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ABSTRACT

With the rapid development of large language models (LLMs), identifying effi-
cient strategies for training such large-scale systems has become increasingly crit-
ical. Although LLMs have achieved remarkable success across diverse applica-
tions, the necessity of maintaining full dense matrices during pre-training has been
questioned, giving rise to parameter-efficient sparse pre-training methods which
retains parameter-efficiency in both training and inference. These methods can be
further divided into connectivity sparse training and spectral sparse training, with
dynamic connectivity sparse training and low-rank factorization emerging as rep-
resentative approaches for the two branches. However, a unified framework that
effectively combines the strengths of both has yet to be established. In this work,
we observe that the cancellation effect between the sparse and low-rank branches
may limit the expressivity of the model, manifesting as output conflicts when the
two components are combined. To address this issue, we propose a novel scheme
that integrates dynamic sparse training with low-rank training, introducing a sim-
ple yet effective alignment loss to mitigate the disagreement between the two
branches and promote better collaboration. We validate this scheme by combin-
ing a representative dynamic sparse training method, CHTs, with low-rank train-
ing, resulting in a new parameter-efficient training approach termed CHTSsL. The
method is evaluated on LLaMA60M and LLaMA130M using the OpenWebText
and C4 datasets, where only 10%, 20%, and 30% of the parameters are preserved
compared to dense training. Experimental results demonstrate that our proposed
scheme effectively alleviates the cancellation effect and improves training stabil-
ity and performance compared to the naive combination of sparse and low-rank
components. Also, the new scheme enables CHTsL to consistently outperform
other parameter-efficient sparse training methods under the same parameter bud-
get, achieving performance most close to dense training.

1 INTRODUCION

Large language models (LLMs) have attracted tremendous attention due to their superior perfor-
mance across a wide range of tasks. Despite their impressive capabilities, training LLMs from
scratch remains extremely memory-intensive and computation-intensive (Samsi et al.| 2023)), mak-
ing it challenging to scale such models under reasonable resource constraints. This has motivated
extensive research on efficient methods that reduce computational and memory costs while retaining
competitive performance. One of the most direct strategies is to reduce the number of parameters.
Early studies on pruning and low-rank fine-tuning (Hu et al., [2022} [Zhang et al., [2023} Renduchin-
tala et al., 2023} [Sheng et al., |2023} [Liu et al., 2024; |Kopiczko et al., 2023} |Dettmers et al.l [2023))
have shown that even after removing or compressing a large fraction of parameters, models can still
preserve much of their original representational capacity. These findings suggest that parameter-
efficient model manipulation is feasible, and they naturally motivate the extension from pruning or
finetuning to sparse pretraining, where models are trained from scratch under constrained parameter
budgets while maintaining competitive performance compared with dense training.

We divides current approaches to sparse pre-training can be broadly into two branches: connec-
tivity sparse training and spectral sparse training, which refers to those methods utilizing low-rank
factorization during pretraining.
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The former branch focuses on enforcing sparsity in the connectivity of weight matrices, with dy-
namic connectivity sparse training emerging as a representative technique(Mocanu et al., 2018;
Jayakumar et al., 2020; [Evci et al.| [2020; |Yuan et al.l 2021; |[Zhang et al., [2024} |2025). Dynamic
connectivity sparse training maintains a sparse connectivity pattern throughout pre-training, dynam-
ically changing the sparse connectivity and updating active weights to approximate the capacity
of dense models. Recent works have shown that on multiple tasks, dynamic sparse training can
approach or even surpass the performance of dense models with as little as 10% of the trainable
parameters, marking a significant step forward in efficient training(Zhang et al., [2024).

The second branch, spectral sparse training (Zhao et al., [2024a)), is typically instantiated through
low-rank factorization. Since the low-rank factors are updated during training, the spectral rep-
resentation they induce also evolves accordingly, which makes spectral sparse training inherently
dynamic. Initially proposed in the context of LLM fine-tuning (Hu et al [2022), low-rank methods
decompose weight matrices into low-dimensional components, training only the low-rank repre-
sentations while freezing the full-rank backbone. These approaches drastically reduce the number
of trainable parameters and leverage the pre-trained dense model’s representational power. More
recent attempts have extended low-rank factorization to the pre-training stage (Lialin et al., 2023
Zhao et al., 2024b; [Xia et al., 2024; Meng et al., [2024} [Zhao et al., 2024a). However, these methods
still require the use of full dense matrices during the forward pass, rather than maintaining the spec-
tral sparse structure consistently from training to inference. Overcoming this limitation, successors
like CoLA (L1u et al., [2025)) preserve the low-rank structure throughout both training and inference,
further validating the feasibility of spectral sparse training.

