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Abstract

Despite Contrastive Language–Image Pre-training (CLIP)’s remarkable capability
to retrieve content across modalities, a substantial modality gap persists in its fea-
ture space. Intriguingly, we discover that off-the-shelf MLLMs (Multimodal Large
Language Models) demonstrate powerful inherent modality alignment properties.
While recent MLLM-based retrievers with unified architectures partially mitigate
this gap, their reliance on coarse modality alignment mechanisms fundamentally
limits their potential. In this work, We introduce MAPLE (Modality-Aligned
Preference Learning for Embeddings), a novel framework that leverages the fine-
grained alignment priors inherent in MLLM to guide cross-modal representation
learning. MAPLE formulates the learning process as reinforcement learning with
two key components: (1) Automatic preference data construction using off-the-
shelf MLLM, and (2) a new Relative Preference Alignment (RPA) loss, which
adapts Direct Preference Optimization (DPO) to the embedding learning setting.
Experimental results show that our preference-guided alignment achieves substan-
tial gains in fine-grained cross-modal retrieval, underscoring its effectiveness in
handling nuanced semantic distinctions.

1 Introduction

Cross-modal retrieval, which aims to retrieve relevant content across different modalities (e.g.,
retrieving images with text queries), has long been a core topic in the vision-language research
community. It also serves as a fundamental building block for a wide range of downstream task,
including visual question answering, retrieval-augmented generation, and increasingly, LLM-based
multi-modal agent systems. Despite the remarkable success of large-scale contrastive pretraining
frameworks such as CLIP [1], a fundamental challenge still remains: the modality gap, i.e., the
discrepancy in feature representation between visual and textual modalities. This modality gap often
manifests as a spatial separation between image and text embeddings in the shared latent space,
and also limits the effectiveness of learned representations in various retrieval tasks [2–4]. Prior
works [2, 4] have shown that this misalignment might be attributed from architectural choices, training
dynamics, and even input information imbalance.

While prior works mainly focused on measuring the modality gap using explicit embeddings [2, 3],
the alignment properties of models that operate directly via logits, such as off-the-shelf Multimodal
Large Language Models (MLLMs), remain less explored. To better understand the modality gap
across different model architectures, we propose a unified metric based on the 1-Wasserstein Distance
(WD) [5] that enables direct comparison between logit-based and embedding-based models. For
MLLMs, we compute pairwise alignment scores using output logits (as detailed in Section 2), while
for embedding models, we use cosine similarities. In both cases, we apply WD to measure the
discrepancy between the similarities distributions. Intriguingly, through this quantitative comparison,
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Figure 1: (a) Computing the Alignment Score: Prompting the off-the-shelf MLLM to output “yes”
or “no” token for the paired text-image, and then calculating the alignment score based on “yes” and
“no” token logits. (b) Constructing Preference Data: Constructing pairwise or listwise preference
data based on the calculated alignment scores. (c) Retrieval Comparison: Through preference
alignment, the retrieval model can capture fine-grained distinctions between retrieved images under
the same query.

we discover that MLLMs like Qwen2-VL [6, 7] exhibit strong inherent modality alignment capabilities
even without relying on explicit embedding representations. Our analysis, illustrated in Appendix
Figure 3, reveals that MLLMs demonstrate an emergent ability to align image and text inputs more
effectively than CLIP.

Recent efforts have fine-tuned MLLMs for retrieval by enabling cross-modal representation learn-
ing [8–10]. However, transitioning from generative architectures to MLLM-based retrievers often
diminishes the inherent alignment capabilities of MLLMs, even after further fine-tuning. Motivated
by the above observation, we aim to adapt MLLM for retrieval tasks while preserving their strong
cross-modal alignment strength.

To this end, we propose MAPLE (Modality-Aligned Preference Learning for Embeddings), a novel
framework that bridges the alignment capabilities of off-the-shelf MLLM with MLLM-based retrieval
model. MAPLE transfers MLLM’s alignment capabilities to embedding spaces through two key
dimensions: data-level preference construction and training-strategy-level preference alignment. At
the data level, we retrieve top-K hard samples for each anchor and leverage MLLM to score their
matching degree with the anchor’s corresponding cross-modal content. These alignment scores are
then used to construct both pairwise preferences and listwise preferences for training. At the training
level, we derive the Relative Preference Alignment (RPA) loss from Direct Preference Optimization
(DPO) [11], specifically adapted for embedding models to achieve fine-grained cross-modal alignment.
Through optimization with the RPA loss on these constructed preferences, as illustrated in Figure 1 c,
our method effectively captures subtle distinctions between retrieved images under the same query.

The related work is in Appendix D. The main contributions of our paper include:

• We propose Wasserstein distance as a unified metric to measure the modality gap for both
logit-based and embedding-based models, revealing that off-the-shelf MLLMs inherently
exhibit strong cross-modality alignment capabilities.

• We introduce the MAPLE framework for extracting powerful multimodal embeddings. Our
approach features a novel strategy that automatically leverages the inherent modality align-
ment capabilities of MLLM to construct preferences after hard sample mining. Additionally,
we explore the adaptation of Direct Preference Optimization (DPO) for cross-modality
representation learning, which yields substantial improvements in fine-grained retrieval.

• We validate our framework through comprehensive experiments on different benchmarks
including general retrieval (e.g., COCO [12], Flickr30K [13]), fine-grained retrieval (e.g.
Winoground [14], NaturalBench [15], MMVP [16], BiVLC [17]). The experimental results
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demonstrate the superiority and effectiveness of our approach in both general and fine-
grained retrieval tasks.

2 Preliminaries and Notation

Given a batch of N image-text pairs {(ximg
i , xtxt

i )}Ni=1, unlike CLIP, which utilizes separate encoders
to extract embeddings for each modality, we leverage the MLLM, a unified architecture, to obtain
embeddings for each modality. Following the prior works [8, 10], we construct prompts using
predefined templates such as “<text> Describe this text in one word:” for text and “<image>
Describe this image in one word:” for image. These prompts are used to process the image-text pairs,
then we extract the corresponding text embeddings {ztxt

i }Ni=1 and image embeddings {zimg
i }Ni=1.

