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ABSTRACT

Large-scale pretrained vision–language models, such as CLIP, have become the
backbone of modern zero-shot recognition. Despite their strong generalization
ability, these models often struggle with compositionality, particularly in under-
standing attribute-object combinations and relational structures. Recent studies
mitigate this issue by augmenting training with synthetic hard negatives gener-
ated by large language models and text-to-image models. Yet, this strategy re-
lies on separate expert models, introducing a sequential generation pipeline with
quality-control overhead and resulting in a disjointed source of multimodal under-
standing. To overcome these limitations, we propose MLLMCLIP, a feature-level
distillation framework that bypasses synthetic data generation by directly transfer-
ring multimodal knowledge from Multimodal Large Language Model (MLLM).
Our framework addresses the key challenges of cross-architecture distillation with
three core contributions: (1) a question-answering-based protocol to select the
teacher MLLM, (2) an attention-based method to identify salient teacher tokens,
and (3) the successful adaptation of Centered Kernel Alignment for stable knowl-
edge transfer. MLLMCLIP achieves state-of-the-art performance on 9 out of 11
compositionality benchmarks, while also yielding significant improvements in
general-purpose tasks, such as zero-shot classification and image-text retrieval.

1 INTRODUCTION

The emergence of CLIP (Radford et al., 2021) marked a turning point in vision-language learning,
showing strong performance in zero-shot classification and retrieval. Following its success, a wide
range of approaches have been proposed to enhance CLIP, with a focus on embedding space (Goel
et al., 2022; Lavoie et al., 2024), data efficiency (Li et al., 2021; Joshi et al., 2024), and higher-
quality captions (Fan et al., 2023; Lai et al., 2024). Despite these advances, a critical limitation has
emerged: CLIP often exhibits a bag-of-words behavior (Yuksekgonul et al., 2022), which prevents
it from capturing the compositionality of language.

Constructing hard negatives that require compositional reasoning is a common direction to miti-
gate this issue. Recent studies (Wu et al., 2023; Patel et al., 2024; Singh et al., 2025) implement
this approach by leveraging Large Language Models (LLM) and text-to-image models to synthesize
hard negative pairs, which are then incorporated into the CLIP training process. However, these
approaches still suffer from two key limitations: (1) the lack of unified multimodal understanding,
as they rely on separate generative models; and (2) the inherent inefficiency of their sequential data
generation pipeline. These shortcomings motivate an alternative direction: directly leveraging the
rich, unified understanding of Multimodal Large Language Models (MLLM) as a source of addi-
tional knowledge. Specifically, distilling knowledge at the feature level, rather than synthesizing new
data, can bypass the inefficient generation pipeline and enable a more direct and efficient transfer of
semantics without iterative sampling or quality control.

While the concept of leveraging MLLM to enhance CLIP is straightforward, building a practical
distillation framework hinges on several key design considerations. The first step is selecting a suit-
able teacher model. Our analysis of MLLM on compositional benchmarks reveals that some MLLM
exhibit positional bias, and larger parameter counts do not guarantee stronger compositional under-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

standing. The second is determining the teacher tokens. Most distillation research has focused on
homologous architectures, transferring knowledge from large models to their smaller counterparts
in domains such as CLIP (Yang et al., 2024; Chen et al., 2024), LLM (Chenglin et al., 2024; Xu
et al., 2024b), and MLLM (Cai et al., 2024; Xu et al., 2024a). In contrast, distilling knowledge from
the generative decoder of MLLM into the representational encoders of CLIP involves a fundamental
architectural mismatch. This heterogeneity complicates the selection of teacher tokens, as there is
no direct correspondence between the layers or feature spaces of the two models. The third con-
sideration is the distillation loss. While existing methods are primarily built upon direct similarity
(e.g., MSE) and relational objectives (e.g., Centered Kernel Alignment (CKA)), their effectiveness
for distillation between heterogeneous, multimodal models has been largely unexplored.

In this paper, we propose MLLMCLIP, a novel distillation framework designed to effectively trans-
fer the rich multimodal understanding of MLLM into CLIP’s encoders. Each challenge above is
addressed with our key components: (1) The comprehensive evaluation protocol based on question-
answering reformulation to identify MLLM with superior compositional understanding to act as the
teacher. (2) The attention-based method to select the most salient features to serve as teacher tokens.
(3) The extension of CKA to multimodal, cross-architecture distillation, enabling stable transfer of
structural and semantic knowledge.

We evaluate our method on 11 compositionality benchmarks, where it outperforms previous ap-
proaches on 9 tasks and achieves the highest average score. Beyond compositional reasoning, our
method delivers consistent gains in zero-shot classification and image–text retrieval, demonstrating
enhanced generalizability across tasks. Extensive ablation studies further verify the contribution of
each component to the overall performance. The contribution of our paper is summarized as follows:

• To the best of our knowledge, we propose the first distillation framework that leverages
multimodal interaction signals from MLLM into CLIP’s encoders, successfully bridging a
fundamental architectural mismatch.

