

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGNMENT-ENHANCED INTEGRATION OF CONNEC- TIVITY AND SPECTRAL SPARSITY IN DYNAMIC SPARSE TRAINING OF LLM

Anonymous authors

Paper under double-blind review

ABSTRACT

With the rapid development of large language models (LLMs), identifying efficient strategies for training such large-scale systems has become increasingly critical. Although LLMs have achieved remarkable success across diverse applications, the necessity of maintaining full dense matrices during pre-training has been questioned, giving rise to parameter-efficient sparse pre-training methods which retains parameter-efficiency in both training and inference. These methods can be further divided into connectivity sparse training and spectral sparse training, with dynamic connectivity sparse training and low-rank factorization emerging as representative approaches for the two branches. However, a unified framework that effectively combines the strengths of both has yet to be established. In this work, we observe that the *cancellation effect* between the sparse and low-rank branches may limit the expressivity of the model, manifesting as output conflicts when the two components are combined. To address this issue, we propose a novel scheme that integrates dynamic sparse training with low-rank training, introducing a simple yet effective **alignment loss** to mitigate the disagreement between the two branches and promote better collaboration. We validate this scheme by combining a representative dynamic sparse training method, CHTs, with low-rank training, resulting in a new parameter-efficient training approach termed **CHTsL**. The method is evaluated on LLaMA60M and LLaMA130M using the OpenWebText and C4 datasets, where only 10%, 20%, and 30% of the parameters are preserved compared to dense training. Experimental results demonstrate that our proposed scheme effectively alleviates the cancellation effect and improves training stability and performance compared to the naive combination of sparse and low-rank components. Also, the new scheme enables CHTsL to consistently outperform other parameter-efficient sparse training methods under the same parameter budget, achieving performance most close to dense training.

1 INTRODUCION

Large language models (LLMs) have attracted tremendous attention due to their superior performance across a wide range of tasks. Despite their impressive capabilities, training LLMs from scratch remains extremely memory-intensive and computation-intensive (Samsi et al., 2023), making it challenging to scale such models under reasonable resource constraints. This has motivated extensive research on efficient methods that reduce computational and memory costs while retaining competitive performance. One of the most direct strategies is to reduce the number of parameters. Early studies on pruning and low-rank fine-tuning (Hu et al., 2022; Zhang et al., 2023; Renduchintala et al., 2023; Sheng et al., 2023; Liu et al., 2024; Kopiczko et al., 2023; Dettmers et al., 2023) have shown that even after removing or compressing a large fraction of parameters, models can still preserve much of their original representational capacity. These findings suggest that parameter-efficient model manipulation is feasible, and they naturally motivate the extension from pruning or finetuning to sparse pretraining, where models are trained from scratch under constrained parameter budgets while maintaining competitive performance compared with dense training.

We divides current approaches to sparse pre-training can be broadly into two branches: connectivity sparse training and spectral sparse training, which refers to those methods utilizing low-rank factorization during pretraining.

054 The former branch focuses on enforcing sparsity in the connectivity of weight matrices, with dy-
 055 namic connectivity sparse training emerging as a representative technique(Mocanu et al., 2018;
 056 Jayakumar et al., 2020; Evcı et al., 2020; Yuan et al., 2021; Zhang et al., 2024; 2025). Dynamic
 057 connectivity sparse training maintains a sparse connectivity pattern throughout pre-training, dynam-
 058 ically changing the sparse connectivity and updating active weights to approximate the capacity
 059 of dense models. Recent works have shown that on multiple tasks, dynamic sparse training can
 060 approach or even surpass the performance of dense models with as little as 10% of the trainable
 061 parameters, marking a significant step forward in efficient training(Zhang et al., 2024).

062 The second branch, spectral sparse training (Zhao et al., 2024a), is typically instantiated through
 063 low-rank factorization. Since the low-rank factors are updated during training, the spectral rep-
 064 resentation they induce also evolves accordingly, which makes spectral sparse training inherently
 065 dynamic. Initially proposed in the context of LLM fine-tuning (Hu et al., 2022), low-rank methods
 066 decompose weight matrices into low-dimensional components, training only the low-rank repre-
 067 sentations while freezing the full-rank backbone. These approaches drastically reduce the number
 068 of trainable parameters and leverage the pre-trained dense model’s representational power. More
 069 recent attempts have extended low-rank factorization to the pre-training stage (Lialin et al., 2023;
 070 Zhao et al., 2024b; Xia et al., 2024; Meng et al., 2024; Zhao et al., 2024a). However, these methods
 071 still require the use of full dense matrices during the forward pass, rather than maintaining the spec-
 072 tral sparse structure consistently from training to inference. Overcoming this limitation, successors
 073 like CoLA (Liu et al., 2025) preserve the low-rank structure throughout both training and inference,
 074 further validating the feasibility of spectral sparse training.

075 While previous attempt SLTrain (Han et al., 2024) explored combining sparse and low-rank com-
 076 ponents, the design remains limited in two key aspects. First, the sparse branch in SLTrain is static,
 077 serving only as a supplementary term to spectral sparse training rather than leveraging the full poten-
 078 tial of dynamic connectivity sparse methods. Second, SLTrain simply performs a pure summation
 079 of sparse and low-rank outputs, without any mechanism to promote effective interaction.

080 In this work, we take a step in this direction. We observe that naive integration of sparse and low-
 081 rank branches often suffers from a cancellation effect, where the two components produce conflict-
 082 ing representations that weaken expressivity and hinder convergence. To address this challenge, we
 083 propose a new scheme that integrates dynamic connectivity sparse training with low-rank training
 084 under the guidance of alignment loss, which aligns the two branches and promotes cooperative learn-
 085 ing. Specifically, we instantiate our framework by combining the advanced dynamic sparse training
 086 method CHTs (Zhang et al., 2025) with low-rank factorization, resulting in a new parameter-efficient
 087 pre-training approach, CHTsL. Extensive experiments on LLaMA-60M and LLaMA-130M (Tou-
 088 vron et al., 2023a;b) with OpenWebText and C4 show that CHTsL consistently outperforms state-
 089 of-the-art parameter-efficient sparse training baselines under the same parameter budget. Notably,
 090 with only 10%, 20%, or 30% of parameters preserved relative to dense training, CHTsL achieves
 091 performance closest to dense models, which would benefit by retaining efficiency in training, infer-
 092 ence, and storage.

093 Our contributions can be summarized as follows:

094 **First integration of connectivity sparse and spectral sparse in dynamic sparse training.** We
 095 make the first attempt to genuinely integrate connectivity sparse and spectral sparse in dynamic
 096 sparse training, with dynamic connectivity and dynamic low-rank representaion. Unlike prior work
 097 such as SLTrain, where static connectivity sparsity merely served as a supplement to spectral spar-
 098 sity, our approach fully leverages the complementary strengths of both paradigms.

099 **Alignment-enhanced unified scheme.** We identify the cancellation effect as a key obstacle in com-
 100 bining sparse and low-rank branches, where conflicting representations weaken model expressivity.
 101 To address this, we introduce the overlapping cancellation ratio (OCR) as a quantitative measure,
 102 and propose a unified integration scheme that emphasizes interaction and cooperation rather than
 103 naive branch summation. By incorporating an alignment loss, our framework explicitly mitigates
 104 conflicts, enhances collaboration, and alleviates the observed cancellation phenomenon in attention
 105 Q and K matrices.

106 **Instantiation with CHTsL and empirical superiority.** We instantiate the framework by combining
 107 advanced CHTs with low-rank factorization, yielding the proposed method CHTsL. Extensive exper-
 108 iments across different datasets, models, and parameter budgets demonstrate that CHTsL achieves

108 consistently strong performance, ranking first among all parameter-efficient methods with the same
 109 parameter scale, and approaching dense model performance with significantly fewer parameters.
 110

111 2 RELATED WORK

114 The rapid growth of large language models (LLMs) has stimulated extensive research into improving
 115 efficiency in pre-training. Among various directions, *parameter-efficient* approaches have emerged
 116 as particularly promising, aiming at training models with limited number of parameters without
 117 significantly sacrificing performance. Broadly, parameter-efficient methods in the context of pre-
 118 training can be divided into two branches: **connectivity sparse training**, which reduces parameters
 119 by enforcing sparse connectivity patterns, and **spectral sparse training**, which constrains weight
 120 matrices into low-rank subspaces. Dynamic connectivity sparse training and low-rank factorization
 121 are the representative approaches for these two paradigms.

