporting the validity of the assumptions underlying GPS.

F ALGORITHM OF GPS
The GPS can be implemented simply. Taking a linear layer as an example, GPS is illustrated in
Algorithm 1. More importantly, since GPS inherently reduces quantization loss through stable scaling,
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Table 8: Empirical analysis of approximation biases with 64 samples at INT6 setting. (·%) denotes
the ratio of the approximation bias to its ground-truth value. Here, the superscripts “real” and “appro”
denote the measured true values and the approximations used in the paper, respectively. Ebias

W and
Ebias

x represent the cross terms of weight-quant loss and activation-quant loss. “Bias” indicates the
bias of the quantization error upper bound, and ∆x′ bias denotes the difference between the true
GPS-scaled activation quantization error and the estimated activation error according to our Eq. 10.

RAR-B VAR-d16 PAR-XL MAR-BApproximation Object qkv fc1 qkv fc1 qkv fc1 qkv fc1
Ereal

W 4.0080 8.6902 2.6107 10.3244 0.8325 6.6715 3.0049 63.1687
Eappro

W 3.9422 8.6859 2.4609 10.2159 0.8183 6.4346 2.9558 59.9057

Ebias
W

0.0659
(0.09%)

0.0043
(0.05%)

0.1498
(5.74%)

0.1085
(1.05%)

0.0143
(1.71%)

0.2369
(3.55%)

0.0491
(1.63%)

3.2630
(5.17%)

Ereal
x 6.8648 17.4328 6.8574 13.3940 1.5024 12.2295 7.3307 196.6933

Eappro
x 6.8587 17.4188 6.6576 13.2114 1.4820 12.2041 7.3214 182.0671

Hessian loss
Approximation

Ebias
x

0.0061
(0.09%)

0.0140
(0.08%)

0.1998
(2.91%)

0.1826
(1.36%)

0.0204
(1.36%)

0.0254
(0.21%)

0.0093
(0.13%)

14.6262
(7.44%)

Êx 364.62 523.71 526.63 758.46 227.50 639.36 401.05 2077.32
Ex 364.70 524.10 527.67 758.72 227.54 639.53 401.18 2077.61Upper-bound error

Approximation Bias
0.0815
(0.02%)

0.3931
(0.08%)

1.0416
(0.20%)

0.2679
(0.04%)

0.0392
(0.02%)

0.1740
(0.03%)

0.1362
(0.03%)

0.2905
(0.01%)

∆x′ real 92.23 108.80 158.57 137.33 183.05 245.78 145.28 440.34
∆x′ appro 88.42 107.53 182.54 145.08 165.47 279.56 144.97 472.78Scaling quantization error

Approximation ∆x′ bias 3.8021
(4.12%)

1.2688
(1.17%)

23.9728
(15.12%)

7.7560
(5.65%)

17.5718
(9.60%)

33.7800
(13.74%)

0.3125
(0.22%)

32.4476
(7.37%)

Algorithm 1 : Overall workflow of GPS
Input: activation X ∈ R1×n and W ∈ Rn×m

Output: optimal scaling factor s ∈ Rn

1. Preparing data
Xq = Q(X), Wq = Q(W ) ▷ obtain quantized values
∆X = X −Xq , ∆W = W −Wq ▷ calculate quantization errors

2. Searching activation channel with the largest range
Rx = max(X, dim = 0)[0]− min(X, dim = 0)[0] ▷ calculate activation range
Rk

x, k = max(Rx) ▷ find kth channel with the largest activation range
3. Calculating sk

sk =
√
Rk

x/R
k
w ▷ calculate sk that ensures Rk

x
′
= Rk

W

′

4. Calculating remaining scaling factors based on sk
for i = 1 to n do

if i = k:
si = sk

else:
si = sk

√∑m
j=1|∆Wi,jxi|√∑m
j=1|Wi,j∆xi|

▷ solve the scaling factor si based on Eq. 16

end for
return s

it can theoretically serve as a plug-and-play tool to enhance quantization performance across diverse
frameworks. In future work, we will explore its generalization and applicability to other models.

