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ABSTRACT

Monocular 3D object detection has long been a challenging task in autonomous
driving, which requires to decode 3D predictions solely from a single 2D image.
Most existing methods follow conventional 2D object detectors to first localize
objects based on their centers, and then predict 3D attributes by neighboring fea-
tures around them. However, only using such local visual features is insufficient
to understand the scene-level 3D spatial structures and ignores the long-range
inter-object depth relations. In this paper, we introduce a novel framework for
Monocular DEtection with a depth-guided TRansformer, named MonoDETR.
We modify the vanilla transformer to be depth-aware and guide the whole detec-
tion process by contextual depth cues. Specifically, concurrent to the visual en-
coder that explores object appearances, we specialize a depth encoder to produce
the non-local depth embeddings for the scene-level geometric information. Then,
we represent 3D object candidates as a set of queries and propose a depth-guided
decoder with depth cross-attention modules, which conduct both inter-object and
object-scene depth feature interactions. In this way, each object query estimates
its 3D attributes adaptively from the depth-guided regions on the image and is no
longer constrained to only use local visual features. On KITTI benchmark with
monocular images as input, MonoDETR achieves state-of-the-art and requires no
extra dense depth annotations. In addition, our depth-guided transformer can also
be extended to 3D object detection from multi-view images and show superior
performance on nuScenes dataset. Extensive ablation studies have demonstrated
the effectiveness of our approach.

1 INTRODUCTION

With a wide range of applications in autonomous driving, 3D object detection is more challenging
than its 2D counterparts due to the complex real-world spatial circumstances. Compared to methods
based on LiDAR-scanned point clouds (Zhou & Tuzel, 2018; Lang et al., 2019; Shi et al., 2019;
Yin et al., 2021) and multi-view images (Wang et al., 2022; Li et al., 2022b; Liu et al., 2022a;
Huang et al., 2021), 3D object detection from monocular (single-view) images (Chen et al., 2015;
Brazil & Liu, 2019; Wang et al., 2021c) is of most difficulty, which generally does not rely on depth
measurements or surrounding perception. The detection accuracy thus severely suffers from the
ill-posed depth estimation and limited field of vision, leading to inferior performance.

Except for lifting 2D images into pseudo 3D representations (Wang et al., 2019; You et al., 2020; Ma
et al., 2020; Reading et al., 2021), standard monocular 3D detection methods (Ma et al., 2021; Zhang
et al., 2021b;a; Lu et al., 2021) mostly follow the pipelines of traditional 2D object detectors (Ren
et al., 2015; Lin et al., 2017b; Tian et al., 2019; Zhou et al., 2019). They first localize objects by
detecting their 2D or projected 3D centers on the image, and then aggregate the visual features
around centers to predict the object’s 3D properties, e.g., depth, 3D size, and orientation. Such
center-guided methods are illustrated in Figure 1 (Top). Although it is conceptually straightforward,
merely using visual features around object centers is insufficient for the network to understand the
scene-level geometric structures and long-range depth dependency.

To tackle this issue, we propose MonoDETR, which presents a novel depth-guided feature aggre-
gation scheme to adaptively estimate each object’s 3D attributes based on global spatial context,
as shown in Figure 1 (Bottom). The depth-guided transformer of our MonoDETR contains two
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Figure 1: Center-guided Methods (Top) and our Depth-guided Paradigms (Bottom). Existing
center-guided methods utilize visual features around the centers to predict 3D attributes of objects,
while ours guides the whole process by a predicted foreground depth map and can adaptively ag-
gregate depth features in global context. The lower right figure visualizes the attention map of the
target query from the depth cross-attention layer.

parallel encoders, which are respectively for encoding the scene-level geometric depth and visual
appearance information of the input image. After that, a depth-guided decoder is appended for ob-
ject queries to capture non-local depth cues via attention mechanisms. Specifically, we first utilize
a feature backbone along with a lightweight depth predictor to encode the visual and depth features
of the input image. To endow effective depth semantics into the depth features, we predict a fore-
ground depth map on top and supervise it only by object-wise depth labels, which requires no dense
depth annotations and only contains depth values within each object’s 2D bounding box. On top
of that, we adopt the depth and visual encoders to respectively generate the global depth and visual
embeddings via self-attention layers, which represent the input image from two perspectives, i.e.,
geometry and appearance. The object queries can then adaptively aggregate informative features
from the two embeddings via the depth-guided decoder. Each decoder block consists of a depth
cross-attention layer, an inter-query self-attention layer, and a visual cross-attention layer in order.
The foremost depth cross-attention layer guides each query to adaptively capture geometric depth
cues from the depth-guided regions on the image, and explore depth relations between long-distance
objects. The following two attention layers further enable the object queries to interact with each
other and collect the visual appearance information. By such depth-guided decoding, the prediction
of 3D attributes for each object query, especially the depth, can be largely improved, which is no
longer constrained by the limited visual features around centers.

