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ABSTRACT

With the rapid development of large language models (LLMs), identifying effi-
cient strategies for training such large-scale systems has become increasingly crit-
ical. Although LLMs have achieved remarkable success across diverse applica-
tions, the necessity of maintaining full dense matrices during pre-training has been
questioned, giving rise to parameter-efficient sparse pre-training methods which
retains parameter-efficiency in both training and inference. These methods can be
further divided into connectivity sparse training and spectral sparse training, with
dynamic connectivity sparse training and low-rank factorization emerging as rep-
resentative approaches for the two branches. However, a unified framework that
effectively combines the strengths of both has yet to be established. In this work,
we observe that the cancellation effect between the sparse and low-rank branches
may limit the expressivity of the model, manifesting as output conflicts when the
two components are combined. To address this issue, we propose a novel scheme
that integrates dynamic sparse training with low-rank training, introducing a sim-
ple yet effective alignment loss to mitigate the disagreement between the two
branches and promote better collaboration. We validate this scheme by combin-
ing a representative dynamic sparse training method, CHTs, with low-rank train-
ing, resulting in a new parameter-efficient training approach termed CHTsL. The
method is evaluated on LLaMA60M and LLaMA130M using the OpenWebText
and C4 datasets, where only 10%, 20%, and 30% of the parameters are preserved
compared to dense training. Experimental results demonstrate that our proposed
scheme effectively alleviates the cancellation effect and improves training stabil-
ity and performance compared to the naive combination of sparse and low-rank
components. Also, the new scheme enables CHTsL to consistently outperform
other parameter-efficient sparse training methods under the same parameter bud-
get, achieving performance most close to dense training.

1 INTRODUCION

Large language models (LLMs) have attracted tremendous attention due to their superior perfor-
mance across a wide range of tasks. Despite their impressive capabilities, training LLMs from
scratch remains extremely memory-intensive and computation-intensive (Samsi et al., 2023), mak-
ing it challenging to scale such models under reasonable resource constraints. This has motivated
extensive research on efficient methods that reduce computational and memory costs while retaining
competitive performance. One of the most direct strategies is to reduce the number of parameters.
Early studies on pruning and low-rank fine-tuning (Hu et al., 2022; Zhang et al., 2023; Renduchin-
tala et al., 2023; Sheng et al., 2023; Liu et al., 2024; Kopiczko et al., 2023; Dettmers et al., 2023)
have shown that even after removing or compressing a large fraction of parameters, models can still
preserve much of their original representational capacity. These findings suggest that parameter-
efficient model manipulation is feasible, and they naturally motivate the extension from pruning or
finetuning to sparse pretraining, where models are trained from scratch under constrained parameter
budgets while maintaining competitive performance compared with dense training.

We divides current approaches to sparse pre-training can be broadly into two branches: connec-
tivity sparse training and spectral sparse training, which refers to those methods utilizing low-rank
factorization during pretraining.
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The former branch focuses on enforcing sparsity in the connectivity of weight matrices, with dy-
namic connectivity sparse training emerging as a representative technique(Mocanu et al., 2018;
Jayakumar et al., 2020; Evci et al., 2020; Yuan et al., 2021; Zhang et al., 2024; 2025). Dynamic
connectivity sparse training maintains a sparse connectivity pattern throughout pre-training, dynam-
ically changing the sparse connectivity and updating active weights to approximate the capacity
of dense models. Recent works have shown that on multiple tasks, dynamic sparse training can
approach or even surpass the performance of dense models with as little as 10% of the trainable
parameters, marking a significant step forward in efficient training(Zhang et al., 2024).

The second branch, spectral sparse training (Zhao et al., 2024a), is typically instantiated through
low-rank factorization. Since the low-rank factors are updated during training, the spectral rep-
resentation they induce also evolves accordingly, which makes spectral sparse training inherently
dynamic. Initially proposed in the context of LLM fine-tuning (Hu et al., 2022), low-rank methods
decompose weight matrices into low-dimensional components, training only the low-rank repre-
sentations while freezing the full-rank backbone. These approaches drastically reduce the number
of trainable parameters and leverage the pre-trained dense model’s representational power. More
recent attempts have extended low-rank factorization to the pre-training stage (Lialin et al., 2023;
Zhao et al., 2024b; Xia et al., 2024; Meng et al., 2024; Zhao et al., 2024a). However, these methods
still require the use of full dense matrices during the forward pass, rather than maintaining the spec-
tral sparse structure consistently from training to inference. Overcoming this limitation, successors
like CoLA (Liu et al., 2025) preserve the low-rank structure throughout both training and inference,
further validating the feasibility of spectral sparse training.

While previous attempt SLTrain (Han et al., 2024) explored combining sparse and low-rank com-
ponents, the design remains limited in two key aspects. First, the sparse branch in SLTrain is static,
serving only as a supplementary term to spectral sparse training rather than leveraging the full poten-
tial of dynamic connectivity sparse methods. Second, SLTrain simply performs a pure summation
of sparse and low-rank outputs, without any mechanism to promote effective interaction.

In this work, we take a step in this direction. We observe that naive integration of sparse and low-
rank branches often suffers from a cancellation effect, where the two components produce conflict-
ing representations that weaken expressivity and hinder convergence. To address this challenge, we
propose a new scheme that integrates dynamic connectivity sparse training with low-rank training
under the guidance of alignment loss, which aligns the two branches and promotes cooperative learn-
ing. Specifically, we instantiate our framework by combining the advanced dynamic sparse training
method CHTs (Zhang et al., 2025) with low-rank factorization, resulting in a new parameter-efficient
pre-training approach, CHTsL. Extensive experiments on LLaMA-60M and LLaMA-130M (Tou-
vron et al., 2023a;b) with OpenWebText and C4 show that CHTsL consistently outperforms state-
of-the-art parameter-efficient sparse training baselines under the same parameter budget. Notably,
with only 10%, 20%, or 30% of parameters preserved relative to dense training, CHTsL achieves
performance closest to dense models, which would benefit by retaining efficiency in training, infer-
ence, and storage.

Our contributions can be summarized as follows:

First integration of connectivity sparse and spectral sparse in dynamic sparse training. We
make the first attempt to genuinely integrate connectivity sparse and spectral sparse in dynamic
sparse training, with dynamic connectivity and dynamic low-rank representaion. Unlike prior work
such as SLTrain, where static connectivity sparsity merely served as a supplement to spectral spar-
sity, our approach fully leverages the complementary strengths of both paradigms.

Alignment-enhanced unified scheme. We identify the cancellation effect as a key obstacle in com-
bining sparse and low-rank branches, where conflicting representations weaken model expressivity.
To address this, we introduce the overlapping cancellation ratio (OCR) as a quantitative measure,
and propose a unified integration scheme that emphasizes interaction and cooperation rather than
naive branch summation. By incorporating an alignment loss, our framework explicitly mitigates
conflicts, enhances collaboration, and alleviates the observed cancellation phenomenon in attention
Q and K matrices.

Instantiation with CHTsL and empirical superiority. We instantiate the framework by combining
advanced CHTs with low-rank factorization, yielding the proposed method CHTsL. Extensive exper-
iments across different datasets, models, and parameter budgets demonstrate that CHTsL achieves
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consistently strong performance, ranking first among all parameter-efficient methods with the same
parameter scale, and approaching dense model performance with significantly fewer parameters.