While previous attempt SLTrain (Han et al., 2024) explored combining sparse and low-rank com-
ponents, the design remains limited in two key aspects. First, the sparse branch in SLTrain is static,
serving only as a supplementary term to spectral sparse training rather than leveraging the full poten-
tial of dynamic connectivity sparse methods. Second, SLTrain simply performs a pure summation
of sparse and low-rank outputs, without any mechanism to promote effective interaction.

In this work, we take a step in this direction. We observe that naive integration of sparse and low-
rank branches often suffers from a cancellation effect, where the two components produce conflict-
ing representations that weaken expressivity and hinder convergence. To address this challenge, we
propose a new scheme that integrates dynamic connectivity sparse training with low-rank training
under the guidance of alignment loss, which aligns the two branches and promotes cooperative learn-
ing. Specifically, we instantiate our framework by combining the advanced dynamic sparse training
method CHTs (Zhang et al.,[2025)) with low-rank factorization, resulting in a new parameter-efficient
pre-training approach, CHTsL. Extensive experiments on LLaMA-60M and LLaMA-130M (Tou-
vron et al., 2023agb)) with OpenWebText and C4 show that CHTSL consistently outperforms state-
of-the-art parameter-efficient sparse training baselines under the same parameter budget. Notably,
with only 10%, 20%, or 30% of parameters preserved relative to dense training, CHTsL achieves
performance closest to dense models, which would benefit by retaining efficiency in training, infer-
ence, and storage.

Our contributions can be summarized as follows:

First integration of connectivity sparse and spectral sparse in dynamic sparse training. We
make the first attempt to genuinely integrate connectivity sparse and spectral sparse in dynamic
sparse training, with dynamic connectivity and dynamic low-rank representaion. Unlike prior work
such as SLTrain, where static connectivity sparsity merely served as a supplement to spectral spar-
sity, our approach fully leverages the complementary strengths of both paradigms.

Alignment-enhanced unified scheme. We identify the cancellation effect as a key obstacle in com-
bining sparse and low-rank branches, where conflicting representations weaken model expressivity.
To address this, we introduce the overlapping cancellation ratio (OCR) as a quantitative measure,
and propose a unified integration scheme that emphasizes interaction and cooperation rather than
naive branch summation. By incorporating an alignment loss, our framework explicitly mitigates
conflicts, enhances collaboration, and alleviates the observed cancellation phenomenon in attention
Q and K matrices.

Instantiation with CHTsL and empirical superiority. We instantiate the framework by combining
advanced CHT's with low-rank factorization, yielding the proposed method CHTSsL. Extensive exper-
iments across different datasets, models, and parameter budgets demonstrate that CHTsL achieves
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consistently strong performance, ranking first among all parameter-efficient methods with the same
parameter scale, and approaching dense model performance with significantly fewer parameters.

2 RELATED WORK

The rapid growth of large language models (LLMs) has stimulated extensive research into improving
efficiency in pre-training. Among various directions, parameter-efficient approaches have emerged
as particularly promising, aiming at training models with limited number of parameters without
significantly sacrificing performance. Broadly, parameter-efficient methods in the context of pre-
training can be divided into two branches: connectivity sparse training, which reduces parameters
by enforcing sparse connectivity patterns, and spectral sparse training, which constrains weight
matrices into low-rank subspaces. Dynamic connectivity sparse training and low-rank factorization
are the representative approaches for these two paradigms.