As an end-to-end transformer-based network for monocular 3D object detection, MonoDETR is free
from non-maximum suppression (NMS) or rule-based label assignment, and introduces minimal
geometry priors between 2D and 3D. We only utilize the object-wise labels for supervision without
extra input data, such as dense depth maps or LiDAR-scanned point clouds. Taking monocular
images as input, MonoDETR achieves state-of-the-art performance among center-guided methods
on KITTI (Geiger et al., 2012) benchmark.

Besides single-view 3D object detection, our MonoDETR can also be extended to object detection
from multi-view images. To conduct joint perception across surrounding scenes, we respectively
generate the visual and depth embeddings for each view via the shared backbone and encoders.
Then, we adopt a multi-view depth-guided decoder to simultaneously aggregate appearance and
geometric information from different views, which guides object queries to predict 3D attributes
by surrounding scene-level depth cues. Our multi-view variant, named MonoDETR-MV, achieves
superior performance on nuScenes (Caesar et al., 2019) benchmark compared with existing multi-
view methods.

We summarize the contributions of our paper as follows:

1. We propose MonoDETR, an end-to-end transformer-based network for monocular 3D ob-
ject detection, which adopts a depth-guided transformer to adaptively capture the scene-
level geometric information and long-range inter-object depth relations.
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2. For monocular input, MonoDETR achieves leading results on KITTI with significant gains.
For multi-view input on nuScenes, our depth-guided transformer can also be extended as
MonoDETR-MV with superior performance.

2 RELATED WORK

As a low-cost solution in autonomous driving, 3D object detection from images are more economi-
cal than LiDAR, but lacks sufficient structural information for accurate 3D perception of the scene.
Existing methods for image-based 3D object detection can be mainly categorized as two groups ac-
cording to the input number of views: monocular (single-view) and multi-view methods. Monocular
detectors only take as input the front-view images and solve a more challenging task that extracts 3D
properties from partial 2D signals. In contrast, multi-view detectors simultaneously encode images
of surrounding scenes and leverage cross-view dependence to understand the 3D space.

Monocular (Single-view) 3D Object Detection. Most previous monocular detectors adopt center-
guided pipelines following conventional 2D detectors (Ren et al., 2015; Tian et al., 2019; Zhou et al.,
2019). As early works, Deep3DBox (Mousavian et al., 2017) introduces discretized representation
with 2D-3D prospective constraints, and M3D-RPN (Brazil & Liu, 2019) designs a depth-aware
convolution for better 3D region proposals. With very few handcrafted modules, SMOKE (Liu
et al., 2020) and FCOS3D (Wang et al., 2021c) propose concise architectures for efficient one-stage
3D detection. MonoDLE (Ma et al., 2021) and PGD (Wang et al., 2021b) analyze depth errors on
top and enhance their performance with customized designs. To further supplement the limited 3D
cues, various additional data are utilized for assistance, e.g., dense depth annotations (Ma et al.,
2020; Ding et al., 2020; Wang et al., 2021a; Park et al., 2021), CAD models (Liu et al., 2021),
videos (Brazil et al., 2020) and LiDAR (Chen et al., 2021; Reading et al., 2021; Huang et al., 2022).
Also, some recent methods introduce complicated geometric priors into the networks, e.g., adjacent
object pairs of MonoPair (Chen et al., 2020), optimized 2D-3D keypoints of RTM3D (Li et al.,
2020), uncertainty-guided depth ensemble of MonoFlex (Zhang et al., 2021b), and geometric depth
uncertainty with hierarchical learning of GUPNet (Lu et al., 2021). Despite the improvements from
extra data and geometry designs, the center-guided pipelines are still limited by local visual features
without scene-level spatial cues. In contrast, our MonoDETR discards the center localization and
conducts adaptive feature aggregation via a depth-guided transformer. MonoDETR requires no
additional annotations and contains minimal 2D-3D geometric priors.