2 RELATED WORK

The rapid growth of large language models (LLMs) has stimulated extensive research into improving
efficiency in pre-training. Among various directions, parameter-efficient approaches have emerged
as particularly promising, aiming at training models with limited number of parameters without
significantly sacrificing performance. Broadly, parameter-efficient methods in the context of pre-
training can be divided into two branches: connectivity sparse training, which reduces parameters
by enforcing sparse connectivity patterns, and spectral sparse training, which constrains weight
matrices into low-rank subspaces. Dynamic connectivity sparse training and low-rank factorization
are the representative approaches for these two paradigms.

2.1 DYNAMIC CONNECTIVITY SPARSE TRAINING

Connectivity sparsity originates from the classical line of pruning (LeCun et al., 1989; Han et al.,
2015; Molchanov et al., 2016), where removing parameters from dense models was shown to pre-
serve much of the model’s performance. Inspired by this, researchers began to explore whether spar-
sity could be maintained throughout training, rather than applied only as a post-hoc compression.
Among these efforts, methods that promote sparse training through dynamic adjustment of connec-
tivity have gained increasing attention, as they often outperform static sparse training approaches
that prune connections solely at initialization (Prabhu et al., 2018; Lee et al., 2018; Dao et al., 2022;
Stewart et al., 2023). The pioneering work Sparse Evolutionary Training (SET) (Mocanu et al.,
2018) removes links while introducing random rewiring of sparse connections during training to
maintain model plasticity. RigL (Evci et al., 2020) further dynamically regrows connections based
on gradient for more effective exploration, though it requires computing gradients of the full weight
matrix during the backward pass. MEST (Yuan et al., 2021) improves upon this by leveraging both
weight and gradient information. CHT (Zhang et al., 2024) and its successor CHTs (Zhang et al.,
2025) enhance dynamic sparse training using the Cannistracci-Hebbian theory (Muscoloni et al.,
2022) from network science, inspired by brain connectomes, achieving state-of-the-art performance
on multiple tasks. Collectively, these studies demonstrate that dynamic sparse training can attain
competitive or even superior performance compared to dense training, while using only 10% or
fewer of the parameters (Zhang et al., 2025).

2.2 LOW-RANK FOR SPECTRAL SPARSE TRAINING

Complementary to connectivity sparsity, spectral sparse training leverages low-rank factorization
to reduce the dimensionality of weight matrices. This idea was first popularized in the fine-tuning
setting, where LoRA (Hu et al., 2022) adapts pretrained models by learning only low-rank updates
rather than full weight matrices. Subsequent works (Hu et al., 2022; Zhang et al., 2023; Renduch-
intala et al., 2023; Sheng et al., 2023; Kopiczko et al., 2023; Dettmers et al., 2023; Liu et al., 2024)
further demonstrate the effectiveness of low-rank fine-tuning and inspire the exploration of training
from scratch with low-rank factorization. ReLoRA (Lialin et al., 2023) introduces reparameteriza-
tion to improve training efficiency and stability, while GaLore (Zhao et al., 2024b) reduces memory
usage by applying low-rank projections in the gradient space during training. However, a common
limitation of these approaches is that the full dense weight matrix is still required during the for-
ward pass, providing parameter efficiency only during training but not during inference. In contrast,
CoLA (Liu et al., 2025) explicitly maintains the low-rank representation throughout both training
and inference, enabling reduced storage and runtime costs. As a side note, while we previously
discussed the relevance of pruning mainly in the context of connectivity-based sparse training, in
contrast to spectral low-rank training, structured pruning can also be viewed as implicitly inducing
a low-rank structure in the resulting model. This is because structured-pruned models remove entire
channels or filters, which correspond to removing rows or columns in the unfolded weight matrices,
thereby potentially reducing their effective rank. Representative structured-pruning-aware works in-
clude channel pruning via LASSO (He et al., 2017), network slimming (Liu et al., 2017), and more
recently Only-Train-Once (OTO) (Chen et al., 2021), which explicitly consider structural constraints
during training to improve efficiency for subsequent pruning. In this study, we adopt CoLA (Liu
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et al., 2025) as the baseline under the same restriction of parameter efficiency in both forward and
backward passes.

2.3 HYBRID ATTEMPT

Beyond individual paradigms, researchers have also begun to explore combining connectivity and
spectral sparsity. SLTrain (Han et al., 2024) represents one of the earliest attempts in this direction.
It augments low-rank factorization with a sparse branch, but its design exhibits several limitations.
Specifically, the sparse component is static rather than dynamic, serving merely as a supplemen-
tary term to spectral sparsity instead of leveraging genuine connectivity sparse training. Moreover,
SLTrain integrates the two branches via a simple summation, without introducing any collaborative
mechanism to exploit their potential synergy. As a result, while SLTrain marks an important step
toward hybrid parameter-efficient pre-training, it remains an immature solution, leaving room for
more principled approaches.

3 ALIGNMENT-ENHANCED INTEGRATION OF CONNECTIVITY SPARSE AND
SPECTRAL SPARSE

In this section, we present a unified approach for combining dynamic sparse training (connectivity
sparse) with low-rank factorization (spectral sparse) under extreme sparsity. While each method
alone can improve parameter-efficiency and memory-efficiency, their naive combination often leads
to conflicting outputs that limit the model’s effective capacity. We address this challenge with three
key steps: (i) identifying and quantifying the cancellation effect, (ii) introducing a training frame-
work that stabilizes low-rank outputs and encourages cooperation between branches, and (iii) in-
stantiating a method, CHTsL, that integrates connectivity sparse and spectral sparse for dynamic
sparse training based on this framework.

3.1 CANCELLATION EFFECT AND OCR METRIC

When a sparse branch and a low-rank branch are trained together, a common phenomenon emerges:
their outputs sometimes point in opposite directions. This cancellation effect means that some
portion of the signal from one branch can be neutralized by the other, wasting representational
power. In other words, even if each branch individually carries meaningful information, their naive
sum may not fully reflect that information, effectively underutilizing the model’s capacity.

To quantify this, we define the Overlap Cancellation Ratio (OCR):

OCR =

∑
i min(|Si|, |Li|) · 1{SiLi < 0}∑

i min(|Si|, |Li|) + ε
, (1)

where S and L are the outputs of the sparse and low-rank branches, respectively. OCR measures the
fraction of overlapping signal that is canceled due to opposite directions, with naturally restricted in
the range [0, 1). A higher OCR indicates more severe cancellation.

3.2 TRAINING FRAMEWORK: ALIGNMENT LOSS AND ACTIVATION ADJUSTMENT

Alignment Loss for Cooperative Learning. When training using two distinct components, the
sparse and low-rank branches can produce conflicting signals. Intuitively, if one branch pushes a
feature in one direction while the other pushes in the opposite direction, the net effect is reduced
expressivity. To address this cancellation effect, we introduce an alignment loss that encourages the
outputs to move in similar directions:

L(l)
align =

1

BN
∥S(l) − L(l)∥F , Lalign =

∑
l

L(l)
align, (2)

where B is the batch size and N is the number of elements in one sample’s output at layer l. This loss
penalizes discrepancies between the sparse and low-rank outputs, reducing destructive interference
and letting each branch focus on complementary aspects of representation. Each layer contributes
to the total alignment loss, which is then weighted in the final objective.
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Activation Adjustment for Low-rank Stability. Low-rank factorization reduces the number of
trainable parameters but can sometimes produce unstable outputs, particularly under extreme spar-
sity. Inspired by CoLA Liu et al. (2025), we apply a mild non-linear activation between the factor-
ized matrices:

L(l) = B(l)σ(A(l)x), (3)
where σ(·) is a non-linear function (SiLU (Hendrycks & Gimpel, 2016) in our experiments). Here,
the activation primarily serves to stabilize the low-rank outputs, maintaining a reasonable scale and
preventing numerical issues during training. Its role is mainly supportive, ensuring the low-rank
branch contributes reliably alongside the sparse branch.