Contrastive Loss. Once obtaining normalized embeddings {ztxt
i }Ni=1 and {zimg

i }Ni=1, we reformu-
late the standard autoregressive training paradigm of LLMs into a discriminative framework via a
symmetric InfoNCE-style contrastive loss:

Lcontrast =
1

2N

N∑
i=1

[
− log

exp(zimg
i · ztxt

i /τ)∑N
j=1 exp(z

img
i · ztxt

j /τ)
− log

exp(ztxt
i · zimg

i /τ)∑N
j=1 exp(z

txt
i · zimg

j /τ)

]
(1)

where τ is a temperature hyperparameter. Prior works [18, 19] established contrastive learning inher-
ently employs a coarse-grained alignment strategy that uniformly pushes away all negative samples
in the embedding space, with limited consideration of fine-grained semantic similarity between
these samples. This uniform treatment struggles to establish nuanced discriminative boundaries,
particularly for semantically similar negatives.

Computing the Pairwise Alignment Score. To probe the implicit modality alignment within an
off-the-shelf MLLM, we measure the alignment score between an image-text pair (ximg

i , xtxt
i ) based

on the MLLM’s output logits for “Yes” (lYes
ii ) and “No” (lNo

ii ) tokens in response to a relevance query
(details in Appendix A.1). Then, we employ the softmax function for these two tokens to get the
alignment score αii, which represents the MLLM’s confidence that the image ximg

i and text xtxt
i form

a semantically matching pair.

Measuring the Modality Gap. The modality gap represents the misalignment between visual and
textual feature distributions. Prior work [2] measured this using the average distance between mean
embeddings:

∥∥∥∆⃗gap

∥∥∥ = ∥µtxt − µimg∥, where µmod = 1
N

∑N
i=1 z

mod
i .

Expanding the squared distance, ∥∆⃗gap∥2 = ∥µtxt∥2 − 2µtxt ·µimg + ∥µimg∥2, reveals that it measures
the difference between the mean intra-modal similarity ( 1

N2

∑N
i=1

∑N
j=1 z

mod
i · zmod

j ) and the mean

cross-modal similarity ( 1
N2

∑N
i=1

∑N
j=1 z

txt
i · zimg

j ).

However, this mean-based comparison overlooks the full distributional characteristics of similarities.
Furthermore, it requires explicit embeddings, making it less suitable to measure the modality gap
for the logits-based model. To capture distributional discrepancy more effectively, we employ the
1-Wasserstein Distance (WD) [5] to compare similarity distributions. For two distributions PA and
PB , WD is defined as:

W (PA,PB) = inf
γ∈Π(PA,PB)

E(sa,sb)∼γ [∥sa − sb∥] (2)

where sa, sb are samples from the distributions, and Π(·, ·) is the set of joint distributions with the
given marginals.

We measure the modality gap using WD on the Winoground-style [14] fine-grained dataset, where
each test instance contains two images (ximg

0 , ximg
1 ) and two captions (xtxt

0 , xtxt
1 ), forming two matching

pairs (ximg
0 , xtxt

0 ) and (ximg
1 , xtxt

1 ). We denote the sets of all xtxt
0 , xtxt

1 , ximg
0 , and ximg

1 as T0, T1, I0,
and I1 respectively. We consider it from two perspectives: the distributional gap W (PT0I0 ,PT0T0

),
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Figure 2: The Training Schema of the Proposed MAPLE. We first prepare the candidate set for
each anchor sample through a series of dataset processing operations. In the training stage, we
leverage an off-the-shelf MLLM as a reward model to dynamically calculate the alignment scores
and subsequently construct the preference data. We extract the embeddings from the policy model
(MLLM-based retriever) and align them with the preference data through the RPA loss. This schema
primarily illustrates the pairwise training paradigm.

which quantifies the alignment between intra-modal PT0T0
and cross-modal PT0I0 similarity dis-

tributions (where a lower value indicates better alignment but risks representation collapse [20]
when approaching zero), and the discriminative gap W (PT0I0 ,PT0I1), which assesses the model’s
ability to distinguish between matching and non-matching pairs (where a higher value indicates better
discriminative ability). Figure 3 in the Appendix illustrates the modality gap comparison between
CLIP and Qwen2-VL based on this unified metric.

Finally, distributional gap Wdist-gap and discriminative gap Wdisc-gap are computed as the mean values
across all respective gap measurements in the dataset. We integrate both perspectives on the modality
gap into our proposed metric (∆gap): ∆gap = Wdist-gap/Wdisc-gap. A lower ∆gap reflects a superior
model, characterized by both a small distributional gap and a large discriminative gap.

3 Method

We propose MAPLE (Modality-Aligned Preference Learning for Embeddings), a novel framework
that guides cross-modal representations with MLLM priors via preference alignment. As illustrated
in Figure 2, MAPLE consists of two key components: (1) Preference Data Construction: An offline
stage retrieves hard negative samples, followed by an online process where an off-the-shelf MLLM
dynamically computes text-image alignment scores during training to establish preference data; and
(2) Preference Alignment: Derived from the DPO loss, we introduce a novel Relative Preference
Alignment (RPA) loss that explicitly enhances the model’s nuanced discriminative capability by
contrasting preferred and dispreferred data samples.

MLLM-based Retriever Architecture. We initialize our model from a pretrained MLLM backbone
to inherit its multi-modal alignment capability. Refer to the work [21], to convert the autoregressive
MLLM into a discriminative retrieval paradigm, we make two small modifications: replacing the
causal attention mask with bidirectional attention and adding mean-pooling over final hidden states
to aggregate sufficient features for retrieval.

3.1 Preference Data Construction

The preference data construction involves two stages: an offline preparation stage and an online
scoring and structuring stage.
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Offline Stage: Candidate Generation. The pipeline begins with an offline stage to prepare
candidate sets. We first extract DINOv2 [22] embeddings from the image dataset and apply Semantic
Deduplication (SemDeup) [23]—a clustering-based method—to filter near-duplicate samples. For
each deduplicated image ximg

i in a batch, we retrieve its top-K nearest neighbors {x̂img
j }Kj=1 from the

gallery based on cosine similarity, forming an image candidate set C img
i = {ximg

i } ∪ {x̂img
j }Kj=1. To

enrich caption diversity and create challenging negatives, we leverage the multi-image reasoning
capability of an off-the-shelf MLLM. We prompt the MLLM with the image set Cimg

i to generate
discriminative captions that explicitly highlight inter-image differences. This process yields a
corresponding text candidate set C txt

i = {xtxt
i } ∪ {x̂txt

j }Kj=1. Candidate generation details are provided
in Appendix B.1.

