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Lightweight Online Adaption for Time Series Foundation Model Forecasts
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Abstract
Foundation models (FMs) have emerged as a
promising approach for time series forecasting.
While effective, FMs typically remain fixed dur-
ing deployment due to the high computational
costs of learning them online. Consequently, de-
ployed FMs fail to adapt their forecasts to cur-
rent data characteristics, despite the availability
of online feedback from newly arriving data. This
raises the question of whether FM performance
can be enhanced by the efficient usage of this feed-
back. We propose ELF to answer this question.
ELF is a lightweight mechanism for the online
adaption of FM forecasts in response to online
feedback. ELF consists of two parts: a) the ELF-
Forecaster which is used to learn the current data
distribution; and b) the ELF-Weighter which is
used to combine the forecasts of the FM and the
ELF-Forecaster. We evaluate the performance
of ELF in conjunction with several recent FMs
across a suite of standard time series datasets. In
all of our experiments we find that using ELF im-
proves performance. This work demonstrates how
efficient usage of online feedback can be used to
improve FM forecasts.

1. Introduction
Over the last decade there has been rapid development in
machine learning models for time series forecasting (Darlow
et al., 2023; Lim & Zohren, 2021; Nie et al., 2022). This has
prompted practitioners in fields requiring accurate forecast-
ing to adopt and deploy increasingly advanced models to
remain competitive. Although these deep models perform
well, training them can be prohibitive, requiring substantial
computational resources, machine learning expertise, and
ample data (Mercier et al., 2021). These practical hurdles
have spurred interest in foundation models (FMs) for time
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Figure 1. Exploitation of online information for forecast adap-
tion in deployment: Time series foundation models (FMs) are
typically seen as fixed when deployed. We propose a method,
ELF, to efficiently improve their forecasts online by leveraging the
feedback available in realistic deployment scenarios. ELF consists
of two components: the ELF-Forecaster, a lightweight forecaster,
learnt online; and the ELF-Weighter a dynamic method to adapt the
FM forecasts by combining it with the ELF-Forecaster’s forecasts.

series forecasting (Miller et al., 2024; Ansari et al., 2024),
which diverge from the standard paradigm of training on a
specific dataset. Instead, FMs are trained across multiple
large datasets (Woo et al., 2024), enabling them to gener-
alise to new, unseen time series and deliver strong zero-shot
forecasting performance (Ansari et al., 2024; Rasul et al.,
2023). This avoids retraining a new model for each task, al-
lowing FMs to be used out-of-the-box even with no available
training data, ML expertise, or computational resources.

While effective, time series FMs remain fixed during deploy-
ment, making them non-adaptive to shifts in the underlying
distribution. In time series deployment scenarios however,
new data arrives continuously, providing feedback on fore-
cast accuracy and changes in the underlying behaviour of the
time series (Zhang et al., 2024). This raises the possibility
of using online feedback to enhance FM performance. This
poses a challenge however, as computational efficiency is a
critical requirement for any online adaptation mechanism
to be practical in real-world time series settings (Joosen
et al., 2024). Potential naive approaches to online adap-
tion, such as regular retraining or continual finetuning on
available data, are at present prohibitively expensive—as
demonstrated in Section 5.3 and Verwimp et al. (2023). Cur-
rently, there is no general, efficient method for leveraging
online feedback in time series FMs at deployment.
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Lightweight Online Adaption of Time Series Foundation Model Forecasts

In this work, we propose ELF, an efficient approach for
online adaption for time series FMs at deployment. ELF
does not alter the parameters of an FM, which remain fixed
during deployment, instead adapting the forecasts output by
the FM. In effect, we take a non-online FM and turn it into
an efficient online model, FM+ELF (see Figure 1). This
approach is lightweight, running on a single CPU, making
implementation cheap. Importantly, ELF can be used out-
of-the-box—i.e., without human supervision—to enhance
the performance of any FM.

ELF consists of two components: the ELF-Forecaster, a
lightweight forecast model which is trained online, and the
ELF-Weighter which combines the forecasts of the FM and
the ELF-Forecaster using an online weighting policy. To
ensure that ELF is computationally efficient we design a
complex linear model to use as the ELF-forecaster, exploit-
ing the Woodbury matrix identity to fit it efficiently online.
To construct the ELF-weighter we build upon exponential
weighting, an approach with a longstanding pedigree in
the online learning community (Cesa-Bianchi & Lugosi,
2006). We construct a weighter made out of a fast adapting
component to extract local information and a slow compo-
nent to extract global information. This allows the weighter
to quickly adapt to distribution shift. We experimentally
demonstrate consistent performance improvements when us-
ing ELF, across multiple state-of-the-art foundation models
and across the standard time-series benchmark datasets.

Our work consists of three main contributions:

1. We propose ELF, an efficient way to exploit the online
feedback available in the deployment stage of a time
series foundation model to improve performance.

2. Design a lightweight linear forecaster applied in the
Fourier domain—the ELF-Forecaster—which can be
efficiently fit online via the Woodbury matrix identity.

3. Design a dynamic weighter—the ELF-Weighter—to
combine the ELF-Forecaster and FM forecasts. This is
constructed out of fast and slow components to quickly
adapt the weighting to shifting data distributions.

2. Related Work
Currently, the main paradigm to construct (zero-shot) time
series FMs is to collect a large pretraining set of time se-
ries data and then use it to learn an LLM-like transformer
model (Rasul et al., 2023; Chen et al., 2024; Liang et al.,
2024). For example, Chronos (Ansari et al., 2024), Moirai
(Woo et al., 2024) and TimesFM (Das et al., 2024) are all
time series FMs which are trained on large curated pretrain-
ing sets of time series, consisting of billions of training
points, and whose backbones consist of LLM-based trans-
former architectures—such as Chronos, which uses the T5
architecture (Roberts et al., 2019). Also, recently there

have been new time series FMs which have gone against
this trend by not using LLM architectures as their back-
bones. For instance, TTM (Ekambaram et al., 2024) uses
the TSMixer architecture (Ekambaram et al., 2023) as its
backbone, which is specific to time series, resulting in a
much smaller model size when compared to methods using
LLM backbones. While, VisionTS (Chen et al., 2024) uses
a masked autoencoder (He et al., 2022) as its backbone and
does not use time series data for pretraining, instead using
images from the ImageNet dataset.

A major focus of this work is the exploitation of online
feedback available at the deployment stage of a time se-
ries forecaster. The idea of leveraging online feedback in
deployment to improve performance of an ML system has
a long history (Hoi et al., 2021; Polikar et al., 2001; Bot-
tou & Cun, 2003). Currently, this concept falls within the
domain of continual or lifelong learning for deep learning
methods (De Lange et al., 2021; Wang et al., 2024). Some
of these works, for instance, investigate how to update a
model online given the newly available data, which is either
from the same distribution or from a shifting distribution
(Aljundi et al., 2019; Lee & Storkey, 2024b). Importantly,
much of the research on continual learning has focused on
vision or text tasks (Qu et al., 2021; Wu et al., 2024), with
comparatively little attention given to the time series domain
(Besnard & Ragot, 2024). The studies that have explored
continual learning for time series forecasting concentrate on
methods for updating the weights of deep learning models
(Ao & Fayek, 2023; Pham et al., 2022; Zhang et al., 2024).
This has two problems in the context of time series: a) up-
dating the weights of a deep learning model, especially of
the size of a FM, at the frequency often required for time
series data and with the resources usually available (e.g.
CPUs) can often make such methods infeasible to use in
practice (Diao et al., 2024; Ekambaram et al., 2024). And b)
online updating of deep models suffers from the problems of
catastrophic forgetting and plasticity loss (Kirkpatrick et al.,
2017; Dohare et al., 2023; De Lange et al., 2021). Solu-
tions to this currently require retraining on large amounts of
historic data and complex, model-specific learning routines
(Yang et al., 2024). This is in contrast to the focus of our
work, which looks at the efficient online adaption of FM
forecasts, so that it can be widely used in the real world.

3. Rolling Window Forecasting
When deploying a time series forecast model in practice,
new data becomes available over time. To model this realis-
tic scenario, practitioners typically adopt a rolling window
approach in which the time series is processed one time step
at a time (Nie et al., 2022). At each time step, a context
window containing the previous L time-series values is con-
structed, from which the model produces a forecast for the
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Lightweight Online Adaption of Time Series Foundation Model Forecasts

next H steps. H is referred to as the forecast horizon. By
progressing through the time series step-by-step, previous
model forecasts can be evaluated against the actual ground
truth values of the forecast that subsequently occur, called
the target. This online feedback of past forecasts can be
used to improve future forecasts.

In this work we look at the rolling window setting, where
the parameters of ELF are altered every M time steps using
online feedback; a process we refer to as updating. We
keep track of each time ELF is updated by using a counter
referred to as the update step which we denote by τ , to
differentiate it from our notation for time step t. For every
M time steps t 7→ t + M , there is a single update step
τ 7→ τ + 1.

3.1. Notation

We list the notation used in this paper below. For notational
simplicity, here and in Section 4, we only describe the uni-
variate case. This is when each value in the time series is
a scalar. This simplification is without loss of generality,
as ELF forecasts each dimension of the time series, called
channels, separately—i.e. it is channel independent.

• L: Context length (number of time steps in the input
sequence).

• H: Forecast horizon (number of future time steps to
predict).

• c: Number of channels (distinct time series).

• x: Context window, x ∈ RL.

• M : The number of time steps between subsequent
updating of ELF.

• t: Current time step.

• τ : Update Step, number of times forecaster has been
updated using online feedback. Given by ⌊ t

M ⌋.
• y, ŷ: Target and forecast respectively, y, ŷ ∈ RH .

• X,Y : Design matrices containing all observed con-
text and target vectors respectively up to the current
time step. X̃, Ỹ Fourier domain representations of the
design matrices.

4. ELF: Online Adaption of Forecasts
We propose a method for Ensembling with online Linear
Forecaster (ELF), to improve the performance of time series
FMs during deployment. ELF is a lightweight approach
consisting of two parts:

1. The ELF-Forecaster: a lightweight forecast model,
trained online on the most recently observed time series
data.

2. The ELF-Weighter: an online weighting mechanism
which adjusts the forecasts of the FM by combining it
with the forecasts of the ELF-Forecaster.

We display the components of ELF in Figure 2 and describe
them in turn below.

4.1. ELF-Forecaster

The ELF-Forecaster is a linear forecast model used to pro-
vide forecasts based on the data seen online from the time
series. We use a linear forecaster for three reasons: a) they
have good performance in time series forecasting (Zeng
et al., 2023); b) as required by our setting, they can be ef-
ficiently updated online; and c) online updating of linear
models does not suffer from the same problems of catas-
trophic forgetting as the online updating neural networks
(De Lange et al., 2021). In this section we first describe
how ELF-Forecaster generates a forecast and then how it
is fit efficiently online. Algorithmic descriptions of these
processes are presented in Appendix A.1.3.