2.1 DyYNAMIC CONNECTIVITY SPARSE TRAINING

Connectivity sparsity originates from the classical line of pruning (LeCun et al.,|1989; Han et al.,
2015; Molchanov et al.| 2016)), where removing parameters from dense models was shown to pre-
serve much of the model’s performance. Inspired by this, researchers began to explore whether spar-
sity could be maintained throughout training, rather than applied only as a post-hoc compression.
Among these efforts, methods that promote sparse training through dynamic adjustment of connec-
tivity have gained increasing attention, as they often outperform static sparse training approaches
that prune connections solely at initialization (Prabhu et al.,[2018};|Lee et al.,[2018};|Dao et al., 2022;
Stewart et al., [2023). The pioneering work Sparse Evolutionary Training (SET) (Mocanu et al.
2018) removes links while introducing random rewiring of sparse connections during training to
maintain model plasticity. RigL (Evci et al., [2020) further dynamically regrows connections based
on gradient for more effective exploration, though it requires computing gradients of the full weight
matrix during the backward pass. MEST (Yuan et al., 2021) improves upon this by leveraging both
weight and gradient information. CHT (Zhang et al.,|2024)) and its successor CHTs (Zhang et al.,
2025)) enhance dynamic sparse training using the Cannistracci-Hebbian theory (Muscoloni et al.,
2022) from network science, inspired by brain connectomes, achieving state-of-the-art performance
on multiple tasks. Collectively, these studies demonstrate that dynamic sparse training can attain
competitive or even superior performance compared to dense training, while using only 10% or
fewer of the parameters (Zhang et al., [2025).

2.2 LOW-RANK FACTORIZATION FOR SPECTRAL SPARSE TRAINING

Complementary to connectivity sparsity, spectral sparse training leverages low-rank factorization
to reduce the dimensionality of weight matrices. This idea was first popularized in the fine-tuning
setting, where LoRA (Hu et al.| [2022) adapts pretrained models by learning only low-rank updates
rather than full weight matrices. Subsequent works (Hu et al.l 2022} [Zhang et al.| 2023} Renduch-
intala et al.| [2023; Sheng et al.| 2023 [Kopiczko et al., 2023 Dettmers et al.,[2023}; [Liu et al., [2024])
further demonstrate the effectiveness of low-rank fine-tuning and inspire the exploration of training
from scratch with low-rank factorization. ReLoRA (Lialin et al.| 2023) introduces reparameteriza-
tion to improve training efficiency and stability, while GaLore (Zhao et al.,[2024b)) reduces memory
usage by applying low-rank projections in the gradient space during training. However, a common
limitation of these approaches is that the full dense weight matrix is still required during the for-
ward pass, providing parameter efficiency only during training but not during inference. In contrast,
CoLA (Liu et al., 2025) explicitly maintains the low-rank representation throughout both training
and inference, enabling reduced storage and runtime costs. In this study, we adopt CoLA (Liu
et al., [2025) as the baseline under the same restriction of parameter efficiency in both forward and
backward passes.

2.3 HYBRID ATTEMPT

Beyond individual paradigms, researchers have also begun to explore combining connectivity and
spectral sparsity. SLTrain (Han et al., [2024)) represents one of the earliest attempts in this direction.
It augments low-rank factorization with a sparse branch, but its design exhibits several limitations.
Specifically, the sparse component is static rather than dynamic, serving merely as a supplemen-
tary term to spectral sparsity instead of leveraging genuine connectivity sparse training. Moreover,
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SLTrain integrates the two branches via a simple summation, without introducing any collaborative
mechanism to exploit their potential synergy. As a result, while SLTrain marks an important step
toward hybrid parameter-efficient pre-training, it remains an immature solution, leaving room for
more principled approaches.

3 ALIGNMENT-ENHANCED INTEGRATION OF CONNECTIVITY SPARSE AND
SPECTRAL SPARSE

In this section, we present a unified approach for combining dynamic sparse training (connectivity
sparse) with low-rank factorization (spectral sparse) under extreme sparsity. While each method
alone can improve parameter-efficiency and memory-efficiency, their naive combination often leads
to conflicting outputs that limit the model’s effective capacity. We address this challenge with three
key steps: (i) identifying and quantifying the cancellation effect, (ii) introducing a training frame-
work that stabilizes low-rank outputs and encourages cooperation between branches, and (iii) in-
stantiating a method, CHTSsL, that integrates connectivity sparse and spectral sparse for dynamic
sparse training based on this framework.

3.1 CANCELLATION EFFECT AND OCR METRIC

When a sparse branch and a low-rank branch are trained together, a common phenomenon emerges:
their outputs sometimes point in opposite directions. This cancellation effect means that some
portion of the signal from one branch can be neutralized by the other, wasting representational
power. In other words, even if each branch individually carries meaningful information, their naive
sum may not fully reflect that information, effectively underutilizing the model’s capacity.

To quantify this, we define the Overlap Cancellation Ratio (OCR):

>o;min(|Sil, [Lf) +e
where S and L are the outputs of the sparse and low-rank branches, respectively. OCR measures the

fraction of overlapping signal that is canceled due to opposite directions, with naturally restricted in
the range [0, 1). A higher OCR indicates more severe cancellation.