• Our method addresses the core challenges of this task by introducing a novel protocol for
teacher selection, an attention-based token selection method, and a robust distillation loss.

• MLLMCLIP achieves state-of-the-art performance on 9 out of 11 compositionality bench-
marks, along with notable gains in zero-shot classification and image-text retrieval.

2 RELATED WORKS

2.1 COMPOSITIONALITY

The success of CLIP has inspired numerous studies (Mu et al., 2022; Lavoie et al., 2024; Zheng et al.,
2024) aimed at enhancing its generalizability through data augmentation, improved training strate-
gies, and enriched textual supervision, such as incorporating paraphrased or longer captions during
training. In contrast to these general enhancements, Yuksekgonul et al. (2022) identifies a key lim-
itation of CLIP: its tendency to behave like a bag-of-words model. This observation introduces the
issue of compositionality, which has led to the development of new benchmarks (Krojer et al., 2022;
Peng et al., 2024; Dumpala et al., 2024) specifically designed to assess compositional reasoning in
vision-language models. To address this problem, several methods have been proposed that utilize
hard negative pairs for contrastive learning. Prior work has explored several strategies for con-
structing hard negatives. Early works employ WordNet (Fellbaum, 2010) to generate semantically
challenging negative texts (Yuksekgonul et al., 2022; Oh et al., 2024). Subsequent methods utilize
LLMs to synthesize negative texts and further leverage text-to-image generative models to produce
corresponding negative images, enabling sequential construction of multimodal negatives (Wu et al.,
2023; Patel et al., 2024; Singh et al., 2025).

2.2 MULTIMODAL LARGE LANGUAGE MODEL

Recent advances in large language models have led to the development of MLLM, which can pro-
cess and reason across multiple modalities. Models such as LLaVA (Liu et al., 2024), LLaMA-
Vision (Grattafiori et al., 2024), InternVL (Zhu et al., 2025), and Qwen-VL (Bai et al., 2025)
demonstrate strong performance by aligning image features with the token-based input space of
LLMs, typically through a visual projection module. While early MLLMs relied on encoder-based
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Multimodal Large 
Lanugage Model(MLLM)

Which caption best describes the image?
(1) A clock tower rises above another skyscraper.
(2) Another skyscraper rises above a clock tower.
Output only (1) or (2).

Which caption best describes the image?
(1) Another skyscraper rises above a clock tower.
(2) A clock tower rises above another skyscraper.
Output only (1) or (2).

(1) or (2)

GT-First

GT-Second

LLAVA-1.6-mistral-7B

LLAVA-1.6-vicuna-7B

Qwen2-VL-2B

Qwen2-VL-7B

Qwen2.5-VL-3B

Qwen2.5-VL-7B

InternVL3-1B

InternVL3-2B

InternVL3-8B

LLAMA3.2-Vision-11B
40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

GT-position
First
Second
Average

Figure 1: Evaluation of MLLMs on compositional benchmarks. (Left) Illustration of the evalua-
tion protocol, where models are asked to choose the correct description when the ground-truth is
presented in different orders. (Right) Performance of various MLLMs, reported under different
ground-truth positions. Detailed numerical results are available in Table A.

visual backbones, recent work has explored encoder-free architectures (Wang et al., 2023; Diao et al.,
2024; Luo et al., 2025) that embed image patches directly as input tokens, offering greater flexibility
in input format. Our framework is agnostic to these architectural choices, capable of leveraging the
multimodal understanding from both encoder-based and encoder-free MLLMs as a teacher.

3 METHOD

3.1 TEACHER MODEL SELECTION

To select a suitable teacher, we evaluate MLLMs using the SugarCrepe benchmark (Hsieh et al.,
2023), which is designed to test compositional understanding in vision-language models. The bench-
mark provides an image paired with a correct and a perturbed caption, and is typically used by se-
lecting the caption with the higher image-text similarity score. As MLLMs are not assessed via
simple similarity scores, we adapt this benchmark by reformulating it as a question-answering (QA)
task. For example, the model is prompted with an image and text such as:

“Which caption best describes the image? (1) The horse is eating the grass. (2) The grass is eating
the horse. Output (1) or (2).”

Our evaluation includes recent open-source MLLMs with parameters ranging from 1B to 11B, such
as LLaVA-1.6 (Liu et al., 2024), Qwen2.5-VL (Bai et al., 2025), InternVL3 (Zhu et al., 2025), and
LLaMA-3.2-Vision (Grattafiori et al., 2024). To account for position bias, each model is evaluated
twice by varying the position of the ground-truth caption. As illustrated in Figure 1, LLaVA-1.6
exhibits strong position sensitivity, showing a large accuracy gap depending on caption order. While
InternVL3-8B achieves the highest average accuracy, Qwen2.5-VL-3B exhibits minimal position
bias and performs comparably, with significantly lower computational cost. Based on this supe-
rior balance of performance and efficiency, we adopt Qwen2.5-VL-3B as the teacher model for all
subsequent experiments.