G VISUALIZATION OF GPS QUANTIZATION ERROR

Prior methods relied on empirically designed scaling factors to mitigate quantization error. In contrast,
GPS derives the scaling factor from theoretical principles, explicitly modeling the quantization-error
reduction brought by scaling and obtaining a closed-form optimal solution via differentiation. To
visualize the advantages of GPS, we evaluate the quantization errors in the first block’s qkv and
fc1 layers across different models (RAR-B, VAR-d16, PAR-XL, MAR-B), comparing the errors of
no scaling, after applying SmoothQuant Xiao et al. (2023), after applying GPS, and after applying
GPS with cross terms. As shown in Fig 10, GPS achieves a further reduction in quantization error
compared with empirically designed scaling methods SmoothQuant. And retaining cross terms has a
negligible impact on original GPS.
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Figure 10: The quantization error of layer output under the INT6 setting using 64 samples. The error
is measured with the L1 norm and averaged over tokens.

H ANALYSIS OF CHALLENGE 2

We analyze the underlying causes of highly dynamic activations at the token-wise level. Firstly,
to ensure bidirectional dependencies among predicted image tokens, ARVG embeds conditioning
information into the network via the AdaLN module. The conditioning includes not only the image
conditional information but also the positional information of tokens. We observe that positional
information varies across different position in the token sequence, resulting in input of the AdaLN
module showing variation along the token dimension. Secondly, previous KV Cache studies on
LLMs have identified that the initial token in Attention is highly sensitive to model performance,
referring to these critical tokens as sink tokens. Unlike LLMs, we observe that in ARVG models, sink
tokens are present in all linear layers of MHSA and FFN. We attribute this property of ARVG
to three key factors: (1) ARVG inherently uses class conditions as initial tokens, which encapsulate
critical class information and play a pivotal role in conditional generation. (2) The initial tokens are
visible to all subsequent tokens, making them readily trained to serve as highly sensitive tokens. (3)
The distribution of the initial tokens are significantly different from that of all other tokens.

I VISUALIZATION OF POSITION-INVARIANT DISTRIBUTIONS IN TOKEN
DIMENSION

To validate the position-invariant distributions of ARVG activations, we visualize token-wise ac-
tivations for VAR-d16 and RAR-B across different layers, classes, and conditioning. Note that
these models are trained on ImageNet and cannot generate images from other data distributions.
Therefore, we do not verify this property on datasets beyond ImageNet. Since unconditional samples
inherently correspond to class label 1000, we can merge the class and conditioning dimensions. For
visualization, we select samples with labels 0, 1, 2, 999, and 1000 (unconditional), and visualize
the distributions across different layers whenever possible. As shown in Fig. 11 and Fig. 12, the
activations of VAR-d16 and RAR-B exhibit position-invariant distributions, remaining consistent
across different classes and conditions. This confirms the motivation and implementation of STWQ.

J ADDITIONAL RESULTS

Table 9 shows the performance of PTQ4ARVG on RAR-L, RAR-XXL, VAR-d20, and VAR-d30.
Similar to the PAR models, RAR-XXL does not satisfy the requirements of QuaRot, and thus no
QuaRot experiments are conducted on this model. For VAR models, while SVDQuant performs
well on the FID metric, it exhibits poor performance on the IS metric, likely because low-rank
decomposition of the weights undermines the model’s ability to generate diverse samples.
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Figure 11: Visualization of token-wise activations in VAR-d16. Data come from a single sample.

Table 10 shows the performance of PTQ4ARVG on PAR-3B-4× and PAR-3B-16×.

While our approach demonstrates clear superiority at 6-bit, its 8-bit performance is on par with
OmniQuant and SVDQuant for some models. To emphasize the advantages of our method, we
include additional W4A8 experiments, with Table 11 further illustrating its superiority.

K COMPARISON WITH QUAROT

In some LLMs, the operation between two adjacent blocks is of the form XW , where X denotes the
output of the previous block and W denotes the weights of the next block. When the two blocks are
connected only by a normal LayerNorm (e.g., RMSNorm or LN), the rotation matrix Q can be used
offline, because of:

LayerNorm(X) = LayerNorm(XQT )Q (40)