122 2.1 DYNAMIC CONNECTIVITY SPARSE TRAINING

124 Connectivity sparsity originates from the classical line of pruning (LeCun et al., 1989; Han et al., 1989;
 125 Han et al., 2015; Molchanov et al., 2016), where removing parameters from dense models was shown to pre-
 126 serve much of the model’s performance. Inspired by this, researchers began to explore whether spar-
 127 sity could be maintained *throughout training*, rather than applied only as a post-hoc compression.
 128 Among these efforts, methods that promote sparse training through dynamic adjustment of connec-
 129 tivity have gained increasing attention, as they often outperform static sparse training approaches
 130 that prune connections solely at initialization (Prabhu et al., 2018; Lee et al., 2018; Dao et al., 2022;
 131 Stewart et al., 2023). The pioneering work Sparse Evolutionary Training (SET) (Mocanu et al.,
 132 2018) removes links while introducing random rewiring of sparse connections during training to
 133 maintain model plasticity. RigL (Evcı et al., 2020) further dynamically regrows connections based
 134 on gradient for more effective exploration, though it requires computing gradients of the full weight
 135 matrix during the backward pass. MEST (Yuan et al., 2021) improves upon this by leveraging both
 136 weight and gradient information. CHT (Zhang et al., 2024) and its successor CHTs (Zhang et al.,
 137 2025) enhance dynamic sparse training using the Cannistracci-Hebbian theory (Muscoloni et al.,
 138 2022) from network science, inspired by brain connectomes, achieving state-of-the-art performance
 139 on multiple tasks. Collectively, these studies demonstrate that dynamic sparse training can attain
 140 competitive or even superior performance compared to dense training, while using only 10% or
 fewer of the parameters (Zhang et al., 2025).

141 2.2 LOW-RANK FOR SPECTRAL SPARSE TRAINING

144 Complementary to connectivity sparsity, spectral sparse training leverages low-rank factorization
 145 to reduce the dimensionality of weight matrices. This idea was first popularized in the fine-tuning
 146 setting, where LoRA (Hu et al., 2022) adapts pretrained models by learning only low-rank updates
 147 rather than full weight matrices. Subsequent works (Hu et al., 2022; Zhang et al., 2023; Renduch-
 148 intala et al., 2023; Sheng et al., 2023; Kopiczko et al., 2023; Dettmers et al., 2023; Liu et al., 2024)
 149 further demonstrate the effectiveness of low-rank fine-tuning and inspire the exploration of training
 150 from scratch with low-rank factorization. ReLoRA (Lialin et al., 2023) introduces reparameteriza-
 151 tion to improve training efficiency and stability, while GaLore (Zhao et al., 2024b) reduces memory
 152 usage by applying low-rank projections in the gradient space during training. However, a common
 153 limitation of these approaches is that the full dense weight matrix is still required during the for-
 154 ward pass, providing parameter efficiency only during training but not during inference. In contrast,
 155 CoLA (Liu et al., 2025) explicitly maintains the low-rank representation throughout both training
 156 and inference, enabling reduced storage and runtime costs. As a side note, while we previously
 157 discussed the relevance of pruning mainly in the context of connectivity-based sparse training, in
 158 contrast to spectral low-rank training, structured pruning can also be viewed as implicitly inducing
 159 a low-rank structure in the resulting model. This is because structured-pruned models remove entire
 160 channels or filters, which correspond to removing rows or columns in the unfolded weight matrices,
 161 thereby potentially reducing their effective rank. Representative structured-pruning-aware works in-
 162 clude channel pruning via LASSO (He et al., 2017), network slimming (Liu et al., 2017), and more
 163 recently Only-Train-Once (OTO) (Chen et al., 2021), which explicitly consider structural constraints
 164 during training to improve efficiency for subsequent pruning. In this study, we adopt CoLA (Liu

162 et al., 2025) as the baseline under the same restriction of parameter efficiency in both forward and
163 backward passes.

165 2.3 HYBRID ATTEMPT

167 Beyond individual paradigms, researchers have also begun to explore combining connectivity and
168 spectral sparsity. SLTrain (Han et al., 2024) represents one of the earliest attempts in this direction.
169 It augments low-rank factorization with a sparse branch, but its design exhibits several limitations.
170 Specifically, the sparse component is *static* rather than dynamic, serving merely as a supplemen-
171 tary term to spectral sparsity instead of leveraging genuine connectivity sparse training. Moreover,
172 SLTrain integrates the two branches via a simple summation, without introducing any collaborative
173 mechanism to exploit their potential synergy. As a result, while SLTrain marks an important step
174 toward hybrid parameter-efficient pre-training, it remains an immature solution, leaving room for
175 more principled approaches.

176 3 ALIGNMENT-ENHANCED INTEGRATION OF CONNECTIVITY SPARSE AND 177 SPECTRAL SPARSE

179 In this section, we present a unified approach for combining dynamic sparse training (connectivity
180 sparse) with low-rank factorization (spectral sparse) under extreme sparsity. While each method
181 alone can improve parameter-efficiency and memory-efficiency, their naive combination often leads
182 to conflicting outputs that limit the model’s effective capacity. We address this challenge with three
183 key steps: (i) identifying and quantifying the *cancellation effect*, (ii) introducing a training frame-
184 work that stabilizes low-rank outputs and encourages cooperation between branches, and (iii) in-
185 instantiating a method, CHTsL, that integrates connectivity sparse and spectral sparse for dynamic
186 sparse training based on this framework.

187 3.1 CANCELLATION EFFECT AND OCR METRIC

189 When a sparse branch and a low-rank branch are trained together, a common phenomenon emerges:
190 their outputs sometimes point in opposite directions. This **cancellation effect** means that some
191 portion of the signal from one branch can be neutralized by the other, wasting representational
192 power. In other words, even if each branch individually carries meaningful information, their naive
193 sum may not fully reflect that information, effectively underutilizing the model’s capacity.

194 To quantify this, we define the **Overlap Cancellation Ratio (OCR)**:

$$197 \text{OCR} = \frac{\sum_i \min(|S_i|, |L_i|) \cdot \mathbf{1}\{S_i L_i < 0\}}{\sum_i \min(|S_i|, |L_i|) + \varepsilon}, \quad (1)$$

199 where S and L are the outputs of the sparse and low-rank branches, respectively. OCR measures the
200 fraction of overlapping signal that is canceled due to opposite directions, with naturally restricted in
201 the range $[0, 1)$. A higher OCR indicates more severe cancellation.

203 3.2 TRAINING FRAMEWORK: ALIGNMENT LOSS AND ACTIVATION ADJUSTMENT

205 **Alignment Loss for Cooperative Learning.** When training using two distinct components, the
206 sparse and low-rank branches can produce conflicting signals. Intuitively, if one branch pushes a
207 feature in one direction while the other pushes in the opposite direction, the net effect is reduced
208 expressivity. To address this cancellation effect, we introduce an **alignment loss** that encourages the
209 outputs to move in similar directions:

$$210 \mathcal{L}_{\text{align}}^{(l)} = \frac{1}{BN} \|S^{(l)} - L^{(l)}\|_F, \quad \mathcal{L}_{\text{align}} = \sum_l \mathcal{L}_{\text{align}}^{(l)}, \quad (2)$$

213 where B is the batch size and N is the number of elements in one sample’s output at layer l . This loss
214 penalizes discrepancies between the sparse and low-rank outputs, reducing destructive interference
215 and letting each branch focus on complementary aspects of representation. Each layer contributes
to the total alignment loss, which is then weighted in the final objective.

216 **Activation Adjustment for Low-rank Stability.** Low-rank factorization reduces the number of
 217 trainable parameters but can sometimes produce unstable outputs, particularly under extreme sparsity.
 218 Inspired by CoLA Liu et al. (2025), we apply a mild non-linear activation between the factorized
 219 matrices:

$$L^{(l)} = B^{(l)} \sigma(A^{(l)} x), \quad (3)$$

220 where $\sigma(\cdot)$ is a non-linear function (SiLU (Hendrycks & Gimpel, 2016) in our experiments). Here,
 221 the activation primarily serves to stabilize the low-rank outputs, maintaining a reasonable scale and
 222 preventing numerical issues during training. Its role is mainly supportive, ensuring the low-rank
 223 branch contributes reliably alongside the sparse branch.

224 **Overall Objective.** Combining these ideas,
 225 the output of each $O^{(l)}$ and the total training
 226 loss $L^{(l)}$ are respectively:

$$O^{(l)} = S^{(l)} + L^{(l)}, \quad \mathcal{L} = \mathcal{L}_{\text{task}} + \lambda \mathcal{L}_{\text{align}} \quad (4)$$

227 where λ balances the contribution of alignment.
 228 This objective ensures that the sparse and low-rank branches are jointly optimized,
 229 stabilizing low-rank training and encouraging the two branches to cooperate, mitigating cancellation.