S L

� = SiLU Connectivity 
Evolution

Dynamic Connectivity Sparse
(CHTs)

� ∈ �m×�

Spectral Sparse

� ∈ ��×n

� ∈ �n

Output
Alignment 
Loss

Forward

Backward

Figure 1: Workflow of CHTsL. The figure il-
lustrates CHTsL as an example of alignment-
enhanced integration between dynamic connec-
tivity sparse training and spectral sparse train-
ing. Specifically, the dynamic connectivity sparse
branch adopts the CHTs method.

Overall Objective. Combining these ideas,
the output of each O(l) and the total training
loss L(l) are respectively:

O(l) = S(l) + L(l), L = Ltask + λLalign (4)

where λ balances the contribution of align-
ment. This objective ensures that the sparse
and low-rank branches are jointly optimized,
stabilizing low-rank training and encouraging
the two branches to cooperate, mitigating can-
cellation.

3.3 CHTSL:
INSTANTIATING THE FRAMEWORK

Based on this training framework, we propose
CHTsL, which integrates dynamic connectiv-
ity sparse training method CHTs (Zhang et al.,
2025) with spectral sparse (low-rank) com-
ponents. In CHTsL, the sparse branch fol-
lows the CHTs update rules, while the low-
rank branch incorporates mild activation ad-
justment, and the alignment loss is applied
layer-wise to encourage cooperative outputs.
This instantiation demonstrates how our framework naturally combines dynamic connectivity and
spectral sparsity, providing a practical approach for training extremely sparse models under a unified
scheme. Figure 1 illustrates how CHTsL works.

4 EXPERIMENT

4.1 MODELS

Experiments are based on Transformer models from the LLaMA family (Touvron et al., 2023a;b),
with parameter sizes ranging from 60M to 130M. All models are trained and evaluated on NVIDIA
A100 or A800 GPUs.

4.2 DATASETS

For training and evaluation, we adopt two widely used large-scale text corpora:

OpenWebText (Gokaslan & Cohen, 2019): A publicly available open-source replication of the
WebText dataset used in GPT-2. It is constructed by scraping URLs shared on Reddit with high
karma scores, covering a broad range of high-quality web content.

Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020): A large-scale dataset derived from
web pages collected through Common Crawl. After extensive cleaning and filtering, it provides
high-quality natural language text suitable for large language model pre-training.

4.3 BASELINE METHODS

To verify the effectiveness of our method, we compare it against several parameter-efficient training
baselines with an equivalent number of trainable parameters. Specifically, we consider dynamic
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connectivity sparse training methods including SET (Mocanu et al., 2018), RigL (Evci et al., 2020),
MEST (Yuan et al., 2021) and CHTs (Zhang et al., 2025); spectral sparse training method CoLA Liu
et al. (2025); hybrid method SLTrain (Han et al., 2024). We also report the performance of dense
training for comparison.

4.4 DEFINITION OF SPARSITY

Since this work integrates connectivity-based sparsity with spectral (low-rank) sparsity, it is neces-
sary to establish a consistent definition of sparsity. For both connectivity sparse and spectral sparse
(based on low-rank factorization of a full matrix), we adopt the same definition of sparsity s and
corresponding density d, representing the fraction of parameters relative to a full-rank dense matrix,
which allows fair comparison across methods by reflecting the total number of trainable parameters:

s = 1− #params
#paramsdense

, d = 1− s. (5)

For a connectivity sparse method, the original sparsity corresponds to the true sparsity of the net-
work. For a low-rank factorization of dense matrices of size m×n with rank r, the effective sparsity
is (m + n)r/(m · n). For a method that integrates both connectivity and spectral sparsity, the total
sparsity can be computed as

stotal = 1− dconnectivity − dspectral. (6)
In our experiments, all methods are compared under the same total sparsity to ensure an equivalent
number of trainable parameters. For clarity in the Section 5, we report the total sparsity of each
method, and we additionally provide the sparsity-configuration for the integrated methods, which
includes the sparsity s of the connectivity sparse component, the rank r of the low-rank component,
and the proportion dconnectivity

dspectral
of parameters between two branches in Appendix B.

4.5 HYPERPARAMETER SETTINGS

Alignment-enhanced training scheme introduces the coefficient λ to control the effect of alignment
loss. We searched the λ in the range [0, 0.1, 0.3 0.5, 0.7, 1] with preliminary experiments. For
LLaMA-60M on OpenWebText and LLaMA-130M, the appropriate λ is 0.5; For LLaMA-60M on
C4, the appropriate λ is 0.3.

For methods combining sparse and low-rank training (including SLTrain and CHTsL), the sparsity-
configuration mentioned in Section 4.4 need to be considered under the same total parameter
budgets. We systematically varied the allocation of parameters between the sparse and low-rank
branches in steps corresponding to total sparsity of 5% and the best results across all sparsity-
configurations were reported. The step size for rank adjustment in the low-rank branch was calcu-
lated based on the model architecture, resulting in approximate step values of 16 for LLaMA-60M
and 24 for LLaMA-130M, of which the concrete calculation process can be found in Appendix A.

All the other hyperparameters can be found in Appendix B, which is set to be the same maximally
for different methods for a fair comparison.

5 RESULT AND DISCUSSION

In this section, we present the experimental results. We first present the effectiveness of the
alignment-enhanced training scheme by comparing it with the naive integration of CHTs and low-
rank factorization. And then we compare different efficient training methods under the same param-
eter budget to present that CHTsL consistently improves the performance, realizing the performance
most close to dense training with limited parameters.

5.1 EFFECTIVENESS OF ALIGNMENT-ENHANCED INTEGRATION

Performance improvement To verify the effictiveness of the alignment-enhanced training
scheme, we compare CHTsL with the naive integration between CHTs and low-rank factorization.
In Table 1, we present the result of CHTs plus low-rank with different integration strategy on dif-
ferent models and datasets with different total sparsity, under the constraint that sparse component
and low-rank component dominates the same number of parameters (dconnectivity

dspectral
= 1). The re-

sults are validated by Wilcoxon signed-rank test for the statistical comparison. It shows that, with
p− value < 0.05, activation adjust of low-rank improves the training stability and the whole align-
ment training scheme makes CHTsL significantly better than the naive integration.
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Table 1: Comparison between different integration strategies. The table consists of two parts:
a. The performance of different integration strategies, reported in terms of validation perplexity
(PPL↓). The Naive strategy corresponds to a simple sum of CHTs and low-rank factorization. The
Act strategy applies activation adjustment to the low-rank factorization branch. The Act+Align strat-
egy combines activation adjustment with the alignment loss. The coefficient of the alignment loss
λ is reported in Section 4.5. The sparsity configuration is set such that the sparse branch and the
low-rank branch have the same number of trainable parameters(dconnectivity

dspectral
= 1). b. The Wilcoxon

signed-rank test p-values, which indicate whether the differences in performance between strate-
gies are statistically significant.