3.2 ARCHITECTURE

3.2.1 STUDENT EMBEDDING (CLIP)

The student model consists of separate CLIP-based image and text encoders, denoted as f I and fT ,
respectively. We follow the standard CLIP-style input processing: patch embedding followed by
prepending a [CLS] token for image input xI , and tokenization with [SOS] and [EOS] for text
input xT . Each sequence is passed through its encoder to produce layer-wise hidden states:

hI
l ∈ RdI

s , hT
l ∈ RdT

s , l = 1, . . . , Ls, (1)

where hI
l and hT

l denote the hidden states of the [CLS] and [EOS] tokens from the l-th layer of
the image and text encoders, respectively. Here, Ls is the number of encoder layers, and dIs , dTs are
the hidden dimensions of the image and text encoders. To align the feature dimensions of the teacher
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Patch Embedding

MLLM
Vision Encoder

"A very typical bus station"
MLLM Decoder Block

MLLM Decoder Block

Attention-based
Token Selection
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Layer-wise Token Selection
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Transformer Block
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Contrastive Loss
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Figure 2: Overview of the MLLMCLIP framework. Student features are passed through auxiliary
layers before alignment, and attention-based token selection obtains salient teacher tokens.

and student, the hidden states are passed through auxiliary layers (AuxI , AuxT ) implemented as a
linear layer followed by Layer Normalization:

hStud,I
l = AuxI(hI

l ), hStud,T
l = AuxT (hT

l ), hStud,I
l , hStud,T

l ∈ RD. (2)

These student representations are used to match the corresponding teacher representations. In par-
allel, the final-layer representations are projected into a common embedding space for contrastive
learning. Following the original CLIP architecture, these projection heads, ProjI and ProjT , are
implemented as a single linear layer:

zI = ProjI(hI
Ls
), zT = ProjT (hT

Ls
), (3)

where zI , zT ∈ Rd.

3.2.2 TEACHER EMBEDDING (MLLM)

The teacher model jointly encodes image xI and xT as a unified sequence. The image is first to-
kenized via patch embedding and processed through a vision encoder, which is part of the MLLM
architecture. The text input is inserted into a fixed template designed to activate the model’s compo-
sitionality, as detailed in Appendix B.2. We concatenate the image features with the [Image End]
token, followed by the text tokens, before passing them through the decoder blocks.

Let the teacher model produce hidden states from each decoder layer l ∈ {1, . . . , Lt}, denoted as

[hMLLM
l,1 , . . . , hMLLM

l,N ], hMLLM
l,n ∈ Rdt . (4)

Note that N is the sequence length, and Lt and dt denote the number of decoder layers and the
feature dimension of the teacher model, respectively.

Token-wise Selection. To identify a representative teacher token within the sequence, we use self-
attention weights from each decoder layer. Let A(k)

l ∈ RN×N denote the attention matrix from
head k ∈ {1, . . . ,K} at layer l, where K is the number of attention heads. We begin by averaging
the attention weights across all heads:

Āl =
1

K

K∑
k=1

A
(k)
l ∈ RN×N . (5)

We then compute the maximum attention each token receives across all query positions:

sl,n = max
i∈{1,...,N}

Āl[i, n], (6)

4
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where Āl[i, n] denotes the attention weight from token i (as query) to token n (as key). Finally, we
select the token with the highest received attention:

n∗
l = argmax

n∈{1,...,N}
sl,n, hTeach

l = hMLLM
l,n∗

l
. (7)

This strategy selects the most attended token in each layer, under the assumption that such tokens
are likely to carry salient multimodal information.

Layer-wise Selection. While token selection is guided by attention, we empirically select a subset
of teacher layers for distillation to reduce computational cost. Let S = {s1, . . . , sLs} ⊆ {1, . . . , Lt}
denote the selected set of teacher layers, where |S| = Ls. We explore strategies such as selecting
layers from fixed relative positions (e.g., sampling from early, middle, and late stages of the teacher)
or using uniform stride intervals across the full depth. This design is motivated by the characteristic
of Transformer representations, where lower layers tend to capture fine-grained information and
higher layers encode abstract multimodal semantics. Based on empirical results, we adopt the stride-
based selection strategy for all experiments.