3.3 CHTsL: INSTANTIATING THE FRAMEWORK

230 Based on this training framework, we propose
 231 **CHTsL**, which integrates dynamic connectivity
 232 sparse training method CHTs (Zhang et al.,
 233 2025) with spectral sparse (low-rank) compo-
 234 nents. In CHTsL, the sparse branch fol-
 235 lows the CHTs update rules, while the low-
 236 rank branch incorporates mild activation ad-
 237 justment, and the alignment loss is applied
 238 layer-wise to encourage cooperative outputs.
 239 This instantiation demonstrates how our framework naturally combines dynamic connectivity and
 240 spectral sparsity, providing a practical approach for training extremely sparse models under a unified
 241 scheme. Figure 1 illustrates how CHTsL works.

4 EXPERIMENT

4.1 MODELS

242 Experiments are based on Transformer models from the LLaMA family (Touvron et al., 2023a;b),
 243 with parameter sizes ranging from 60M to 130M. All models are trained and evaluated on NVIDIA
 244 A100 or A800 GPUs.

4.2 DATASETS

245 For training and evaluation, we adopt two widely used large-scale text corpora:

246 **OpenWebText (Gokaslan & Cohen, 2019):** A publicly available open-source replication of the
 247 WebText dataset used in GPT-2. It is constructed by scraping URLs shared on Reddit with high
 248 karma scores, covering a broad range of high-quality web content.

249 **Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020):** A large-scale dataset derived from
 250 web pages collected through Common Crawl. After extensive cleaning and filtering, it provides
 251 high-quality natural language text suitable for large language model pre-training.

4.3 BASELINE METHODS

252 To verify the effectiveness of our method, we compare it against several parameter-efficient training
 253 baselines with an equivalent number of trainable parameters. Specifically, we consider dynamic

254 **Figure 1: Workflow of CHTsL.** The figure il-
 255 lustrates CHTsL as an example of alignment-
 256 enhanced integration between dynamic connec-
 257 tivity sparse training and spectral sparse train-
 258 ing. Specifically, the dynamic connectivity sparse
 259 branch adopts the CHTs method.

270 connectivity sparse training methods including SET (Mocanu et al., 2018), RigL (Evci et al., 2020),
 271 MEST (Yuan et al., 2021) and CHTs (Zhang et al., 2025); spectral sparse training method CoLA Liu
 272 et al. (2025); hybrid method SLTrain (Han et al., 2024). We also report the performance of dense
 273 training for comparison.

274 4.4 DEFINITION OF SPARSITY

275 Since this work integrates connectivity-based sparsity with spectral (low-rank) sparsity, it is neces-
 276 sary to establish a consistent definition of sparsity. For both connectivity sparse and spectral sparse
 277 (based on low-rank factorization of a full matrix), we adopt the same definition of sparsity s and
 278 corresponding density d , representing the fraction of parameters relative to a full-rank dense matrix,
 279 which allows fair comparison across methods by reflecting the total number of trainable parameters:
 280

$$281 \quad s = 1 - \frac{\#\text{params}}{\#\text{params}_{\text{dense}}}, \quad d = 1 - s. \quad (5)$$

282 For a connectivity sparse method, the original sparsity corresponds to the true sparsity of the net-
 283 work. For a low-rank factorization of dense matrices of size $m \times n$ with rank r , the effective sparsity
 284 is $(m + n)r/(m \cdot n)$. For a method that integrates both connectivity and spectral sparsity, the total
 285 sparsity can be computed as

$$286 \quad s_{\text{total}} = 1 - d_{\text{connectivity}} - d_{\text{spectral}}. \quad (6)$$

287 In our experiments, all methods are compared under the same total sparsity to ensure an equivalent
 288 number of trainable parameters. For clarity in the Section 5, we report the total sparsity of each
 289 method, and we additionally provide the **sparsity-configuration** for the integrated methods, which
 290 includes the sparsity s of the connectivity sparse component, the rank r of the low-rank component,
 291 and the proportion $\frac{d_{\text{connectivity}}}{d_{\text{spectral}}}$ of parameters between two branches in Appendix B.

292 4.5 HYPERPARAMETER SETTINGS

293 Alignment-enhanced training scheme introduces the coefficient λ to control the effect of alignment
 294 loss. We searched the λ in the range $[0, 0.1, 0.3, 0.5, 0.7, 1]$ with preliminary experiments. For
 295 LLaMA-60M on OpenWebText and LLaMA-130M, the appropriate λ is 0.5; For LLaMA-60M on
 296 C4, the appropriate λ is 0.3.

297 For methods combining sparse and low-rank training (including SLTrain and CHTsL), the sparsity-
 298 configuration mentioned in Section 4.4 need to be considered under the same total parameter
 299 budgets. We systematically varied the allocation of parameters between the sparse and low-rank
 300 branches in steps corresponding to total sparsity of 5% and the best results across all sparsity-
 301 configurations were reported. The step size for rank adjustment in the low-rank branch was cal-
 302 culated based on the model architecture, resulting in approximate step values of 16 for LLaMA-60M
 303 and 24 for LLaMA-130M, of which the concrete calculation process can be found in Appendix A.

304 All the other hyperparameters can be found in Appendix B, which is set to be the same maximally
 305 for different methods for a fair comparison.

306 5 RESULT AND DISCUSSION

307 In this section, we present the experimental results. We first present the effectiveness of the
 308 alignment-enhanced training scheme by comparing it with the naive integration of CHTs and low-
 309 rank factorization. And then we compare different efficient training methods under the same param-
 310 eter budget to present that CHTsL consistently improves the performance, realizing the performance
 311 most close to dense training with limited parameters.

312 5.1 EFFECTIVENESS OF ALIGNMENT-ENHANCED INTEGRATION

313 **Performance improvement** To verify the effectiveness of the alignment-enhanced training
 314 scheme, we compare CHTsL with the naive integration between CHTs and low-rank factorization.
 315 In Table 1, we present the result of CHTs plus low-rank with different integration strategy on dif-
 316 ferent models and datasets with different total sparsity, under the constraint that sparse component
 317 and low-rank component dominates the same number of parameters ($\frac{d_{\text{connectivity}}}{d_{\text{spectral}}} = 1$). The re-
 318 sults are validated by Wilcoxon signed-rank test for the statistical comparison. It shows that, with
 319 $p - \text{value} < 0.05$, activation adjust of low-rank improves the training stability and the whole align-
 320 ment training scheme makes CHTsL significantly better than the naive integration.

324
 325 **Table 1: Comparison between different integration strategies.** The table consists of two parts:
 326 **a. The performance of different integration strategies**, reported in terms of validation perplexity
 327 (PPL \downarrow). The *Naive* strategy corresponds to a simple sum of CHTs and low-rank factorization. The
 328 *Act* strategy applies activation adjustment to the low-rank factorization branch. The *Act+Align* strat-
 329 egy combines activation adjustment with the alignment loss. The coefficient of the alignment loss
 330 λ is reported in Section 4.5. The sparsity configuration is set such that the sparse branch and the
 331 low-rank branch have the same number of trainable parameters ($\frac{d_{connectivity}}{d_{spectral}} = 1$). **b. The Wilcoxon**
 332 **signed-rank test p-values**, which indicate whether the differences in performance between strate-
 333 gies are statistically significant.

Model	Dataset	Total Sparsity	Naive	Act	Act+Align
LLaMA-60M	OpenWebText	0.9	32.64	32.21	31.77
		0.8	33.35	29.42	29.11
		0.7	27.89	29.94	27.40
	C4	0.9	189.55	39.66	39.29
		0.8	36.71	36.54	36.16
		0.7	591.42	34.55	34.33
LLaMA-130M	OpenWebText	0.9	119.35	24.45	24.07
		0.8	22.11	21.98	21.87
		0.7	21.12	20.90	20.65
	C4	0.9	30.77	30.30	30.03
		0.8	27.83	27.68	27.59
		0.7	920.16	26.55	26.19
Wilcoxon signed-rank p-value	against <i>Naive</i>		\	0.0093	0.00049
	against <i>Act</i>		\	\	0.00049

348
 349 **Eased Cancellation Effect.** Figure 2 presents the OCR defined in Equation 1, comparing the can-
 350 cellation effect between the naive integration and the alignment-enhanced approach for the experi-
 351 ment on LLaMA-60M with the OpenWebText dataset under a total sparsity of 0.9, with sparsity-
 352 configuration $s = 0.95, r = 16, \frac{d_{connectivity}}{d_{spectral}} = 1$. We observe that incorporating the alignment
 353 loss significantly reduces the OCR in the Query and Key layers, with performance substantially
 354 surpassing that of the naive integration. A plausible explanation is that Q and K, as the core com-
 355 ponents of attention, directly determine the attention weights via their dot product, making them
 356 highly sensitive to inconsistencies between the dynamic sparse branch and the low-rank branch. En-
 357 forcing alignment therefore stabilizes the attention maps and mitigates gradient conflicts, whereas
 358 feed-forward or value projections are more tolerant to internal variations due to residual connec-
 359 tions. Consequently, this targeted consistency in Q and K enhances the robustness of the attention
 360 mechanism, leading to overall performance improvements. More evidence of experiments under
 361 other sparsity levels can be found in Appendix C.