Multi-view 3D Object Detection. For jointly extracting features from surrounding views,
DETR3D (Wang et al., 2022) firstly utilizes a set of 3D object queries and back-projects them
onto multi-view images for feature aggregation. The queries directly detect objects within the uni-
fied 3D space and are thus free from the post-fusion across cameras. PETR (Liu et al., 2022a;b)
further proposes to generate 3D position-aware features without the unstable projection and ex-
plores the advantage of temporal information from previous frames. From another point of view,
BEVDet (Huang et al., 2021; Huang & Huang, 2022) follows (Philion & Fidler, 2020) to lift 2D
images into a unified Bird’s-Eye-View (BEV) representation and appends BEV-based heads (Yin
et al., 2021) for detection. The BEV space can better indicate the spatial distributions of objects and
eliminate the occlusion issue in cameras. To alleviate the sensitivity for 3D priors, BEVFormer (Li
et al., 2022b) generates BEV features via a set of learnable BEV queries, and introduces a spatiotem-
poral transformer for visual features aggregation. Different from above methods specially designed
for multi-view input, MonoDETR can process both monocular and multi-view images for 3D object
detection. Our multi-view variant, MonoDETR-MV, follows DETR3D and PETR to conduct end-
to-end detection without the intermediate BEV representations, and guides the 3D object queries to
aggregate geometric cues adaptively from multi-view depth embeddings.

3 METHOD

The overall framework of MonoDETR is shown in Figure 2. We first illustrate the visual and depth
features extraction in Section 3.1, and detail our depth-guided transformer for aggregating appear-
ance and geometric cues in Section 3.2. Then in Section 3.3, we introduce how to extend Mon-
oDETR into multi-view 3D object detection as MonoDETR-MV.
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Figure 2: Overall pipeline of MonoDETR. We acquire the visual and depth features of the input
image and utilize two parallel encoders for non-local encoding. Then, we propose a depth-guided
decoder to adaptively aggregate scene-level features for object queries in global context.

3.1 FEATURES EXTRACTION

Taking as input a single-view image, our framework utilizes a feature backbone, e.g., ResNet-50 (He
et al., 2016), and a lightweight depth predictor to generate its visual and depth features, respectively.

Visual Features. Given the image I ∈ RH×W×3, where H and W denote its height and width,
we obtain its multi-scale feature maps, f 1

8
, f 1

16
, and f 1

32
, from the last three stages of ResNet-

50. Their downsample ratios to the original size are 1
8 , 1

16 and 1
32 . We regard the highest-level

f 1
32

∈ RH
32×

W
32×C with sufficient semantics as the visual features fV of the input image.

Depth Features. We obtain the depth features from the image by a lightweight depth predictor, as
shown in Figure 3 (Left). We first unify the sizes of three-level features to the same 1

16 downsample
ratio via bilinear pooling, and fuse them by element-wise addition. By this, we can integrate the
multi-scale visual appearances and also preserve the fine-grained patterns for objects of small sizes.
Then, we apply two 3×3 convolutional layers to obtain the depth features fD ∈ RH

16×
W
16×C for the

input image. To enforce fD to encode informative depth information, we predict a foreground depth
map Dfg on top of fD and supervise it only by object-wise depth labels, without extra dense depth
annotations. The pixels within the same 2D bounding box are assigned with the same depth label of
the corresponding object. For pixels within multiple boxes simultaneously, we select the depth label
of the object that is nearest to the camera, which accords with the visual appearance of the image.

Foreground Depth Map. To supervise the depth features fD, we apply a 1×1 convolutional layer
to predict the foreground depth map Dfg ∈ RH

16×
W
16×(k+1) from fD. Here, we discretize the depth

into k + 1 bins following (Reading et al., 2021), where the first ordinal k bins represent foreground
depth and the last one denotes the background. We adopt linear-increasing discretization (LID),
since the depth estimation of farther objects inherently yields larger errors and can be suppressed
with a wider categorization interval. We limit the foreground depth values within [dmin, dmax] and
set both the first interval length and the common difference of LID as δ. We then categorize a
ground-truth depth label d of an object into the k-th bin as

k = ⌊−0.5 + 0.5

√
1 +

8(d− dmin)

δ
⌋, where δ =

2(dmax − dmin)

k(k + 1)
. (1)
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Figure 3: Depth predictor (Left) and depth positional encodings (Right). We utilize the depth
predictor to predict the depth features and foreground depth map of the input image. In the depth
cross-attention layer, we adopt learnbale depth positional encodings by depth value interpolation.

3.2 DEPTH-GUIDED TRANSFORMER

The depth-guided transformer of MonoDETR is composed of a visual encoder, a depth encoder
and a depth-guided decoder. The two encoders produce non-local visual and depth embeddings,
respectively, and the depth-guided decoder enables object queries to adaptively capture scene-level
information in global context.