Forecasting The linear ELF-Forecaster forecasts in the
Fourier domain, being inspired by the FITS forecaster pre-
sented in Xu et al. (2023) (as discussed in Appendix A.1.2).
To produce a forecast the ELF-Forecaster takes in a context
vector x ∈ RL and applies the Discrete Fourier Transform
(DFT)

DFT(x)k :=
1√
L

L−1∑
n=0

xne
−2iπkn

L . (1)

After this, to improve updating efficiency, the highest fre-
quencies are discarded. Concretely, given α ∈ [0, 1] we
crop out those components DFT(x)k for which k satisfies(
α
2

)
< k

L <
(
1− α

2

)
. Removing these frequency compo-

nents reduces the dimensionality from L to 2
⌊
αL
2

⌋
≈ αL.

We multiply the resulting low-dimensional vector by a com-
plex weight matrix W of shape αL× αH

2 (x 7→ xTW ). The
output of this operation is zero-padded up to dimensionality
(1 + H

2 ). Finally, we apply the inverse Real Fourier Trans-
form (iRFT) to generate the forecast ŷ ∈ RH .1 The only
parameters of the ELF-Forecaster is the complex weight
matrix W .

Online Fitting The ELF-Forecaster is refit once every up-
date step τ (every M time steps). We fit the ELF-Forecaster
by optimizing the mean squared error (MSE) between its
forecasts and the ground truth across all past data up to the
current time step t = τM . Importantly, since the ELF-
Forecaster is a linear model it can be fit in closed-form,
avoiding the need for gradient-based optimisation (Toner &
Darlow, 2024), and without storing all the data. We note

1The RFT of vector x is obtained by taking the first L/2 + 1
components of the DFT(x).
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Figure 2. Forecast construction for FM+ELF: The left side of the figure shows how ELF adjusts the forecast of the FM. This is achieved
by combining the FM forecast with the forecasts of the online (Woodbury) updated ELF-Forecaster using a weighted average. The weights
wτ in the weighted average are determined by the ELF-Weighter based on previous performance of the FM and ELF-Forecaster. The
schematic in the blue box to the right, zooms into the components of the ELF-Weighter: the fast, slow and merge weighters. Where
the fast weighter gives a weighting based on recent performance; the slow weighter gives a weighting based on performance across the
whole history. The merge weighter is used to combine the weights given by the fast and slow weighters. Each weighter uses exponential
weighting to construct their weights; the difference being the losses used as input. While the slow weigher can be seen as using all
previous losses to compute its weight, we note that only the last B losses need to stored by ELF.

here that we initialise the weights of the ELF-Forecaster to
be the weights of a naive seasonal forecaster. Then, when
there is enough data (τM ≥ L + H), we fit the weight
matrix for the first time.

To refit the ELF-forecaster at each update step τ , we
proceed as follows. Let (x1, x2, . . . , xτM ) be the val-
ues of a univariate time series up to the current time
step τM . Let xs := (xs, xs+1, . . . , xs+L−1), ys :=
(xs+L, xs+L+1, . . . , xs+L+H−1) denote the context and its
respective target starting at time step s. Let X ∈ RN×L

and Y ∈ RN×H , denote matrices formed from all contexts
and targets up to the current time step so that the ith row
of X is xi. (Note that N := τM − L−H; this choice of
N ensures we do not fit on future time steps). Now, let X̃
denote the matrix obtained by taking the DFT of each row
of X and let Ỹ denote the matrix obtained by applying the
RFT to each row of Ỹ . The (L2-regularised) Ordinary Least-
Squares (OLS) solution for the complex weight matrix of
the ELF-Forecaster can be expressed as

W := (X̃∗X̃ + λI)−1X̃∗Ỹ , (2)

where λ is the regularisation coefficient and ∗ denotes the
conjugate transpose.

In a naive implementation of the above one could store all
observed data and recompute Equation 2 every update step.
However, this approach is expensive. Instead of storing
Ỹ we can store X̃∗Ỹ . This speeds up refitting as we can
efficiently update this matrix at each update step τ via

X̃∗Ỹ 7→ X̃∗Ỹ + X̃∗
τ Ỹτ .

where X̃τ , Ỹτ denote the matrices formed from the M most

recently observed context/target features respectively. We
additionally speed up refitting in another two ways: a) stor-
ing and incrementally updating the matrix (X̃T X̃ + λI)−1

using the Woodbury Matrix Identity (Woodbury, 1950). This,
in conjunction with storing X̃∗Ỹ , can be used to update
ELF-Forecaster’s parameter matrix using Equation 2, with-
out needing to store all previously observed data. b) Remov-
ing high frequency components of X̃, Ỹ , that is removing
some specific columns of the matrices. We describe both
approaches below:

The Woodbury Matrix Identity is a method for efficiently
recomputing the inverse of a matrix after a low-rank update
(Woodbury, 1950). We apply this in our setting to enable
efficient recomputation of (X̃∗X̃ + λI)−1 upon receiving
new data. Specifically, letting

A−1 := (X̃∗X̃ + λI)−1,

the Woodbury update is defined as

A−1 7→ A−1 −B,

where

B := A−1X̃∗
τ (I + X̃τA

−1X̃∗
τ )

−1X̃τA
−1.

If model refitting occurs regularly (so that M < L) this
approach is more efficient that the alternative of stor-
ing/updating (X̃∗X̃ + λI) and recomputing the inverse
each update step. This is because rather than inverting a
large matrix of dimension L × L (as in Equation 2), we
invert a smaller matrix of dimension M ×M .

Removing High Frequencies Fitting the ELF-Forecaster
in Fourier space provides a convenient mechanism for di-
mensionality reduction of the context and target vectors via
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the removal of high frequency components. This allows
us to reduce the number of model parameters and further
speed up fitting. Specifically, given some α ∈ [0, 1] (typi-
cally α = 0.9) and the Fourier domain representation of a
context (or target) vector, we retain the lowest α proportion
of frequencies, discarding the rest. In practice this means re-
moving some of the columns of the matrices denoted X̃, Ỹ
in Eqn 2. This filtering technique, reduces the dimension-
ality of the weight vector being learned from L × H to
(αL × αH

2 ), speeding up the fitting, with minimal impact
on performance as demonstrated in our ablations.

4.2. ELF-Weighter

The ELF-Weighter combines the forecasts of the FM and the
ELF-Forecaster; adapting the FM’s forecast by incorporat-
ing the knowledge learnt online by the ELF-Forecaster. We
combine the forecasts by taking a weighted average of them.
Denoting the forecasts of the FM and the ELF-Forecaster at
time step t by ŷt,FM and ŷt,EF , respectively, the combined
forecast is given by

ŷt,ELF = wτ ŷt,FM + (1− wτ )ŷt,EF . (3)

The weight wτ ∈ [0, 1] is adjusted online by the ELF-
Weighter to reflect the changes in the relative performance
between the FM’s and ELF-Forecaster’s forecasts. We use a
weighted average to combine forecasts because the general
idea has been shown theoretically to improve performance
(e.g., Theorem 4.1). We also note that the simpler approach
of using an unweighted average (wτ = 0.5) leads to poor
performance, as demonstrated in Appendix C.10.

The basic building block of the ELF-Weighter is exponen-
tial weighting which is a celebrated method from the on-
line learning community (Cesa-Bianchi & Lugosi, 2006;
Rakhlin & Kleiner, 2008) and can be used to weight fore-
casts. However, the standard way to perform exponential
weighting has the drawback of being quite slow to adapt
to changes in the relative performance differences between
the forecasters. To be more adaptive we are inspired by
Complementary Learning System theory (McClelland et al.,
1995; Kumaran et al., 2016; Ba et al., 2016) to use a combi-
nation of a slow exponential weighter, which learns weights
based on the whole history, and a fast weighter, which only
uses the recent history. Below, we first describe exponential
weighting in general and then the fast and slow weighers
used by ELF-Weighter to produce wτ .

Exponential Weighting is a method for combining K
forecasters by computing a weighted average of their fore-
casts, where the weights are learned online based on the
past losses of each forecaster. We describe first the general
case, where for K forecasters ωτ,k denotes the weight for
the kth forecaster at update step τ . The weights are updated

at update step τ by the learning rule:

ωτ,k =
ωτ−1,ke

−ηLossτ,k∑K
k′=1 ωτ−1,k′e−ηLossτ,k′

,

where Lossτ,k denotes the loss incurred by the kth forecaster
on update step τ , η denotes a predefined learning rate and
where we assume ω0,k = 1 for all k. By recursively ex-
panding the update rule it is possible to give a closed form
solution to the weights learnt at update step τ ,

ωτ,k =
e−η

∑τ
τ′=1

Lossτ′,k∑K
k′=1 e

−η
∑τ

τ′=1
Lossτ′,k′

.

Hence the weights learnt by exponential weighting is a
softmax of the cumulative losses incurred so far by the
forecasters. This update rule has two desirable properties:
a) the worse a forecaster performs the smaller its weight,
and b) the weighter is affected less and less by individual
updates as time progresses. Additionally, there is a well
known theoretical result which bounds the cumulative loss
when using exponential weighting; theoretically motivating
its use:

Theorem 4.1. (Cesa-Bianchi & Lugosi, 2006; Rakhlin &
Kleiner, 2008) Given a convex loss function, define the loss
of the weighted-average forecaster at some update step τ as
Lossτ,weighted and define regret at time T as

RT =

T∑
τ ′=1

Lossτ ′,weighted − min
k∈{1,...,K}

T∑
τ ′=1

Lossτ ′,k.

Then for a maximum incurred loss of Lmax and a learning

rate of η = 1
Lmax

√
8lnK
T we have that

RT ≤ Lmax

√
T

2
lnK.

Slow and Fast Weighters While exponential weighting
is an effective approach it has the drawback that it does not
quickly adapt to distribution shift (Jadbabaie et al., 2015;
Cesa-Bianchi et al., 2012; Zhao et al., 2020). This is be-
cause the losses incurred over the most recent time steps
are given the same importance as those in the far past when
constructing the weights. Hence, it takes several update
steps for there to be enough losses from a new data dis-
tribution to outweigh older losses to correctly adjust the
weights. To remedy this drawback we look at using a com-
bination of two weighters (as shown in Figure 2): a) a slow
weighter which is an exponential weighter, between the FM
and ELF-Forecaster. The update for the slow weight for the
FM forecast wslow

τ at update step τ is

wslow
τ =

wslow
τ−1 e

−ηLossτ,1

wslow
τ−1 e

−ηLossτ,1 + (1− wslow
τ−1 )e

−ηLossτ,2
.
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b) A fast weighter, identical to the slow weighter but only
using losses from the last B update steps. The fast weight
for the FM forecast wfast

τ at update step τ is

wfast
τ =

e−η
∑τ

τ′=τ−B
Lossτ′,1∑2

k′=1 e
−η

∑τ
τ′=τ−B

Lossτ′,k′
.

By only using the last B updates for the fast weighter we
aim to make it more adaptive than the slow weighter to
the current relative performance difference between the FM
and ELF-Forecaster. Additionally, note that in our setting
we always have K = 2, this means we effectively have
a single weight for each weighter where, for instance, the
slow weight for the ELF-Forecaster is 1− wslow

τ .