363 5.2 CHTsL OUTPERFORMS OTHER SPARSE TRAINING METHODS

364 Table 2 reports the results of CHTsL in comparison with all baseline methods under the same total
 365 parameter budget. The results demonstrate that CHTsL consistently outperforms all other methods
 366 given the same parameter constraint. This provides strong evidence for the potential of integrating
 367 connectivity sparse training with spectral sparse training, achieving performance closest to dense
 368 training while preserving only 30% or fewer of the training parameters.

370 5.3 SENSITIVITY TEST FOR SPARSITY CONFIGURATIONS

371 In Figure 3, we illustrate how validation perplexity (PPL \downarrow) varies with different sparsity configu-
 372 rations across models and datasets under a fixed total sparsity of 0.7. On OpenWebText, when the
 373 low-rank branch dominates the parameter budget far more than the connectivity-sparse branch (spar-
 374 sity in the connectivity sparse branch exceeds 0.9), performance collapses. This instability may be
 375 attributed to the dataset’s relatively limited complexity. Since OpenWebText is more homogeneous,
 376 the model becomes more sensitive to imbalanced sparsity allocation. By contrast, on C4, which
 377 contains substantially more diverse and heterogeneous text, a higher proportion of low-rank param-
 eters proves beneficial. A possible explanation is that the increased variety of linguistic patterns

425 **Figure 2: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.9,**

426 with sparsity-configuration $s = 0.95, r = 16, d_{\text{connectivity}} : d_{\text{spectral}} = 1 : 1$. Each subplot in the

427 figure reports the changes of OCR over training steps. The plot is based on the experiment of the

428 first row of Table 1. For space limit, we report here the self-attention layers in the model, where

429 each column refers to Q, K, V, O respectively.

432
 433 **Table 2: Validation perplexity of different methods.** Validation perplexity ($\text{PPL} \downarrow$) is reported in
 434 this table for different methods on different datasets under the same constraint of total sparsity s_{total} .
 435 **Bold values** are the best performance out of all sparse methods.

436 Dataset	437 Method	438 LLaMA-60M			439 LLaMA-130M		
		440 $s_{total}=0.9$	441 $s_{total}=0.8$	442 $s_{total}=0.7$	443 $s_{total}=0.9$	444 $s_{total}=0.8$	445 $s_{total}=0.7$
446 OpenWebText	Dense	26.56				19.46	
	SET	35.26	30.69	31.77	25.70	23.20	22.03
	RigL	45.34	41.33	39.96	41.25	44.49	70.11
	MEST	33.6	29.94	28.26	25.59	22.93	21.63
	CHTs	33.03	29.84	28.12	24.75	22.67	21.48
	CoLA	37.58	30.87	28.53	27.07	23.24	21.61
	SLTrain	33.90	29.83	27.86	25.33	22.81	21.25
447 C4	CHTsL	31.77	29.11	27.40	24.07	21.87	20.65
	Dense	33.21				24.55	
	SET	42.32	37.70	35.62	32.45	29.47	27.75
	RigL	53.39	48.59	47.34	43.57	55.82	64.93
	MEST	41.46	37.28	35.40	32.54	29.29	27.59
	CHTs	40.62	37.55	35.23	31.00	28.69	27.46
	CoLA	46.41	38.58	35.87	33.52	29.26	27.25
448	SLTrain	41.05	37.00	34.89	31.38	28.28	26.78
	CHTsL	39.29	35.95	34.19	30.03	27.59	26.19

473 **Figure 3: Sensitivity analysis of sparsity configurations under a total sparsity of 0.7.** The
 474 sparsity-configuration is defined by the sparsity s in the connectivity-sparse branch and the rank
 475 r in the low-rank branch. Each subplot illustrates the variation of validation perplexity ($\text{PPL} \downarrow$) as
 476 the rank decreases by step of 5% total sparsity. Outliers with PPL values exceeding the correspond-
 477 ing thresholds are highlighted in red, with their true values explicitly annotated.

480 likely requires broader adaptations of the entire weight matrix, making low-rank components more
 481 effective in capturing such variability.

483 6 CONCLUSION

484 In this work, we present a novel framework for parameter-efficient pre-training by systematically
 485 integrating connectivity sparse training with spectral sparse in dynamic sparse training. We identify

486 the cancellation effect in naive integration as the key challenge, where conflicting representations
 487 branches reduce expressivity and hinder convergence. To address this, we introduce the overlapping
 488 cancellation ratio to quantify the effect and an alignment loss to encourage cooperative learning.
 489 Building on this framework, we instantiate CHTsL by combining the advanced dynamic sparse
 490 training method CHTs with low-rank factorization. Extensive experiments on LLaMA-60M and
 491 LLaMA-130M with OpenWebText and C4 demonstrate that CHTsL consistently outperforms ex-
 492 isting methods under equivalent parameter budgets. Our work is the first to systematically unify
 493 dynamic connectivity and spectral sparse training, moving beyond static connectivity sparsity and
 494 naive integration; it identifies and mitigates the cancellation effect, fostering effective collabora-
 495 tion between the sparse and low-rank components; and it provides a practical instantiation that validates
 496 the benefits of this integration. Overall, this study offers both theoretical insights and practical
 497 solutions for efficient sparse pre-training, highlighting the potential of combining complementary
 498 sparsity paradigms to maximize model expressivity under constrained resources.
 499

500 REPRODUCIBILITY STATEMENT

501 The code for this work is provided in the supplementary material. Detailed hyperparameter settings
 502 for each method are presented in Appendix B to facilitate reproducibility.
 503

504 REFERENCES

506 Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
 507 Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
 508 framework. *Advances in Neural Information Processing Systems*, 34:19637–19651, 2021.

509 Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
 510 Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
 511 efficient and accurate training. In *International Conference on Machine Learning*, pp. 4690–
 512 4721. PMLR, 2022.

513 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 514 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

516 Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
 517 Making all tickets winners. In *International conference on machine learning*, pp. 2943–2952.
 518 PMLR, 2020.

519 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. [http://Skylion007.github.io/
 520 OpenWebTextCorpus](http://Skylion007.github.io/OpenWebTextCorpus), 2019.

522 Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Kumar Jawanpuria, and
 523 Bamdev Mishra. Sltrain: a sparse plus low rank approach for parameter and memory efficient
 524 pretraining. *Advances in Neural Information Processing Systems*, 37:118267–118295, 2024.

525 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
 526 with pruning, trained quantization and huffman coding. *arXiv preprint arXiv:1510.00149*, 2015.

527 Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
 528 works. In *Proceedings of the IEEE international conference on computer vision*, pp. 1389–1397,
 529 2017.

531 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint
 532 arXiv:1606.08415*, 2016.

533 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 534 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

535 Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-k
 536 always sparse training. *Advances in Neural Information Processing Systems*, 33:20744–20754,
 537 2020.

539 Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
 540 adaptation. *arXiv preprint arXiv:2310.11454*, 2023.

540 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information*
 541 *processing systems*, 2, 1989.

542

543 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
 544 based on connection sensitivity. *arXiv preprint arXiv:1810.02340*, 2018.

545

546 Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
 547 training through low-rank updates. *arXiv preprint arXiv:2307.05695*, 2023.

548

549 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 550 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 551 *International Conference on Machine Learning*, 2024.

552

553 Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
 554 efficient convolutional networks through network slimming. In *Proceedings of the IEEE*
 555 *international conference on computer vision*, pp. 2736–2744, 2017.

556

557 Ziyue Liu, Ruijie Zhang, Zhengyang Wang, Zi Yang, Paul Hovland, Bogdan Nicolae, Franck Cap-
 558 pello, and Zheng Zhang. Cola: Compute-efficient pre-training of llms via low-rank activation.
 559 *arXiv preprint arXiv:2502.10940*, 2025.

560

561 Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi Wang,
 562 Qingxiu Dong, Liang Chen, and Zhifang Sui. Periodiclora: Breaking the low-rank bottleneck in
 563 lora optimization. *arXiv preprint arXiv:2402.16141*, 2024.

564

565 Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
 566 and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
 567 tivity inspired by network science. *Nature communications*, 9(1):2383, 2018.

568

569 Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
 570 neural networks for resource efficient inference. *arXiv preprint arXiv:1611.06440*, 2016.

571

572 Alessandro Muscoloni, Umberto Michieli, Yingtao Zhang, and Carlo Vittorio Cannistraci. Adaptive
 573 network automata modelling of complex networks. 2022.

574

575 Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander networks: Efficient deep
 576 networks from graph theory. In *Proceedings of the European Conference on Computer Vision*
 577 (*ECCV*), pp. 20–35, 2018.

578

579 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 580 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 581 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

582

583 Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter effi-
 584 ciency of lora with weight tying. *arXiv preprint arXiv:2311.09578*, 2023.