Online Stage: Scoring and Structuring Preferences. During the online training phase, we use
the off-the-shelf MLLM to dynamically compute fine-grained alignment scores between anchors
and candidates. For each anchor image ximg

i , we compute alignment scores with all text candidates:
αimg2txt

i = {align(ximg
i , x) | x ∈ Ctxt

i }. Symmetrically, for each anchor text xtxt
i , we compute scores

with all image candidates: αtxt2img
i = {align(xtxt

i , x) | x ∈ C img
i }. Each score vector αi (either

αimg2txt
i or αtxt2img

i ) represents the MLLM’s preference for candidates in Ci relative to the anchor xi.
We sort the candidates in descending order based on these scores, obtaining ranked indices {rk}Kk=0
such that the corresponding scores satisfy αi,r0 ≥ αi,r1 ≥ · · · ≥ αi,rK . Based on this ranking, we
structure the preference data in two ways for the subsequent alignment loss:

• Pairwise Preferences: We construct a set of preference pairs Pi = {(xi,ra , xi,rb) | 0 ≤ a <
b ≤ K}, where xi,ra is the ra-th ranked candidate and xi,rb is the rb-th ranked candidate
from the corresponding set Ci. Each pair (xi,ra , xi,rb) indicates that xi,ra is preferred over
xi,rb according to the MLLM’s alignment score with the anchor xi.

• Listwise Preferences: Instead of breaking the ranking into independent pairs, we leverage
the structure of the entire ranked list (xi,r0 , xi,r1 , . . . , xi,rK ). This approach considers
preferences within all possible suffixes of the list. Specifically, for each starting rank k
(from 0 to K − 1), the item xi,rk is treated as the preferred item relative to the set of all
subsequent items {xi,rj}Kj=k+1 in the suffix (xi,rk , . . . , xi,rK ). This captures the relative
ordering across the whole list more directly than pairwise comparisons.

Through these offline and online stages, for a batch of N anchor image-text pairs {(ximg
i , xtxt

i )}Ni=1,
we construct the corresponding sets of pairwise preferences and listwise preferences.

3.2 Preference Alignment

In contrast to the contrastive loss’s coarse-grained alignment approach, our goal is to establish
nuanced discriminative boundaries leveraging fine-grained preference data. Drawing inspiration
from Direct Preference Optimization (DPO) [11], which effectively fine-tunes LLMs to align with
human preferences, we similarly aim to fine-tune our MLLM-based retrieval model to align with the
sophisticated preference signals from off-the-shelf MLLMs.

DPO Loss. Traditional DPO Loss relies on pairwise comparisons between preferred (yw) and
dispreferred (yl) outputs for a given input x to align policy models (πθ) with human preferences, often
using a reference model (πw). The DPO training objective is constructed as a maximum likelihood
loss:

LDPO (πθ;πw) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ (yw | x)
πw (yw | x)

− β log
πθ (yl | x)
πw (yl | x)

)]
(3)

Here, σ denotes the sigmoid function, and β is a hyperparameter scaling the log-probability difference.
However, directly applying DPO to retrieval presents challenges: (1) The diverse captions generated
in the offline stage (Section 3.1) create a combinatorial explosion of potential image-caption pairs,
making it impractical to explicitly enumerate all preference pairs; (2) The standard DPO framework
requires maintaining policy, reference, and potentially reward models, imposing substantial memory
and computational burdens.
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Eliminating the Need for the Reference Model. The memory-inefficiency issue can be alleviated
by adopting a uniform prior U for the reference model πw, similar to CPO [24]. In this case, the
reference model terms πw (yw | x) and πw (yl | x) cancel out in the log-ratio difference (up to a
constant), eliminating the need for costly computations and storage associated with πw. The simplified
objective becomes:

LDPO-simplified (πθ) = −E(x,yw,yl)∼D [log σ (β log πθ (yw | x)− β log πθ (yl | x))] (4)

Relative Preference Alignment (RPA) Loss. We adapt the simplified DPO objective for embedding
models by replacing the log probabilities log πθ(y | x) with scaled similarity scores β(zanchor·zcandidate)
between anchor and candidate embeddings produced by our MLLM-based retrieval model. This
approach, which we term Relative Preference Alignment (RPA), incorporates the MLLM-derived
preference structures (pairwise or listwise). We explore two primary strategies for implementing
RPA: pairwise and listwise optimization.

The Pairwise RPA loss optimizes preferences using the pairwise data Pi. For a given text anchor xtxt
i

and a preference pair (ximg
i,rk

, ximg
i,rl

) ∈ P txt2img
i (where k < l), it aims to ensure the similarity score of

the preferred image is higher than the dispreferred one. Let stxt2img
ik = β(ztxt

i · zimg
i,rk

) denote the scaled
similarity score. The pairwise RPA loss for text-to-image alignment (txt2img) is weighted by the
difference between the MLLM’s alignment scores for the pair, giving more importance to pairs with
larger preference margins:

Ltxt2img
RPA-Pairwise = − 1

N

N∑
i=1

∑
0≤k<l≤K

(αtxt2img
i,rk

− αtxt2img
i,rl

) log σ(stxt2img
ik − stxt2img

il ) (5)

Symmetrically, we define the image-to-text loss Limg2txt
RPA-Pairwise using scores simg2txt

ik = β(zimg
i · ztxt

i,rk
)

and pairs from P img2txt
i . The total pairwise RPA loss is:

LRPA-Pairwise =
1

2
(Ltxt2img

RPA-Pairwise + Limg2txt
RPA-Pairwise) (6)

Alternatively, the Listwise RPA approach directly optimizes the model’s ability to align with the
MLLM’s ranking using the listwise preference data. Inspired by PRO [25], this loss encourages the
model to assign the highest similarity score to the top-ranked item within each suffix of the MLLM’s
ranked list. For a text anchor xtxt

i and its ranked image candidates (ximg
i,r0

, . . . , ximg
i,rK

), the loss iterates
through each possible top element ximg

i,rk
(for k from 0 to K − 1) and maximizes the log-probability

of this element being ranked highest among the suffix {ximg
i,rj

}Kj=k, using a softmax over the model’s

similarity scores stxt2img
ij . To incorporate the fine-grained preference strength from the MLLM, each

term in the sum (corresponding to a specific suffix starting at k) is weighted by the average preference
margin assigned by the MLLM to ximg

i,rk
over the subsequent items in that suffix:

Ltxt2img
RPA-Listwise = − 1

N

N∑
i=1

K−1∑
k=0

wtxt2img
ik log

exp(stxt2img
ik )∑K

j=k exp(s
txt2img
ij )

(7)

where the weight wtxt2img
ik = 1

K−k

∑K
l=k+1(α

txt2img
i,rk

−αtxt2img
i,rl

) is the average MLLM alignment score
difference between candidate k and all less preferred candidates (ranks k+1 to K) in the list (defined
as 0 if k = K). This weighting gives more importance to correctly ranking the top element in suffixes
where the MLLM preference is strong and clear. The corresponding image-to-text loss, Limg2txt

RPA-Listwise,
is defined symmetrically using simg2txt

ik and weights wimg2txt
ik derived from αimg2txt

i . The total listwise
RPA loss is:

LRPA-Listwise =
1

2
(Ltxt2img

RPA-Listwise + Limg2txt
RPA-Listwise) (8)
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Regularized Relative Preference Alignment. To prevent excessive alignment to the MLLM
preferences, which might lead to feature collapse, we introduce a regularization term Lcontrast. This
is typically a standard contrastive loss computed on the original anchor pairs (ximg

i , xtxt
i ) within the

batch. The final training objective combines the chosen RPA loss (either pairwise or listwise) with
this regularization:

L = λLRPA + (1− λ)Lcontrast (9)

where LRPA represents the chosen RPA loss component (either LRPA-Listwise or LRPA-Pairwise), and λ
serves as a balancing hyperparameter controlling the strength of the preference alignment relative to
the regularization term.

4 Experiments & Results

In this section, we evaluate MAPLE across multiple standard benchmarks to assess its effectiveness in
cross-modal retrieval tasks. We compare MAPLE against strong baselines and analyze its performance
through ablation studies.

4.1 Experimental Setup

We train MAPLE on a curated subset of the OpenImage dataset [26] (details in Appendix B.1). We
evaluate its performance on standard general (MS-COCO [12], Flickr30K [13]) and fine-grained
(Winoground [14], NaturalBench [15], MMVP [16], BiVLC [17]) retrieval benchmarks using standard
metrics (e.g., Image/Text Recall@1, Image/Text scores). About the more fine-grained evaluation
details, please refer to Appendix B.3. MAPLE is compared against strong CLIP-based [1, 27–30]
and MLLM-based [8, 10] retrieval models. We use LoRA for fine-tuning MAPLE MLLM-based
embedding models. Comprehensive implementation details are provided in Appendix B.2.

4.2 Main Results

Performance on Retrieval Benchmarks. As shown in Table 1, our MAPLE(Qwen2-VL-7B)
approach consistently outperforms both CLIP-based and MLLM-based models across multiple
benchmarks. Under the similar-scale parameters settings, MAPLE(Qwen2-VL-2B) also shows a
competitive advantage. The improvement is even more pronounced on fine-grained retrieval tasks,
where MAPLE demonstrates substantial gains on Winoground and NaturalBench, significantly
outperforming previous methods. These results validate the effectiveness of our preference-guided
alignment approach in capturing nuanced cross-modal relationships.

4.3 Ablation Studies

To rigorously evaluate our proposed method MAPLE and dissect the contributions of its key compo-
nents, we conduct a series of ablation studies. Our final proposed loss function combines a standard
contrastive loss Lcontrast with our novel RPA loss LRPA. The standard contrastive loss Lcontrast is
computed using image-text anchor pairs gathered across all devices to maintain the model’s general
cross-modal alignment capabilities, serving as a regularization term to prevent excessive alignment.
Meanwhile, LRPA operates specifically on preference data derived from retrieved examples, aiming
to refine the model’s understanding of fine-grained distinctions. We investigate the impact of using
these components individually and in combination.

Relative Preference Alignment. We analyze the impact of different loss components, referencing
Table 2. The baseline uses only the standard contrastive loss (Lcontrast).

Compared with the baseline, using only a standard contrastive loss on preference examples
(Lcontrast-pref) generally degrades general retrieval performance and shows moderate improvements
on the NaturalBench dataset, with only slight improvements on the Winoground Image task. In
contrast, applying our RPA losses (LRPA-Pairwise, LRPA-Listwise) directly to preference data, despite
reducing general performance when used alone, achieves substantially better fine-grained results than
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Table 1: Performance Comparison on General and Fine-grained Retrieval Tasks. Best results are
in bold, second best are underlined. VladVA haven’t released the model weights, so “−” represents
unavailable results.

General Retrieval (R@1) Fine-grained Retrieval

Model COCO Flickr30k Winoground NaturalBench

Text Image Text Image Text Image Text Image

CLIP-based Models

CLIP (ViT-L) [1] 58.1 37.0 87.2 67.3 27.5 12.3 41.8 45.0
OpenCLIP (ViT-G/14) [27] 66.3 48.8 91.5 77.8 32.0 12.8 46.2 46.5
SigLIP (so/14) [28] 70.2 52.0 93.5 80.5 37.5 16.3 62.7 63.9
SigLIPv2 (g/16-2B) [30] 72.8 56.1 95.4 86.0 39.8 17.0 65.5 68.7
EVA-CLIP (8B) [29] 70.1 52.0 94.5 80.3 36.5 14.8 58.5 59.3
EVA-CLIP (18B) [29] 72.8 55.6 95.3 83.3 35.8 15.0 58.7 61.2

MLLM-based Models

E5-V(LLaVA-Next-8B) [8] 62.0 52.0 88.2 79.5 32.3 14.8 60.3 67.6
VladVA(Qwen2-VL-2B) [10] 71.9 52.5 93.7 80.4 - - - -
VladVA(LLaVA-1.5-7B) [10] 72.9 59.0 94.3 83.3 40.5 17.5 - -
MAPLE(Qwen2-VL-2B) 72.8 56.8 92.8 82.6 43.0 22.5 69.2 70.2
MAPLE(Qwen2-VL-7B) 75.5 60.3 94.3 86.1 56.0 32.7 76.1 76.8

Table 2: Ablation Study on Loss Components. Performance on General and Fine-grained Retrieval
Tasks, compared to the baseline (Lcontrast). Differences are shown in parentheses with arrows ( ↑ for
improvement, ↓ for decline).