3.3 LOSS FUNCTIONS

3.3.1 CONTRASTIVE LOSS

Following the standard CLIP training (Radford et al., 2021), we use an InfoNCE loss to align image
and text embeddings. Let zIi and zTi denote the image and text embeddings for the i-th sample in a
batch of size B. The contrastive loss using image embeddings as anchors is given by:

LI
contrast =

1

B

B∑
i=1

− log
exp(sim(zIi , z

T
i )/τ)∑B

j=1 exp(sim(zIi , z
T
j )/τ)

, (8)

where sim(·, ·) denotes cosine similarity and τ is a temperature. Similarly, we compute LT
contrast by

treating text embeddings as anchors. The final contrastive loss is given by:

Lcontrast =
1

2

(
LI

contrast + LT
contrast

)
. (9)

3.3.2 DISTILLATION LOSS

To align intermediate representations between the teacher and student models, we consider a set of
similarity-based objectives for distillation. These objectives fall into two main categories:

• Direct similarity loss: such as mean squared error (MSE), which operates on a per-sample
basis and compares feature vectors directly.

• Relational similarity loss: such as Centered Kernel Alignment (CKA) (Kornblith et al.,
2019), which assesses structural similarity by aligning either the sample-level Gram matri-
ces or the feature-level covariance matrices.

Direct Similarity Loss. Direct similarity losses enforce a sample-wise correspondence between
the teacher’s and the student’s intermediate representations. Within a mini-batch size B, let hStud,I

l,i

denote the student’s image representation for the i-th sample from layer l, and hTeach,I
sl,i

be the corre-
sponding teacher’s image representation from a selected teacher layer sl. For each layer, we compute
the similarity loss between the student and teacher representations for both image and text, and sum
across layers. The resulting objective is averaged over the batch:

Ldistill =
1

B

B∑
i=1

1

Ls

Ls∑
l=1

1

2

(
ℓdirect(h

Stud,I
l,i , hTeach,I

l,i ) + ℓdirect(h
Stud,T
l,i , hTeach,T

l,i )
)
, (10)

where Ls is the number of student layers. In our experiments, we consider the MSE, cosine similar-
ity, KL divergence, and JS divergence loss as the direct loss functions, denoted as ℓdirect.
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Relational Similarity Loss. We primarily adopt the CKA-based loss, which is effective for trans-
ferring knowledge between different architectures (Dasgupta & Cohn, 2025). Unlike direct sim-
ilarity losses, CKA captures the global structural alignment of representations across a batch of
samples. We first gather the layer-wise representations for all B samples in a mini-batch into matri-
ces. For a given modality, let Xl ∈ RB×D be the matrix of student hidden states from layer l, and
Ysl ∈ RB×D be the matrix of corresponding teacher hidden states from layer sl. CKA operates by
comparing the Gram matrices of these centered feature matrices. First, the matrices are centered:

X̃l = Xl −
1

B
11⊤Xl, Ỹsl = Ysl −

1

B
11⊤Ysl , (11)

where 1 is a column vector of ones. The Gram matrices, Kl ∈ RB×B and Lsl ∈ RB×B , are then
computed:

Kl = X̃lX̃
⊤
l , Lsl = ỸslỸ

⊤
sl
. (12)

Finally, CKA is calculated as the normalized Frobenius inner product of these Gram matrices:

CKA(Xl,Ysl) =
⟨Kl,Lsl⟩F

∥Kl∥F ∥Lsl∥F
, (13)

where ∥ · ∥F and ⟨·, ·⟩F denote the Frobenius norm and Frobenius inner product, respectively. The
CKA similarity score is converted into a loss for a single layer, ℓCKA. We adopt a common variant
that uses a square root, which can provide better gradient properties and create a more sensitive loss
when the similarity is high. The total CKA loss is calculated by averaging the single-layer losses
across both image and text modalities and summing them over a predefined set of layers:

ℓCKA(Xl,Ysl) = 1−
√

CKA(Xl,Ysl), (14)

Ldistill =
1

Ls

Ls∑
l=1

1

2

(
ℓCKA(X

I
l ,Y

I
sl
) + ℓCKA(X

T
l ,Y

T
sl
)
)
. (15)

The total training objective combines contrastive loss with the distillation loss:

Ltotal = Lcontrast + λLdistill, (16)

where λ is a weighting factor.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We use CC3M (Sharma et al., 2018) as the pretraining dataset. We evaluate our approach
on 11 compositionality benchmarks (Yuksekgonul et al., 2022; Ma et al., 2023; Hsieh et al., 2023;
Parcalabescu et al., 2021; Zhao et al., 2022; Kamath et al., 2023; Krojer et al., 2022; Hendricks &
Nematzadeh, 2021; Thrush et al., 2022; Wang et al., 2023; Peng et al., 2024), two image-text retrieval
benchmarks (Chen et al., 2015; Plummer et al., 2015), and 13 classification datasets. Detailed
descriptions of classification datasets are provided in Appendix B.1.