Visual and Depth Encoders. Given depth and visual features fD, fV , we specialize two trans-
former encoders to independently generate their scene-level embeddings with global receptive fields,
denoted as fe

D ∈ R
HW
162

×C and fe
V ∈ R

HW
322

×C . We set three blocks for the visual encoder and only
one block for depth encoder, since the discrete foreground depth information is easier to be encoded
than the rich visual appearances. Each encoder block consists of a self-attention layer and a feed-
forward neural network (FFN). By the global self-attention mechanism, the depth encoder explores
long-range dependencies of depth values from different foreground areas, which provides non-local
geometric cues of the stereo space and interacts depth features among objects with long distances. In
addition, the decoupling of depth and visual encoders allows them to better learn features for them-
selves, encoding the input image from two perspectives, i.e., depth geometry and visual appearance.

Depth-guided Decoder. Based on the non-local visual and depth embeddings fe
D, fe

V , we utilize a
set of learnable object queries q ∈ RN×C to detect 3D objects via the depth-guided decoder, where
N denotes the pre-defined maximum number of objects in the input image. Each decoder block
sequentially consists of a depth cross-attention layer, an inter-query self-attention layer, a visual
cross-attention layer and an FFN. Specifically, the queries first explore informative depth features
from fe

D via the depth cross-attention layer, in which we linearly transform the object queries and
depth embeddings into queries, keys and values,

Qq = Linear(q), KD, VD = Linear(fe
D), (2)

where Qq ∈ RN×C and KD, VD ∈ R
HW
162

×C . Then, we calculate the query-depth attention map
AD ∈ RN×HW

162 , and aggregate related depth features weighted by AD to produce the depth-aware
queries q′, formulated as,

AD = Softmax(QqK
T
D/

√
C), q′ = Linear(ADVD). (3)

Such depth cross-attention mechanisms enable each object query to adaptively capture spatial cues
from depth-guided regions on the image. Therefore, the query can better understand the scene-level
spatial structures and model inter-object geometric relations to assist the 3D attribute prediction.
Then, the queries pass through the inter-query self-attention layer for further feature interactions
between queries. By this, one query can know what boxes would other queries are going to predict
and implicitly prevent duplicate boxes. Finally, the queries are fed into visual cross-attention layer
for collecting object appearance semantics from fe

V . We stack three decoder blocks to fully fuse the
scene-level depth cues into object queries and achieve the depth-guided feature aggregation scheme.
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Depth Positional Encodings. In the depth cross-attention layer, we propose learnable depth po-
sitional encodings for fe

D instead of using sinusoidal functions as others. As shown in Figure 3
(Right), we maintain a set of learnable embeddings, pD ∈ R(dmax−dmin+1)×C , where each row
encodes the depth positional information for a meter, ranging from dmin to dmax. For each pixel
(x, y) in fe

D, we first obtain the (k+1)-categorical depth prediction confidence, Dfg(x, y) ∈ Rk+1,
from Dfg , each channel of which denotes the predicted confidence for the corresponding depth bin.
The estimated depth of pixel (x, y) can then be obtained by the weighted summation of the depth-
bin confidences and their corresponding depth values, which is denoted as dmap(x, y). Then, we
linearly interpolate pD according to the depth dmap(x, y) to obtain the depth positional encoding for
the pixel (x, y). By pixel-wisely adding fe

D with such encodings, object queries can better capture
scene-level depth cues and understand 3D geometry in the depth cross-attention layer.

Detection Heads and Loss After the depth-guided decoder, the depth-aware object queries are
fed into a series of MLP-based heads for 3D attribute prediction. During inference, we integrate
the attributes to recover 3D bounding boxes without NMS post-processing. For training, we utilize
Hungarian algorithm (Carion et al., 2020a) to one-to-one match the orderless queries with ground-
truth object labels and compute the loss for the paired ones. We list further details in Appendix.

3.3 MULTI-VIEW 3D OBJECT DETECTION

Besides monocular images, our depth-guided transformer can be extended (denoted as MonoDETR-
MV) to conduct end-to-end multi-view 3D object detection. Given M -view images of a scene,
{Im ∈ RH×W×3}Mm=1, MonoDETR-MV shares the feature backbone, depth predictor, depth and
visual encoders to concurrently extract the visual and depth embeddings {fe

V m, fe
Dm}Mm=1 of the M

views. The multi-view foreground depth maps are also generated from {fe
Dm}Mm=1 and supervised

by object-wise depth labels. Then, we adopt a unified multi-view depth-guided decoder that allows
the object queries to simultaneously capture visual and depth information from different views,
rather than independently for each view. In the depth cross-attention layer, we simply concatenate
fe
Dm ∈ R

HW
162

×C across M views to generate the multi-view depth embeddings fe
DM ∈ R

MHW
162

×C ,
which provide object queries with sufficient depth cues from the surrounding environments. The
same concatenation for M -view visual embeddings are also used for the visual cross-attention layer.
We follow existing multi-view methods (Wang et al., 2022; Liu et al., 2022a) to utilize object queries
with initialized 3D reference points. After the multi-view depth-guided transformer, the depth-aware
queries directly predict the attributes of objects in the unified 3D space for the M views.