General Retrieval Fine-grained Retrieval

Method COCO Winoground NaturalBench

Text Image Text Image Text Image

Baseline Contrastive Loss Only

Baseline (Lcontrast) 74.0 54.4 42.5 20.5 61.4 62.5

Training with Preference Data Only

Lcontrast-pref 64.6 (↓-9.4) 46.2 (↓-8.2) 42.3 (↓-0.2) 20.7 (↑+0.2) 66.1 (↑+4.7) 67.8 (↑+5.3)

LRPA-Pairwise 51.9 (↓-22.1) 52.4 (↓-2.0) 48.8 (↑+6.3) 34.7 (↑+14.2) 70.1 (↑+8.7) 77.3 (↑+14.8)

LRPA-Listwise 57.1 (↓-16.9) 55.4 (↑+1.0) 48.0 (↑+5.5) 36.5 (↑+16.0) 71.1 (↑+9.7) 78.1 (↑+15.6)

Combining Preference Loss with Contrastive Regularizer

Lcontrast + Lcontrast-pref 70.9 (↓-3.1) 53.9 (↓-0.5) 46.5 (↑+4.0) 21.5 (↑+1.0) 65.5 (↑+4.1) 67.0 (↑+4.5)

Lcontrast + LRPA-Pairwise 71.2 (↓-2.8) 57.7 (↑+3.3) 49.8 (↑+7.3) 26.8 (↑+6.3) 68.6 (↑+7.2) 71.4 (↑+8.9)

Lcontrast + LRPA-Listwise 71.9 (↓-2.1) 58.6 (↑+4.2) 51.0 (↑+8.5) 28.2 (↑+7.7) 69.2 (↑+7.8) 71.2 (↑+8.7)

Lcontrast-pref. This highlights the importance of introducing preference data to improve the model’s
ability to make nuanced distinctions.

We then combine preference-based losses with the standard contrastive loss (Lcontrast) as a regularizer.
Through extensive experimentation, we identify the optimal λ parameter for each combination that
maximizes average performance on both general and fine-grained retrieval tasks. When combined
with the Lcontrast regularizer, this approach effectively mitigates performance degradation on general
retrieval while maintaining strong fine-grained retrieval performance. Moreover, LRPA consistently
outperforms Lcontrast-pref. Additionally, we observe that LRPA-Listwise consistently achieves better results
than LRPA-Pairwise across nearly all scenarios. We attribute this to the fact that listwise loss aligns
preferences across the entire ranked list, making it more effective than pairwise comparisons.

Impact of Expanded Negative Pool for Contrastive Loss. Expanding batch size plays a critical
role in contrastive learning. However, increasing batch size for MLLMs incurs substantial computa-
tional overhead. To address this challenge, we propose an efficient strategy that implicitly enlarges
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Table 3: Ablation Study on Using Expanded Negatives (Exp. Neg.) and LRPA-Listwise (LRPA). The
baseline (✗/✗) uses neither component. ✓ indicates the component is used, ✗ indicates it is not. Best
results are in bold.

Components General Retrieval Fine-grained Retrieval

Exp. Neg. LRPA
COCO Winoground NaturalBench BiVLC MMVP

T / I T / I T / I T / I T / I

✗ ✗ 74.0 / 54.4 42.5 / 20.5 61.4 / 62.5 86.1 / 60.5 33.3 / 20.0
✓ ✗ 75.3 / 57.3 49.3 / 24.8 70.7 / 70.2 89.2 / 66.6 39.3 / 34.1
✗ ✓ 71.9 / 58.6 51.0 / 28.2 69.2 / 71.2 88.3 / 73.4 46.7 / 37.0
✓ ✓ 75.5 / 60.3 56.0 / 32.7 76.1 / 76.8 89.4 / 75.5 45.9 / 43.7

Table 4: Robustness to Reward Model Scale and Architecture. The policy model is fixed to
Qwen2-VL-7B. Best results within each model family are in bold. The ’-’ indicates the baseline
without a reward model.

General Retrieval Fine-grained Retrieval

Reward Model COCO Flickr30k Winoground NaturalBench

Text Image Text Image Text Image Text Image

- 73.4 54.3 93.6 80.3 40.7 18.2 60.2 62.7

Qwen Family

Qwen2-VL-2B 74.1 59.1 93.0 84.1 53.5 31.0 70.4 72.3
Qwen2-VL-7B 75.8 60.2 94.2 85.3 55.0 31.0 74.5 75.2

InternVL3 Family

InternVL3-1B 73.9 58.9 92.8 83.7 48.5 26.0 69.3 72.6
InternVL3-2B 75.9 59.2 94.2 84.8 53.8 28.5 72.8 74.3
InternVL3-8B 75.6 59.7 93.8 84.8 54.0 31.5 74.3 74.8

Additional Architectures

SAIL-VL-1.6-8B 76.1 59.9 94.3 85.6 54.8 29.8 75.4 74.3
InternVL2.5-8B 75.2 59.7 94.3 85.3 54.8 30.5 74.6 74.8
InternVL2.5-8B-MPO 75.5 59.5 93.8 85.1 53.5 30.8 74.1 74.2

the effective batch size through the incorporation of readily available hard negatives, eliminating the
need for additional computational resources. The detailed implementation of this strategy is provided
in Appendix C.1. Empirical results in Table 3 demonstrate that our expanded negative pool strategy
yields consistent performance improvements across both general and fine-grained retrieval tasks.

Robustness to Reward Model Choice. To assess the generalizability and robustness of MAPLE,
we conduct a comprehensive ablation study on the choice of the reward model. We fix the policy
model to Qwen2-VL-7B and evaluate its performance when guided by reward signals from a diverse
set of MLLMs, varying in both architectural family and scale. For quick comparison, all experiments
in this ablation were trained for 4 epochs. As shown in Table 4, our analysis reveals that MAPLE
is robust to the scale of the reward model. While larger reward models generally yield stronger
results, even small models like Qwen2-VL-2B and InternVL3-1B lead to consistent and significant
performance gains over the baseline. This result underscores the framework’s resource efficiency, as
it demonstrates that substantial performance gains can be achieved by leveraging alignment signals
from even small-scale reward models.