Merging Fast and Slow Weights The final part of the
ELF-Weighter is a mechanism for synthesising a single
weight wτ from the fast and slow weights (wfast

τ , wslow
τ

respectively). wτ is used for combining the forecasts of
the FM and ELF-Forecaster as in Equation 3. We use an
exponential weighter, the merge weighter, to produce this
final weight. Specifically, we record the losses Lossτ,f
obtained when combining the FM and ELF-Forecaster using
the fast weight (i.e. setting wτ := wfast

τ ) and the losses
Lossτ,s obtained when using slow weight (wτ := wslow

τ ).
We then use exponential weighting to fit a weight βmerge

τ :

βmerge
τ =

βmerge
τ−1 e−ηLossτ,f

βmerge
τ−1 e−ηLossτ,f + (1− βmerge

τ−1 )e−ηLossτ,s
.

This merge weight is then used to combine the fast and slow
weights via

wτ = βmerge
τ wfast

τ + (1− βmerge
τ )wslow

τ ,

to generate the final weight given in Equation 3. An al-
gorithmic description of the ELF-Weighter is given in Ap-
pendix A.2.

5. Experiments
5.1. Experimental Setup

To evaluate the performance of ELF we simulate how it
would perform in a deployment scenario. Specifically, we
adopt the rolling window setting described in Section 3,
moving through the time series and producing forecasts one
time step at a time. We update ELF every M = 200 time
steps using the online feedback provided by the newest 200
data points.

Foundation Models (FMs) Our experiments explore using
ELF in combination with several of the most recent and
well know (zero-shot) FMs for time series: Chronos (tiny)
(Ansari et al., 2024), TTM (revision 2) (Ekambaram et al.,
2024), TimesFM (Das et al., 2024), Moirai (small) (Woo

et al., 2024) and VisionTS (Chen et al., 2024). We compare
the performance of each FM with and without using ELF.

Datasets The datasets we evaluate on are ETTh1, ETTh2,
ETTm1, ETTm2, Weather, Traffic, ECL, Solar and US
Weather (given in Zhou et al. (2021); Wu et al. (2021);
Liu et al. (2022); Darlow et al. (2024)). These are standard
datasets used widely in time series work (Ekambaram et al.,
2024) and importantly, none of the FMs used these datasets
for pretraining. This is with the exception of TimesFM
which uses Traffic and ECL for training, hence we do not
report results for it for those two datasets. Furthermore,
we look at these datasets for three different prediction hori-
zons: H = 30, 96, 336, which were chosen to be compara-
ble to previous work (Woo et al., 2024; Ekambaram et al.,
2024). Throughout all experiments we use a context length
of L = 520, which is a standard context length for the
FMs used in our experiments (Ansari et al., 2024). Addi-
tional details about our experiments, including additional
hyperparameter settings, are given in Appendix B.

Metrics We evaluate our results using Mean Absolute
Scaled Error (MASE) (Hyndman & Koehler, 2006). This is
defined for a given forecast ŷ, context x and target y as

MASE(ŷ,y,x) =
L− S

H

∑H
i=1 |ŷi − yi|∑L−S

i=1 |xi − xi+S |

where S represents the seasonality. MASE measures the
absolute error between the forecast and target, normalised
by the error of a naive seasonal forecaster on the context.
This allows for comparisons across time series with varying
scales over time. This is important in the rolling window
setting, as it is unrealistic to assume that each channel is
scaled to unit variance.

We also report results using the Root Mean Squared Scaled
Error (RMSSE) in Appendix C.12. This metric is defined
similarly to MASE but uses RMSE instead of MAE (Hynd-
man & Koehler, 2006). The conclusions drawn from both
metrics are the same.

5.2. Main Results

Table 1 presents the results of our experiments applying
ELF to FMs, showing that ELF improves performance in
all cases. The table displays the MASEs of each FM and
the difference in MASE when using the FM with ELF (the
+ELF columns). For the difference, a negative number
means that FM+ELF performs better than using the FM
on its own, which we colour green. As shown by the table
we improve the performance in all cases as we have green
numbers for all FMs across all of the datasets looked at. In
some cases the improvement is quite large. For instance,
by using ELF to adapt the forecasts of VisionTS we get an
average improvement of over 10%. These results illustrate
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Table 1. MASE of time series foundation models with and without using ELF: A lower MASE is better and we present results for each
dataset over multiple forecast horizon lengths denoted as H in the table. The results show that by using ELF we improve performance
across all datasets and forecast lengths tested.

Time Series FMs

Dataset H TTM TimesFM VisionTS Chronos Moirai+ELF(↓) +ELF(↓) +ELF(↓) +ELF(↓) +ELF(↓)

ETTh1
30 0.930 -0.019 0.913 -0.022 0.967 -0.063 0.936 -0.047 1.010 -0.089
96 1.081 -0.014 1.107 -0.049 1.084 -0.028 1.120 -0.063 1.168 -0.086
336 1.286 -0.006 1.350 -0.062 1.306 -0.022 1.361 -0.074 1.417 -0.101

ETTh2
30 1.472 -0.018 1.470 -0.024 1.542 -0.071 1.455 -0.021 1.536 -0.058
96 2.786 -0.016 2.799 -0.040 2.787 -0.029 2.801 -0.047 2.863 -0.062
336 6.802 -0.011 6.816 -0.040 6.763 -0.008 6.850 -0.092 6.913 -0.105

ETTm1
30 0.802 -0.048 0.833 -0.079 1.021 -0.252 0.891 -0.139 1.078 -0.311
96 0.973 -0.053 1.016 -0.097 1.050 -0.130 1.164 -0.243 1.239 -0.310
336 1.205 -0.063 1.276 -0.131 1.216 -0.077 1.489 -0.341 1.479 -0.327

ETTm2
30 0.799 -0.036 0.814 -0.057 1.040 -0.251 0.843 -0.085 0.946 -0.164
96 0.991 -0.038 1.029 -0.077 1.088 -0.124 1.107 -0.150 1.151 -0.180
336 1.320 -0.040 1.429 -0.128 1.351 -0.072 1.478 -0.193 1.522 -0.219

US
Weather

30 0.893 -0.036 0.868 -0.041 1.027 -0.172 0.939 -0.091 0.896 -0.068
96 1.123 -0.040 1.164 -0.102 1.155 -0.085 1.204 -0.121 1.143 -0.088
336 1.296 -0.044 1.364 -0.123 1.286 -0.048 1.423 -0.163 1.334 -0.111

Weather
30 0.887 -0.033 0.798 -0.020 1.342 -0.449 1.077 -0.230 1.161 -0.261
96 1.205 -0.043 1.269 -0.220 1.436 -0.253 1.697 -0.538 1.720 -0.503
336 1.576 -0.040 3.084 -1.591 1.691 -0.140 2.099 -0.571 2.073 -0.494

Solar
30 1.091 -0.031 1.097 -0.058 1.004 -0.020 0.984 -0.030 1.222 -0.132
96 1.129 -0.031 1.201 -0.097 1.079 -0.021 1.080 -0.046 1.308 -0.164
336 1.166 -0.033 1.248 -0.100 1.236 -0.087 1.107 -0.028 1.292 -0.119

ECL
30 1.003 -0.086 — — 0.982 -0.107 0.874 -0.034 1.225 -0.288
96 1.106 -0.094 — — 1.090 -0.104 1.015 -0.054 1.303 -0.275
336 1.279 -0.086 — — 1.368 -0.177 1.236 -0.079 1.476 -0.264

Traffic
30 0.887 -0.067 — — 0.962 -0.140 0.659 -0.015 0.770 -0.029
96 0.920 -0.077 — — 0.943 -0.112 0.746 -0.033 0.752 -0.017
336 0.965 -0.084 — — 1.012 -0.127 0.923 -0.100 0.801 -0.019

that efficiently and effectively exploiting the online feedback
in the rolling window setting allows ELF to improve the
forecasts of FMs.

5.3. Comparison to Continual Learning Methods

While we have shown that ELF improves the forecasts of
FMs, it is also important to see how well it compares to
other methods which use online feedback to improve perfor-
mance. To do this, we benchmark ELF against four different
continual learning methods: a) TAFAS (Kim et al., 2025),
which, like ELF, is a method to adapt the forecasts of an FM
using online feedback. TAFAS differs to ELF in the fact
that it adjusts the context not only the forecast, its module

to adjust forecasts is conditioned on the FM forecasts not
context and it uses gating (Chen et al., 2018) not exponential
weighting to adjust the strength of the forecast adaption. b)
FSNet (Pham et al., 2023), which is a modified temporal
convolutional network (Bai et al., 2018), such that it has
improved performance when trained continually. c) OneNet
(Zhang et al., 2023), which is an ensemble of two forecast-
ers fit online, where one forecaster leverages cross-channel
information and the other cross-time information. The en-
sembled forecasters used are typically FSNet models, to
mitigate the problems of continual learning. However, here
we also look at using TTM as the cross-time model (OneNet-
TTM) to explore a variant that is more like ELF. We note
that all of these methods are fit with gradient decent which
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Table 2. Results of time series online adaption methods: We report for each method the rel. MASE w.r.t the naive seasonal forecaster,
averaged over the forecast horizon lengths {30, 96, 336} and the seconds per update step, measured for the ETTh1 dataset with a
prediction length of 96. We compute seconds per update step using 2 Intel(R) Xeon(R) Platinum 8168 CPUs and put in brackets the
proportional speedup of updating using ELF versus the other online adaption methods. The results show that ELF performs the best in
terms of both forecast accuracy (MASE) and compute efficiency (sec. per update step).

Dataset TTM+ELF TTM+TAFAS OneNet-TTM OneNet FSNet

ETTh1 0.882 0.893 1.084 1.123 1.204
ETTh2 0.947 0.954 1.183 1.334 1.130
ETTm1 0.810 0.843 1.177 1.146 1.235
ETTm2 0.814 0.834 1.213 1.373 1.363

US-Weather 0.817 0.838 1.109 1.105 1.198
Weather 0.770 0.790 3.551 2.043 2.510

Solar 0.936 0.962 1.250 1.300 1.810
ECL 0.831 0.897 1.278 1.299 3.916

Traffic 0.676 0.737 0.756 0.803 1.124

Sec. Per Update Step (ELF Speedup) 0.38 3.76 (10x) 30.66 (81x) 43.12 (113x) 23.69 (62x)

can be computationally costly and often leads to problems
when continually learning (De Lange et al., 2021). Addi-
tionally, they require an offline training set to initialise their
parameters, unlike ELF. Further details of these methods are
presented in Appendix B. The results of using these meth-
ods in the rolling window setting are presented in Table 2,
where we use TTM as the FM for TAFAS and compare
to TTM+ELF, as TTM is the best performing FM in our
experiments. The results show that TTM+ELF performs
better than all of the other methods across all datasets tested.
This demonstrates the effectiveness of how ELF uses online
feedback to adjust forecasts.

Computational Cost A core characteristic of ELF is that it
is computationally inexpensive. For example, when deploy-
ing on two CPUs, ELF adds only an additional 0.38 seconds
per update relative to employing the FM without online
adaption. This speed is crucial since, during deployment,
online updating must occur faster than new data arrives. To
contextualise the speed of ELF, in Table 2 we show the
computational cost of other online learning methods. We
find that ELF is 10x faster than any other method. We also
in Appendix C.3 run an experiment where we continually
finetune TTM and find that ELF is 2506x faster. Also, ELF
also outperforms this approach, achieving an average 5.89%
gain in predictive performance on the ETT datasets. These
results demonstrate the computational efficiency of ELF.