Model Dataset Total Sparsity Naive Act Act+Align

LLaMA-60M

OpenWebText
0.9 32.64 32.21 31.77
0.8 33.35 29.42 29.11
0.7 27.89 29.94 27.40

C4
0.9 189.55 39.66 39.29
0.8 36.71 36.54 36.16
0.7 591.42 34.55 34.33

LLaMA-130M

OpenWebText
0.9 119.35 24.45 24.07
0.8 22.11 21.98 21.87
0.7 21.12 20.90 20.65

C4
0.9 30.77 30.30 30.03
0.8 27.83 27.68 27.59
0.7 920.16 26.55 26.19

Wilcoxon signed-rank against Naive \ 0.0093 0.00049
p-value against Act \ \ 0.00049

Eased Cancellation Effect. Figure 2 presents the OCR defined in Equation 1, comparing the can-
cellation effect between the naive integration and the alignment-enhanced approach for the experi-
ment on LLaMA-60M with the OpenWebText dataset under a total sparsity of 0.9 , with sparsity-
configuration s = 0.95, r = 16,

dconnectivity

dspectral
= 1 . We observe that incorporating the alignment

loss significantly reduces the OCR in the Query and Key layers, with performance substantially
surpassing that of the naive integration. A plausible explanation is that Q and K, as the core com-
ponents of attention, directly determine the attention weights via their dot product, making them
highly sensitive to inconsistencies between the dynamic sparse branch and the low-rank branch. En-
forcing alignment therefore stabilizes the attention maps and mitigates gradient conflicts, whereas
feed-forward or value projections are more tolerant to internal variations due to residual connec-
tions. Consequently, this targeted consistency in Q and K enhances the robustness of the attention
mechanism, leading to overall performance improvements. More evidence of experiments under
other sparsity levels can be found in Appendix C.

5.2 CHTSL OUTPERFORMS OTHER SPARSE TRAINING METHODS

Table 2 reports the results of CHTsL in comparison with all baseline methods under the same total
parameter budget. The results demonstrate that CHTsL consistently outperforms all other methods
given the same parameter constraint. This provides strong evidence for the potential of integrating
connectivity sparse training with spectral sparse training, achieving performance closest to dense
training while preserving only 30% or fewer of the training parameters.

5.3 SENSITIVITY TEST FOR SPARSITY CONFIGURATIONS

In Figure 3, we illustrate how validation perplexity (PPL↓) varies with different sparsity configu-
rations across models and datasets under a fixed total sparsity of 0.7. On OpenWebText, when the
low-rank branch dominates the parameter budget far more than the connectivity-sparse branch (spar-
sity in the connectivity sparse branch exceeds 0.9), performance collapses. This instability may be
attributed to the dataset’s relatively limited complexity. Since OpenWebText is more homogeneous,
the model becomes more sensitive to imbalanced sparsity allocation. By contrast, on C4, which
contains substantially more diverse and heterogeneous text, a higher proportion of low-rank param-
eters proves beneficial. A possible explanation is that the increased variety of linguistic patterns
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Figure 2: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.9,
with sparsity-configuration s = 0.95, r = 16, dconnectivity : dspectral = 1 : 1. Each subplot in the
figure reports the changes of OCR over training steps. The plot is based on the experiment of the
first row of Table 1. For space limit, we report here the self-attention layers in the model, where
each column refers to Q, K, V, O respectively.
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Table 2: Validation perplexity of different methods. Validation perplexity (PPL↓) is reported in
this table for different methods on different datasets under the same constraint of total sparsity stotal.
Bold values are the best performance out of all sparse methods.

Dataset Method LLaMA-60M LLaMA-130M
stotal=0.9 stotal=0.8 stotal=0.7 stotal=0.9 stotal=0.8 stotal=0.7

OpenWebText

Dense 26.56 19.46
SET 35.26 30.69 31.77 25.70 23.20 22.03
RigL 45.34 41.33 39.96 41.25 44.49 70.11
MEST 33.6 29.94 28.26 25.59 22.93 21.63
CHTs 33.03 29.84 28.12 24.75 22.67 21.48
CoLA 37.58 30.87 28.53 27.07 23.24 21.61
SLTrain 33.90 29.83 27.86 25.33 22.81 21.25
CHTsL 31.77 29.11 27.40 24.07 21.87 20.65

C4

Dense 33.21 24.55
SET 42.32 37.70 35.62 32.45 29.47 27.75
RigL 53.39 48.59 47.34 43.57 55.82 64.93
MEST 41.46 37.28 35.40 32.54 29.29 27.59
CHTs 40.62 37.55 35.23 31.00 28.69 27.46
CoLA 46.41 38.58 35.87 33.52 29.26 27.25
SLTrain 41.05 37.00 34.89 31.38 28.28 26.78
CHTsL 39.29 35.95 34.19 30.03 27.59 26.19
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Figure 3: Sensitivity analysis of sparsity configurations under a total sparsity of 0.7. The
sparsity-configuration is defined by the sparsity s in the connectivity-sparse branch and the rank
r in the low-rank branch. Each subplot illustrates the variation of validation perplexity (PPL↓) as
the rank decreases by step of 5% total sparsity. Outliers with PPL values exceeding the correspond-
ing thresholds are highlighted in red, with their true values explicitly annotated.

likely requires broader adaptations of the entire weight matrix, making low-rank components more
effective in capturing such variability.

6 CONCLUSION

In this work, we present a novel framework for parameter-efficient pre-training by systematically
integrating connectivity sparse training with spectral sparse in dynamic sparse training. We identify
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the cancellation effect in naive integration as the key challenge, where conflicting representations
branches reduce expressivity and hinder convergence. To address this, we introduce the overlapping
cancellation ratio to quantify the effect and an alignment loss to encourage cooperative learning.
Building on this framework, we instantiate CHTsL by combining the advanced dynamic sparse
training method CHTs with low-rank factorization. Extensive experiments on LLaMA-60M and
LLaMA-130M with OpenWebText and C4 demonstrate that CHTsL consistently outperforms ex-
isting methods under equivalent parameter budgets. Our work is the first to systematically unify
dynamic connectivity and spectral sparse training, moving beyond static connectivity sparsity and
naive integration; it identifies and mitigates the cancellation effect, fostering effective collaboration
between the sparse and low-rank components; and it provides a practical instantiation that validates
the benefits of this integration. Overall, this study offers both theoretical insights and practical
solutions for efficient sparse pre-training, highlighting the potential of combining complementary
sparsity paradigms to maximize model expressivity under constrained resources.

REPRODUCIBILITY STATEMENT

The code for this work is provided in the supplementary material. Detailed hyperparameter settings
for each method are presented in Appendix B to facilitate reproducibility.

REFERENCES

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. Advances in Neural Information Processing Systems, 34:19637–19651, 2021.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
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A SPARSITY CONFIGURATION FOR LLAMA-60M AND LLAMA-130M

The sparsity configuration for methods combining a sparse branch with a low-rank branch is defined
by two values: s, the sparsity of the connectivity-sparse component, and r, the rank of the low-rank
component.