585

586 Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
 587 William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
 588 Benchmarking the energy costs of large language model inference. In *2023 IEEE High Perfor-
 589 mance Extreme Computing Conference (HPEC)*, pp. 1–9. IEEE, 2023.

590

591 Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
 592 Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. S-lora: Serving thousands of concurrent lora
 593 adapters. *arXiv preprint arXiv:2311.03285*, 2023.

594

595 James Stewart, Umberto Michieli, and Mete Ozay. Data-free model pruning at initialization via
 596 expanders. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 597 nition*, pp. 4519–4524, 2023.

598

599 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 600 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 601 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

594 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 595 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 596 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

597

598 Wenzhong Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
 599 models via residual learning. *arXiv preprint arXiv:2401.04151*, 2024.

600 Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng
 601 Zhan, Chaoyang He, Qing Jin, et al. Mest: Accurate and fast memory-economic sparse training
 602 framework on the edge. *Advances in Neural Information Processing Systems*, 34:20838–20850,
 603 2021.

604

605 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He,
 606 Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-
 607 efficient fine-tuning. *arXiv preprint arXiv:2303.10512*, 2023.

608 Yingtao Zhang, Jialin Zhao, Wenjing Wu, and Alessandro Muscoloni. Epitopological learning and
 609 cannistraci-hebb network shape intelligence brain-inspired theory for ultra-sparse advantage in
 610 deep learning. In *The Twelfth International Conference on Learning Representations*, 2024.

611 Yingtao Zhang, Diego Cerretti, Jialin Zhao, Wenjing Wu, Ziheng Liao, Umberto Michieli, and
 612 Carlo Vittorio Cannistraci. Brain network science modelling of sparse neural networks enables
 613 transformers and llms to perform as fully connected. *arXiv preprint arXiv:2501.19107*, 2025.

614

615 Jialin Zhao, Yingtao Zhang, Xinghang Li, Huaping Liu, and Carlo Vittorio Cannistraci. Sparse
 616 spectral training and inference on euclidean and hyperbolic neural networks. *arXiv preprint
 617 arXiv:2405.15481*, 2024a.

618 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 619 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint
 620 arXiv:2403.03507*, 2024b.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A SPARSITY CONFIGURATION FOR LLaMA-60M AND LLaMA-130M
649650 The sparsity configuration for methods combining a sparse branch with a low-rank branch is defined
651 by two values: s , the sparsity of the connectivity-sparse component, and r , the rank of the low-rank
652 component.653 In our experiments, for each fixed total sparsity, we varied the sparsity-configuration in steps of
654 $\Delta s = 0.05$. That is, whenever the parameter count of one branch was reduced by 5% relative
655 to dense training, the parameter count of the other branch was increased accordingly. Since the
656 sparsity of the connectivity-sparse branch is directly tied to the total sparsity, the main challenge
657 is determining the corresponding rank adjustment in the low-rank branch, which depends on the
658 structure of the LLaMA model.659 All linear layers in LLaMA are replaced by our sparse components. Because LLaMA models of
660 different sizes are built from repeated Transformer blocks with identical architecture, it suffices to
661 analyze a single block to establish the relationship between s and r . Each block contains seven linear
662 layers, denoted as Q, K, V, O, up, down, and gate. Among them, Q, K, V, and O have weight matrices
663 of size $h \times h$, while up, down, and gate have size $h \times f$, where h is the embedding dimension and
664 f is the feed-forward dimension. Hence, the step size of the rank r_{step} corresponding to $\Delta s = 0.05$
665 is determined by:

666
667
$$\frac{4(h + h)r_{\text{step}} + 3(h + f)r_{\text{step}}}{4(h \times h) + 3(h \times f)} = \Delta s = 0.05. \quad (7)$$

668
669

670 For LLaMA-60M with $h = 512$ and $f = 1376$, this yields a rank step size of approximately $r_{\text{step}} \approx$
671 16. For LLaMA-130M with $h = 768$ and $f = 2048$, the corresponding step size is $r_{\text{step}} \approx 24$.672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 B DETAILED HYPERPARAMETER SETTINGS FOR EACH METHOD

704 For fair comparison, almost all experiments adopt the common hyperparameter settings listed in
 705 Table 3, consistent with prior work.

707 Table 3: **Common hyperparameter settings** for experiments on LLaMA-60M and LLaMA-130M.
 708 The settings align with previous research.

709 Hyperparameter	710 LLaMA-60M	711 LLaMA-130m
712 Embedding Dimension	713 512	714 768
715 Feed-forward Dimension	716 1376	717 2048
718 Global Batch Size	719 512	720 512
721 Sequence Length	722 256	723 256
724 Training Steps	725 10000	726 20000
727 Warmup Steps	728 1000	729 2000
730 Learning Rate	731 3e-3	732 3e-3
733 Optimizer	734 Adam	735 Adam
736 Layer Number	737 8	738 12
739 Head Number	740 8	741 12
742 Iterative warmup steps	743 20	744 20
745 Update Interval for DST	746 100	747 100

721 There are several exceptions, particularly for dense training and CoLA. For dense training, due to the
 722 substantially larger number of parameters, a high learning rate leads to model collapse. Therefore,
 723 we adopt a learning rate of 1e-3, following the setup in Zhang et al. (2025). For CoLA, we observed
 724 strong sensitivity to the choice of optimizer: using Adam causes training collapse (with perplexity
 725 exceeding 100). To stabilize training, we use the AdamW optimizer provided in their official code.

726 Method-specific hyperparameter settings are as follows:

727 **DST methods (SET, Rigl, MEST, CHTs):** We follow the hyperparameter configurations reported
 728 in Zhang et al. (2025). Specifically, results for LLaMA-60M on OpenWebText are directly imported
 729 from Zhang et al. (2025). For experiments not covered in that study, we set $r = 0.25$ for the BRF
 730 initialization of CHTs, as it was reported to yield the highest win rate.

731 **CoLA:** Apart from the hyperparameters in Table 3, we use the same settings as those provided in
 732 the official code release.

733 **SLTrain:** The coefficient α that controls the contribution of the low-rank branch is set to 32 for
 734 LLaMA-60M and 16 for LLaMA-130M, following Han et al. (2024). We also found SLTrain to be
 735 highly sensitive to the sparsity-configuration (i.e., the allocation of parameters between branches)
 736 under total sparsities of [0.9, 0.8, 0.7]. To provide reliable results and fair comparison, we searched
 737 configurations with a step size of 0.05 sparsity (corresponding to rank steps of 16 for LLaMA-60M
 738 and 24 for LLaMA-130M). The best configurations are summarized in Table 4.

739 **CHTsL:** We employ CHTs with BRF initialization and set $r = 0$. The alignment loss coefficient
 740 λ is set to 0.5 for LLaMA-60M on OpenWebText and LLaMA-130M, and 0.3 for LLaMA-60M on
 741 C4. The sparsity-configuration is tuned with a step size of 0.05. As shown in Section 5.3, the best
 742 configurations consistently converge to 1:1 allocation between the two branches on OpenWebText,
 743 and $s = 0.95$ on C4. A full summary of the best configurations is provided in Table 5.

744

745

746

747

748

749

750

751

752

753

754

755

756
757
758
759
760761 Table 4: **The best sparsity-configuration for SLTrain** under different total sparsity. s_{total} refers
762 to total sparsity, s refers to sparsity in the connectivity sparse branch, r refers to the rank in low-
763 rank branch. The last column reports the proportion of parameters in connectivity sparse branch
764 compared with spectral sparse (low-rank) branch.765
766
767
768
769
770
771
772
773
774
775
776
777
778

Dataset	Model	Sparsity-Configuration			
		s_{total}	s	r	$d_{connectivity} : d_{spectral}$
OpenWebText	LLaMA-60M	0.9	0.95	16	1:1
		0.8	0.9	32	1:1
		0.7	0.85	48	1:1
	LLaMA-130M	0.9	0.95	24	1:1
		0.8	0.85	24	3:1
		0.7	0.85	72	1:1
C4	LLaMA-60M	0.9	0.95	16	1:1
		0.8	0.9	32	1:1
		0.7	0.9	64	1:2
	LLaMA-130M	0.9	0.95	24	1:1
		0.8	0.95	72	1:3
		0.7	0.85	72	1:1

779
780
781
782
783
784
785
786
787
788789 Table 5: **The best sparsity-configuration for CHTsL** under different total sparsity. s_{total} refers
790 to total sparsity, s refers to sparsity in the connectivity sparse branch, r refers to the rank in low-
791 rank branch. The last column reports the proportion of parameters in connectivity sparse branch
792 compared with spectral sparse (low-rank) branch.793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Dataset	Model	Sparsity-Configuration			
		s_{total}	s	r	$d_{connectivity} : d_{spectral}$
OpenWebText	LLaMA-60M	0.9	0.95	16	1:1
		0.8	0.9	32	1:1
		0.7	0.85	48	1:1
	LLaMA-130M	0.9	0.95	24	1:1
		0.8	0.9	48	1:1
		0.7	0.85	72	1:1
C4	LLaMA-60M	0.9	0.95	16	1:1
		0.8	0.95	48	1:3
		0.7	0.95	80	1:5
	LLaMA-130M	0.9	0.95	24	1:1
		0.8	0.95	72	1:3
		0.7	0.95	120	1:5