However, in VAR and RAR, the blocks are not only connected by a normal LayerNorm, but also by
a specialized LayerNorm, AdaLN. AdaLN transforms the conditioning input into modulation fac-
tors (MHSAscale1, MHSAshift1, MHSAscale2, FFNscale1, FFNshift1, FFNscale2 ∈ RT×n), which
adjust the distribution of activations. As illustrated in Fig. 9, assuming the MHSA output is denoted
as X and the residual as Xr, the computation of FFN.fc1 with weight W is formulated as:

output = (LN(X · MHSAscale2 +Xr) · FFNscale1 + FFNshift1) ·W (41)
please refer to the VAR and RAR code for detail. As shown, applying rotation matrices offline does
not preserve computational equivalence. Therefore, for VAR and RAR, rotation should be applied
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Figure 12: Visualization of token-wise activations in RAR-B. Data come from a single sample.

dynamically. The DiT model also employs AdaLN and shares a similar block structure with VAR and
RAR. In ViDiT-Q, rotation matrices are also introduced to suppress outliers (although not explicitly
mentioned in the paper). These rotation matrices are likewise applied dynamically, as shown in the
ViDiT-Q code.

As a result, all Hadamard matrices involved in QuaRot need to be computed online when applied
to RAR and VAR. This not only introduces significant overhead during inference but also increases
peak memory usage. As reported in Table 12, with a batch size of 100 and a token sequence length
of 256, QuaRot even leads to a 0.70× slowdown and a 159MB increase in peak memory usage at
8-bit quantization. Conversely, PTQ4ARVG achieves superior accuracy and quantization efficiency
compared to QuaRot.

L LIMITATIONS

Recently, ARVG models demonstrates superior image generation capabilities compared to diffusion
models. More importantly, their LLMs-compatible architecture and strong scaling laws make them a
current focus of research. However, its deployment with the quantization techniques still remains
largely unexplored. To address this gap, we propose PTQ4ARVG, an accurate and efficient post-
training quantization framework tailored for the ARVG family.

Although our method can effectively quantize the weights and activations of ARVG models into 8-bit
and 6-bit while preserving competitive performance, it struggles to maintain such a high level of
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Table 9: Comparative results for RAR and VAR models.
RAR-L VAR-d20Bit Width Methods IS ↑ FID ↓ sFID ↓ Precision ↑ IS ↑ FID ↓ sFID ↓ Precision ↑

FP - 303.00 1.76 6.03 0.81 309.09 2.85 7.66 0.83
SmoothQuant 245.99 2.73 7.29 0.76 260.02 3.50 12.51 0.81

RepQ* 253.16 2.55 7.34 0.76 258.90 3.46 11.98 0.79
OS+ 252.98 2.70 7.94 0.67 260.96 3.40 11.25 0.81

OmniQuant 289.61 2.16 6.66 0.79 239.30 4.14 11.73 0.77
QuaRot 271.37 2.35 7.42 0.79 260.52 4.02 11.20 0.81

SVDQuant 284.59 1.95 6.38 0.80 252.17 3.80 11.87 0.81

W8A8

Ours 291.55 1.90 6.34 0.81 263.86 3.36 11.17 0.82
SmoothQuant 31.97 63.34 40.03 0.39 190.96 5.21 10.61 0.71

RepQ* 23.32 76.95 47.04 0.32 146.00 7.96 11.84 0.68
OS+ 20.09 88.65 38.70 0.25 185.95 5.00 11.93 0.73

OmniQuant 130.84 17.80 17.39 0.61 113.66 16.78 14.18 0.59
QuaRot 45.27 53.27 34.09 0.45 190.73 5.02 10.68 0.74

SVDQuant 200.65 5.28 8.06 0.71 151.88 7.50 11.47 0.64

W6A6

Ours 219.40 3.99 8.14 0.75 194.85 4.82 10.47 0.75
Bit Width Methods RAR-XXL VAR-d30

FP - 328.87 1.51 5.13 0.81 307.24 2.03 8.72 0.81
SmoothQuant 278.89 2.09 5.91 0.77 247.74 4.37 18.19 0.76

RepQ* 233.35 3.25 6.45 0.77 262.34 3.51 16.05 0.79
OS+ 245.23 2.67 6.23 0.77 269.86 3.30 15.89 0.81

OmniQuant 288.10 2.35 6.43 0.77 268.92 3.35 15.34 0.81
SVDQuant 276.52 2.14 5.46 0.75 268.55 3.34 14.87 0.80

W8A8

Ours 321.03 1.61 5.28 0.82 277.05 3.27 14.40 0.81
SmoothQuant 164.15 12.47 18.74 0.67 101.01 22.67 32.05 0.59