OCR =

(D

3.2 TRAINING FRAMEWORK: ALIGNMENT LOSS AND ACTIVATION ADJUSTMENT

Alignment Loss for Cooperative Learning. When training using two distinct components, the
sparse and low-rank branches can produce conflicting signals. Intuitively, if one branch pushes a
feature in one direction while the other pushes in the opposite direction, the net effect is reduced
expressivity. To address this cancellation effect, we introduce an alignment loss that encourages the
outputs to move in similar directions:

l 1 !
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l

where B is the batch size and N is the number of elements in one sample’s output at layer /. This loss
penalizes discrepancies between the sparse and low-rank outputs, reducing destructive interference
and letting each branch focus on complementary aspects of representation. Each layer contributes
to the total alignment loss, which is then weighted in the final objective.

Activation Adjustment for Low-rank Stability. Low-rank factorization reduces the number of
trainable parameters but can sometimes produce unstable outputs, particularly under extreme spar-
sity. Inspired by CoLA [Liu et al.| (2025)), we apply a mild non-linear activation between the factor-
ized matrices:

LW = BOs(AOg), 3)

where o(+) is a non-linear function (SiLU (Hendrycks & Gimpel, 2016) in our experiments). Here,
the activation primarily serves to stabilize the low-rank outputs, maintaining a reasonable scale and
preventing numerical issues during training. Its role is mainly supportive, ensuring the low-rank
branch contributes reliably alongside the sparse branch.
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INSTANTIATING THE FRAMEWORK v

Based on this training framework, we propose

CHTSsL, which integrates dynamic connectiv- Figure 1: Workflow of CHTsL. The figure il-
ity sparse training method CHTs (Zhang etal.l  Justrates CHTSL as an example of alignment-
2025) with spectral sparse (low-rank) com-  enhanced integration between dynamic connec-
ponents. In CHTSL, the sparse branch fol-  tivity sparse training and spectral sparse train-
lows the CHTSs update rules, while the low-  ing. Specifically, the dynamic connectivity sparse
rank branch incorporates mild activation ad-  branch adopts the CHTs method.

justment, and the alignment loss is applied

layer-wise to encourage cooperative outputs.

This instantiation demonstrates how our framework naturally combines dynamic connectivity and
spectral sparsity, providing a practical approach for training extremely sparse models under a unified
scheme. Figure T]illustrates how CHTSsL works.

4 EXPERIMENT

4.1 MODELS

Experiments are based on Transformer models from the LLaMA family (Touvron et al.| |2023azb),
with parameter sizes ranging from 60M to 130M. All models are trained and evaluated on NVIDIA
A100 or A800 GPUs.

4.2 DATASETS

For training and evaluation, we adopt two widely used large-scale text corpora:

OpenWebText (Gokaslan & Cohen), 2019): A publicly available open-source replication of the
WebText dataset used in GPT-2. It is constructed by scraping URLs shared on Reddit with high
karma scores, covering a broad range of high-quality web content.

Colossal Clean Crawled Corpus (C4) (Raffel et al., [2020): A large-scale dataset derived from
web pages collected through Common Crawl. After extensive cleaning and filtering, it provides
high-quality natural language text suitable for large language model pre-training.

4.3 BASELINE METHODS

To verify the effectiveness of our method, we compare it against several parameter-efficient training
baselines with an equivalent number of trainable parameters. Specifically, we consider dynamic
connectivity sparse training methods including SET (Mocanu et al., [2018]), RigL. (Evci et al.}|[2020),
MEST (Yuan et al.,2021) and CHTs (Zhang et al.,2025)); spectral sparse training method CoLA |Liu
et al.| (2025)); hybrid method SLTrain (Han et al., 2024). We also report the performance of dense
training for comparison.

4.4 DEFINITION OF SPARSITY

Since this work integrates connectivity-based sparsity with spectral (low-rank) sparsity, it is neces-
sary to establish a consistent definition of sparsity. For both connectivity sparse and spectral sparse
(based on low-rank factorization of a full matrix), we adopt the same definition of sparsity s and
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corresponding density d, representing the fraction of parameters relative to a full-rank dense matrix,
which allows fair comparison across methods by reflecting the total number of trainable parameters:

g1 _phaAMS (5)
#paramsdense

For a connectivity sparse method, the original sparsity corresponds to the true sparsity of the net-
work. For a low-rank factorization of dense matrices of size m x n with rank r, the effective sparsity
is (m + n)r/(m - n). For a method that integrates both connectivity and spectral sparsity, the total
sparsity can be computed as