810 **C EASED CANCELLATION EFFECT UNDER ALIGNMENT-ENHANCED**
811 **INTEGRATION**
812

813 In this section, we present the OCR curves of different integration schemes across various total spar-
814 sity levels for LLaMA-60M on OpenWebText, as a supplement to Section 5.1. Figures 4 and 5 show
815 the OCR curves under total sparsity levels of 0.8 and 0.7, respectively, where the sparsity configu-
816 ration is constrained such that the two branches contain the same number of trainable parameters.
817 These results correspond to the second and third rows of Table 1, respectively.
818

819 **D USAGE OF LLM**
820

821 In this work, Large Language Model (LLM) is primarily used to assist with tasks such as text refine-
822 ment, summarization, and improving the clarity and readability of the manuscript. The LLM helps
823 streamline writing and editing, ensuring that technical content is clearly and accurately presented.
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 4: **The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.8, with sparsity-configuration $s = 0.9, r = 32, d_{connectivity} : d_{spectral} = 1 : 1$.** Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the experiment of the second row of Table 1. For space limit, we report here the self-attention layers in the model, where each column refers to Q, K, V, O respectively.

Figure 5: **The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.7, with sparsity-configuration $s = 0.85, r = 48, d_{\text{connectivity}} : d_{\text{spectral}} = 1 : 1$.** Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the experiment of the third row of Table 1. For space limit, we report here the self-attention layers in the model, where each column refers to Q, K, V, O respectively.

972 **E ALIGNMENT SCHEME ON STATIC SPARSE TRAINING WITH LOW-RANK**
973 **TRAINING**
974

975 To further validate the effectiveness of the proposed alignment-enhanced integration scheme, we ad-
976 ditionally evaluate it in the “static sparse + low-rank” setting by comparing models trained with and
977 without alignment. Table 6 reports results on LLaMA-130M across multiple datasets and total spar-
978 sity levels, under the constraint that the connectivity-sparse and low-rank components occupy the
979 same number of parameters ($\frac{d_{\text{connectivity}}}{d_{\text{spectral}}} = 1$). Statistical significance is confirmed using the Wilcoxon
980 signed-rank test. With $p\text{-value} < 0.05$, the alignment-enhanced model achieves significantly better
981 performance than the naive integration baseline.
982

983 **Table 6: Comparison between different integration strategies for ”Static + Low-rank” Com-
984 bination.** The table consists of two parts: **a. The performance of different integration strate-
985 gies**, reported in terms of validation perplexity (PPL \downarrow). The *Naive* strategy corresponds to a simple
986 sum of static sparse and low-rank factorization. The *Act* strategy applies activation adjustment to
987 the low-rank factorization branch. The *Act+Align* strategy combines activation adjustment with
988 the alignment loss. The coefficient of the alignment loss λ is 0.3. The sparsity configuration
989 is set such that the sparse branch and the low-rank branch have the same number of trainable
990 parameters ($\frac{d_{\text{connectivity}}}{d_{\text{spectral}}} = 1$). **b. The Wilcoxon signed-rank test p-values**, which indicate whether
991 the differences in performance between strategies are statistically significant.
992

Model	Dataset	Total Sparsity	Naive	Act	Act+Align
LLaMA-130M	openwebtext	0.9	31.52	25.44	25.41
		0.8	22.44	22.37	22.36
		0.7	21.25	41.51	20.97
	c4	0.9	31.49	31.62	31.44
		0.8	28.21	28.35	28.12
		0.7	26.90	26.52	26.36
Wilcoxon signed-rank p-value	against <i>Naive</i>		\	1	0.03125
	against <i>Act</i>		\	\	0.03125

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **F OCR AND GLOBAL COSINE SIMILARITY**
10271028 To better understand the cancellation phenomenon between the sparse and low-rank branches, we
1029 compare the proposed Overlap Cancellation Ratio (OCR) with commonly used global cosine simi-
1030 larity. While these metrics are related, they capture fundamentally different aspects of cancellation.
10311032 **F.1 CONCEPTUAL DIFFERENCE**
10331034 Global cosine similarity measures only directional alignment between vectors but ignores magni-
1035 tude, which is crucial for assessing the severity of cancellation. In contrast, OCR explicitly quanti-
1036 fies the fraction of overlapping magnitude that is canceled due to opposite signs.
10371038 This distinction can be illustrated by the following examples, both with cosine similarity equal to 0:
10391040

- **Example A (strong cancellation):** $S = [10, -10]$, $L = [10, 10]$. Then $S + L = [20, 0]$,
1041 indicating half cancellation. $OCR = 0.5$ ((ignoring the small ϵ in the denominator)).
- **Example B (minimal cancellation):** $S = [100, 0]$, $L = [0, 100]$. Then $S + L = [100, 100]$,
1042 indicating almost no cancellation. $OCR = 0$.

10431044 These examples demonstrate that while cosine similarity may indicate similar or opposite directions,
1045 it does not capture the magnitude of signal lost. OCR complements cosine similarity by explicitly
1046 measuring this magnitude-based cancellation.
10471048 **F.2 EMPIRICAL OBSERVATION WITH COSINE SIMILARITY**
10491050 To provide a thorough observation, we include here cosine similarity plots corresponding to the
1051 training of LLaMA-60M on OpenWebText under different total sparsities (0.9, 0.8, 0.7) as a sup-
1052 plement. The settings are exactly the same as the reported in Section 5.1 and Section C where OCR
1053 plots are reported. Figures 6, 7, and 8 show the evolution of cosine similarity between the outputs
1054 of the sparse and low-rank branches during training.
10551056 These curves demonstrate that the alignment-enhanced training scheme increases directional align-
1057 ment between the two branches, with a notably higher cosine similarity observed in the Q and K
1058 layers. This observation complements the OCR measure, confirming that the alignment loss not
1059 only reduces magnitude-based cancellation but also improves global directional alignment.
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 6: **The layer-wise cosine similarity plot** of LLaMA60M on OpenWebText with a total sparsity of 0.9, with sparsity-configuration $s = 0.95, r = 16, d_{connectivity} : d_{spectral} = 1 : 1$. Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the experiment of the first row of Table 1. For space limit, we report here the self-attention layers in the model, where each column refers to Q, K, V, O respectively.

Figure 7: **The layer-wise cosine similarity plot** of LLaMA60M on OpenWebText with a total sparsity of 0.8, with sparsity-configuration $s = 0.9, r = 32, d_{connectivity} : d_{spectral} = 1 : 1$. Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the experiment of the second row of Table 1. For space limit, we report here the self-attention layers in the model, where each column refers to Q, K, V, O respectively.

Figure 8: **The layer-wise cosine similarity plot** of LLaMA60M on OpenWebText with a total sparsity of 0.7, with sparsity-configuration $s = 0.85, r = 48, d_{connectivity} : d_{spectral} = 1 : 1$. Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the experiment of the third row of Table 1. For space limit, we report here the self-attention layers in the model, where each column refers to Q, K, V, O respectively.

1240
1241

1242 **G FURTHER DISCUSSION: APPLYING ALIGNMENT LOSS ONLY TO Q,K**
 1243 **LAYERS**
 1244

1245 According to the OCR plots, when applying the alignment loss to all linear layers, the cancellation
 1246 effect is primarily mitigated in the Q and K layers rather than uniformly across all layers. This
 1247 observation motivates a more efficient approach: applying the alignment loss exclusively to the Q
 1248 and K layers.

1249 To investigate this, we conducted experiments with CHTsL applying alignment loss only to Q and K
 1250 layers (*Align_qk*) and only except Q/K layers (*Align_others*), compared with those obtained by ap-
 1251 plying alignment loss to all layers (*Align_all*), using exactly the same best hyperparameter settings
 1252 as summarized in Section B. The results, presented in Table 7, demonstrate that restricting the align-
 1253 ment loss to Q and K layers yields similar or even improved performance compared to applying it to
 1254 all layers. Align Q/K layers significantly outperforms align other linear layers, with the Wilcoxon
 1255 signed-rank p-value lower than 0.05.

1256 These findings further validate that OCR accurately captures the cancellation effect and highlight
 1257 that the alignment loss can be implemented more efficiently, achieving comparable or better results
 1258 with reduced computational cost. Moreover, this observation provides a useful perspective for future
 1259 work building upon this study, suggesting that targeted alignment may be sufficient to achieve strong
 1260 performance while saving computation.