Implementation Details. As the student model, we employ a ViT-B/32 image encoder and a 12-
layer Transformer text encoder, following the CLIP Base architecture. An auxiliary head is appended
to each modality branch, consisting of a linear projection followed by Layer Normalization. For the
teacher model, we use Qwen2.5-VL-3B, an MLLM with 36 Transformer decoder layers, selected
based on the criteria described in Section 3.1. All models are trained with a global batch size of
4096 across 8 NVIDIA A100 GPUs. To ensure a fair comparison, any additional negative samples
introduced by competing methods are included within the same overall batch size budget. Detailed
hyperparameter configurations are provided in Appendix B.2.
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Table 1: Performance on 11 compositionality benchmarks. Note that SD denotes the SDXL-Turbo
model used to generate negative images.
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CLIP – 35.6 11.6 14.8 15.0 59.7 75.8 55.1 64.5 41.3 7.00 28.5 37.1
LaCLIP LLAMA-7B 35.2 9.98 14.4 14.8 64.0 76.9 56.6 64.8 41.5 4.75 28.3 37.5
NegCLIP WordNet 36.0 10.9 14.8 15.2 59.6 76.2 56.9 64.5 42.5 6.50 28.8 37.4
NegCLIP Qwen3-4B 36.2 11.7 14.8 15.8 62.4 76.3 56.1 64.0 40.9 7.00 28.2 37.6
FSC-CLIP WordNet 36.4 10.5 15.6 15.2 59.8 77.8 53.6 60.5 41.4 5.50 28.9 36.8
FSC-CLIP Qwen3-4B 35.1 9.86 16.3 14.9 63.8 78.8 57.4 64.4 41.8 5.50 29.2 38.0
TripletCLIP Qwen3-4B, SD 34.6 10.5 16.4 16.9 65.7 78.8 59.4 64.8 41.1 4.25 29.0 38.3
MLLMCLIP Qwen2.5-VL-3B 36.6 11.8 17.0 17.2 67.5 78.9 59.5 65.8 42.8 6.50 29.0 39.3

Table 2: Zero-shot classification performance on 13 classification datasets.
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CLIP – 37.8 53.3 21.7 7.93 12.1 12.4 8.88 8.91 12.4 20.0 9.95 15.9 54.0 21.2
LaCLIP LLAMA-7B 41.7 49.7 21.2 11.2 14.3 19.5 11.2 9.34 13.7 30.7 10.1 17.1 60.9 23.9
NegCLIP WordNet 41.5 52.1 24.4 8.62 19.0 22.7 11.5 9.12 13.8 21.9 9.36 21.2 58.7 24.1
NegCLIP Qwen3-4B 41.4 55.3 24.1 10.6 18.3 18.9 9.16 9.49 13.7 30.4 8.81 17.9 56.8 24.2
FSC-CLIP WordNet 42.3 58.3 24.2 9.15 23.6 17.4 10.4 8.18 13.6 25.6 9.54 21.2 59.5 24.8
FSC-CLIP Qwen3-4B 41.5 54.2 25.1 9.84 18.0 16.8 9.03 9.40 13.5 20.8 10.1 20.3 63.1 24.0
TripletCLIP Qwen3-4B, SD 42.4 46.5 22.3 13.5 24.6 17.2 10.4 9.97 14.2 23.9 10.8 22.8 56.3 24.2
MLLMCLIP Qwen2.5-VL-3B 44.2 59.7 29.7 14.7 27.2 15.6 10.1 10.1 14.7 38.3 11.2 20.1 63.2 27.6

4.2 REPRODUCING PRIOR WORKS

To ensure a fair comparison, we re-implement several key baselines: CLIP (Radford et al., 2021),
LaCLIP (Fan et al., 2023), NegCLIP (Yuksekgonul et al., 2022), FSC-CLIP (Oh et al., 2024), and
TripletCLIP (Patel et al., 2024), which enhance CLIP training by incorporating additional supervi-
sion derived from external knowledge sources, such as WordNet (Fellbaum, 2010), LLM, and dif-
fusion model. For LaCLIP, we use the publicly released LLaMA-generated positive captions1. For
NegCLIP and FSC-CLIP, we reproduce WordNet-based hard negative caption construction as de-
scribed in the respective papers. In addition, we extend both methods by generating alternative hard
negatives using Qwen3-4B2. For TripletCLIP, we use the same Qwen3-4B-generated captions as
prompts and feed them into the SDXL-Turbo model3 to synthesize corresponding negative images.
Note that we follow the prompt templates from TripletCLIP and generate one synthetic negative,
either a caption or an image, for each corresponding sample in the CC3M dataset.

4.3 MAIN RESULTS

Compositionality. As shown in Table 1, all methods utilizing expert-driven supervision outper-
form the CLIP baseline, indicating the benefit of incorporating external knowledge. LaCLIP relies
solely on additional positive texts and yields a slight improvement. Interestingly, while NegCLIP
does not gain a significant advantage from using LLM-generated negatives over WordNet-based
ones, FSC-CLIP achieves substantial improvements. TripletCLIP introduces synthetic negative im-
ages from a large-scale generative model, yet it provides limited benefit compared to approaches
that rely solely on negative captions. Our method outperforms existing approaches on 9 out of 11
compositionality benchmarks, achieving the highest average score. The results demonstrate that
compositional reasoning ability can be effectively strengthened by leveraging MLLM-derived sig-
nals rather than relying on explicit data generation.