Stotal = 1- dconnectivity - dspectral' (6)

In our experiments, all methods are compared under the same total sparsity to ensure an equivalent
number of trainable parameters. For clarity in the Section [5] we report the total sparsity of each
method, and we additionally provide the sparsity-configuration for the integrated methods, which
includes the sparsity s of the connectivity sparse component, the rank r of the low-rank component,

: deonnectivit . .
and the proportion %szy of parameters between two branches in Appendix
apectra

4.5 HYPERPARAMETER SETTINGS

Alignment-enhanced training scheme introduces the coefficient A to control the effect of alignment
loss. We searched the A in the range [0, 0.1, 0.3 0.5, 0.7, 1] with preliminary experiments. For
LLaMA-60M on OpenWebText and LLaMA-130M, the appropriate A is 0.5; For LLaMA-60M on
C4, the appropriate A is 0.3.

For methods combining sparse and low-rank training (including SLTrain and CHTsL), the sparsity-
configuration mentioned in Section need to be considered under the same total parameter
budgets. We systematically varied the allocation of parameters between the sparse and low-rank
branches in steps corresponding to total sparsity of 5% and the best results across all sparsity-
configurations were reported. The step size for rank adjustment in the low-rank branch was calcu-
lated based on the model architecture, resulting in approximate step values of 16 for LLaMA-60M
and 24 for LLaMA-130M, of which the concrete calculation process can be found in Appendix [A]

All the other hyperparameters can be found in Appendix [Bf which is set to be the same maximally
for different methods for a fair comparison.

Table 1: Comparison between different integration strategies. The table consists of two parts:
a. The performance of different integration strategies, reported in terms of validation perplexity
(PPLJ). The Naive strategy corresponds to a simple sum of CHT's and low-rank factorization. The
Act strategy applies activation adjustment to the low-rank factorization branch. The Act+Align strat-
egy combines activation adjustment with the alignment loss. The coefficient of the alignment loss
A is reported in Section The sparsity configuration is set such that the sparse branch and the

low-rank branch have the same number of trainable parameters(dcg’”“w = 1). b. The Wilcoxon

spectral

signed-rank test p-values, which indicate whether the differences in performance between strate-
gies are statistically significant.

Model Dataset Total Sparsity | Naive Act Act+Align
0.9 32.64 32.21 31.77
OpenWebText 0.8 3335 | 29.42 29.11
0.7 27.89 | 29.94 27.40
LLaMA-60M 0.9 18955 | 39.66 | 39.29
C4 0.8 36.71 | 36.54 36.16
0.7 59142 | 34.55 34.33
0.9 119.35 | 24.45 24.07
OpenWebText 0.8 22.11 21.98 21.87
0.7 21.12 20.90 20.65
LLaMA-130M 0.9 30.77 [ 3030 | 30.03
C4 0.8 27.83 | 27.68 27.59
0.7 920.16 | 26.55 26.19
Wilcoxon signed-rank against Naive \ 0.0093 4.88e-4
p-value against Act \ 4.88e-4
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5 RESULT AND DISCUSSION

In this section, we present the experimental results. We first present the effectiveness of the
alignment-enhanced training scheme by comparing it with the naive integration of CHTs and low-
rank factorization. And then we compare different efficient training methods under the same param-
eter budget to present that CHTsL consistently improves the performance, realizing the performance
most close to dense training with limited parameters.

5.1 EFFECTIVENESS OF ALIGNMENT-ENHANCED INTEGRATION

Performance improvement To verify the effictiveness of the alignment-enhanced training
scheme, we compare CHTsL with the naive integration between CHTs and low-rank factorization.
In Table[I] we present the result of CHTs plus low-rank with different integration strategy on dif-
ferent models and datasets with different total sparsity, under the constraint that sparse component

. d . P
and low-rank component dominates the same number of parameters (%‘:”;”’ = 1). The re-
spectra

sults are validated by Wilcoxon signed-rank test for the statistical comparison. It shows that, with
p — value < 0.05, activation adjust of low-rank improves the training stability and the whole align-
ment training scheme makes CHTSsL significantly better than the naive integration.