1261 **Table 7: Validation perplexity of models based on alignment to different components.** Align_qk
 1262 refers to CHTsL with alignment only to Q, K layers, while Align_all refers to the original CHTsL
 1263 with alignment to all linear layers. Validation perplexity (PPL \downarrow) is reported in this table for different
 1264 methods on different datasets under the same constraint of total sparsity s_{total} . Bold values are the
 1265 best performance.

Model	Dataset	Total Sparsity	Align_qk	Align_other	Align_all	
LLaMA-60M	OpenWebText	0.9	32.012	32.224	31.772	
		0.8	29.066	29.353	29.109	
		0.7	27.279	27.802	27.400	
	C4	0.9	39.376	39.713	39.291	
		0.8	35.860	36.281	35.949	
		0.7	34.194	34.437	34.191	
LLaMA-130M	OpenWebText	0.9	24.251	24.400	24.071	
		0.8	21.878	21.772	21.866	
		0.7	20.690	26.655	20.648	
	C4	0.9	30.135	30.454	30.034	
		0.8	27.567	27.798	27.593	
		0.7	26.143	38.250	26.190	
Average score			29.04	30.76	29.01	
Win Rate			0.42	0.08	0.5	
signed-rank p-value	against	Align_qk	\	0.00098	0.62207	
	against	Align_other	\	\	0.00098	

1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 H RESULTS ON MODELS WITH LARGER SIZE

1298 We conducted experiments on the larger LLaMA-350M and LLaMA-1B on OpenWebText to further
 1299 evaluate the effectiveness of CHTsL at scale. Due to limitations in time and computational resources,
 1300 we selected SLTrain, CHTs and CoLA as the most competitive sparse training baselines. Also, we
 1301 provide the performance of dense model for reference.

1302 The common hyperparameter settings for all methods are listed in Table 8. All hybrid methods,
 1303 including CHTsL and SLTrain, use a sparsity configuration of $d_{connectivity} : d_{spectral} = 1 : 1$.
 1304

1305 For CHTsL, the coefficient λ which controls the contribution of alignment loss is set to be 0.5.

1306 For SLTrain, the coefficient α controlling the contribution of the low-rank branch is set to 16 for
 1307 LLaMA-350M and 8 for LLaMA-1B, following Han et al. (2024).

1308 For CHTs under sparsity level 0.7 on LLaMA-1B, we directly imported the result reported in Zhang
 1309 et al. (2025), with learning-rate 3e-3.

1311 For dense model, since the number of trainable parameters is different from the sparse training
 1312 methods, we applied smaller learning rate following previous literature Zhang et al. (2025). For
 1313 LLaMA-350M, the adopted learning rate is 1e-3, while for LLaMA-1B, we directly imported the
 1314 result reported in Zhang et al. (2025) with learning rate 4e-4.

1315 The results are reported in Table 9. They show that CHTsL consistently achieves lower perplexity
 1316 across different total sparsity levels compared to the baselines on LLaMA-350M. On LLaMA-1B,
 1317 CHTsL outperforms all other methods at the 0.9 sparsity level, where the benefits of our approach be-
 1318 come particularly pronounced, while at the 0.7 sparsity level it remains competitive, though slightly
 1319 below CoLA. Overall, CHTsL demonstrates robust performance on large-scale models, underscor-
 1320 ing its scalability and its strong advantage especially under higher sparsity regimes.

1321 Table 8: **Common hyperparameter settings** for experiments on LLaMA-350M and LLaMA-1B.
 1322 The settings align with previous research.

1323	Hyperparameter	1324 LLaMA-350M	1324 LLaMA-1B
1324	Embedding Dimension	1024	2468
1325	Feed-forward Dimension	2736	5461
1326	Global Batch Size	512	512
1327	Sequence Length	256	256
1328	Training Steps	60000	100000
1329	Warmup Steps	6000	10000
1330	Learning Rate	3e-3	1e-3
1331	Optimizer	Adam	Adam
1332	Layer Number	24	24
1333	Head Number	16	32
1334	Iterative warmup steps	20	20
	Update Interval for DST	100	100

1335 Table 9: **Validation perplexity of different methods on LLaMA-350M.** Validation perplexity
 1336 (PPL \downarrow) is reported in this table for different methods on different datasets under the same constraint
 1337 of total sparsity s_{total} . Bold values are the best performance out of all sparse methods.

1338	Dataset	Method	LLaMA-350M			LLaMA-1B	
			s_total=0.9	s_total=0.8	s_total=0.7	s_total=0.9	s_total=0.7
1340	OpenWebText	Dense		14.90			14.62
		CHTs	19.69	17.82	17.88	17.35	14.53
		CoLA	20.92	17.60	16.13	16.03	13.08
		SLTrain	18.99	16.88	15.98	16.00	14.58
		CHTsL	18.40	16.54	15.86	15.16	13.31

1350 I ABLATION TEST FOR ACTIVATION FUNCTION

1352 As an ablation study, we conducted experiments on the low-rank branch using different activation
 1353 functions, including ReLU and GeLU, in comparison with SiLU. The hyperparameter settings were
 1354 kept the same as those reported in Section B.

1355 The results, presented in Table 10, show that CHTsL with SiLU activation in the low-rank branch
 1356 outperforms the alternatives in most cases.

1358 Table 10: **Validation perplexity of CHTsL based on different activation function.** SiLU is the
 1359 default one used in the main text. Validation perplexity (PPL \downarrow) is reported in this table for different
 1360 methods on different datasets under the same constraint of total sparsity s_{total} . Bold values are the
 1361 best performance.

1362 Model	1363 Dataset	1364 Total Sparsity	1365 ReLU	1366 GeLU	1367 SiLU
1368 LLaMA-60M	1369 OpenWebText	0.9	32.431	32.081	31.772
		0.8	29.607	29.280	29.109
		0.7	28.125	35.625	27.400
1370 LLaMA-130M	1371 C4	0.9	39.930	39.364	39.291
		0.8	36.871	36.045	35.949
		0.7	35.251	34.157	34.191
1372 LLaMA-130M	1373 OpenWebText	0.9	24.530	24.049	24.071
		0.8	22.219	21.999	21.866
		0.7	20.999	20.789	20.648
1374 LLaMA-130M	1375 C4	0.9	30.639	30.171	30.034
		0.8	28.252	27.762	27.593
		0.7	27.044	26.192	26.190

1404 **J ZERO-SHOT EVALUATION**
14051406 To further evaluate the generality of CHTsL, we assessed the trained models on downstream datasets
1407 from GLUE and SuperGLUE. We compared CHTsL with the strongest sparse training baselines,
1408 SLTrain and CHTs, as well as with the dense model. All sparse training methods were evaluated
1409 under a total sparsity of 0.9, with corresponding hyperparameter settings listed in Section B. Experi-
1410 ments were conducted using the `lm-eval` package, and accuracy (Acc) is reported.1411 The results, presented in Table 11, show that CHTsL achieves the highest win rate among the sparse
1412 training baselines and also outperforms the dense model. These findings further demonstrate the
1413 generality and effectiveness of CHTsL across downstream tasks.
14141415 **Table 11: Zero-shot results on downstream tasks.** CHTsL, SLTrain, and CHTs are evaluated under
1416 a total sparsity of 0.9. Results are reported in terms of accuracy (Acc), with the best-performing
1417 value in each row highlighted in bold. **Note that** if two or more methods achieve the same accuracy,
1418 all corresponding values are bolded and counted toward the win rate.

Model	Pretrain	Downstream	CHTsL	SLTrain	CHTs	Dense
LLaMA-60M	OpenWebText	CoLA	0.5292	0.6894	0.6913	0.6913
		Copa	0.5300	0.5700	0.5700	0.5200
		Hellaswag	0.2653	0.2649	0.2663	0.2619
		MNLI	0.3278	0.3310	0.3290	0.3282
		MRPC	0.3235	0.3995	0.6838	0.6789
		QNLI	0.4955	0.4935	0.4944	0.4946
		QQP	0.4126	0.3688	0.3682	0.3682
		RTE	0.5235	0.5126	0.4838	0.5018
		SST-2	0.5482	0.4908	0.4908	0.4920
		CoLA	0.6913	0.6903	0.4276	0.6846
C4	OpenWebText	Copa	0.4800	0.5200	0.5400	0.4500
		Hellaswag	0.2666	0.2644	0.2714	0.2656
		MNLI	0.3255	0.3340	0.3291	0.3281
		MRPC	0.6544	0.6495	0.6324	0.6740
		QNLI	0.4944	0.4915	0.4926	0.4939
		QQP	0.3682	0.3727	0.3692	0.3730
		RTE	0.5487	0.4874	0.5271	0.5162
		SST-2	0.4908	0.4931	0.4908	0.4908
		CoLA	0.6606	0.6568	0.6913	0.6913
		Copa	0.5700	0.5600	0.5600	0.6000
LLaMA-130M	OpenWebText	Hellaswag	0.2687	0.2656	0.2678	0.2699
		MNLI	0.3254	0.3320	0.3275	0.3272
		MRPC	0.5662	0.3775	0.6814	0.6740
		QNLI	0.4961	0.4950	0.4941	0.4946
		QQP	0.4015	0.3762	0.3682	0.3717
		RTE	0.5018	0.4477	0.4585	0.4765
		SST-2	0.5161	0.4920	0.4908	0.4908
		CoLA	0.6002	0.6443	0.6903	0.6903
		Copa	0.4700	0.4900	0.5300	0.5700
		Hellaswag	0.2713	0.2694	0.2701	0.2770
C4	OpenWebText	MNLI	0.3282	0.3274	0.3276	0.3274
		MRPC	0.5686	0.3211	0.4412	0.5074
		QNLI	0.5041	0.5003	0.4946	0.4946
		QQP	0.3720	0.4326	0.3683	0.3682
		RTE	0.5199	0.5162	0.4946	0.5018
		SST-2	0.4908	0.4920	0.4908	0.4908
		Win Rate		0.4167	0.1944	0.25