5.4. Why Does ELF Improve Performance?

While Table 1 demonstrates that ELF improves the perfor-
mance of FMs, it is important to analyse why this is the case.
We believe that ELF provides a benefit in two main ways:
a) the ELF-Weighter can identify shifts in data distribution,

ensuring that the combined forecast is well suited to the
current features of the time series. b) By leveraging online
feedback the ELF-Forecaster fits to the specific dynamic
features of the time series, enabling the combined forecast
to more accurately model these features. We evidence both
points below.

The ELF-Weighter makes ELF sensitive to the changing
data distribution of the time series. This is achieved by
the ELF-Weighter quickly adjusting the weighting between
the ELF-Forecaster and FM when distribution shifts occur.
An example of the weights adjusting to a shift in distribu-
tion is shown in Figure 3, which depicts the evolution of
the FM weights (wτ ) for Chronos on ETTh1. Specifically,
the weight given to the FM for the purple channel rapidly
increases in the cream shaded region. Additionally, in Fig-
ure 4 we plot a moving average of the MASEs over time
of the Moirai FM, the ELF-Forecaster and the combined
Moirai+ELF during a snippet of the ETTh1 dataset. The
Figure shows how the ELF-Weighter dynamically weights
the forecasts of the ELF-forecaster and the FM based on
their performance on the local data distribution. This allows
ELF to generally generate forecasts which are superior to
either forecaster individually. Notably, Figure 4 also shows
that utilising the ELF usually provides a benefit regardless
of whether, for the current data distribution, the FM outper-
forms the ELF-Forecaster (cream shaded regions) or vice
versa (light-blue shaded regions). This all provides evidence
to the fact that ELF both adjusts to shifts in the data distri-
bution and by doing so increases the accuracy of forecasts.

Figure 3 also shows that for most channels, the FM weight
tends to decrease over time. This phenomenon suggests that
as the ELF-Forecaster observes more dataset-specific data
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Figure 3. ELF weight (wτ ) over time for the Chronos FM for
each channel of the ETTh1 dataset: Each line in the plot shows
the ELF weight for a channel. A weight of 1 means that the ELF-
Forecaster has no contribution to the final forecast, similarly, a
weight of 0 means that the FM is not contributing to the final
forecast. The plot shows that for 5 out of 7 channels the FM
weights gradually decrease; this reflects the fact that as the ELF-
Forecaster observes more data its performance improves and it
is upweighted by the ELF-Weighter. Occasionally, the weights
adapt quickly to changes in the underlying time series, for example
the purple channel shows a rapid weighting change between steps
8, 000-10, 000 (shaded in cream).

it generally becomes better fitted to the given time series
and is consequently up-weighted. This has the follow-on
effect that the FM’s forecast can be increasingly adapted to
the characteristics of the time series it has been deployed on.
An additional discussion of how the ELF-Forecaster identi-
fies time series specific features to improve performance is
presented in Appendix C.13. We also remark that, there are
some channels in Figure 3 where the FM consistently has a
larger weight than the ELF-Forecaster (e.g. the brown line)
and hence is performing better. This justifies the decision to
make ELF channel-independent, as if were not, it would not
be able to weight these channels differently from the others.

5.5. Ablations

To analyse the respective contribution of different parts of
ELF we perform several ablations: a) in Appendix C.10 we
look at the respective performance of the two main compo-
nents of the ELF-Weighter, the fast and slow weighters. We
find that using both leads to a gain compared to using either
individually. b) In Appendices C.7, C.8 and C.9 we ablate
the ELF-Forecaster. Demonstrating that it performs better
than replacing it with other types of forecasters, for exam-
ple more complex forecasters like FSNet or forecasters that
predict the residual of the FM forecast. Additionally, we
establish that filtering high frequencies and using the Wood-
bury matrix identity leads to significant speed up while only

6200 6400 6600 6800 7000 7200 7400
Time

0.8

1.0

1.2

1.4

1.6

M
AS

E

MASE over Time: ETTh1
ELF-Forecaster
Moirai
Moirai+ELF
Moirai+ELF < Moirai

Figure 4. MASEs of the Moirai FM, Moirai+ELF and ELF-
Forecaster over time on a snippet from channel 6 of the ETTh1
dataset: The plot shows during certain intervals (shaded in cream)
Moirai outperforms the ELF-Forecaster, on other occasions the
reverse is true (shaded in light blue). While the ELF-Weighter
ensures that the performance of the combined forecast (the green
dashed line) generally outperforms either individual forecast. This
demonstrates a reason for why using ELF improves performance,
where the gain in using it is given by the green shaded region.

having a negligible impact on forecasting performance. c) In
Appendix C.6 we analyse the role of the updating frequency
M . We observe that by updating ELF more frequently one
may improve its forecasting performance albeit at the cost
of compute performance.

6. Conclusions
In this work we look at how to efficiently improve the fore-
casts of a deployed time series foundation model (FM). We
propose ELF, a method which exploits the fact in deploy-
ment there is online feedback on previous forecasts as new
data arrives. ELF leverages this feedback in two ways: a) to
train a lightweight linear forecaster (ELF-Forecaster) on the
newly arriving data to learn the up-to-date data distribution;
and b) to adapt the FMs forecasts by combining them with
the forecasts generated by the ELF-Forecaster using a learnt
weighting mechanism—the ELF-Weighter. We demonstrate
experimentally that by using ELF we improve performance
consistently across all datasets and FMs looked at. This
indicates that exploiting the online feedback given in de-
ployment is an effective way to boost the performance of
FMs. Crucially, this online adaption of forecasts is achieved
in a FM-agnostic manner and with a small enough overhead
that it can be widely used in the real world.

Impact Statement
This paper looks at the general area of time series forecast-
ing. While there are many potential societal consequences
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of work in time series forecasting, due to the general scope
of our work we do not feel there are any specific societal
consequences to note here.
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A. Additional Methodological Details for ELF
A.1. Implementation Details of the ELF-Forecaster

Initialisation Initially there is no data to fit ELF-Forecaster since we assume that we are deploying zero-shot without
access to a training dataset. Consequently, we are required to wait a small amount of time before the ELF-Forecaster can first
be fit to data, at least L+H time steps. To handle this period we initialise the linear model to the naive seasonal forecaster.
Then after seeing at least L+H time steps we fit the ELF-Forecaster on all the available data at the nest update step τ .

Instance Norm The ELF-Forecaster utilises a variant of instance norm at inference time. Given a context vector x and a
target vector y, and a forecast model f , this involves normalising x by its mean µ(x) applying a model f on the normalised
x′, and adding this mean back onto the prediction ŷ. Formally;

x′ = x− µ(x),

ŷ = f(x′),

ŷout = ŷ + µ(x).

A.1.1. NUMERICAL ISSUES AND RESOLUTIONS

The naive approach for handling the repeated refitting of the ELF-Forecaster is to store XTX and XTY . As one observes
new contexts and targets these quantities can be updated via;

XTX 7→ XTX +XT
MXM ,

XTY 7→ XTY +XT
MYM .

After which one may recompute (XTX+λI)−1XTY to produce the updated weight matrix. While this approach is effective
and requires only the storage of L×L and L×H matrices, one must take care that the cumulative sums XTX,XTY don’t
grow too large. For example, in the context of serverless computing practitioners are often interested in predicting function
requests. The number of these requests can sometimes be in the millions per hour (Joosen et al., 2023; Diao et al., 2024).
Consequently, in this setting, over the course of a year the values of XTX will grow to be in the order of 1017. Using,
say, 32-bit float the large growth in the magnitude of the elements of XTX can result in a loss of numerical precision. To
address this issue we adopt a subtly different approach, instead storing XTX

N , XTY
N where N is the number of data instances

which have been observed thus far. This ensures that the magnitude of the values in these matrices remains approximately
constant. Specifically, given M new data instances XM , YM one updates XTX

N in the following way:

XTX

N
7→ N

N +M

(
XTX

N

)
+

XT
MXM

N +M
.

The update is similar for XTY
N .

We then observe that

(XTX + λI)−1XTY =

(
XTX

N
+

λ

N
I

)−1
XTY

N

Thus we can compute the OLS solution using the scaled quantities XTX
N and XTY

N annealing the regularisation parameter λ
by scaling by 1

N as we see more data.

Data Scaling Typically, when training deep models on time series, practitioners adopt the approach of normalising the data.
The standard approach is to compute the mean and the standard deviation of each series on some training set and then scale
so that the data is zero mean and unit variance (Nie et al., 2022). The validation and test data are scaled using these same
parameters derived from the training set. This technique handles the radically different scales between different time series,
and mirrors data standardisation practices in other areas of machine learning such as computer vision. In an online setting
however we assume that there is no training dataset from which these metrics can be computed. Thus we cannot adopt this
approach. We resolve this by computing a running standard deviation for each channel which are updated online as more
data is observed using Welford’s online algorithm (Welford, 1962). These values are used to scale the data before fitting the
linear model. Note that, at inference time, no data scaling is needed before applying the linear model since αA

(
x
α

)
= Ax

for any α.
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A.1.2. HOW DOES THE ELF-FORECASTER DIFFER FROM FITS?

Our ELF-Forecaster architecture is inspired by the FITS linear forecast model; an effective lightweight approach for time
series forecasting (Xu et al., 2023). FITS applies the Real Fourier Transform (RFT) to a context vector, removes high
frequency components using a low-pass filter (LPF) and then takes the inverse RFT to map back into the time domain. This
structure is similar to that of the ELF-Forecaster, however there are some important differences between our ELF-Forecaster
and FITS, some of which we summarise below:

1. Model Fitting: While FITS is fit using gradient descent, ELF uses a closed-form solution to find the complex weight
matrix.

2. Model Output: FITS outputs a forecast of the target and a reconstruction of the context vector, whereas ELF only
generates a target.

3. Loss Function: FITS is trained to minimise both the reconstruction error and forecast error where we only consider
forecast error.

4. Target Compression: FITS uses a low-pass filter to compress the context vector. ELF applies an LPF to the context
and target.

5. Online Learning: Our method is designed for online learning whereas FITS considers exclusively the non-online
setting.

Relation To Standard Linear Regression When FITS does not use a LPF and the context length exceeds the prediction
horizon length, it is known that it is equivalent to ordinary least-squares linear regression (Toner & Darlow, 2024). Similarly,
in the case where our model applies no compression to the target or the context it will also be equivalent to ordinary
least-squares linear regression.

A.1.3. FITTING AND FORECASTING ALGORITHMS

We present here the algorithms which form the ELF-Forecaster. Algorithm 1 describes how the ELF-Forecaster generates a
forecast given an input context vector x ∈ RL. Algorithm 2 describes how the ELF-Forecaster is refit at update step τ (i.e.
after τM time steps).

Algorithm 1 Predicting with ELF-Forecaster

Input: Context vector x = (x1, x2 . . . , xL), forecast horizon H , frequency retention proportion α ∈ [0, 1], complex
weight matrix W ∈ CL̃×H̃ , where L̃ := ⌊αL⌋ and H̃ := ⌊αH/2⌋.