Eased Cancellation Effect. Figure ] presents the OCR defined in Equation|[I] comparing the can-
cellation effect between the naive integration and the alignment-enhanced approach for the experi-
ment on LLaMA-60M with the OpenWebText dataset under a total sparsity of 0.9 , with sparsity-

configuration s = 0.95,r = 16, @26% = 1. We observe that incorporating the alignment
spectra

loss significantly reduces the OCR in the Query and Key layers, with performance substantially
surpassing that of the naive integration. A plausible explanation is that Q and K, as the core com-
ponents of attention, directly determine the attention weights via their dot product, making them
highly sensitive to inconsistencies between the dynamic sparse branch and the low-rank branch. En-
forcing alignment therefore stabilizes the attention maps and mitigates gradient conflicts, whereas
feed-forward or value projections are more tolerant to internal variations due to residual connec-
tions. Consequently, this targeted consistency in Q and K enhances the robustness of the attention
mechanism, leading to overall performance improvements. More evidence of experiments under
other sparsity levels can be found in Appendix

Table 2: Validation perplexity of different methods. Validation perplexity (PPLJ) is reported in
this table for different methods on different datasets under the same constraint of total sparsity S¢otq-
Bold values are the best performance out of all sparse methods.

LLaMA-60M LLaMA-130M
Dataset Method 5t0tal=0.9  8t0ta1=0.8  8t0ta1=0.7 | St0tai=0.9  St0tai=0.8  St0tai=0.7
Dense 26.56 19.46
SET 35.26 30.69 31.77 25.70 23.20 22.03
RigL 45.34 41.33 39.96 41.25 44 .49 70.11
OpenWebText MEST 33.6 29.94 28.26 25.59 22.93 21.63
CHTs 33.03 29.84 28.12 24.75 22.67 21.48
CoLA 37.58 30.87 28.53 27.67 23.86 22.18
SLTrain 33.90 29.83 27.86 25.33 22.81 21.25
CHTsL 31.77 29.11 27.40 24.07 21.87 20.65
Dense 33.21 24.55
SET 42.32 37.70 35.62 32.45 29.47 27.75
RigL 53.39 48.59 47.34 43.57 55.82 64.93
c4 MEST 41.46 37.28 35.40 32.54 29.29 27.59
CHTs 40.62 37.55 35.23 31.00 28.69 27.46
CoLA 46.41 38.58 35.87 33.52 29.26 27.25
SLTrain 41.05 37.00 34.89 31.38 28.28 26.78
CHTsL 39.29 35.95 34.19 30.03 27.59 26.19

5.2 CHTSL OUTPERFORMS OTHER SPARSE TRAINING METHODS

Table [2] reports the results of CHTsL in comparison with all baseline methods under the same total
parameter budget. The results demonstrate that CHTsL consistently outperforms all other methods
given the same parameter constraint. This provides strong evidence for the potential of integrating
connectivity sparse training with spectral sparse training, achieving performance closest to dense
training while preserving only 30% or fewer of the training parameters.
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Figure 2: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.9,
with sparsity-configuration s = 0.95,7 = 16, dconnectivity : spectral = 1 : 1. Each subplot in the
figure reports the changes of OCR over training steps. The plot is based on the experiment of the
first row of Table[I} For space limit, we report here the self-attention layers in the model, where
each column refers to Q, K, V, O respectively.
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Sensitivity to Sparsity Configuration
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Figure 3: Sensitivity analysis of sparsity configurations under a total sparsity of 0.7. The
sparsity-configuration is defined by the sparsity s in the connectivity-sparse branch and the rank
r in the low-rank branch. Each subplot illustrates the variation of validation perplexity (PPLJ]) as
the rank decreases by step of 5% total sparsity. Outliers with PPL values exceeding the correspond-
ing thresholds are highlighted in red, with their true values explicitly annotated.

5.3 SENSITIVITY TEST FOR SPARSITY CONFIGURATIONS

In Figure 3] we illustrate how validation perplexity (PPL]) varies with different sparsity configu-
rations across models and datasets under a fixed total sparsity of 0.7. On OpenWebText, when the
low-rank branch dominates the parameter budget far more than the connectivity-sparse branch (spar-
sity in the connectivity sparse branch exceeds 0.9), performance collapses. This instability may be
attributed to the dataset’s relatively limited complexity. Since OpenWebText is more homogeneous,
the model becomes more sensitive to imbalanced sparsity allocation. By contrast, on C4, which
contains substantially more diverse and heterogeneous text, a higher proportion of low-rank param-
eters proves beneficial. A possible explanation is that the increased variety of linguistic patterns
likely requires broader adaptations of the entire weight matrix, making low-rank components more
effective in capturing such variability.