1454
1455
1456
1457

1458 **K INFERENCE MEMORY AND THROUGHPUT**
14591460 In this section, we report the inference memory usage and throughput for CHTsL, SLTrain, and
1461 the dense baseline. For CHTsL and SLTrain, the sparsity configuration was set to $d_{\text{connectivity}} : d_{\text{spectral}} = 1 : 1$, under a total sparsity 0.9. Each model was run for 5000 inference steps with
1462 dummy inputs of batch size 128 and sequence length 256. We record the maximum memory usage
1463 using `torch.cuda.max_memory_allocated` (in GB) and measure the average throughput
1464 (Tokens/sec). Experiments were conducted on a single NVIDIA A100-80GB GPU.
14651466 The inference memory and throughput of CHTsL are theoretically identical to those of SLTrain, as
1467 the two differ only in the training procedure while sharing the same inference-stage architecture.
1468 Both methods gain efficiency from:1469

- 1470 • sparse matrix multiplication in the connectivity-sparse branch
- 1471 • low-rank multiplication in the spectral-sparse branch.

1472 For accurate inference benchmarking, we evaluated the trained CHTsL checkpoints using the
1473 SLTrain C++ codebase. For CHTsL, two minimal modifications were made: (1) adding the
1474 activation function required by the spectral-sparse branch, and (2) correcting the computation order
1475 in the low-rank branch, which in the original SLTrain implementation computed $B @ A$ and then
1476 $B @ A @ X$ and thus introduced redundant operations.
14771478 Table 12 shows that CHTsL achieves both **lowest memory usage** and **highest throughput** out of
1479 three models. The advantage in throughput arises from the corrected low-rank computation order,
1480 as mentioned above in the second modification. This demonstrates that CHTsL already provides
1481 practical efficiency benefits while holding even greater theoretical potential.1482 Finally, we emphasize that neither CHTsL nor SLTrain can fully realize their theoretical speed-ups
1483 due to current software and hardware limitations. PyTorch does not provide efficient kernels for un-
1484 structured sparsity, and modern GPUs offer minimal acceleration for unstructured sparse operations.
1485 Thus, all unstructured sparse methods are currently operating below their theoretical limits.1486 Overall, CHTsL outperforms the dense baseline in both memory and speed, and its efficiency ad-
1487 vantage is likely to increase further as frameworks and hardware improve support for unstructured
1488 sparsity.1489 Table 12: **Inference memory and throughput of different methods.** For each model, inference
1490 was conducted for 5000 steps, with maximum memory and average throughput reported. Experi-
1491 ments are conducted on 1 x NVIDIA A100-80GB, with dummy input of batch size 128 and sequence
1492 length 256.
1493

Model	Method	Memory (GB)	Throughput (Tokens/s)
LLaMA-60M	Dense	2.606	773111
	SLTrain	2.573	749985
	CHTsL	2.573	786004
LLaMA-130M	Dense	3.392	343310
	SLTrain	3.278	337149
	CHTsL	3.278	386483

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 **L GRADIENT LEVEL CANCELLATION**
15131514 To further examine the cancellation effect at the gradient level, we analyze the input gradients of the
1515 two branches (i.e., the gradients of x with respect to Wx and $Bf(Ax)$). Experiments were conducted
1516 on LLaMA-60M with OpenWebText under a total sparsity level of 0.9 and a sparsity configuration
1517 of $d_{connectivity} : d_{spectral} = 1 : 1$, corresponding to the first row of Table 1.1518 We plot the OCR curves between the input gradients of the two branches. Figure 9 compares the
1519 curves of the Naive combination with those of the alignment-enhanced integration. The results show
1520 that, at the gradient level, certain layers exhibit a reduced cancellation effect (e.g., the 5th Q layer).
1521 However, the phenomenon is less pronounced than at the output level, which is expected since the
1522 alignment loss directly acts on the outputs rather than on the gradients.
15231524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 9: **The layer-wise gradient-level OCR plot** of LLaMA60M on OpenWebText with a total sparsity of 0.9, with sparsity-configuration $s = 0.95, r = 16, d_{connectivity} : d_{spectral} = 1 : 1$. Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the experiment of the first row of Table 1. For space limit, we report here the self-attention layers in the model, where each column refers to Q, K, V, O respectively.

1620 **M ALIGNMENT ON DIFFERENT COMBINATION OF CONNECTIVITY SPARSITY**
1621 **AND SPECTRAL SPARSITY**
1622

1623 In this section, we present results demonstrating how alignment works when combining different
1624 connectivity-based sparse training methods with low-rank training.
1625

1626 We conducted experiments using connectivity-based sparse training methods including static sparse
1627 training, SET, and CHTs, with different initialization strategies such as random and BSW in the
1628 work of Zhang et al. (2025).
1629

1630 We compare naive integration with alignment-enhanced integration on LLaMA-130M using the
1631 OpenWebText dataset, under a total sparsity level 0.9 with a sparsity configuration of $d_{\text{connectivity}} : d_{\text{spectral}} = 1 : 1$. The coefficient λ was chosen from 0.3 and 0.5.
1632

1633 Results in Table 13 show that the alignment-enhanced training scheme consistently improves perfor-
1634 mance compared with naive integration. Moreover, for dynamic connectivity-based sparse training
1635 method CHTs, BSW initialization outperforms random initialization, which is consistent with previ-
1636 ous literature and further validates the reliability of our results. These findings further confirms the
1637 generality of the alignment training scheme on combining connectivity sparse training and spectral
1638 sparse training.
1639

1640 **Table 13: Validation perplexity under different combination of connectivity sparsity and spec-
1641 tral sparsity.** *Naive* refers to simple integration of connectivity sparsity. *Act+Align* refers to activa-
1642 tion and alignment-enhanced integration. Bold value refers to the better performance considering
1643 different integration strategy.
1644

DST	Initialization	Naive	Act+Align
Static	random	22.44	22.36
	BSW	380.88	21.88
SET	random	356.08	22.54
	BSW	22.55	22.22
CHTs	random	22.46	22.20
	BSW	22.11	21.87

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674 **N EASED CANCELLATION EFFECT ON LLaMA-350M**
16751676 In this section, we present the OCR curves of LLaMA-350M with and without the alignment training
1677 scheme. Due to time constraints, we compare only the naive integration approach, which simply
1678 sums the outputs of the two branches, with the proposed alignment scheme, which leverages both
1679 the activation in the low-rank branch and an explicit alignment loss.1680 All experiments are conducted under an overall sparsity of 0.9, using the sparsity configuration
1681 $s = 0.95, r = 32, d_{connectivity} : d_{spectral} = 1 : 1$. The validation perplexity is reported in Table 14,
1682 where the performance of the naive integration collapses. The OCR curves in Figure 10 during
1683 training show that, under the alignment training scheme, the OCR value decreases significantly,
1684 especially in the Q, K layers, as also observed in smaller models. In contrast, the OCR of the naive
1685 integration is highly unstable, which stems from the training collapse.1686 Table 14: **Validation perplexity on LLaMA-350M** under different integration strategy of CHTs and
1687 low-rank trainin. *Naive* refers to simple integration. *Act+Align* refers to activation and alignment-
1688 enhanced integration. Bold value refers to the better performance considering different integration
1689 strategy.

Model	Dataset	Sparsity	Naive	Act+Align
LLaMA-350M	OpenWebText	0.9	604.48	18.40

1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 10: **The layer-wise output-level OCR plot** of LLaMA-350M on OpenWebText with a total sparsity of 0.9, with sparsity-configuration $s = 0.95, r = 32, d_{\text{connectivity}} : d_{\text{spectral}} = 1 : 1$. Each subplot in the figure reports the changes of OCR over training steps. For space limit, we report here the first 8 self-attention layers in the model, where each column refers to Q, K, V, O respectively.