1https://github.com/LijieFan/LaCLIP
2https://huggingface.co/Qwen/Qwen3-4B
3https://huggingface.co/stabilityai/sdxl-turbo
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Table 3: Zero–shot retrieval performance on MSCOCO and Flickr-30K datasets.

Image–to–text retrieval Text–to–image retrieval

MSCOCO Flickr-30K MSCOCO Flickr-30K

Method External Source R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CLIP – 9.02 24.3 33.7 18.3 39.9 50.4 6.85 18.7 27.1 12.9 31.6 41.5
LaCLIP LLAMA-7B 9.80 24.8 33.7 20.8 40.4 51.5 6.72 19.1 27.8 15.9 36.8 47.8
NegCLIP WordNet 11.7 27.9 38.7 23.0 48.4 58.0 8.24 21.9 31.1 16.2 36.6 47.5
NegCLIP Qwen3-4B 9.38 24.4 34.4 20.1 42.8 53.6 7.66 20.0 28.5 13.7 32.2 42.7
FSCCLIP WordNet 11.8 28.1 39.7 22.7 46.2 58.2 8.42 22.7 31.9 16.1 36.8 48.4
FSCCLIP Qwen3-4B 11.4 27.8 37.7 22.0 46.7 58.0 8.91 23.5 32.8 17.4 38.4 49.0
TripletCLIP Qwen3-4B, SD 12.3 29.9 40.3 22.9 46.8 59.6 9.11 23.5 33.1 17.8 39.1 49.8
MLLMCLIP Qwen2.5-VL-3B 12.6 30.0 40.7 26.5 51.7 61.3 9.37 24.7 34.4 18.9 41.7 52.8

Table 4: Effect of token selection strategies on downstream tasks. The first two columns indicate
the positions of teacher tokens used for distillation. [Image End] and [Text End] refer to the
token positions at the end of the image segment and the full multimodal sequence, respectively.

Image Teacher Text Teacher Comp. Zero-shot Cls. I2T Ret. T2I Ret.

None None 37.1 21.2 13.7 9.88
Image End None 37.7 23.6 15.6 11.8
Text End None 38.2 24.3 16.6 12.3
Text End Text End 38.5 25.6 16.9 12.6

Attention-based Selection 39.3 27.6 19.6 14.1

Zero-shot Classification & Retrieval. Tables 2 and 3 report the zero-shot classification and
retrieval performance, respectively. NegCLIP and FSC-CLIP do not exhibit clear gains when
WordNet-based negatives are replaced with captions generated by recent LLMs (Qwen3-4B), sug-
gesting a potential limitation in these frameworks to harness the richer knowledge of advanced lan-
guage models. Similarly, TripletCLIP shows no clear performance advantage despite the additional
computational overhead of its image generation step. In contrast, MLLMCLIP achieves state-of-
the-art performance on 10 out of 13 datasets with a substantially higher average accuracy. These
results confirm that MLLM-guided distillation not only improves compositionality but also provides
clear advantages in generalizability.

4.4 ABLATION STUDIES

We report ablation results across four evaluation groups. Compositionality is measured as the av-
erage accuracy over 11 datasets and denoted as Comp.. For zero-shot classification, we report the
average performance over 13 datasets as Zero-shot Cls.. For retrieval, we report the average Re-
call@1 on two datasets for Image-to-Text (I2T) and Text-to-Image (T2I), respectively.

Teacher Token Selection. Table 4 reports the effect of different teacher token selection strategies.
We first evaluate several fixed-position baselines using tokens from the end of the image segment
([Image End]) or the multimodal sequence ([Text End]). Due to the causal masking strat-
egy of MLLM, the [Image End] token encapsulates unimodal visual understanding, while the
[Text End] token captures multimodal understanding. Using the [Image End] token as the
image teacher already improves performance over the baseline, indicating the strong unimodal ca-
pabilities of the MLLM. Performance further improves when we replace the image teacher with
the [Text End] token, as multimodal information is incorporated into the guidance. Adding the
[Text End] token as an additional text teacher yields another performance gain, confirming that
supervising both modalities is beneficial. Finally, the attention-based selection strategy outperforms
all fixed-position baselines across all metrics. This demonstrates the benefit of adaptively choos-
ing informative tokens from each layer and confirms that relying on a fixed token is insufficient to
capture the rich semantics embedded in the MLLM’s representations.
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Table 5: Effect of different distillation loss functions on downstream performance.

Loss Type Loss Function Comp. Zero-shot Cls. I2T Ret. T2I Ret.