In our experiments, for each fixed total sparsity, we varied the sparsity-configuration in steps of
∆s = 0.05. That is, whenever the parameter count of one branch was reduced by 5% relative
to dense training, the parameter count of the other branch was increased accordingly. Since the
sparsity of the connectivity-sparse branch is directly tied to the total sparsity, the main challenge
is determining the corresponding rank adjustment in the low-rank branch, which depends on the
structure of the LLaMA model.

All linear layers in LLaMA are replaced by our sparse components. Because LLaMA models of
different sizes are built from repeated Transformer blocks with identical architecture, it suffices to
analyze a single block to establish the relationship between s and r. Each block contains seven linear
layers, denoted as Q, K, V, O, up, down, and gate. Among them, Q, K, V, and O have weight matrices
of size h × h, while up, down, and gate have size h × f , where h is the embedding dimension and
f is the feed-forward dimension. Hence, the step size of the rank rstep corresponding to ∆s = 0.05
is determined by:

4(h+ h)rstep + 3(h+ f)rstep

4(h× h) + 3(h× f)
= ∆s = 0.05. (7)

For LLaMA-60M with h = 512 and f = 1376, this yields a rank step size of approximately rstep ≈
16. For LLaMA-130M with h = 768 and f = 2048, the corresponding step size is rstep ≈ 24.
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B DETAILED HYPERPARAMETER SETTINGS FOR EACH METHOD

For fair comparison, almost all experiments adopt the common hyperparameter settings listed in
Table 3, consistent with prior work.

Table 3: Common hyperparameter settings for experiments on LLaMA-60M and LLaMA-130M.
The settings align with previous research.

Hyperparameter LLaMA-60M LLaMA-130m
Embedding Dimension 512 768

Feed-forward Dimension 1376 2048
Global Batch Size 512 512
Sequence Length 256 256

Training Steps 10000 20000
Warmup Steps 1000 2000
Learning Rate 3e-3 3e-3

Optimizer Adam Adam
Layer Number 8 12
Head Number 8 12

Iterative warmup steps 20 20
Update Interval for DST 100 100

There are several exceptions, particularly for dense training and CoLA. For dense training, due to the
substantially larger number of parameters, a high learning rate leads to model collapse. Therefore,
we adopt a learning rate of 1e-3, following the setup in Zhang et al. (2025). For CoLA, we observed
strong sensitivity to the choice of optimizer: using Adam causes training collapse (with perplexity
exceeding 100). To stabilize training, we use the AdamW optimizer provided in their official code.

Method-specific hyperparameter settings are as follows:

DST methods (SET, RigL, MEST, CHTs): We follow the hyperparameter configurations reported
in Zhang et al. (2025). Specifically, results for LLaMA-60M on OpenWebText are directly imported
from Zhang et al. (2025). For experiments not covered in that study, we set r = 0.25 for the BRF
initialization of CHTs, as it was reported to yield the highest win rate.

CoLA: Apart from the hyperparameters in Table 3, we use the same settings as those provided in
the official code release.

SLTrain: The coefficient α that controls the contribution of the low-rank branch is set to 32 for
LLaMA-60M and 16 for LLaMA-130M, following Han et al. (2024). We also found SLTrain to be
highly sensitive to the sparsity-configuration (i.e., the allocation of parameters between branches)
under total sparsities of [0.9, 0.8, 0.7]. To provide reliable results and fair comparison, we searched
configurations with a step size of 0.05 sparsity (corresponding to rank steps of 16 for LLaMA-60M
and 24 for LLaMA-130M). The best configurations are summarized in Table 4.

CHTsL: We employ CHTs with BRF initialization and set r = 0. The alignment loss coefficient
λ is set to 0.5 for LLaMA-60M on OpenWebText and LLaMA-130M, and 0.3 for LLaMA-60M on
C4. The sparsity-configuration is tuned with a step size of 0.05. As shown in Section 5.3, the best
configurations consistently converge to 1:1 allocation between the two branches on OpenWebText,
and s = 0.95 on C4. A full summary of the best configurations is provided in Table 5.
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Table 4: The best sparsity-configuration for SLTrain under different total sparsity. stotal refers
to total sparsity, s refers to sparsity in the connectivity sparse branch, r refers to the rank in low-
rank branch. The last column reports the proportion of parameters in connectivity sparse branch
compared with spectral sparse (low-rank) branch.

Dataset Model Sparsity-Configuration
stotal s r dconnectivity : dspectral

OpenWebText

LLaMA-60M
0.9 0.95 16 1:1
0.8 0.9 32 1:1
0.7 0.85 48 1:1

LLaMA-130M
0.9 0.95 24 1:1
0.8 0.85 24 3:1
0.7 0.85 72 1:1

C4

LLaMA-60M
0.9 0.95 16 1:1
0.8 0.9 32 1:1
0.7 0.9 64 1:2

LLaMA-130M
0.9 0.95 24 1:1
0.8 0.95 72 1:3
0.7 0.85 72 1:1

Table 5: The best sparsity-configuration for CHTsL under different total sparsity. stotal refers
to total sparsity, s refers to sparsity in the connectivity sparse branch, r refers to the rank in low-
rank branch. The last column reports the proportion of parameters in connectivity sparse branch
compared with spectral sparse (low-rank) branch.

Dataset Model Sparsity-Configuration
stotal s r dconnectivity : dspectral

OpenWebText

LLaMA-60M
0.9 0.95 16 1:1
0.8 0.9 32 1:1
0.7 0.85 48 1:1

LLaMA-130M
0.9 0.95 24 1:1
0.8 0.9 48 1:1
0.7 0.85 72 1:1

C4

LLaMA-60M
0.9 0.95 16 1:1
0.8 0.95 48 1:3
0.7 0.95 80 1:5

LLaMA-130M
0.9 0.95 24 1:1
0.8 0.95 72 1:3
0.7 0.95 120 1:5
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C EASED CANCELLATION EFFECT UNDER ALIGNMENT-ENHANCED
INTEGRATION

In this section, we present the OCR curves of different integration schemes across various total spar-
sity levels for LLaMA-60M on OpenWebText, as a supplement to Section 5.1. Figures 4 and 5 show
the OCR curves under total sparsity levels of 0.8 and 0.7, respectively, where the sparsity configu-
ration is constrained such that the two branches contain the same number of trainable parameters.
These results correspond to the second and third rows of Table 1, respectively.

D USAGE OF LLM

In this work, Large Language Model (LLM) is primarily used to assist with tasks such as text refine-
ment, summarization, and improving the clarity and readability of the manuscript. The LLM helps
streamline writing and editing, ensuring that technical content is clearly and accurately presented.
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Figure 4: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.8,
with sparsity-configuration s = 0.9, r = 32, dconnectivity : dspectral = 1 : 1. Each subplot in the
figure reports the changes of OCR over training steps. The plot is based on the experiment of the
second row of Table 1. For space limit, we report here the self-attention layers in the model, where
each column refers to Q, K, V, O respectively.
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Figure 5: The layer-wise OCR plot of LLaMA60M on OpenWebText with a total sparsity of 0.7,
with sparsity-configuration s = 0.85, r = 48, dconnectivity : dspectral = 1 : 1. Each subplot in the
figure reports the changes of OCR over training steps. The plot is based on the experiment of the
third row of Table 1. For space limit, we report here the self-attention layers in the model, where
each column refers to Q, K, V, O respectively.
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E ALIGNMENT SCHEME ON STATIC SPARSE TRAINING WITH LOW-RANK
TRAINING

To further validate the effectiveness of the proposed alignment-enhanced integration scheme, we ad-
ditionally evaluate it in the “static sparse + low-rank” setting by comparing models trained with and
without alignment. Table 6 reports results on LLaMA-130M across multiple datasets and total spar-
sity levels, under the constraint that the connectivity-sparse and low-rank components occupy the
same number of parameters (dconnectivity

dspectral
= 1). Statistical significance is confirmed using the Wilcoxon

signed-rank test. With p-value < 0.05, the alignment-enhanced model achieves significantly better
performance than the naive integration baseline.