Compute mean of input: µ := 1
L

∑L−1
i=0 xi

Normalise data: x← x− µ
Apply discrete Fourier transform (DFT): x← DFT(x)
Discard high-frequency components by removing the central portion of x:

x← (x1, x2, . . . , xαL
2
, . . . , xL−αL

2
,︸ ︷︷ ︸

Remove L−⌊αL⌋ components

. . . , xL)

Apply linear map: ŷ ← xTW
Pad forecast with zeros to length H/2 + 1:

ŷ ← (ŷ1, . . . , ŷH̃ , 0, . . . , 0) ∈ CH/2+1

Apply inverse real Fourier transform (iRFT): ŷ ← iRFT(ŷ)
Restore mean: ŷ ← ŷ + µ
Return Forecast vector ŷ ∈ RH
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Algorithm 2 Fitting of ELF-Forecaster

Input: Update step τ , refit interval M = 200; context length L; forecast horizon H; the last M + L+H time steps of a
time series {xi}τM−1

i=(τ−1)M−L−H ; frequency retention proportion α ∈ [0, 1]; regularisation parameter λ = 20; number of
datapoints observed so far NumSeen; boolean flag FIRSTFIT (TRUE if the model has not yet been fit)

Denote
xs := (xs, xs+1, . . . , xs+L−1) ys := (xs+L, xs+L+1, . . . , xs+L+H−1)

Gather the last M context and target vectors D := {xs,ys}τM−L−H
s=τM−L−H−M .

Form matrices X ∈ RM×L and Y ∈ RM×H from D.
Normalise X ← X −mean(X, axis = 1) // Normalise rows to have zero mean
if FIRSTFIT then
σ ← stdev(X, dim = 1) // Calculate initial standard deviation per feature

else
σ ← WELFORD(X,σ) // Update standard deviation online

end if
X ← X/σ // Scale data using standard deviation for numerical stability
// Transform to frequency domain
X̃ ← DFT(X) // Apply row-wise discrete Fourier transform
Ỹ ← RFT(Y ) // Apply row-wise real Fourier transform
// Reduce dimensionality of X̃, Ỹ
Remove the last H

2 − ⌊
αH
2 ⌋ columns of Ỹ // Low-pass on RFT output (ordered low-to-high)

Remove the middle L− ⌊αL⌋ columns of X̃ // Low-pass on DFT output (high freqs in middle)
if FIRSTFIT then
A−1 ←

(
X̃∗X̃+λI

M

)−1

B ← 1
M X̃∗Ỹ

FIRSTFIT ← FALSE
else

// Apply complex-valued Woodbury update rule
A−1 ← WOODBURYUPDATE

(
A−1

NumSeen , X̃
)

// Update A−1 efficiently; see Alg. 3

A−1 ← A−1 · (NumSeen+M) // Rescale updated A−1

B ← 1
NumSeen+M

(
NumSeen ·B + X̃∗Ỹ

)
// Update B via weighted average

end if
Update counter: NumSeen← NumSeen+M
Set the complex weight matrix W ← A−1B

Algorithm 3 Complex-Valued Woodbury Update (Woodbury, 1950)

Function: WOODBURYUPDATE(A−1, X)
Input: A−1 ∈ Cd×d (inverse of a d× d matrix), X ∈ CM×d

Compute the intermediate matrix:
B ← A−1X∗ (I +XA−1X∗)−1

XA−1

Update inverse:
A−1 ← A−1 −B

Return updated inverse matrix A−1
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A.2. ELF-Weighter Algorithms

We present here the two algorithms which form the ELF-Weighter. Algorithm 4, shows how ELF-Weighter ELF the FM
forecast by combining it with the ELF-Forecaster forecast using a weighted average. While Algorithm 5 shows how the
ELF-Weighter uses exponential weighting to update the weights of the fast, slow and merge weighters which construct the
weights wτ used to combine the FM and ELF-Forecaster forecasts.

Algorithm 4 ELF-Weighter Combined Forecasts at Update Step τ

Input: ŷt,FM and ŷt,EF , which are the forecasts of the FM and ELF-Forecaster for time t, respectively, and let the last
update step be update step τ

Compute weight:
wτ = βmerge

τ wfast
τ + (1− βmerge

τ )wslow
τ

Compute and return ELF’s forecasts:
Return wτ ŷt,FM + (1− wτ )ŷt,EF

Algorithm 5 ELF-Weighter Update at Update Step τ

Input: Ŷτ,FM and Ŷτ,EF ; the M ×H matrices containing as rows the M rolling forecasts of the FM and ELF-Forecaster
for update step τ , respectively; and, Xτ , Yτ the M × L and M ×H matrices containing the true values for the contexts
and forecasts for update step τ , respectively.

Compute losses for update step τ (we use average MASE over the last M time steps for the loss function):
Lossτ,1 = Compute Average MASE(Ŷτ,FM , Yτ , Xτ )

Lossτ,2 = Compute Average MASE(Ŷτ,EF , Yτ , Xτ )

Lossτ,s = Compute Average MASE(wslow
τ−1 ŶFM + (1− wslow

τ−1 )Ŷτ,EF , Yτ , Xτ )

Lossτ,f = Compute Average MASE(wfast
τ−1 ŶFM + (1− wfast

τ−1 )Ŷτ,EF , Yτ , Xτ )

Update slow weighter:

wslow
τ =

wslow
τ−1 e−ηLossτ,1

wslow
τ−1 e−ηLossτ,1+(1−wslow

τ−1 )e−ηLossτ,2

Update fast weighter:

wfast
τ = e

−η
∑τ

τ′=τ−B
Loss

τ′,1∑2
j=1 e

−η
∑τ

τ′=τ−B
Loss

τ′,j

Update merge weighter:

βmerge
τ =

βmerge
τ−1 e−ηLossτ,f

βmerge
τ−1 e−ηLossτ,f +(1−βmerge

τ−1 )e−ηLossτ,s
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B. Hyperparameters and Additional Experimental Details
There are a few additional details to mention about our experiments. First, there are the hyperparameter values used for
ELF. These are chosen a priori and are the same across all of our experiments. This is due to the fact in the rolling window
setting it is not possible to fix hyperparameters before evaluating/deploying the forecaster. For the ELF-Forecaster the
parameter values are λ = 20 and α = 0.9. For the ELF-Weighter the hyperparameters are η = 0.5 for all weighters and
B = 5 update steps. Second, at the start of deployment the ELF-Forecaster has insufficient data to give accurate forecasts
therefore we have a warm-up period of 5 update steps where it is not used in the combined forecast. Last, in Table 3 we
present the seasonalities used to calculate the MASE and RMSSE scores for each dataset along with some general dataset
statistics—number of channels and time steps.

Table 3. Dataset statistics and the seasonalities used for each dataset in the computation of MASE

Dataset Seasonality #Channels #Time Steps

ETTh1 24 7 17420
ETTh2 24 7 17420
ETTm1 96 7 69680
ETTm2 96 7 69680

US Weather 24 12 35064
Weather 144 21 52696

Solar 24 88 12840
ECL 24 321 26304

Traffic 24 862 17544
Wind-PerSec 60 1 86400
Solar-PerSec 60 1 86400
Cloud-PerSec 240 11 86400

Details of FMs For each of the FMs looked at, we have aimed to use the same configurations as in the original works.
However, there are some necessary changes we needed to make. First, both TTM and TimesFM are trained using a context
length of 512 and so in our experiments we remove the first 8 values of each 520-long context before giving it to TTM or
TimesFM. Also, the currently released models for TTM only predict to a maximum horizon length of 96. Hence to forecast
with TTM using a horizon length of 336 we auto-regressively feed-in the constructed forecast back into TTM to generate
longer forecasts. This is the same technique as done in the paper proposing TTM (Ekambaram et al., 2024).

Details of Online Adaption Methods: TAFAS, OneNet and FSNet For the online adaptation methods we look at, as for
the FMs, we have aimed to keep their setup the same as in the original works. Specifically, this means that for each method
we have a training step, unlike ELF, which happens after seeing 2000 time steps. Before this training step each method is
uninitialised, so we use the naive seasonal forecaster to give forecasts in this region. Then at the training step we do batch
training on the first 2000 time steps of the dataset to initialise each method. After this the methods are trained online like
ELF, where for TAFAS we set M = 200 to make it as comparable to ELF as possible. While, given how different OneNet,
OneNet-TTM and FSNet are to ELF we set M = 1 for these three methods to maximise their performance, which is the
same setting as in their original works (Zhang et al., 2023; Pham et al., 2023). Additionally, as we are in the rolling window
setting we cannot normalise the data ahead of time, which is done in the original works proposing TAFAS, OneNet and
FSNet. Therefore, instead we use RevIn (Kim et al., 2021) with each method to standardise the data in our experiments.
Finally, there are a few more specific details we need to mention for TAFAS. One being that we do not use Prediction
Adjustment. This is because in our setting we assume the forecasts cannot be modified after they have been given, as in the
real-world they are often used immediately for decision making. While the other is that for TTM we use the both gated
calibration modules for all datasets bar Solar and Traffic. For the other FMs and for Solar and Traffic for TTM we only use
the output gated calibration module due to GPU Memory constraints we had while performing the experiments.
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Table 4. MASE of time series foundation models with and without using ELF on per-second time series: A lower MASE is better
and we present results for each dataset over multiple forecast horizon lengths denoted as H in the table. The results show that by using
ELF we improve performance across all per-second datasets and forecast lengths tested.

Time Series FMs

Dataset H TTM TimesFM VisionTS Chronos Moirai+ELF(↓) +ELF(↓) +ELF(↓) +ELF(↓) +ELF(↓)

Wind-PerSec
30 0.728 -0.041 0.774 -0.089 1.492 -0.794 1.096 -0.398 0.757 -0.070
96 1.770 -0.036 1.851 -0.111 2.299 -0.552 2.136 -0.386 1.821 -0.082

336 4.759 -0.058 4.923 -0.208 4.975 -0.260 5.219 -0.482 4.786 -0.079

Solar-PerSec
30 0.286 -0.050 0.246 -0.016 0.738 -0.499 0.275 -0.041 0.346 -0.109
96 0.581 -0.103 0.508 -0.030 0.907 -0.417 0.536 -0.051 0.666 -0.183

336 1.543 -0.165 1.528 -0.165 1.647 -0.236 1.429 -0.045 1.684 -0.229

Cloud-PerSec
30 0.940 -0.128 0.879 -0.079 0.980 -0.161 0.920 -0.110 0.947 -0.132
96 1.060 -0.119 1.010 -0.085 1.075 -0.026 1.067 -0.127 1.082 -0.137

336 1.285 -0.126 1.234 -0.094 1.240 -0.082 1.334 -0.172 1.379 -0.212

C. Additional Experimental Results
C.1. Results on Per-Second Datasets

In the main text we look at standard times series datasets used frequently in the literature (Darlow et al., 2024), here we
look additionally at datasets which have a per-second frequency. The reason we do this is to explore settings where speed
of updating and computing forecast is required to be measured in seconds and so where there is the most need for the
compute efficiency of ELF. We perform experiments with three per-second datasets: Wind-PerSec (Godahewa et al., 2021),
Solar-PerSec (Godahewa et al., 2021) and Cloud-PerSec (Joosen et al., 2023). The rest of the experimental setup is the
same as for the experiments in the main text. Results for these experiments are presented in Table 4 and show that for all
the per-second datasets using ELF leads to better performance. Hence, on high-frequency datasets where computational
efficiency is a major factor, we find that the lightweight ELF improves forecasts.