Agnostic to Reward Model Architecture. Furthermore, Table 4 shows that MAPLE is agnostic
to the reward model’s architecture. Using reward models from different architectural families (e.g.,
InternVL3 [31], InternVL2.5 [32], InternVL2.5-MPO [33], and SAIL-VL [34]) to guide the Qwen2-
VL-7B policy model still leads to clear improvements over the baseline. To further demonstrate this,
we conduct a systematic cross-architecture evaluation in Table 5, where both the policy and reward
models are varied. The results confirm that even mismatched reward-policy pairs are highly effective,
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Table 5: Cross-Architecture Robustness Analysis. Performance of MAPLE with varying policy
and reward model architectures. The ’-’ indicates the baseline without a reward model. The best
results are in bold, the second best are underlined.

Policy Model Reward Model COCO Flickr30k Winoground NaturalBench

T / I T / I T / I T / I

Qwen2-VL-7B
- 73.4 / 54.3 93.6 / 80.3 40.7 / 18.2 60.2 / 62.7

Qwen2-VL-7B 75.8 / 60.2 94.2 / 85.3 55.0 / 31.0 74.5 / 75.2
InternVL3-8B 75.6 / 59.7 93.8 / 84.8 54.0 / 31.5 74.3 / 74.8

InternVL3-8B Qwen2-VL-7B 76.7 / 61.1 95.4 / 86.8 53.5 / 31.5 78.4 / 77.7
InternVL3-8B 76.9 / 61.6 95.9 / 87.5 53.5 / 30.5 78.4 / 79.1

Table 6: Comparison of Modality Gap Metrics Across Different Models. Values of Wdist-gap and
Wdisc-gap are scaled by 102. ↑ indicates higher values are better, ↓ indicates lower values are better.
About the ∆gap metric, the best results are in bold, the second best are underlined.

Model MMVP Winoground

Wdist-gap (↓) Wdisc-gap (↑) ∆gap (↓) Wdist-gap (↓) Wdisc-gap (↑) ∆gap (↓)

OpenCLIP (ViT-H/14) [27] 23.64 0.50 47.28 18.05 0.50 36.1
Qwen2-VL-7B [6] 6.89 6.34 1.09 7.63 2.13 3.58
MAPLE (w/o LRPA-Listwise) 6.32 0.33 19.15 4.40 0.44 10.0
MAPLE (w LRPA-Listwise) 5.32 0.94 5.66 3.47 0.48 7.22

which underscores the framework’s flexibility and high degree of interoperability. This suggests
that MAPLE learns a truly transferable, architecture-agnostic alignment signal, rather than simply
overfitting to the intrinsic biases of a specific reward model architecture.

Measuring the Modality Gap. We measure the gap on the MMVP and Winoground datasets,
where for the Winoground dataset we randomly sample 100 instances (out of 400 total instances)
due to computational constraints in calculating pairwise alignment scores with MLLM. Table 6
presents modality gap metrics across various models. The off-the-shelf MLLM (Qwen2-VL-7B)
demonstrates strong discriminative capability (having the largest Wdisc-gap), while maintaining a
low distributional gap. MAPLE with RPA loss substantially reduces the distributional gap while
improving discriminative power. The evolution of this modality gap throughout the training process
is visualized in Figure 6 in Appendix C.

5 Conclusion

In this work, using a unified metric based on the Wasserstein distance, we reveal that Multimodal Large
Language Models (MLLMs) possess strong inherent modality alignment capabilities. Motivated by
this finding, we explore leveraging off-the-shelf MLLM to mitigate the modality gap in cross-modal
retrieval. We introduce MAPLE, a novel training framework designed to transfer the modality
alignment priors of MLLM into corss-modal representations. MAPLE first constructs preference
data via an automatic curation pipeline and subsequently employs a novel Relative Preference
Alignment (RPA) loss tailored for MLLM-based retrieval model. Extensive experiments across
various benchmarks demonstrate that MAPLE brings significant improvements on fine-grained tasks.
Ablation studies validate the effectiveness of each component within MAPLE.

Impact and Limitations: Our work may contribute to exploring new directions for guiding cross-
modal representations with alignment knowledge from MLLMs and potentially offers insights for
future research in multimodal representation learning and preference-guided optimization. However,
we acknowledge several limitations. Known limitations of this work include: 1) The cross-modal
representations may be affected by the inherent biases present in the MLLM; 2) our approach requires
further validation on more complex tasks such as composed retrieval. We plan to address these
limitations in future work.
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A Preliminaries

A.1 Detailed Pairwise Alignment Score Computation.

Recent works [35, 36] prompt LLMs to make binary relevance judgments and construct candidate
rankings. Inspired by these works, we leverage MLLMs to generate fine-grained alignment scores.
For each image-text pair, we construct a specific relevance prompt “<image> Does the image align
with the text <text>? Answer Yes or No”. This prompt, containing both the image and the text, is fed
into the MLLM. The MLLM then processes the input and generates token logits, including those for
the target tokens “Yes” and “No”.

We then calculate the pairwise alignment score, denoted as αii, by applying the softmax function
specifically to the logits of the “Yes” and “No” tokens. This normalization yields the probability of
the “Yes” token:

αii = align(ximg
i , xtxt

i ) =
exp(lYes

ii )

exp(lYes
ii ) + exp(lNo

ii )
(10)

Here, lYes
ii and lNo

ii represent the output logits produced by the MLLM for the “Yes” and “No” tokens,
respectively, in response to the relevance prompt for the specific pair (ximg

i , xtxt
i ). The resulting score

αii serves as a quantitative measure of the MLLM’s semantic confidence that the given image and
text constitute a matching multimodal pair.

B Detailed Experiment Settings

B.1 Detailed Training Data Curation

Our primary training data originates from the large-scale OpenImage dataset [26]. To curate a
high-quality dataset suitable for fine-grained learning, we employed the following procedure:

1. Clustering and Deduplication: We first applied clustering and deduplication to the Human-
verified OpenImage data to reduce redundancy and group similar images. Following the
SemDeDup method [23], we set the number of clusters to 50,000 and used an epsilon value
of 0.07 to filter out near-duplicate images.

2. Hard Negative Mining: For each anchor image in the deduplicated set, we identified hard
negative images by retrieving the top-3 most similar images based on their DINOv2 [22]
embeddings.