Table 6: Comparison between different integration strategies for ”Static + Low-rank” Com-
bination. The table consists of two parts: a. The performance of different integration strate-
gies, reported in terms of validation perplexity (PPL↓). The Naive strategy corresponds to a simple
sum of static sparse and low-rank factorization. The Act strategy applies activation adjustment to
the low-rank factorization branch. The Act+Align strategy combines activation adjustment with
the alignment loss. The coefficient of the alignment loss λ is 0.3. The sparsity configuration
is set such that the sparse branch and the low-rank branch have the same number of trainable
parameters(dconnectivity

dspectral
= 1). b. The Wilcoxon signed-rank test p-values, which indicate whether

the differences in performance between strategies are statistically significant.
Model Dataset Total Sparsity Naive Act Act+Align

LLaMA-130M

openwebtext
0.9 31.52 25.44 25.41
0.8 22.44 22.37 22.36
0.7 21.25 41.51 20.97

c4
0.9 31.49 31.62 31.44
0.8 28.21 28.35 28.12
0.7 26.90 26.52 26.36

Wilcoxon signed-rank against Naive \ 1 0.03125
p-value against Act \ \ 0.03125
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F OCR AND GLOBAL COSINE SIMILARITY

To better understand the cancellation phenomenon between the sparse and low-rank branches, we
compare the proposed Overlap Cancellation Ratio (OCR) with commonly used global cosine simi-
larity. While these metrics are related, they capture fundamentally different aspects of cancellation.

F.1 CONCEPTUAL DIFFERENCE

Global cosine similarity measures only directional alignment between vectors but ignores magni-
tude, which is crucial for assessing the severity of cancellation. In contrast, OCR explicitly quanti-
fies the fraction of overlapping magnitude that is canceled due to opposite signs.

This distinction can be illustrated by the following examples, both with cosine similarity equal to 0:

• Example A (strong cancellation): S = [10,−10], L = [10, 10]. Then S + L = [20, 0],
indicating half cancellation. OCR = 0.5 ((ignoring the small ϵ in the denominator).

• Example B (minimal cancellation): S = [100, 0], L = [0, 100]. Then S+L = [100, 100],
indicating almost no cancellation. OCR = 0.

These examples demonstrate that while cosine similarity may indicate similar or opposite directions,
it does not capture the magnitude of signal lost. OCR complements cosine similarity by explicitly
measuring this magnitude-based cancellation.

F.2 EMPIRICAL OBSERVATION WITH COSINE SIMILARITY

To provide a thorough observation, we include here cosine similarity plots corresponding to the
training of LLaMA-60M on OpenWebText under different total sparsities (0.9, 0.8, 0.7) as a sup-
plement. The settings are exactly the same as the reported in Section 5.1 and Section C where OCR
plots are reported. Figures 6, 7, and 8 show the evolution of cosine similarity between the outputs
of the sparse and low-rank branches during training.

These curves demonstrate that the alignment-enhanced training scheme increases directional align-
ment between the two branches, with a notably higher cosine similarity observed in the Q and K
layers. This observation complements the OCR measure, confirming that the alignment loss not
only reduces magnitude-based cancellation but also improves global directional alignment.
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Figure 6: The layer-wise cosine similarity plot of LLaMA60M on OpenWebText with a total
sparsity of 0.9, with sparsity-configuration s = 0.95, r = 16, dconnectivity : dspectral = 1 : 1.
Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the
experiment of the first row of Table 1. For space limit, we report here the self-attention layers in the
model, where each column refers to Q, K, V, O respectively.
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Figure 7: The layer-wise cosine similarity plot of LLaMA60M on OpenWebText with a total
sparsity of 0.8, with sparsity-configuration s = 0.9, r = 32, dconnectivity : dspectral = 1 : 1.
Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the
experiment of the second row of Table 1. For space limit, we report here the self-attention layers in
the model, where each column refers to Q, K, V, O respectively.
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Figure 8: The layer-wise cosine similarity plot of LLaMA60M on OpenWebText with a total
sparsity of 0.7, with sparsity-configuration s = 0.85, r = 48, dconnectivity : dspectral = 1 : 1.
Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the
experiment of the third row of Table 1. For space limit, we report here the self-attention layers in
the model, where each column refers to Q, K, V, O respectively.
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G FURTHER DISCUSSION: APPLYING ALIGNMENT LOSS ONLY TO Q,K
LAYERS

According to the OCR plots, when applying the alignment loss to all linear layers, the cancellation
effect is primarily mitigated in the Q and K layers rather than uniformly across all layers. This
observation motivates a more efficient approach: applying the alignment loss exclusively to the Q
and K layers.

To investigate this, we conducted experiments with CHTsL applying alignment loss only to Q and K
layers (Align qk) and only except Q/K layers (Align others), compared with those obtained by ap-
plying alignment loss to all layers (Align all), using exactly the same best hyperparameter settings
as summarized in Section B. The results, presented in Table 7, demonstrate that restricting the align-
ment loss to Q and K layers yields similar or even improved performance compared to applying it to
all layers. Align Q/K layers significantly outperforms align other linear layers, with the Wilcoxon
signed-rank p-value lower than 0.05.

These findings further validate that OCR accurately captures the cancellation effect and highlight
that the alignment loss can be implemented more efficiently, achieving comparable or better results
with reduced computational cost. Moreover, this observation provides a useful perspective for future
work building upon this study, suggesting that targeted alignment may be sufficient to achieve strong
performance while saving computation.

Table 7: Validation perplexity of models based on alignment to different components. Align qk
refers to CHTsL with alignment only to Q, K layers, while Align all refers to the original CHTsL
with alignment to all linear layers. Validation perplexity (PPL↓) is reported in this table for different
methods on different datasets under the same constraint of total sparsity stotal. Bold values are the
best performance.

Model Dataset Total Sparsity Align qk Align other Align all

LLaMA-60M

OpenWebText
0.9 32.012 32.224 31.772
0.8 29.066 29.353 29.109
0.7 27.279 27.802 27.400

C4
0.9 39.376 39.713 39.291
0.8 35.860 36.281 35.949
0.7 34.194 34.437 34.191

LLaMA-130M

OpenWebText
0.9 24.251 24.400 24.071
0.8 21.878 21.772 21.866
0.7 20.690 26.655 20.648

C4
0.9 30.135 30.454 30.034
0.8 27.567 27.798 27.593
0.7 26.143 38.250 26.190

Average score 29.04 30.76 29.01
Win Rate 0.42 0.08 0.5

signed-rank against Align qk \ 0.00098 0.62207
p-value against Align other \ \ 0.00098
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H RESULTS ON MODELS WITH LARGER SIZE

We conducted experiments on the larger LLaMA-350M and LLaMA-1B on OpenWebText to further
evaluate the effectiveness of CHTsL at scale. Due to limitations in time and computational resources,
we selected SLTrain, CHTs and CoLA as the most competitive sparse training baselines. Also, we
provide the performance of dense model for reference.