6 CONCLUSION

In this work, we present a novel framework for parameter-efficient pre-training by systematically
integrating connectivity sparse training with spectral sparse in dynamic sparse training. We identify
the cancellation effect in naive integration as the key challenge, where conflicting representations
branches reduce expressivity and hinder convergence. To address this, we introduce the overlapping
cancellation ratio to quantify the effect and an alignment loss to encourage cooperative learning.
Building on this framework, we instantiate CHTSL by combining the advanced dynamic sparse
training method CHTs with low-rank factorization. Extensive experiments on LLaMA-60M and
LLaMA-130M with OpenWebText and C4 demonstrate that CHTsL consistently outperforms ex-
isting methods under equivalent parameter budgets. Our work is the first to systematically unify
dynamic connectivity and spectral sparse training, moving beyond static connectivity sparsity and
naive integration; it identifies and mitigates the cancellation effect, fostering effective collaboration
between the sparse and low-rank components; and it provides a practical instantiation that validates
the benefits of this integration. Overall, this study offers both theoretical insights and practical
solutions for efficient sparse pre-training, highlighting the potential of combining complementary
sparsity paradigms to maximize model expressivity under constrained resources.
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REPRODUCIBILITY STATEMENT

The code for this work is provided in the supplementary material. Detailed hyperparameter settings
for each method are presented in Appendix [B]to facilitate reproducibility.
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A SPARSITY CONFIGURATION FOR LLAMA-60M AND LLAMA-130M

The sparsity configuration for methods combining a sparse branch with a low-rank branch is defined
by two values: s, the sparsity of the connectivity-sparse component, and r, the rank of the low-rank
component.

In our experiments, for each fixed total sparsity, we varied the sparsity-configuration in steps of
As = 0.05. That is, whenever the parameter count of one branch was reduced by 5% relative
to dense training, the parameter count of the other branch was increased accordingly. Since the
sparsity of the connectivity-sparse branch is directly tied to the total sparsity, the main challenge
is determining the corresponding rank adjustment in the low-rank branch, which depends on the
structure of the LLaMA model.

All linear layers in LLaMA are replaced by our sparse components. Because LLaMA models of
different sizes are built from repeated Transformer blocks with identical architecture, it suffices to
analyze a single block to establish the relationship between s and . Each block contains seven linear
layers, denoted as Q, K, V, O, up, down, and gate. Among them, Q, K, V, and O have weight matrices
of size h x h, while up, down, and gate have size h x f, where h is the embedding dimension and
f is the feed-forward dimension. Hence, the step size of the rank 7., corresponding to As = 0.05
is determined by:

4(h -+ h)rstep + S(h + f)rstep

Ahxh) +3hxf) As = 0.05. )

For LLaMA-60M with h = 512 and f = 1376, this yields a rank step size of approximately ry.p, ~
16. For LLaMA-130M with h = 768 and f = 2048, the corresponding step size is 7gcp ~ 24.
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B DETAILED HYPERPARAMETER SETTINGS FOR EACH METHOD

For fair comparison, almost all experiments adopt the common hyperparameter settings listed in
Table[3] consistent with prior work.

Table 3: Common hyperparameter settings for experiments on LLaMA-60M and LLaMA-130M.
The settings align with previous research.

Hyperparameter LLaMA-60M LLaMA-130m

Embedding Dimension 512 768
Feed-forward Dimension 1376 2048
Global Batch Size 512 512
Sequence Length 256 256
Training Steps 10000 20000
Warmup Steps 1000 2000
Learning Rate 3e-3 3e-3
Optimizer Adam Adam
Layer Number 8 12
Head Number 8 12
Iterative warmup steps 20 20
Update Interval for DST 100 100

There are several exceptions, particularly for dense training and CoLA. For dense training, due to the
substantially larger number of parameters, a high learning rate leads to model collapse. Therefore,
we adopt a learning rate of 1e-3, following the setup in|{Zhang et al.|(2025). For CoL A, we observed
strong sensitivity to the choice of optimizer: using Adam causes training collapse (with perplexity
exceeding 100). To stabilize training, we use the AdamW optimizer provided in their official code.

Method-specific hyperparameter settings are as follows:

DST methods (SET, RigL, MEST, CHTSs): We follow the hyperparameter configurations reported
in[Zhang et al.|(2025). Specifically, results for LLaMA-60M on OpenWebText are directly imported
from Zhang et al.| (2025)). For experiments not covered in that study, we set r = 0.25 for the BRF
initialization of CHTs, as it was reported to yield the highest win rate.