C.2. Comparison of ELF to TAFAS

In the main text we compare ELF with TAFAS using TTM as the FM. Here, we also provide results comparing ELF with
TAFAS using all the FMs used in our experiments. The results are presented in Table 5 and show that, as with TTM, ELF
performs better than TAFAS on all the other FMs for all datasets look at. This demonstrates the benefit of using ELF over
TAFAS for the online adaptation of FM forecasts. However, we note that given the computational efficiency of both methods,
it maybe more beneficial to use both methods at the same time to improve FM performance, which we leave to future work
to explore.

C.3. Comparison of ELF to Continual Finetuning

An alternative method to ELF for using online feedback in the rolling window setting is finetuning the FM at each update
step. As explained in Section 2 this has three main problems: a) there is no default model-agnostic way to repeatedly finetune
time series FMs; b) continually finetuning FMs lead to problems found in continual learning like catastrophic forgetting
which are hard to deal with (De Lange et al., 2021; Lee & Storkey, 2024a); and c) finetuning large FMs is computationally
expensive and so cannot be done in many real world deployment settings (Ekambaram et al., 2024). These reasons are why
we do not compare the efficient, model-agnostic and unforgetting ELF to finetuning in the main text. However, it is still
useful to see how well ELF compares to finetuning approaches.

To look at the performance of finetuning in the rolling window setting we perform an experiment where we finetune TTM
at each update step. We use TTM as it is the only time series FM which we know of that proposes an efficient finetuning
scheme but we note that this scheme is specific to TTM and cannot be used for other FMs, unlike ELF (Ekambaram et al.,
2024). To address the continual learning problems encountered by incrementally finetuning TTM at each update step, we
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Table 5. MASE of time series foundation models using ELF or TAFAS: A lower MASE is better and we present results for each dataset
over multiple forecast horizon lengths denoted as H in the table. The results show that ELF performs better than TAFAS across all
datasets and forecast lengths tested.

Time Series FMs

Dataset H
TTM TimesFM VisionTS Chronos Moirai

+ELF +TAFAS +ELF +TAFAS +ELF +TAFAS +ELF +TAFAS +ELF +TAFAS

ETTh1
30 0.911 0.927 0.891 0.910 0.904 0.960 0.889 0.922 1.009
96 1.067 1.080 1.058 1.090 1.055 1.078 1.057 1.082 1.166

336 1.280 1.289 1.288 1.317 1.283 1.300 1.287 1.316 1.418

ETTh2
30 1.455 1.469 1.447 1.466 1.471 1.538 1.434 1.477 1.540
96 2.770 2.788 2.759 2.789 2.759 2.786 2.754 2.801 2.872

336 6.791 6.825 6.776 6.797 6.755 6.767 6.758 6.808 6.924

ETTm1
30 0.753 0.781 0.754 0.828 0.768 1.008 0.752 0.767 1.072
96 0.919 0.957 0.920 1.000 0.919 1.021 0.921 0.929 1.225

336 1.143 1.193 1.145 1.230 1.139 1.199 1.149 1.152 1.459

ETTm2
30 0.763 0.784 0.757 0.812 0.789 1.031 0.758 0.782 0.946
96 0.953 0.979 0.951 1.015 0.964 1.065 0.957 0.971 1.151

336 1.279 1.306 1.301 1.348 1.278 1.335 1.285 1.303 1.521

US
Weather

30 0.857 0.893 0.827 0.857 0.855 1.008 0.848 0.828 0.896
96 1.083 1.107 1.061 1.115 1.070 1.139 1.083 1.055 1.144

336 1.252 1.269 1.241 1.303 1.238 1.274 1.260 1.224 1.336

Weather
30 0.855 0.880 0.777 0.795 0.893 1.322 0.847 0.900 1.138
96 1.162 1.197 1.049 1.051 1.183 1.414 1.159 1.217 1.652

336 1.536 1.567 1.493 1.613 1.550 1.643 1.528 1.579 2.021

Solar
30 1.060 1.091 1.038 1.096 0.984 1.004 0.954 1.091 1.222
96 1.098 1.129 1.103 1.200 1.058 1.079 1.035 1.144 1.308

336 1.134 1.166 1.149 1.248 1.149 1.236 1.079 1.173 1.292

ELC
30 0.917 1.000 — — 0.875 0.977 0.840 0.937 1.223
96 1.012 1.100 — — 0.987 1.077 0.961 1.028 1.301

336 1.193 1.267 — — 1.191 1.298 1.157 1.212 1.474

Traffic
30 0.820 0.887 — — 0.822 0.962 0.644 0.741 0.770
96 0.843 0.921 — — 0.832 0.943 0.713 0.735 0.752

336 0.881 0.965 — — 0.885 1.011 0.822 0.782 0.801

finetune using experience replay, a well known and well performing continual learning method (Ostapenko et al., 2022;
Chaudhry et al., 2019; Wang et al., 2024). More specifically, we set M = 200 as in our main experiments, maintain a
memory buffer of 400 previously-seen instances—uniformly sampled from seen instances—and allow the method to see the
last 400 time series instances. Then we finetune using TTMs scheme where the data in the memory buffer and the first 200
of the last 400 time series instances as training data and the last 200 being used as validation data for early stopping. We run
the experiment on 2 Intel(R) Xeon(R) Platinum 8168 CPUs, to model a realistic deployment scenario, and measure both
the MASE forecasting performance and the mean time taken to perform an update step for finetuning TTM and for ELF.
The results of the experiments for the ETT datasets are presented in Table 6. The table shows that using ELF improves
both forecasting accuracy and computational efficiency. For example, ELF has a 5.89% better forecasting performance
and is 2506x faster. This means that while finetuning may not be able to be used in a real-world deployment setting due
to computational expense (Joosen et al., 2023; Diao et al., 2024), ELF very likely can be as it incurs only a very small
computational overhead.
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Table 6. Computational and forecasting performance of using ELF with TTM compared to incrementally finetuning TTM (TTM-
Finetune): In the table we present the average results for all the ETT datasets over the forecast horizons of {30, 96, 336}. The results
show that using ELF improves both the forecasting performance and computational efficiency when compared to finetuning.

Method Seconds-Per-Update (CPU) MASE

TTM-Finetune 911.52 1.746
TTM+ELF 0.38 1.673

Avg. ELF improvement 2506x (↑) 5.89% (↑)

Table 7. MASE results of finetuning TTM once on the ETT datasets (TTM-Single-Finetune): For each dataset and forecast horizon,
we finetune TTM on the first 2000 time steps and the use it to forecast the rest of the time series. We compare this method to (zero-shot)
TTM and when using TTM with ELF (TTM+ELF). Furthermore, we bold methods which perform the best for each dataset and forecast
horizon combination. The table shows that finetuning TTM once damages its performance, as this performs worse than TTM without
finetuning.

Dataset H TTM TTM-Single-Finetune TTM+ELF

ETTh1
30 0.930 0.965 0.911
96 1.081 1.172 1.067

336 1.286 1.537 1.280

ETTh2
30 1.472 1.579 1.455
96 2.786 2.927 2.770

336 6.802 7.044 6.791

ETTm1
30 0.802 0.856 0.753
96 0.973 1.055 0.919

336 1.205 1.346 1.143

ETTm2
30 0.799 0.885 0.763
96 0.991 1.116 0.953

336 1.320 1.564 1.279

C.4. Comparison of ELF to a Single Finetuning Step

In the previous section we explored how well ELF compared to finetuning TTM at every update step. In this section we
explore how well it compares to finetuning TTM once, a commonly explored setup in previous work (Ekambaram et al.,
2024; Ansari et al., 2024). More specifically, we use TTM zero-shot for 2000 time steps and then use the data seen to
finetune TTM. For the ETTh datasets this corresponds to finetuning on ≈ 10% of the data. We use the same method as
in Appendix C.3 to perform the finetuning with the newest 400 data points used for validation and the rest for training.
After this we use the finetuned TTM to forecast the rest of the time series. The results of these experiments for the ETT
datasets are presented in Table 7. The table shows that by only finetuning once we perform worse than using TTM zero-shot
and additionally worse than using TTM with ELF. This indicates that while a single finetuning step might help to improve
forecasts in the short term, in the long term it can damage TTMs ability to generalise to the changing data distribution of the
time series. Therefore, these results suggest the need for online updating to improve forecasts of FMs at deployment.

C.5. Continually Finetuning TTM with ELF

Up to this point we have assumed that we keep the FM fixed while using ELF. This is mainly due to the fact, as discussed
before, that it is computationally expensive to continually finetune an FM. Additionally, the continual finetuning of FMs is
not straightforward, coming with numerous complications as demonstrated by work in continual learning (CL) (De Lange
et al., 2021). However, it is still interesting to explore the performance of using ELF while continuing finetuning the FM. To
do this we perform an experiment where we continually finetune TTM and use ELF (TTM-Finetune+ELF) on the ETT
datasets. We use TTM in this experiment as it is the only FM, to our knowledge, with a efficient finetuning scheme. The
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Table 8. MASE results of finetuning TTM and using ELF (TTM-Finetune+ELF) on the ETT datasets : We report results where
we continually finetune TTM alongside using ELF to adapt its forecasts. We bold methods which perform the best for each dataset and
forecast horizon combination. The table shows that finetuning TTM with ELF in general performs worse than keeping TTM frozen.

Dataset H TTM+ELF TTM-Finetune+ELF

ETTh1
30 0.911 0.940
96 1.067 1.081

336 1.280 1.300

ETTh2
30 1.455 1.595
96 2.770 2.784

336 6.791 6.784

ETTm1
30 0.753 0.784
96 0.919 0.918

336 1.143 1.140

ETTm2
30 0.763 0.799
96 0.953 0.959

336 1.279 1.282

results of this experiment are presented in Table 8 and show that keeping TTM fixed performs best in most cases. However,
for a few dataset and forecast horizon combinations finetuning TTM alongside ELF helps, though is more computationally
costly. Therefore, this experiments shows that keeping the FM fixed is a sensible design decision, performing in general
better. But, there maybe cases where computational cost and continual learning are not as big issues where it is beneficial to
finetune the FM as well.

C.6. ELF Performance versus Update Frequency

In our experiments we refit the ELF-Forecaster every M = 200 time steps. This number is fixed across our experiments and
has not been tuned. In this section we look at how performance is impacted by varying this update parameter. Figure 5 plots
the MASE of our approach as we increase the update frequency of ELF. The results shown are for the ETTh2 (right) and
ETTm1 (left) datasets for the TTM FM (the FM attaining the best results on this dataset). These graphs demonstrate how
more regular updating generally improves performance of our approach. This supports our core hypothesis that for time
series it is crucial to utilise the most up-to-date data.
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FM MASE
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Figure 5. ELF performance as a function of the update frequency used during online evaluation, indicating that more frequent
updating boosts performance: The left figure shows results for the ETTh2 dataset, while the right figure shows results for the ETTm1
dataset.
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Figure 6. The impact on time taken for fitting and inference as
a function of percentage of frequencies discarded by ELF: We
measure the time ELF takes for fitting and inference on a batch size
of 200 as the percentage of discarded frequency components in-
creases. As more frequencies are discarded, the total time decreases.
Fitting and inference are performed using two CPU cores. Due to
the presence of noise, the curve is not perfectly monotonic, as might
be expected.
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Figure 7. The impact of retraining frequency on ELF fit-
ting+inference speed: We plot the total time taken for fitting and
inference in ELF as we vary the number of times the model is re-
fitted during evaluation on the ETTh1 dataset with a horizon of
336. We compare the performance of the Woodbury update rule
(blue) with the more basic OLS (‘linear’) approach. No frequency
components are removed in this experiment. As retraining becomes
more frequent, the benefit of using the Woodbury identity increases;
when retraining occurs 84 times, the speed-up is approximately 25%
over the naive ‘linear’ implementation. Minor fluctuations in the
curve reflect the noise inherent in measuring computation speed.