The common hyperparameter settings for all methods are listed in Table 8. All hybrid methods,
including CHTsL and SLTrain, use a sparsity configuration of dconnectivity : dspectral = 1 : 1.

For CHTsL, the coefficient λ which controls the contribution of alignment loss is set to be 0.5.

For SLTrain, the coefficient α controlling the contribution of the low-rank branch is set to 16 for
LLaMA-350M and 8 for LLaMA-1B, following Han et al. (2024).

For CHTs under sparsity level 0.7 on LLaMA-1B, we directly imported the result reported in Zhang
et al. (2025), with learning-rate 3e-3.

For dense model, since the number of trainable parameters is different from the sparse training
methods, we applied smaller learning rate following previous literature Zhang et al. (2025). For
LLaMA-350M, the adopted learning rate is 1e-3, while for LLaMA-1B, we directly imported the
result reported in Zhang et al. (2025) with learning rate 4e-4.

The results are reported in Table 9. They show that CHTsL consistently achieves lower perplexity
across different total sparsity levels compared to the baselines on LLaMA-350M. On LLaMA-1B,
CHTsL outperforms all other methods at the 0.9 sparsity level, where the benefits of our approach be-
come particularly pronounced, while at the 0.7 sparsity level it remains competitive, though slightly
below CoLA. Overall, CHTsL demonstrates robust performance on large-scale models, underscor-
ing its scalability and its strong advantage especially under higher sparsity regimes.

Table 8: Common hyperparameter settings for experiments on LLaMA-350M and LLaMA-1B.
The settings align with previous research.

Hyperparameter LLaMA-350M LLaMA-1B
Embedding Dimension 1024 2468

Feed-forward Dimension 2736 5461
Global Batch Size 512 512
Sequence Length 256 256

Training Steps 60000 100000
Warmup Steps 6000 10000
Learning Rate 3e-3 1e-3

Optimizer Adam Adam
Layer Number 24 24
Head Number 16 32

Iterative warmup steps 20 20
Update Interval for DST 100 100

Table 9: Validation perplexity of different methods on LLaMA-350M. Validation perplexity
(PPL↓) is reported in this table for different methods on different datasets under the same constraint
of total sparsity stotal. Bold values are the best performance out of all sparse methods.

Dataset Method LLaMA-350M LLaMA-1B
s total=0.9 s total=0.8 s total=0.7 s total=0.9 s total=0.7

OpenWebText

Dense 14.90 14.62
CHTs 19.69 17.82 17.88 17.35 14.53
CoLA 20.92 17.60 16.13 16.03 13.08

SLTrain 18.99 16.88 15.98 16.00 14.58
CHTsL 18.40 16.54 15.86 15.16 13.31
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I ABLATION TEST FOR ACTIVATION FUNCTION

As an ablation study, we conducted experiments on the low-rank branch using different activation
functions, including ReLU and GeLU, in comparison with SiLU. The hyperparameter settings were
kept the same as those reported in Section B.

The results, presented in Table 10, show that CHTsL with SiLU activation in the low-rank branch
outperforms the alternatives in most cases.

Table 10: Validation perplexity of CHTsL based on different activation function. SiLU is the
default one used in the main text. Validation perplexity (PPL↓) is reported in this table for different
methods on different datasets under the same constraint of total sparsity stotal. Bold values are the
best performance.

Model Dataset Total Sparsity ReLU GeLU SiLU

LLaMA-60M

OpenWebText
0.9 32.431 32.081 31.772
0.8 29.607 29.280 29.109
0.7 28.125 35.625 27.400

C4
0.9 39.930 39.364 39.291
0.8 36.871 36.045 35.949
0.7 35.251 34.157 34.191

LLaMA-130M

OpenWebText
0.9 24.530 24.049 24.071
0.8 22.219 21.999 21.866
0.7 20.999 20.789 20.648

C4
0.9 30.639 30.171 30.034
0.8 28.252 27.762 27.593
0.7 27.044 26.192 26.190
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J ZERO-SHOT EVALUATION

To further evaluate the generality of CHTsL, we assessed the trained models on downstream datasets
from GLUE and SuperGLUE. We compared CHTsL with the strongest sparse training baselines,
SLTrain and CHTs, as well as with the dense model. All sparse training methods were evaluated
under a total sparsity of 0.9, with corresponding hyperparameter settings listed in Section B. Exper-
iments were conducted using the lm-eval package, and accuracy (Acc) is reported.

The results, presented in Table 11, show that CHTsL achieves the highest win rate among the sparse
training baselines and also outperforms the dense model. These findings further demonstrate the
generality and effectiveness of CHTsL across downstream tasks.

Table 11: Zero-shot results on downstream tasks. CHTsL, SLTrain, and CHTs are evaluated under
a total sparsity of 0.9. Results are reported in terms of accuracy (Acc), with the best-performing
value in each row highlighted in bold. Note that if two or more methods achieve the same accuracy,
all corresponding values are bolded and counted toward the win rate.

Model Pretrain Downstream CHTsL SLTrain CHTs Dense

LLaMA-60M

OpenWebText

CoLA 0.5292 0.6894 0.6913 0.6913
Copa 0.5300 0.5700 0.5700 0.5200

Hellaswag 0.2653 0.2649 0.2663 0.2619
MNLI 0.3278 0.3310 0.3290 0.3282
MRPC 0.3235 0.3995 0.6838 0.6789
QNLI 0.4955 0.4935 0.4944 0.4946
QQP 0.4126 0.3688 0.3682 0.3682
RTE 0.5235 0.5126 0.4838 0.5018

SST-2 0.5482 0.4908 0.4908 0.4920

C4

CoLA 0.6913 0.6903 0.4276 0.6846
Copa 0.4800 0.5200 0.5400 0.4500

Hellaswag 0.2666 0.2644 0.2714 0.2656
MNLI 0.3255 0.3340 0.3291 0.3281
MRPC 0.6544 0.6495 0.6324 0.6740
QNLI 0.4944 0.4915 0.4926 0.4939
QQP 0.3682 0.3727 0.3692 0.3730
RTE 0.5487 0.4874 0.5271 0.5162

SST-2 0.4908 0.4931 0.4908 0.4908

LLaMA-130M

OpenWebText

CoLA 0.6606 0.6568 0.6913 0.6913
Copa 0.5700 0.5600 0.5600 0.6000

Hellaswag 0.2687 0.2656 0.2678 0.2699
MNLI 0.3254 0.3320 0.3275 0.3272
MRPC 0.5662 0.3775 0.6814 0.6740
QNLI 0.4961 0.4950 0.4941 0.4946
QQP 0.4015 0.3762 0.3682 0.3717
RTE 0.5018 0.4477 0.4585 0.4765

SST-2 0.5161 0.4920 0.4908 0.4908

C4

CoLA 0.6002 0.6443 0.6903 0.6903
Copa 0.4700 0.4900 0.5300 0.5700

Hellaswag 0.2713 0.2694 0.2701 0.2770
MNLI 0.3282 0.3274 0.3276 0.3274
MRPC 0.5686 0.3211 0.4412 0.5074
QNLI 0.5041 0.5003 0.4946 0.4946
QQP 0.3720 0.4326 0.3683 0.3682
RTE 0.5199 0.5162 0.4946 0.5018

SST-2 0.4908 0.4920 0.4908 0.4908
Win Rate 0.4167 0.1944 0.25 0.25
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K INFERENCE MEMORY AND THROUGHPUT

In this section, we report the inference memory usage and throughput for CHTsL, SLTrain, and
the dense baseline. For CHTsL and SLTrain, the sparsity configuration was set to dconnectivity :
dspectral = 1 : 1, under a total sparsity 0.9. Each model was run for 5000 inference steps with
dummy inputs of batch size 128 and sequence length 256. We record the maximum memory usage
using torch.cuda.max memory allocated (in GB) and measure the average throughput
(Tokens/sec). Experiments were conducted on a single NVIDIA A100-80GB GPU.