4 EXPERIMENTS

4.1 SETTINGS

For monocular 3D object detection, we test MonoDETR on the widely-adopted KITTI (Geiger et al.,
2012) benchmark, including 7,481 training and 7,518 test images. We follow (Chen et al., 2016) to
split 3,769 training images as the val set. We report three-level difficulties, easy, moderate and hard,
and evaluate the performance with average precision (AP ) of bounding boxes in 3D space and the
bird-eye view, denoted as AP3D and APBEV , which are both at 40 recall positions. We report scores
for the car category under IoU threshold 0.7. We illustrate the implementation details in Appendix.

4.2 PERFORMANCE COMPARISON

As shown in Table 1, with the proposed depth-guided transformer, MonoDETR achieves state-of-
the-art performance on KIITI test and val sets. On test set, MonoDETR exceeds all existing methods
including those with different additional data input and surpasses the second-best under easy, moder-
ate and hard levels respectively by +2.53%, +1.08% and +0.85% in AP3D, and by +2.94%, +1.73%
and +1.41% in APBEV . Therein, MonoDTR (Huang et al., 2022) also applies transformers to fuse
depth features, but it is still a center-guided method without DETR’s (Carion et al., 2020a) object
queries for adaptive feature aggregation, and highly relies on additional dense depth supervision,
anchors and NMS post-processing. In contrast, MonoDETR performs better without extra input or
handcrafted designs, showing its simplicity and effectiveness for monocular 3D object detection.
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Table 1: Monocular performance of the car category on KITTI test and val sets. We utilize bold
numbers to highlight the best results, and color the second-best ones and our gain over them in blue.

Method Extra data Test, AP3D Test, APBEV Val, AP3D

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PatchNet (Ma et al., 2020)
Depth

15.68 11.12 10.17 22.97 16.86 14.97 - - -
D4LCN (Ding et al., 2020) 16.65 11.72 9.51 22.51 16.02 12.55 - - -
DDMP-3D (Wang et al., 2021a) 19.71 12.78 9.80 28.08 17.89 13.44 - - -

Kinematic3D (Brazil et al., 2020) Video 19.07 12.72 9.17 26.69 17.52 13.10 19.76 14.10 10.47

MonoRUn (Chen et al., 2021)
LiDAR

19.65 12.30 10.58 27.94 17.34 15.24 20.02 14.65 12.61
CaDDN (Reading et al., 2021) 19.17 13.41 11.46 27.94 18.91 17.19 23.57 16.31 13.84
MonoDTR (Huang et al., 2022) 21.99 15.39 12.73 28.59 20.38 17.14 24.52 18.57 15.51

AutoShape (Liu et al., 2021) CAD 22.47 14.17 11.36 30.66 20.08 15.59 20.09 14.65 12.07

SMOKE (Liu et al., 2020)

None

14.03 9.76 7.84 20.83 14.49 12.75 14.76 12.85 11.50
MonoPair (Chen et al., 2020) 13.04 9.99 8.65 19.28 14.83 12.89 16.28 12.30 10.42
RTM3D (Li et al., 2020) 13.61 10.09 8.18 - - - 19.47 16.29 15.57
PGD (Wang et al., 2021b) 19.05 11.76 9.39 26.89 16.51 13.49 19.27 13.23 10.65
IAFA (Zhou et al., 2020) 17.81 12.01 10.61 25.88 17.88 15.35 18.95 14.96 14.84
MonoDLE (Ma et al., 2021) 17.23 12.26 10.29 24.79 18.89 16.00 17.45 13.66 11.68
MonoRCNN (Shi et al., 2021) 18.36 12.65 10.03 25.48 18.11 14.10 16.61 13.19 10.65
MonoGeo (Zhang et al., 2021a) 18.85 13.81 11.52 25.86 18.99 16.19 18.45 14.48 12.87
MonoFlex (Zhang et al., 2021b) 19.94 13.89 12.07 28.23 19.75 16.89 23.64 17.51 14.83
GUPNet (Lu et al., 2021) 20.11 14.20 11.77 - - - 22.76 16.46 13.72

MonoDETR (Ours) None 25.00 16.47 13.58 33.60 22.11 18.60 28.84 20.61 16.38

Improvement v.s. second-best +2.53 +1.08 +0.85 +2.94 +1.73 +1.41 +4.32 +2.04 +0.81

4.3 ABLATION STUDIES

We report the AP3D results of the car category on the KITTI val set for all ablation studies, which
are conducted by modifying individual components of our final solution.