Direct

MSE 30.7 7.00 0.06 0.06
Cosine 38.6 25.9 18.3 13.4
KL Divergence 37.8 26.0 17.6 13.0
JS Divergence 38.1 23.8 16.5 12.0

Relational CKA 39.3 27.6 19.6 14.1

Table 6: Downstream performance with varying teacher layer selection strategies for distillation.

Layer Selection Comp. Zero-shot Cls. I2T Ret. T2I Ret.

Lower Block (1–12) 38.5 26.8 17.5 12.9
Middle Block (13–24) 38.2 26.2 17.4 12.9
Upper Block (25–36) 38.4 26.5 17.9 12.6
Strided (1,4,7...) 39.3 27.6 19.6 14.1

Loss Functions. Table 5 presents the effect of different distillation loss functions. Mean Squared
Error (MSE) enforces a strict element-wise match between feature vectors, resulting in performance
collapse. This stems from the fundamental architectural mismatch between the generative decoder
and the representational encoder, which produces feature spaces with incompatible scales. Scale-
normalized objectives alleviate this issue and stabilize training, but remain suboptimal since they
focus only on pointwise alignment. Notably, CKA consistently outperforms direct similarity ap-
proaches across all downstream tasks. This result strongly suggests that preserving the structural
relationships among samples is a more robust and effective method for knowledge transfer than
per-sample feature matching, especially in a cross-architecture setting.

Teacher Layer Selection. We investigate the optimal strategy for selecting teacher layers for dis-
tillation, with results presented in Table 6. We first evaluate strategies that use contiguous blocks
of layers from the teacher MLLM: the lower (1–12), middle (13–24), and upper (25–36). These
block-based strategies yield comparable performance, with no clear advantage for any single block.
In contrast, a strided selection strategy that samples layers uniformly across the entire network (e.g.,
1, 4, 7, ...) outperforms all block-based approaches. This indicates that supervision derived from
a broader range of layers provides more comprehensive guidance, whereas relying on a contiguous
block of layers may overlook information distributed throughout the teacher model.

5 CONCLUSION

In this work, we investigate effective strategies for distilling multimodal interaction signals from
MLLMs into CLIP. Our framework bridges the fundamental architectural mismatch between these
models through three key contributions: an MLLM evaluation protocol, attention-based token se-
lection, and a structure-aware distillation loss. Our approach achieves strong performance across
compositionality, zero-shot classification, and retrieval tasks, demonstrating the potential of MLLM-
guided distillation for building compact and transferable vision-language encoders. Furthermore,
our framework is model-agnostic and can be applied to a wide range of decoder-based MLLM and
encoder-based vision-language models.

LLM USAGE

During the preparation of this paper, we use large language models in a limited and assistive manner.
For implementation, an LLM is utilized for code review and the detection of minor bugs. For writing,
an LLM is used for English proofreading and grammar checks. We do not have LLMs draft whole
passages or sentences from scratch, nor do we rely on them to generate novel methods or results.
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Table A: Comparison of MLLM performance on the SugarCrepe benchmark.

Model GT-position Replace Swap Add Average
Object Attribute Relation Object Attribute Object Attribute

LLAVA-1.6-mistral-7B
First 99.8 99.6 98.9 99.2 99.8 98.5 98.6 99.2
Second 81.8 57.2 50.8 20.8 23.7 59.4 29.6 46.2
Average 90.8 78.4 74.9 60.0 61.8 78.9 64.1 72.7

LLAVA-1.6-vicuna-7B
First 99.4 99.8 96.9 95.9 98.8 97.0 95.1 97.6
Second 82.5 55.3 56.1 30.2 27.9 40.8 21.7 44.9
Average 91.0 77.5 76.5 63.1 63.4 68.9 58.4 71.2

Qwen2-VL-2B
First 96.5 90.6 85.9 80.4 91.4 94.2 81.9 88.7
Second 98.2 95.6 92.3 90.2 92.2 96.5 93.5 94.1
Average 97.3 93.1 89.1 85.3 91.8 95.4 87.7 91.4

Qwen2-VL-7B
First 99.1 95.8 94.0 93.1 96.9 95.5 87.1 94.5
Second 98.7 96.5 94.2 92.7 97.9 97.2 94.5 96.0
Average 98.9 96.1 94.1 92.9 97.4 96.3 90.8 95.2

Qwen2.5-VL-3B
First 99.0 95.6 92.0 93.9 97.6 96.2 90.9 95.0
Second 98.2 94.0 88.8 91.0 96.0 97.2 92.8 94.0
Average 98.6 94.8 90.4 92.5 96.8 96.7 91.8 94.5

Qwen2.5-VL-7B
First 99.1 98.5 96.2 95.1 99.3 98.2 96.7 97.5
Second 97.9 92.4 88.2 87.4 94.1 94.0 79.1 90.4
Average 98.5 95.4 92.2 90.8 96.7 96.2 87.9 94.0