3. Stratified Sampling: We performed stratified sampling based on the clustering results
to balance data diversity with training resource constraints. The dataset was divided into
8 partitions, and we sampled only one partition (approximately 700K instances) for our
training set.

4. Caption Generation: For each anchor image and its selected top-3 hard negative images,
we employed Qwen2.5-VL-72B [7] to generate corresponding captions for paired images
(constructing 6 distinct image pairs from each anchor image and its top-3 hard negative
images). To enhance descriptive diversity, we configured the generation temperature to
0.7 and applied the generation process three times, resulting in rich and varied textual
representations. As demonstrated in Figure 4, this method enabled us to generate detailed
comparative descriptions that effectively capture the visual distinctions between images.

The final training instances thus consist of an anchor image, its associated positive caption(s), and
the captions corresponding to its identified hard negative images. While alternative data curation
strategies might further enhance model performance, our work primarily focuses on preference
alignment optimization; thus, exploring advanced data strategies is left for future work.

B.2 Detailed Implementation Settings

MAPLE consists of two models: a reward model (Qwen2-VL-7B) and a policy model (initialized
with Qwen2-VL-2B or Qwen2-VL-7B). We fine-tune the policy model using Low-Rank Adaptation
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Figure 3: The Modality Gap Comparison Between CLIP and Qwen2-VL. The gap is computed
on the MMVP dataset. For the CLIP model, we use cosine similarity to construct the similarity
distribution. For the Qwen2-VL model, we use the alignment score to construct the similarity
distribution. Wdist-gap indicates lower values are better, Wdisc-gap indicates higher values are better.

User Prompt
Observe these two images and generate two brief captions, highlighting the key visual differences
between them. The captions should clearly indicate which description corresponds to the first/second
image. The visual differences should be reflected in the descriptive captions.
Please output strictly in the following JSON format:
{
"Image 1": "corresponding caption",
"Image 2": "corresponding caption",

}
Please provide your response following the above specific format:

Generated Response
{
"Image 1": "A large military aircraft parked near water with smaller

planes visible in the background.",
"Image 2": "An old-fashioned airplane suspended from the ceiling of an

indoor aviation exhibit."
}

Figure 4: Example of Prompt and Response for Generating Comparative Descriptions. An
example illustrating a prompt for generating comparative descriptions for a pair of images and the
corresponding JSON response generated by the Qwen2.5-VL-72B.

(LoRA) [37], applying it only to the LLM component’s attention and projection layers, while keeping
the vision encoder and connector frozen. We employ a differential learning rate strategy, with the
base learning rate applied to the LoRA parameters and amplifying the base learning rate by 100 times
for the newly added parameters τ and β. Key model-related hyperparameters are summarized in
Table 7.

The contrastive loss Lcontrast temperature τ and the LRPA coefficient β are treated as learnable
parameters, initialized at 0.07 and 1/0.07 respectively.

Infrastructure and Efficiency. Training was conducted on a cluster of 32 NVIDIA A100 GPUs
(80GB memory each). To optimize computational efficiency and memory usage, we employed
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Table 7: Key Hyperparameters for MAPLE Training.
Parameter Value

Policy Model Base Qwen2-VL-2B / Qwen2-VL-7B
LoRA Rank (r) 32
LoRA Alpha (α) 32
Optimizer AdamW
Base Learning Rate (LoRA) 5e-4
LR Schedule Linear Warmup + Cosine Decay
Warmup Ratio 0.025 (of total steps)
Batch Size (per GPU) 96 (for 2B model) / 48 (for 7B model)
Total Epochs 8
Max Image Resolution 384x384
Initial τ (learnable) 0.07
Initial β (learnable) 1/0.07 ≈ 14.29

bfloat16 mixed-precision training, gradient checkpointing for the LLM component, and Flash Atten-
tion [38]. The maximum image resolution was constrained to 384×384 during training to manage
memory and allow for larger batch sizes. The whole training takes about 32 hours in this setting.

B.3 Detailed Fine-grained Evaluation Dataset and Metrics

To comprehensively evaluate fine-grained capabilities, we employ a diverse set of benchmarks that
assess compositional reasoning and subtle visual distinctions:

• Winoground [14]: Tests compositional reasoning abilities through 400 carefully designed
instances that require understanding nuanced relationships between objects in images and
their textual descriptions.

• NaturalBench [15]: An expanded benchmark containing 1,200 instances that builds upon
Winoground’s principles with greater diversity.

• MMVP [16]: Comprises 135 instances distributed across 9 distinct visual reasoning cat-
egories: Orientation and Direction, Presence of Specific Features, State and Condition,
Quantity and Count, Positional and Relational Context, Color and Appearance, Structural
and Physical Characteristics, Text, and Viewpoint and Perspective.

• BiVLC [17]: A large-scale benchmark with 2,933 instances, each categorized into one of
three transformation types (Replace, Swap, or Add) that test different aspects of text-image
alignment.

Evaluation protocol. Each test instance in the above datasets contains two images (ximg
0 , ximg

1 ) and
two captions (xtxt

0 , xtxt
1 ), forming two correct pairs (ximg

0 , xtxt
0 ) and (ximg

1 , xtxt
1 ). The goal is to correctly

associate images with their corresponding captions. The Image score measures whether the model
correctly identifies the image for both captions: 1[s(xtxt

0 , ximg
0 ) > s(xtxt

0 , ximg
1 ) ∧ s(xtxt

1 , ximg
1 ) >

s(xtxt
1 , ximg

0 )], where s(·, ·) is the similarity function and 1[·] is the indicator function. Simi-
larly, the Text score measures whether the model correctly identifies the caption for both images:
1[s(ximg

0 , xtxt
0 ) > s(ximg

0 , xtxt
1 ) ∧ s(ximg

1 , xtxt
1 ) > s(ximg

1 , xtxt
0 )].

C Supplementary Experimental Results

C.1 Expanded Negative Pool for Contrastive Loss

Within a single device, instead of computing similarities solely among the N anchor examples, we
leverage the K retrieved hard negatives associated with each anchor. This expands the effective pool
of examples for contrastive comparison to N(1+K) per device. When extending this across multiple
devices, we gather all anchor and hard negative examples globally. Since duplicates may arise in this
aggregated set (e.g., the same hard negative might be retrieved for different anchors), we perform
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Figure 5: Impact of Varying the Hyperparameter λ on
Retrieval Performance. The mean of the y-axis represents
the average performance across Text and Image retrieval
tasks.