Depth-guided Transformer. In Table 3, we validate our proposed depth-guided transformer by
removing one of its components at a time. We first construct a center-guided variant of our approach
by removing the depth predictor and the entire depth guided transformer. We predict a 2D heatmap
for object center detection and utilize local features to estimate their 3D attributes, denoted as ‘w/o
Depth-guided Trans.’. As shown, its absence greatly hurts the performance due to the limited spatial
cues and non-adaptive feature aggregation. Then, we explore the effectiveness of two key designs in
the depth-guided transformer: the depth guidance and the transformer architecture. For ‘w/o Depth
Guidance’, we discard the depth cross-attention layer in the decoder, which builds a vanilla trans-
former network without any depth guidance for object queries. For ‘w/o Transformer’, we remove
the transformer architecture but preserves the depth predictor to provide implicit depth guidance
to the network. The performance degradation indicate the significance of both depth-guided fea-
ture aggregation schemes and transformer’s scene-level encoding. We also show the superiority of
learnable depth positional encodings in the depth cross-attention layer via ‘w/o Depth Pos. pD’.

Depth Encoder. The depth encoder produces non-local depth embeddings fe
D, which are essential

for queries to explore scene-level depth cues in the depth cross-attention layer. We experiment with
different encoder designs in Table 4. ‘Global SA(×2)’ denotes one or two blocks of vanilla self-
attention layer with a global receptive field. ‘Deform. SA’ and ‘3×3 Conv.×2’ represent one-block
of deformable attention and two 3 × 3 convolutional layers, respectively. As reported, the global
geometry understanding via ‘Global SA’ with only one block generates the best fe

D for MonoDETR.

Depth-guided Decoder. As the core component of our depth-guided paradigm, we explore how
to better guide object queries q to aggregate depth features from fe

D in Table 5. With the sequential
inter-query self-attention and visual cross-attention layers, we experiment four positions to integrate
the depth cross-attention layer into each decoder block. We denote the three attention modules
respectively as ‘I’, ‘V ’ and ‘D’. For I → D+ V , we fuse the depth and visual embeddings fe

D, fe
V

by element-wise addition, and apply only one unified cross-attention layer. The ‘D → I → V ’ order
achieves the highest performance. By placing ‘D’ in the front, object queries could first aggregate
geometric depth cues to guide the remaining operations in each decoder block, benefiting the whole
3D detection to be better depth-guided.
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Table 2: Multi-view performance on nuScenes val set. * denotes the two-step fine-tuning with
test-time augmentation, and † denotes training with CBGS (Zhu et al., 2019). We compare with the
best-performing variants of other methods and utilize bold numbers to highlight the best results.

Method Image Size NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
CenterNet (Zhou et al., 2019) - 0.328 0.306 0.716 0.264 0.609 1.426 0.658
FCOS3D* (Wang et al., 2021c) 1600×900 0.415 0.343 0.725 0.263 0.422 1.292 0.153
PGD* (Wang et al., 2021b) 1600×900 0.428 0.369 0.683 0.260 0.439 1.268 0.185
DETR3D† (Wang et al., 2022) 1600×900 0.434 0.349 0.716 0.268 0.379 0.842 0.200
PETR† (Liu et al., 2022a) 1600×900 0.442 0.370 0.711 0.267 0.383 0.865 0.201
PETRv2 (Liu et al., 2022b) 800×320 0.496 0.401 0.745 0.268 0.448 0.394 0.184

BEVDet† (Huang et al., 2021) 1408×512 0.417 0.349 0.637 0.269 0.490 0.914 0.268
BEVDet4D† (Huang & Huang, 2022) 1600×640 0.515 0.396 0.619 0.260 0.361 0.399 0.189
BEVFormer (Li et al., 2022b) 1600×900 0.517 0.416 0.673 0.274 0.372 0.394 0.198

MonoDETR-MV (Ours) 800×320 0.508 0.410 0.727 0.265 0.389 0.419 0.187
1600×640 0.524 0.435 0.709 0.268 0.382 0.393 0.187

Table 3: Effectiveness of depth-guided trans-
former. ‘Depth-guided Trans.’, ‘Depth Guidance’,
‘Depth Pos.’ denote depth-guided transformer, depth
cross-attention layer and depth positional encodings.