RepQ* 83.01 28.77 23.63 0.56 113.37 17.02 25.18 0.62
OS+ 66.82 34.80 16.29 0.47 156.21 11.15 24.45 0.68

OmniQuant 184.25 10.89 11.68 0.66 131.52 14.95 22.58 0.65
SVDQuant 188.43 7.06 7.84 0.64 160.53 10.85 24.04 0.70

W6A6

Ours 266.39 2.41 5.70 0.77 168.84 8.50 21.38 0.71

Table 10: Comparative results for PAR models.
PAR-3B-4× PAR-3B-16×Bit Width Methods IS ↑ FID ↓ sFID ↓ Precision ↑ IS ↑ FID ↓ sFID ↓ Precision ↑

FP - 255.5 2.29 - 0.82 262.5 2.88 - 0.82
SmoothQuant 10.91 112.24 40.94 0.10 12.00 79.45 78.58 0.16

RepQ* 5.08 168.03 88.96 0.06 11.74 79.34 70.16 0.16
OS+ 5.58 167.17 77.37 0.06 11.71 79.84 75.06 0.16

OmniQuant 200.09 3.50 5.43 0.76 211.98 4.11 7.54 0.75
SVDQuant 202.16 3.60 5.50 0.76 210.85 4.14 7.55 0.73

W8A8

Ours 200.42 3.57 5.73 0.76 207.48 4.16 6.86 0.73
SmoothQuant 9.87 137.03 42.37 0.06 9.49 107.07 96.20 0.11

RepQ* 5.03 166.43 105.89 0.10 11.24 89.81 69.18 0.11
OS+ 6.68 157.67 73.02 0.06 9.37 109.55 102.72 0.11

OmniQuant 16.58 113.29 60.21 0.20 17.89 102.87 75.35 0.21
SVDQuant 54.59 41.26 29.97 0.49 28.31 71.22 61.22 0.29
SQ+STWQ 96.69 15.55 7.06 0.58 71.39 23.41 12.08 0.44

RepQ*+STWQ 51.15 31.83 15.09 0.44 92.32 18.65 11.30 0.55

W6A6

Ours 121.91 10.05 6.22 0.63 107.52 15.47 10.72 0.58

accuracy when quantizing the model to 4-bit. Despite the limitations, we hope that our work could
inspire the research interest on ARVG quantization within the community. We also further enhance
our method to achieve better performance under lower bit-precision.

M ETHICS STATEMENT

This work proposes quantization-based acceleration methods for autoregressive visual generation
models. It relies solely on publicly available datasets and does not involve human subjects, private data,
or personally identifiable information. The methods are designed to improve computational efficiency
and reduce energy consumption, thereby lowering the environmental cost of model deployment. We
believe the ethical risks of this research are minimal.
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Table 11: Comparative results at W4A8 precision.
Bit Width Model Method IS ↑ FID ↓ sFID ↓ Precision ↑

OmniQuant 20.28 58.84 27.69 0.33
SVDQuant 88.34 19.26 22.50 0.57VAR-d16

Ours 114.09 17.06 16.99 0.58
OmniQuant 125.77 15.86 16.13 0.59
SVDQuant 11.92 134.65 43.20 0.15RAR-B

Ours 158.09 10.75 14.95 0.63
OmniQuant 7.40 133.55 43.76 0.13
SVDQuant 95.23 19.81 18.19 0.52

W4A8

PAR-XL
Ours 110.97 15.49 9.36 0.55

Table 12: Comparison with QuaRot on RAR-L with 8-bit quantization.

Method IS↑ FID↓ Precision↑ Time (ms) Memory (MB) Speedup
FP 303.00 1.76 0.81 3722 4241 1.00×

QuaRot 271.37 2.35 0.79 6062 2345 0.70×
PTQ4ARVG 291.55 1.90 0.81 1297 2186 2.87×

N REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. The paper provides detailed
descriptions of the proposed methods, experimental setups, and evaluation protocols. Additionally,
we provide complete source code and instructions in the supplementary materials.
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Figure 13: Random samples of PAR-XL with 8-bit quantization.
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Figure 14: Random samples of MAR-B with 8-bit quantization.
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Figure 15: Random samples of RAR-B with 6-bit quantization.
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Figure 16: Random samples of RAR-XL with 6-bit quantization.
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Figure 17: Random samples of VAR-d16 with 6-bit quantization.
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