C.7. ELF-Forecaster Computational Efficiency Ablation

When training online in real-time is it vital that model fitting be fast and computationally low-cost. This necessity motivates
our decision to use a linear model which can be fit in closed-form for the ELF-Forecaster. Additionally, as outlined in
Section 4, we take advantage of two ways to speed up our method: 1) we use the Woodbury matrix identity and 2) we discard
high frequency components when fitting the ELF-Forecaster. In this section we evaluate how these techniques impact the
amount fitting time on a CPU. This ablation complements Section C.8 which explores how removing high frequencies
impacts the performance of ELF, demonstrating that the decline in performance is slight. Thus together this section and
Section C.8 validate our decision to remove high frequencies to improve speed.

C.7.1. IMPACT OF % OF DISCARDED FREQUENCIES ON EXECUTION SPEED

As detailed in Section 4 the ELF includes a feature allowing the model to discard a percentage of the high frequencies of the
context and targets when fitting in order to improve inference and fitting time. In this section we explore how varying the
percentage of high frequencies which are discarded impacts the total execution time for fitting and inference. Specifically,
we vary the proportion of frequencies discarded in steps of 5% and record the time taken by ELF, for fitting and inference
on a single data batch of size 200. For these experiments we do not use the Woodbury identity to investigate the role of
frequencies on execution time in isolation. To ensure consistent resource allocation, we bound the execution to two CPU
cores. This allowed us to isolate the computation to specific cores, mitigating potential variability caused by the operating
system’s task scheduler.

Figure 6 shows the results of these experiments, plotting fitting + inference time against percentage of discarded frequencies.
The plot suggest that execution speed improves by discarding a higher proportion of frequency components. For example,
discarding 40% of components results in a 25% speed-up compared to using 100% of the components.

C.7.2. SPEED-UP FROM THE WOODBURY MATRIX IDENTITY

The ELF-Forecaster, detailed in Section 4, uses the Woodbury matrix identity. In this section we record how this design
decision impacts the time taken for fitting and inference of ELF. We vary the number of times that we refit the ELF-Forecaster
during evaluation on the ETTh1 dataset and record the total time taken to fit and predict using the ELF model. We repeat
twice, once using the Woodbury identity and once not using the identity which we call linear. All fitting and prediction
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occurs on 2 CPUs. For these experiments we do not throw away any high frequency components so that we can study the
impact of the woodbury identity in isolation. We use a prediction horizon of 336. The results of these experiments are
plotted in Figure 7, where we plot the number of retrains on the x-axis aginst total time in the y-axis. ‘Woodbury’ is plotted
in blue and ‘linear’ in red.

By inspection of Figure 7 we see that, when one retrains rarely, it is preferable not to use the Woodbury update rule. This is
because the Woodbury update rule is suited for low-rank updates and when refitting occurs infrequently, the rank of the
update matches the rank of the matrix being updated. However, when retraining occurs regularly the Woodbury grants a
speed-up over the naive implementation. Moreover, the gain increases as the regularity of retraining increases. In our main
experiments we refit every 200 times steps. For the ETTh1 dataset this corresponds to refitting the ELF-Forecaster 84 times.
At this retraining frequency the Woodbury matrix identity grants a roughly 25% speed-up. The graph features certain bumps
which reflect the noise inherent in measuring execution time. Both graphs show a bump at 50 retrains. On the ETTh1 dataset
50 retrains corresponds to retraining every 336 time steps, this value is equal to the prediction horizon length. Consequently,
as the number of retrains increases from 49 to 50 prediction length exceeds the batch size for the first time impacting the
speed of the matrix computations and explaining the apparent discontinuity.
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Figure 8. ELF performance as a function of the percentage of high-frequency components discarded before model fitting: We
plot the MASE of FM+ELF as the percentage of high-frequency components removed by the ELF-Forecaster increases, for the Weather
(top left plot), ETTm1 (top right), Electricity (bottom left), and Solar (bottom right) datasets. The foundation model (FM) used is TTM.
The MASE of the FM (black dashed line) is shown for comparison. As more frequencies are discarded, performance begins to decline;
however, initially, this decline is minor (e.g. for the ETTm1 dataset, removing 20% of frequency components results in only a roughly
0.1% increase in MASE).

C.8. ELF Performance as Function of % High-Frequencies Discarded

The ELF-Forecaster removes high frequencies from the context and target to reduce dimensionality, thereby speeding-up
model fitting and inference. In Figure 8 we look at how performance is impacted by this design choice. We plot the
performance on the y-axis and the percentage of frequency components which are discarded on the x-axis. The plot shows
the Weather (top left plot), ETTm1 (top right), Electricity (bottom left), and Solar (bottom right) datasets, each using a
forecast horizon of 96 and a TTM base forecaster. The performance of the TTM FM without online adaption is given by the
horizontal black dashed line. While removing high frequencies results in a drop in performance, removing only 10-20% of
frequencies has a negligible impact on method performance. Taking into account the meaningful speed-up observed in the
ablations in Section C.7 validates this decision to drop high frequency components.
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C.9. ELF-Forecaster Ablation

It is important to understand the benefit of using the ELF-Forecaster when compared to other potential options. To do this
we perform an experiment where we replace the ELF-Forecaster with different types of forecasters, keeping the rest of ELF
the same. The different types of forecasters we look at are: a linear model trained with online gradient descent (OGD),
FITS, FSNet and a linear forecaster trained online to predict the residuals of the FM. The results of this experiment are
presented in Table 9. For brevity, we report for each FM and forecast horizon combination the average MASE relative to
the the MASE of the naive seasonal forecaster, averaging over the datasets used in the main experiments. The table shows
that for all forecast horizons and FMs the ELF-Forecaster outperforms all of the other forecasters tested. This provides
validation for the design decisions taken for the ELF-Forecaster.

Table 9. Ablation of using different forecasters instead of the ELF-Forecaster: We replace the ELF-Forecaster with: a linear model
trained by online gradient descent (OGD), FITS, FSNet and a residual predictor approach. In each case we change nothing except for the
forecaster; combining the FM and the forecaster using the ELF-Weighter. Results are given as MASE relative to the the MASE of the
naive seasonal forecaster and we average results across all datasets. We also report the standard error as subtext. The results show that
using the ELF-forecaster gives better performance than using any of the other alternatives tested across each FM and forecast horizon.

Average Rel. MASE w.r.t Naive Seasonal Forecaster over all Datasets

FM H ELF OGD-Forecaster FITS-Forecaster FSNet-Forecaster Residual-Predictor

TTM
30 0.796±0.038 0.840±0.039 0.842±0.040 0.833±0.039 0.827±0.043

96 0.831±0.033 0.872±0.029 0.874±0.030 0.869±0.030 0.871±0.033

336 0.867±0.028 0.904±0.022 0.908±0.022 0.905±0.023 0.926±0.014

TimesFM
30 0.776±0.052 0.817±0.053 0.818±0.054 0.814±0.052 0.816±0.054

96 0.853±0.029 0.910±0.029 0.912±0.030 0.926±0.018 0.905±0.033

336 0.898±0.017 0.958±0.015 0.964±0.016 1.014±0.047 0.956±0.014

VisionTS
30 0.791±0.030 0.930±0.009 0.935±0.008 0.918±0.016 0.893±0.013

96 0.825±0.033 0.898±0.029 0.902±0.029 0.897±0.033 0.883±0.028

336 0.868±0.027 0.928±0.022 0.934±0.022 0.930±0.024 0.924±0.021

Chronos
30 0.753±0.037 0.820±0.032 0.822±0.032 0.817±0.033 0.816±0.032

96 0.810±0.041 0.915±0.056 0.917±0.056 0.914±0.057 0.892±0.048

336 0.856±0.032 0.960±0.046 0.966±0.046 0.968±0.051 0.933±0.034

Moirai
30 0.800±0.041 0.939±0.039 0.941±0.050 0.928±0.049 0.920±0.050

96 0.836±0.043 0.980±0.029 0.982±0.062 0.976±0.062 0.947±0.030

336 0.870±0.037 0.990±0.022 0.997±0.054 0.996±0.055 1.001±0.019

C.10. ELF-Weighter Ablation

The ELF-Weighter consists of a combination two separate weighers—fast and slow—therefore it is useful to understand
the respective contribution of these two parts. To perform this ablation we ran an experiment where we only used the slow
weighter (ELF-SlowWeighter) or fast weighter (ELF-FastWeighter) on their own. The results of this experiment is recorded
in Table 10, where we report for each FM and prediction horizon the average MASE across all datasets used in our main
experiments (ETTs, US-Weather, Weather, Solar, ECL and Traffic). The table shows, by the bolded values, that using the
full ELF-Weighter is better or equal to only using the fast or slow weighter. Additionally, we find that only in a few cases
(33%) does the performance of the fast weighter or slow weighter match the performance of the combined weighter. We
find that in these cases the combined weighter defaults to either fast weighter or slow weighter, perhaps due to not finding a
benefit in terms of performance of mixing them. Hence, we have shown that making the ELF-weighter a combination of a
fast and slow weighter generally improves performance and never makes it worse, while also having minimal additional
compute overhead.

In Table 10 we also show the results of using the Hedge weighting algorithm (ELF-HedgeWeighter) or an unweighted mean
to combine the forecasts of the FM and ELF-Forecaster (ELF-Unweighted). Hedge is similar to exponential weighting
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Table 10. Results of ablation where we compare using the full ELF-Weighter (ELF) with when using only its slow weighter
component (ELF-SlowWeighter), fast weighter component (ELF-FastWeighter), using Hedge (ELF-HedgeWeighter) or using an
unweighted mean (ELF-Unweighted): We present for each FM and prediction horizon the average MASE (± standard error) across all
datasets used in our main experiments. We bold the lowest avgerage MASE weighter each FM and prediction horizon. The table shows
that using the full ELF-Weighter is better than using either of its components independently and that using Hedge or an unweighted mean
performs poorly.