Architecture Easy Mod. Hard

MonoDETR 28.84 20.61 16.38
w/o Depth-guided Trans. 19.69 15.15 13.93

w/o Transformer 20.19 16.05 14.18
w/o Depth Guidance 24.14 17.81 15.60
w/o Depth Pos. pD 24.04 18.11 15.10

Table 4: The design of depth encoder.
‘Global SA×2’ and ‘Deform. SA’ denote
two-block vanilla self-attention and one-
block deformable self-attention layers.

Mechanism Easy Mod. Hard

Global SA 28.84 20.61 16.38
Global SA×2 26.57 19.44 16.02
Deform. SA 26.43 18.91 15.55

3×3 Conv.×2 25.55 18.36 15.28
w/o 24.25 18.38 15.41

Depth Positional Encodings pD. In Table 6, we experiment different depth positional encodings
for fe

D in the depth cross-attention layer. By default, we apply the meter-wise encodings pD ∈
R(dmax−dmin+1)×C that assign one learnable embedding per meter with depth value interpolation for
output. We then assign one learnable embedding for each depth bin, denoted as ‘k-bin pD ∈ Rk×C’,
and also experiment sinusoidal functions to encode either the depth values or 2D coordinates of the
feature map, denoted as ‘Depth sin/cos’ and ‘2D sin/cos’, respectively. As shown, ‘meter-wise pD’
performs the best for encoding more fine-grained depth cues ranging from dmin to dmax, which
provides the queries with more scene-level spatial structures.

4.4 MULTI-VIEW EXPERIMENTS

Settings. For multi-view 3D object detection, we test our multi-view extension MonoDETR-MV
on nuScenes (Caesar et al., 2019) benchmark, which consists of 1,000 scenes with 700, 150, 150
for training, validation, and testing, respectively. Each scene contains a 20-second video from 6
cameras with 360◦ horizontal FOV and is annotated with 3D bounding boxes every 0.5 seconds
of 10 categories. We report the seven metrics for evaluation: nuScenes Detection Score (NDS),
mean Average Precision (mAP), mean Average Translation Error (mATE), mean Average Scale
Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity Error (mAVE),
and mean Average Attribute Error (mAAE). We illustrate the implementation details in Appendix.

Performance Comparison. As shown in Table 2, our MonoDETR-MV achieves the highest NDS
and mAP among existing multi-view methods on nuScenes val set. Note that we do not use the two-
step fine-tuning, test-time augmentation, or CBGS (Zhu et al., 2019) training. Compared to other
end-to-end methods, MonoDETR-MV of 800×320 image size surpasses PETRv2 (Liu et al., 2022b)
by +1.2% NDS, +0.9% mAP, and also exceeds PETR (Liu et al., 2022a) and DETR3D (Wang et al.,
2022) by large margins. Compared to BEV-based methods, we achieve better results than BEV-
Former (Li et al., 2022b) by +0.7% NDS and +1.9% mAP. The multi-view experiments demonstrate
the superiority of our depth-guided transformer for general image-based 3D object detection.
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Figure 4: Visualizations of attention maps AD in the depth cross-attention layer. The top and bottom
rows represent the input images and detection results. The middle three rows are the attention maps
of the target queries (denoted as white dots). Hotter colors indicate higher attention weights.

Table 5: The design of depth-guided de-
coder. ‘D’, ‘I’, and ‘V’ denote the depth cross-
attention, inter-query self-attention and visual
cross-attention layers, respectively.

Architecture Easy Mod. Hard

D → I→ V 28.84 20.61 16.38
I → D→ V 26.24 19.28 16.03
I → V→ D 25.84 18.85 15.72
I → D + V 24.94 18.41 15.39

Table 6: Depth positional encodings pD.
‘Meter-wise’ and ‘k-bin’ assign learnable
embeddings by meters and depth bins.
‘sin/cos’ denotes sinusoidal functions.

Settings Easy Mod. Hard

Meter-wise pD 28.84 20.61 16.38
k-bin pD 24.58 18.33 15.23

Depth sin/cos 26.05 19.18 15.97
2D sin/cos 24.65 18.11 15.16

5 VISUALIZATION

We visualize the attention maps AD in Eq. 3 of the depth cross-attention layer at the last depth-
guided decoder block. As shown in Figure 4, the areas with high attention values for the target
object query spread over the entire image, which focus on other objects with long distances. This
indicates, via our depth-guided transformer, object queries are able to adaptively capture non-local
depth cues from the image and are no longer limited by neighboring visual features.