CoLA: Apart from the hyperparameters in Table 3] we use the same settings as those provided in
the official code release.

SLTrain: The coefficient « that controls the contribution of the low-rank branch is set to 32 for
LLaMA-60M and 16 for LLaMA-130M, following |Han et al.| (2024). We also found SLTrain to be
highly sensitive to the sparsity-configuration (i.e., the allocation of parameters between branches)
under total sparsities of [0.9, 0.8, 0.7]. To provide reliable results and fair comparison, we searched
configurations with a step size of 0.05 sparsity (corresponding to rank steps of 16 for LLaMA-60M
and 24 for LLaMA-130M). The best configurations are summarized in Table 4}

CHTsL: We employ CHTs with BRF initialization and set » = 0. The alignment loss coefficient
Ais set to 0.5 for LLaMA-60M on OpenWebText and LLaMA-130M, and 0.3 for LLaMA-60M on
C4. The sparsity-configuration is tuned with a step size of 0.05. As shown in Section the best
configurations consistently converge to 1:1 allocation between the two branches on OpenWebText,
and s = 0.95 on C4. A full summary of the best configurations is provided in Table [5

14
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Table 4: The best sparsity-configuration for SLTrain under different total sparsity. sotq; refers
to total sparsity, s refers to sparsity in the connectivity sparse branch, r refers to the rank in low-
rank branch. The last column reports the proportion of parameters in connectivity sparse branch
compared with spectral sparse (low-rank) branch.

Dataset Model Sparsity-Configuration

Stotal S r dconnectivity : dspectral
09 095 16 1:1
LLaMA-60M 0.8 09 32 1:1
0.7 0.85 48 1:1
OpenWebText 09 095 24 Bl
LLaMA-130M 0.8 0.85 24 3:1
0.7 085 72 1:1
09 095 16 1:1
LLaMA-60M 0.8 09 32 1:1
C4 0.7 09 o4 1:2
09 095 24 1:1
LLaMA-130M 0.8 095 72 1:3
0.7 085 72 1:1

Table 5: The best sparsity-configuration for CHTsL under different total sparsity. s;,:q; refers
to total sparsity, s refers to sparsity in the connectivity sparse branch, r refers to the rank in low-
rank branch. The last column reports the proportion of parameters in connectivity sparse branch
compared with spectral sparse (low-rank) branch.

Dataset Model Sparsity-Configuration

Stotal S r dconnectivity : dspectral
09 095 16 1:1
LLaMA-60M 0.8 0.9 32 1:1
0.7 0.85 48 1:1
OpenWebText 09 095 24 B
LLaMA-130M 0.8 0.9 48 1:1
07 085 72 1:1
0.9 095 16 1:1
LLaMA-60M 0.8 095 48 1:3
c4 0.7 095 80 1:5
0.9 095 24 1:1
LLaMA-130M 0.8 095 72 1:3
0.7 095 120 1:5
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C EASED CANCELLATION EFFECT UNDER ALIGNMENT-ENHANCED
INTEGRATION

In this section, we present the OCR curves of different integration schemes across various total spar-
sity levels for LLaMA-60M on OpenWebText, as a supplement to Section[5.1] Figures[]and [5]show
the OCR curves under total sparsity levels of 0.8 and 0.7, respectively, where the sparsity configu-
ration is constrained such that the two branches contain the same number of trainable parameters.
These results correspond to the second and third rows of Table[T] respectively.

D USAGE OF LLM

In this work, Large Language Model (LLM) is primarily used to assist with tasks such as text refine-
ment, summarization, and improving the clarity and readability of the manuscript. The LLM helps
streamline writing and editing, ensuring that technical content is clearly and accurately presented.
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Figure 4: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.8,
with sparsity-configuration s = 0.9,7 = 32, dconnectivity : dspectrat = 1 : 1. Each subplot in the
figure reports the changes of OCR over training steps. The plot is based on the experiment of the
second row of Table[I] For space limit, we report here the self-attention layers in the model, where
each column refers to Q, K, V, O respectively.
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Figure 5: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.7,
with sparsity-configuration s = 0.85,7 = 48, dconnectivity : spectral = 1 : 1. Each subplot in the
figure reports the changes of OCR over training steps. The plot is based on the experiment of the
third row of Table[I] For space limit, we report here the self-attention layers in the model, where
each column refers to Q, K, V, O respectively.
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