The inference memory and throughput of CHTsL are theoretically identical to those of SLTrain, as
the two differ only in the training procedure while sharing the same inference-stage architecture.
Both methods gain efficiency from:

• sparse matrix multiplication in the connectivity-sparse branch
• low-rank multiplication in the spectral-sparse branch.

For accurate inference benchmarking, we evaluated the trained CHTsL checkpoints using the
SLTrain C++ codebase. For CHTsL, two minimal modifications were made: (1) adding the ac-
tivation function required by the spectral-sparse branch, and (2) correcting the computation order
in the low-rank branch, which in the original SLTrain implementation computed B@A and then
B@A@X and thus introduced redundant operations.

Table 12 shows that CHTsL achieves both lowest memory usage and highest throughput out of
three models. The advantage in throughput arises from the corrected low-rank computation order,
as mentioned above in the second modification. This demonstrates that CHTsL already provides
practical efficiency benefits while holding even greater theoretical potential.

Finally, we emphasize that neither CHTsL nor SLTrain can fully realize their theoretical speed-ups
due to current software and hardware limitations. PyTorch does not provide efficient kernels for un-
structured sparsity, and modern GPUs offer minimal acceleration for unstructured sparse operations.
Thus, all unstructured sparse methods are currently operating below their theoretical limits.

Overall, CHTsL outperforms the dense baseline in both memory and speed, and its efficiency ad-
vantage is likely to increase further as frameworks and hardware improve support for unstructured
sparsity.

Table 12: Inference memory and throughput of different methods. For each model, inference
was conducted for 5000 steps, with maximum memory and average throughput reported. Experi-
ments are conducted on 1 x NVIDIA A100-80GB, with dummy input of batch size 128 and sequence
length 256.

Model Method Memory (GB) Throughput (Tokens/s)

LLaMA-60M
Dense 2.606 773111

SLTrain 2.573 749985
CHTsL 2.573 786004

LLaMA-130M
Dense 3.392 343310

SLTrain 3.278 337149
CHTsL 3.278 386483
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L GRADIENT LEVEL CANCELLATION

To further examine the cancellation effect at the gradient level, we analyze the input gradients of the
two branches (i.e., the gradients of x with respect to Wx and Bf(Ax)). Experiments were conducted
on LLaMA-60M with OpenWebText under a total sparsity level of 0.9 and a sparsity configuration
of dconnectivity : dspectral = 1 : 1, corresponding to the first row of Table 1.

We plot the OCR curves between the input gradients of the two branches. Figure 9 compares the
curves of the Naive combination with those of the alignment-enhanced integration. The results show
that, at the gradient level, certain layers exhibit a reduced cancellation effect (e.g., the 5th Q layer).
However, the phenomenon is less pronounced than at the output level, which is expected since the
alignment loss directly acts on the outputs rather than on the gradients.
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Figure 9: The layer-wise gradient-level OCR plot of LLaMA60M on OpenWebText with a total
sparsity of 0.9, with sparsity-configuration s = 0.95, r = 16, dconnectivity : dspectral = 1 : 1.
Each subplot in the figure reports the changes of OCR over training steps. The plot is based on the
experiment of the first row of Table 1. For space limit, we report here the self-attention layers in the
model, where each column refers to Q, K, V, O respectively.
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M ALIGNMENT ON DIFFERENT COMBINATION OF CONNECTIVITY SPARSITY
AND SPECTRAL SPARSITY

In this section, we present results demonstrating how alignment works when combining different
connectivity-based sparse training methods with low-rank training.

We conducted experiments using connectivity-based sparse training methods including static sparse
training, SET, and CHTs, with different initialization strategies such as random and BSW in the
work of Zhang et al. (2025).

We compare naive integration with alignment-enhanced integration on LLaMA-130M using the
OpenWebText dataset, under a total sparsity level 0.9 with a sparsity configuration of dconnectivity :
dspectral = 1 : 1. The coefficient λ was chosen from 0.3 and 0.5.

Results in Table 13 show that the alignment-enhanced training scheme consistently improves perfor-
mance compared with naive integration. Moreover, for dynamic connectivity-based sparse training
method CHTs, BSW initialization outperforms random initialization, which is consistent with previ-
ous literature and further validates the reliability of our results. These findings further confirms the
generality of the alignment training scheme on combining connectivity sparse training and spectral
sparse training.

Table 13: Validation perplexity under different combination of connectivity sparsity and spec-
tral sparsity. Naive refers to simple integration of connectivity sparsity. Act+Align refers to activa-
tion and alignment-enhanced integration. Bold value refers to the better performance considering
different integration strategy.

DST Initialization Naive Act+Align

Static random 22.44 22.36
BSW 380.88 21.88

SET random 356.08 22.54
BSW 22.55 22.22

CHTs random 22.46 22.20
BSW 22.11 21.87

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

N EASED CANCELLATION EFFECT ON LLAMA-350M

In this section, we present the OCR curves of LLaMA-350M with and without the alignment training
scheme. Due to time constraints, we compare only the naive integration approach, which simply
sums the outputs of the two branches, with the proposed alignment scheme, which leverages both
the activation in the low-rank branch and an explicit alignment loss.

All experiments are conducted under an overall sparsity of 0.9, using the sparsity configuration
s = 0.95, r = 32, dconnectivity : dspectral = 1 : 1. The validation perplexity is reported in Table 14,
where the performance of the naive integration collapses. The OCR curves in Figure 10 during
training show that, under the alignment training scheme, the OCR value decreases significantly,
especially in the Q, K layers, as also observed in smaller models. In contrast, the OCR of the naive
integration is highly unstable, which stems from the training collapse.

Table 14: Validation perplexity on LLaMA-350M under different integration strategy of CHTs and
low-rank trainin. Naive refers to simple integration. Act+Align refers to activation and alignment-
enhanced integration. Bold value refers to the better performance considering different integration
strategy.

Model Dataset Sparsity Naive Act+Align
LLaMA-350M OpenWebText 0.9 604.48 18.40
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Figure 10: The layer-wise output-level OCR plot of LLaMA-350M on OpenWebText with a total
sparsity of 0.9, with sparsity-configuration s = 0.95, r = 32, dconnectivity : dspectral = 1 : 1. Each
subplot in the figure reports the changes of OCR over training steps. For space limit, we report here
the first 8 self-attention layers in the model, where each column refers to Q, K, V, O respectively.
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