InternVL3-1B
First 92.1 81.7 67.1 42.5 64.9 86.6 72.1 72.4
Second 97.0 88.6 90.0 85.3 88.0 96.9 92.1 91.1
Average 94.6 85.2 78.6 63.9 76.4 91.7 82.1 81.8

InternVL3-2B
First 97.5 95.7 91.5 86.9 95.2 95.5 87.1 92.8
Second 97.3 94.0 88.5 83.3 88.4 93.8 86.9 90.3
Average 97.4 94.9 90.0 85.1 91.8 94.6 87.0 91.6

InternVL3-8B
First 99.0 96.2 93.9 96.3 98.2 97.0 89.9 95.8
Second 98.2 96.2 91.4 90.2 96.9 95.7 90.3 94.1
Average 98.6 96.2 92.6 93.3 97.5 96.4 90.1 95.0

LLAMA-3.2-Vision-11B
First 87.0 85.1 77.3 84.9 88.0 82.5 74.7 82.8
Second 85.5 77.7 77.2 65.3 81.5 87.1 76.3 78.7
Average 86.2 81.4 77.3 75.1 84.8 84.8 75.5 80.7

Table B: Downstream performance with varying weight parameter during pre-training.

λ Comp. Zero-shot Cls. I2T Ret. T2I Ret.

0.1 37.7 23.7 14.0 10.9
1 39.3 27.6 19.6 14.1
10 38.1 25.8 16.2 12.3
100 37.8 23.5 18.1 12.8

A ADDITIONAL ABLATION STUDIES

Weight Parameter. Table B shows the impact of varying the weight λ applied to the distillation
loss. We observe that λ = 1 achieves the best overall performance. A smaller weight (λ = 0.1)
provides an insufficient supervisory signal from the teacher, leading to degraded performance. Con-
versely, larger weights (λ = 10 and 100) also harm performance, suggesting that an overly strong
distillation objective may interfere with the model’s primary contrastive learning task.

B EXPERIMENTAL SETTINGS

B.1 CLASSIFICATION DATASETS

We evaluate zero-shot classification on 13 datasets, including: Caltech101 (Fei-Fei et al., 2007);
CIFAR-10, CIFAR-100 (Krizhevsky, 2009); Describable Textures (Cimpoi et al., 2014); EuroSAT-
CLIP Helber et al. (2019); FER-2013 (Goodfellow et al., 2013); Flower102 (Nilsback & Zisserman,
2008); Food101 (Bossard et al., 2014); ImageNet-1K (Deng et al., 2009); KITTI-Distance (Geiger
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et al., 2013); Oxford-IIIT Pet (Parkhi et al., 2012); RESISC45-CLIP (Cheng et al., 2017); and
PASCAL VOC2007 (Everingham et al., 2010).

B.2 IMPLEMENTATION DETAILS

Training Hyperparameters. We train all models using the AdamW optimizer with a batch size
of 4096, an initial learning rate of 5 × 10−4, and a weight decay of 0.5 for 30 epochs. A cosine
learning rate scheduler is applied with a linear warmup during the first epoch, where the learning
rate increases from 1× 10−6 to the base learning rate and decays to 1× 10−5 by the end of training.
All experiments are conducted using bfloat16 precision. Unless otherwise specified, we use a
fixed loss weight of λ = 1 for balancing the distillation and contrastive losses.

Text Prompt Template. For the MLLM teacher, we format the text input using a structured tem-
plate designed to encourage compositional reasoning. This template is applied to the caption side of
each image-caption pair used in contrastive learning. The full template is shown below:

Given the image and the caption {caption}, analyze whether this
caption accurately describes the image. If it does, imagine a
similar caption that could be easily confused with it but is subtly
incorrect or misleading. Internally reason about the difference
between the correct and incorrect caption, highlighting the key
visual-semantic concepts that make the original caption more
accurate. Focus on compositional elements such as object attributes,
actions, relationships, and spatial arrangements. Use this reasoning
to build an internal representation of the image that emphasizes
these distinctions.

LIMITATION

While our work demonstrates the significant potential of MLLM to CLIP distillation, it has a few
limitations that present opportunities for future research. The capabilities of the teacher MLLM
fundamentally cap the performance of MLLMCLIP. Any biases, factual inaccuracies, or reasoning
failures inherent in the teacher model can be transferred to the student during distillation. Although
we propose a rigorous protocol for teacher selection, the optimal teacher may vary depending on the
specific downstream tasks.

REPRODUCIBILITY STATEMENT

We provide all implementation details, including model architectures, training hyperparameters, and
evaluation protocols, in the main paper and appendix. All experiments are conducted with publicly
available datasets, and we will release our code, pretrained models, and data processing scripts to
ensure reproducibility.
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