Figure 6: Evolution of the Modal-
ity Gap Throughout the Training
Process. The gap is computed on
the MMVP dataset.

Figure 7: Performance Breakdown Comparison on the MMVP dataset.

a deduplication step on the globally gathered examples to ensure uniqueness before computing the
final contrastive loss.

C.2 Impact of Balancing LRPA with Lcontrast

Our full method combines the targeted LRPA with the general Lcontrast. We analyze the impact of
the balancing weight λLRPA + (1 − λ)Lcontrast. Figure 5 illustrates performance trajectories as λ
changes from 0 (LRPA only) to 1 (Lcontrast only). Interestingly, as λ increases, general retrieval
abilities slowly get worse, while fine-grained discrimination shows clear improvement. This opposite
relationship highlights a basic trade-off in our approach. Finding the right value of λ is important—it’s
a balance between general general retrieval and fine-grained retrieval. Also, our experiments show
that LRPA-Listwise works much better than its pairwise version, with this advantage becoming more
obvious at higher λ values.

C.3 Impact of the strategy of sampling captions

For our caption generation approach, we generate comparative descriptions between image pairs.
Specifically, for each anchor image and its top-3 hard negative images, we construct six distinct image
pairs by sampling without replacement from the four images. To ensure diversity in the captions, we
employ a generation temperature of 0.7 and generate three captions per pair. This process yields a
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Table 8: Sampling Strategy Comparison on Generated Captions. Best results are in bold. These
experiments are conducted Lcontrast + LRPA-Listwise.

General Retrieval (R@1) Fine-grained Retrieval

Strategy COCO Flickr30k Winoground NaturalBench

Text Image Text Image Text Image Text Image

A 71.2 57.6 91.0 83.9 49.0 27.0 68.8 70.0
B 71.4 58.0 91.4 84.3 49.4 27.5 69.2 70.4
C 71.9 58.6 92.0 84.9 51.0 28.2 69.2 71.2

total of 18 comparative descriptions, with each image appearing in six different captions, resulting in
a rich textual training corpus.

To understand the impact of different caption sampling strategies, we evaluate the following three
approaches for each image. Strategy A uses only the first caption from each of the six generated
caption sets, without any sampling. Strategy B randomly samples one caption from the first three
generated captions per pair, without additional regeneration. Strategy C randomly samples from all
six generated captions. As illustrated in Table 8, we find that increasing caption diversity gradually
improves model performance. As for more sophisticated caption generation processes (e.g., leveraging
multiple MLLMs to generate comparative descriptions and mixing them together), we leave them for
future work.

C.4 Detailed Performance Analysis on MMVP and BiVLC Datasets

Figure 8: Performance Breakdown
Comparison on the BiVLC dataset.

While Table 3 provides overall metrics across different
fine-grained datasets, we further analyze the improvements
across specific visual patterns. The MMVP dataset cat-
egorizes visual tasks into 9 distinct patterns. As shown
in Figure 7, the baseline demonstrates strong discrimina-
tive capabilities for Color and State patterns, but performs
considerably worse on other patterns. Our MAPLE ap-
proach delivers significant improvements on these chal-
lenging patterns. Additionally, we compare the baseline
with MAPLE across 3 categories in the BiVLC dataset,
where each category represents a different dimension of
variation between image-text pairs. Figure 8 reveals that
MAPLE consistently improves upon baseline performance,
with particularly notable gains in the Swap category.

D Related Work

Cross-Modal Retrieval and the Modality Gap. Cross-modal retrieval aims to establish correspon-
dences between visual and textual information in a shared embedding space for effective search [39].
While contrastive learning approaches [1, 40, 41] have advanced the field by training separate en-
coders on paired datasets, they consistently face challenges from the modality gap [2–4, 42, 43].
Our work introduces a unified metric that quantifies this gap across different architectures, showing
that MLLMs inherently possess strong cross-modal alignment capabilities. Recent MLLM-based
retrieval models [8, 10, 9, 21, 44] have reduced this gap through unified architectures, but still rely
on relatively simple alignment strategies that limit their effectiveness in tasks requiring nuanced
cross-modal understanding.

Preference Learning and Direct Preference Optimization. Preference learning has become
a central technique in fine-tuning large language models, particularly in alignment with human
feedback [45, 46]. Direct Preference Optimization (DPO) [11] has emerged as a principled alternative
to reinforcement learning-based methods, offering a stable, reward-free approach for modeling
preferences. While DPO has shown success in natural language domains, its application to cross-
modal representation learning remains underexplored. In this work, we extend DPO to retrieval-based

18



settings and propose a reinforcement learning framework that transfers the fine-grained modality
alignment priors of MLLMs into the cross-modal representations learned by an MLLM-based
retriever.

E Visualization of Retrieval Results
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Figure 9: Visualization Comparison. The retrieved images are sorted by similarity scores. The first
row shows retrieval results without preference alignment, while the second row shows results with
preference alignment. (Best viewed in color and when zoomed in)
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to Section 4 experiments.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5 discusses the limitations of this work.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]

Justification: The paper does not include theoretical results.

Guidelines:
• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Appendix B, we provide a detailed description of the experimental settings,
including the model hyperparameter configurations, the complete training dataset curation
process, and the evaluation protocol. These thorough specifications ensure that our reported
results can be easily reproduced by other researchers.

Guidelines:
• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We plan to release our training code and the complete data curation pipeline as
open-source upon acceptance of the paper. However, at the current submission stage, we are
unable to share any code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4 and Appendix C cover the main results and ablation studies. Ap-
pendix B provides the detailed experimental settings.
Guidelines:
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• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments in this work are conducted using Multimodal Large Language
Models trained on large-scale datasets. The computational cost for training these models is
substantial, making reporting error bars prohibitively expensive. To mitigate randomness,
we fixed all random seeds across all experiments. Additionally, reporting error bars is not a
common practice in research involving MLLM due to the computational resources required.
Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources along with the training hyperparameters are provided
in Appendix B.2.
Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss this in Section 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

24

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]

Justification: Our work is based entirely on publicly available open-source datasets and
models. We believe that this paper poses no such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For our experiments, we use publicly available open-source models and
datasets, which we have properly cited throughout our paper and used according to their
original licensing requirements.

Guidelines:
• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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