Average Rel. MASE w.r.t Naive Seasonal Forecaster over all Datasets

FM H ELF ELF-SlowWeighter ELF-FastWeighter ELF-HedgeWeighter ELF-Unweighted

TTM
30 0.796±0.038 0.797±0.038 0.798±0.038 0.809±0.040 0.804±0.037

96 0.831±0.033 0.832±0.034 0.833±0.032 0.843±0.034 0.839±0.031

336 0.867±0.028 0.868±0.028 0.869±0.027 0.877±0.028 0.874±0.025

TimesFM
30 0.776±0.052 0.782±0.050 0.776±0.052 0.799±0.054 0.784±0.048

96 0.853±0.029 0.858±0.029 0.853±0.029 0.872±0.030 0.871±0.021

336 0.898±0.017 0.900±0.017 0.898±0.017 0.913±0.017 0.967±0.056

VisionTS
30 0.791±0.030 0.793±0.030 0.792±0.030 0.811±0.034 0.829±0.021

96 0.825±0.033 0.828±0.033 0.826±0.032 0.841±0.032 0.842±0.031

336 0.868±0.027 0.870±0.027 0.870±0.027 0.883±0.027 0.878±0.025

Chronos
30 0.753±0.037 0.758±0.037 0.755±0.036 0.777±0.039 0.774±0.32

96 0.810±0.041 0.814±0.040 0.811±0.041 0.830±0.041 0.841±0.042

336 0.856±0.032 0.858±0.032 0.856±0.032 0.874±0.029 0.886±0.036

Moirai
30 0.800±0.041 0.802±0.041 0.802±0.042 0.818±0.044 0.830±0.037

96 0.836±0.043 0.837±0.043 0.838±0.043 0.849±0.043 0.872±0.043

336 0.870±0.037 0.870±0.036 0.872±0.037 0.881±0.036 0.901±0.038

where the only difference is that at each update step the FM or ELF-Forecaster is chosen to solely give forecasts until the
next update step by sampling from the distribution defined by the weights (Cesa-Bianchi & Lugosi, 2006). While, by an
unweighted mean we mean that we set wτ = 0.5 for all update steps τ . The results in Table 10 show that using either Hedge
or an unweighted mean leads to poor performance and they are never better or equivalent to using the ELF-Weighter in our
experiments. Hence, this provides evidence that using a weighted mean to combine forecasts is a good design decision.

C.11. Analysis of the Performance of ELF-Forecaster Compared to FMs

To understand the impact of learning from the up-to-date feedback given in the rolling window setting, we present here the
performance of using the ELF-Forecaster on it own. We compare this against using (zero-shot) TTM, the best performing
FM in our experiments, and when using ELF with TTM (TTM+ELF). The results are displayed in Table 11, from which
we can draw three main conclusions: a) for some datasets using TTM zero-shot performs better than learning from the
given dataset online using ELF-Forecaster (e.g. ETTh1 and ETTh2); b) for other datasets by learning online on the given
dataset ELF-Forecaster performs better than using TTM (e.g. ECL and Traffic); and c) using ELF-Forecaster to adapt the
forecasts of TTM (TTM+ELF) always improves performance against using either separately. While using summary MASEs
is informative, it is also useful to look at how the relative performance between the ELF-Forecaster and FMs changes over
time. We can look at Figure 3 to do this, as it displays the weight wτ used to weight between the ELF-Forecaster and the
Chronos at each update step τ for ETTh1. The figure shows that for most channels that at the start Chronos is preferred and
performs better than the ELF-Forecaster. But, as the ELF-Forecaster sees more data and therefore learns the specific time
series characteristics it gradually performs better and therefore is weighted more heavily. This all shows that, as expected,
using the up-to-date feedback in the rolling window setting (i.e. deployment stage), means we can learn a dataset specific
forecaster (ELF-Forecaster) which steadily improves in performance over time to be comparable to the FM. Therefore, it can
be used to adapt the FMs forecasts to be more dataset specific, to improve performance, which our results experimentally
validate (e.g., see Appendix C.13).
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Table 11. MASE of the ELF-Forecaster, TTM and when adapting TTM with ELF (TTM+ELF): The results show that ELF-Forecaster,
which is trained online on each dataset, and TTM, performing zero-shot forecasting, perform similarly. TTM sometimes performs better
than ELF-Forecaster and othertimes not. Additionally, TTM+ELF improves upon both TTM and using ELF-Forecaster on its own for all
datasets and forecast horizon lengths.

Dataset H ELF-Forecaster TTM TTM+ELF

ETTh1
30 0.946 0.930 0.911
96 1.113 1.081 1.067

336 1.335 1.286 1.280

ETTh2
30 1.503 1.472 1.455
96 2.819 2.786 2.770

336 6.822 6.802 6.791

ETTm1
30 0.769 0.802 0.753
96 0.931 0.973 0.919

336 1.150 1.205 1.143

ETTm2
30 0.793 0.799 0.763
96 0.981 0.991 0.953

336 1.300 1.320 1.279

US
Weather

30 0.877 0.893 0.857
96 1.096 1.123 1.083

336 1.262 1.296 1.252

Weather
30 0.907 0.887 0.855
96 1.205 1.205 1.162

336 1.568 1.576 1.536

Solar
30 1.084 1.091 1.060
96 1.124 1.129 1.098

336 1.172 1.166 1.134

ECL
30 0.930 1.003 0.917
96 1.021 1.106 1.012

336 1.205 1.279 1.193

Traffic
30 0.871 0.887 0.820
96 0.888 0.920 0.843

336 0.922 0.965 0.881
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C.12. RMSSE Results

Table 12. RMSSE of time series foundation models with and without using ELF: A lower RMSSE is better and we present results for
each dataset over multiple forecast horizon lengths denoted as ‘H’ in the table. The results show that by using ELF we improve RMSSE
scores across all datasets and forecast lengths tested, as when evaluating with MASE.

Time Series FMs

Dataset H TTM TimesFM VisionTS Chronos Moirai+ELF(↓) +ELF(↓) +ELF(↓) +ELF(↓) +ELF(↓)

ETTh1
30 0.806 -0.016 0.805 -0.023 0.864 -0.068 0.840 -0.052 0.877 -0.076
96 0.954 -0.012 0.994 -0.049 0.975 -0.031 1.017 -0.068 1.032 -0.074
336 1.149 -0.005 1.215 -0.058 1.176 -0.024 1.231 -0.072 1.259 -0.085

ETTh2
30 0.838 -0.015 0.842 -0.021 0.911 -0.072 0.868 -0.034 0.896 -0.056
96 1.149 -0.012 1.178 -0.037 1.166 -0.029 1.209 -0.054 1.219 -0.060
336 1.807 -0.010 1.832 -0.036 1.802 -0.015 1.897 -0.086 1.900 -0.084

ETTm1
30 0.680 -0.039 0.710 -0.067 0.860 -0.208 0.763 -0.122 0.905 -0.253
96 0.865 -0.046 0.910 -0.088 0.963 -0.139 1.040 -0.216 1.093 -0.265
336 1.077 -0.052 1.135 -0.106 1.108 -0.080 1.321 -0.287 1.316 -0.282

ETTm2
30 0.668 -0.032 0.693 -0.055 0.868 -0.213 0.742 -0.097 0.805 -0.154
96 0.847 -0.034 0.892 -0.075 0.955 -0.129 0.981 -0.156 1.001 -0.173
336 1.123 -0.036 1.187 -0.094 1.163 -0.073 1.285 -0.186 1.299 -0.198

US
Weather

30 0.744 -0.030 0.746 -0.038 0.875 -0.149 0.803 -0.088 0.779 -0.067
96 0.971 -0.032 1.035 -0.092 1.015 -0.072 1.063 -0.115 1.030 -0.087
336 1.148 -0.033 1.230 -0.108 1.159 -0.043 1.278 -0.149 1.232 -0.108

Weather
30 0.580 -0.028 0.521 -0.017 0.941 -0.359 0.724 -0.167 0.753 -0.184
96 0.987 -0.035 0.888 -0.034 1.203 -0.223 1.363 -0.402 1.337 -0.365
336 1.643 -0.031 1.767 -0.214 1.761 -0.131 2.061 -0.439 2.001 -0.369

Solar
30 0.790 -0.005 0.831 -0.043 0.836 -0.045 0.846 -0.065 0.922 -0.104
96 0.866 -0.006 0.957 -0.079 0.919 -0.045 0.997 -0.106 1.031 -0.131
336 0.903 -0.005 1.000 -0.077 0.973 -0.057 1.033 -0.091 1.046 -0.109

ECL
30 0.846 -0.066 — — 0.863 -0.102 0.781 -0.040 1.049 -0.250
96 0.956 -0.070 — — 0.964 -0.092 0.929 -0.063 1.135 -0.235
336 1.115 -0.062 — — 1.191 -0.138 1.130 -0.085 1.285 -0.214

Traffic
30 0.709 -0.051 — — 0.793 -0.128 0.587 -0.027 0.630 -0.026
96 0.783 -0.057 — — 0.811 -0.090 0.723 -0.052 0.678 -0.020
336 0.843 -0.057 — — 0.876 -0.090 0.895 -0.115 0.754 -0.021

C.13. The ELF-Forecaster Learns Dataset-Specific Features

While FMs are designed to produce good forecasts out-of-the-box, avoiding a dataset-specific training routine can mean that
such models are not optimally tuned to the given data distribution. In contrast, the ELF-Forecaster is fit to data drawn from
the specific time series. This allows it to pick up on dataset-specific features than the FM may miss. This way combining the
forecasts of the FM with those of the ELF-Forecaster can boost performance. Two concrete examples of this are given in
this section.

Figure 9 shows forecasts on the Traffic dataset (channel 620) made by TTM (left, orange) and ELF-Forecaster (right, blue).
We see that while the forecasts of TTM are good, capturing daily periodicity, it does not model the decrease in traffic which
occurs during the weekend (regions shaded in blue). By contrast, the ELF-Forecaster is able to identify and predict this
decrease in traffic.

Figure 10 shows forecasts on two cloud time series (Joosen et al., 2024) made by TTM (orange) and TTM+ELF (blue)
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TTM vs ELF-Forecaster Forecasts on Traffic

Figure 9. TTM (left) and ELF-Forecaster (right) forecasts on the Traffic dataset: The TTM forecast (right figure, orange) is good,
picking up on the daily periodicity in traffic levels. However, TTM fails to model the weekly periodicity; specifically the decline in traffic
occurring at the weekend (see the blue shaded regions). Conversely, the ELF-Forecaster, which is fit to the dataset, predicts this decline in
weekend traffic numbers.
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TTM and TTM+ELF on Cloud Data

Figure 10. TTM and TTM+ELF forecasts on two cloud time series: In both figures, the TTM forecast (orange) is accurate but omits the
large spikes which occurs around time step 7100 on the left figure and around step 7170 on the right figure. This is despite the regularity
of these spikes making them seemingly easy to predict. In contrast, ELF predicts these spikes well so that TTM+ELF (blue) generates a
superior forecast to TTM by itself.

compared against the ground truth (red). We see that while the forecasts of TTM are fairly accurate it does not anticipate
spikes which occur periodically in either of the datasets. However, the ELF-Forecaster, which is fit on drawn from these
dataset, is able to insert the missing spikes boosting overall performance.

C.14. A Note on the Performance Ordering of FMs When Using or Not Using ELF

It is interesting to see how the relative performance of FM change when using ELF to adjust their forecasts online. The
results in Table 1 show that in our experiments TTM is generally the best performing FM without ELF. But, when using
ELF the best performing FM is less clear: the performance of each of the FMs becomes more similar and the best model
varies across dataset and prediction length. This suggests that in realistic settings where it is possible to use ELF to exploit
online feedback to improve forecasts, the performance improvement in newer FMs is less stark than in the zero-shot setting.
This adds qualifications to the suggested progress made in time series forecasting by successive generations of FMs.
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