6 CONCLUSION

We propose MonoDETR, an end-to-end transformer-based framework for monocular 3D object de-
tection, which is free from any additional input, anchors or NMS. Different from existing center-
guided methods, we enable object queries to explore geometric cues adaptively from the depth-
guided regions, and conducts inter-object and object-scene depth feature interactions. Extensive
experiments and analyses have demonstrated the effectiveness of our approach for both single-view
and multi-view input. Limitations. How to effectively incorporate the 3D geometric priors into
our transformer framework is not discussed in the paper. Our future direction will focus on this to
further improve the performance for image-based 3D object detection. Societal Impact. We do not
foresee negative social impact in this work.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Object Detection with Transformers. 2D object detectors (Girshick, 2015; Ren et al., 2015; Lin
et al., 2017a;b; Tian et al., 2019) have achieved excellent performance in recent years, but count on
cumbersome non-maximum suppression (NMS) post-processing and rule-based label assignment.
To circumvent it, the seminal work DETR (Carion et al., 2020b) constructs a novel framework
by adapting the powerful transformer (Vaswani et al., 2017) in natural language processing into
computer vision for 2D detection. DETR detects objects on the image by an encoder-decoder archi-
tecture and conducts set prediction aided by Hungary Matching Algorithm (Carion et al., 2020b).
However, due to the quadratic computational complexity of attention, DETR requires the expen-
sive 500 epochs to be fully trained. To accelerate the convergence, Deformable DETR (Zhu et al.,
2020) designs sparse deformable attention mechanisms and achieves better performance with only
50-epoch training. ACT (Zheng et al., 2020) boosts the time efficiency by introducing adaptive
clustering algorithms during inference. SMCA (Gao et al., 2021) proposes Gaussian-modulated co-
attention mechanisms that refocus the attention of each query into object-centric areas. Besides,
DETR is further enhanced by placing anchors (Wang et al., 2021d), redesigning as two stages (Sun
et al., 2021a;b), setting conditional attention (Meng et al., 2021), embedding dense priors (Yao et al.,
2021), introducing query denoising (Li et al., 2022a) and so on (Dai et al., 2021; Misra et al., 2021).
For image-based 3D object detection, DETR3D (Wang et al., 2022) and PETR (Liu et al., 2022a)
adopt vanilla transformers with 3D object queries to aggregate surrounding visual features in an end-
to-end way. BEVFormer (Li et al., 2022b) utilizes a spatiotemporal transformer to generate BEV
representations from multi-view images. In contrast, our MonoDETR equip the vanilla transformer
with depth guidance for adaptive scene-level depth understanding, and can tackle both single-view
and multi-view circumstances.

A.2 DETAILS OF ATTRIBUTE PREDICTION AND LOSS FUNCTIONS

After the depth-guided transformer, we adopt detection heads to estimate six attributes for each
object query: object category, 2D size (l, r, t, b), projected 3D center (x3D, y3D), depth dreg , 3D
size (h3D, w3D, l3D) and orientation α. All queries share the head weights for the same attribute.
Specifically, we utilize one linear projection layer for the object category, and two-layer MLP for
depth, 3D size and orientation, and three-layer MLP for 2D size and projected 3D center.

Projected 3D Center (x3D, y3D). We directly output the coordinate (x3D, y3D) of each query’s
projected 3D center on the image, which thus discards two types of widely-adopted offsets. The
first is the 2D-to-3D offset for recovering the projected 3D center from the predicted 2D center. The
other is the quantization offset caused by the downsampled heatmap, which is a requisite for existing
center-guided methods. By this, we can obtain the projected 3D center of each object in one step
without the error of intermediate offsets, contributing to better localization accuracy. We adopt L1
loss for the center estimation and denote it as Lxy3D.

Object Category and 2D Size (l, r, t, b). We detect objects of three categories, car, pedestrian
and cyclist, in KITTI (Geiger et al., 2012), and adopt Focal loss (Lin et al., 2017b) for optimization,
denoted as Lclass. Referring to FCOS (Tian et al., 2019), we obtain the 2D bounding box of an object
by predicting the distances from its four sides, l, r, t, b, to the projected 3D center (x3D, y3D). Both
(l, r, t, b) and (x3D, y3D) are normalized from 0 to 1 by the image size. We apply L1 loss for the
distances and GIoU loss (Rezatofighi et al., 2019) for the recovered 2D bounding box following
DETR (Carion et al., 2020a), denoted as Llrtb and LGIoU , respectively.

3D Size (h3D, w3D, l3D) and Orientation α. Instead of predicting the residuals to the mean shape
values, we follow MonoDLE (Ma et al., 2021) to use the 3D IoU oriented loss for 3D sizes. We
divide the heading angle into multiple bins with residuals and adopt MultiBin loss (Chen et al.,
2020; Zhou et al., 2019) to optimize the prediction of orientation. The two losses are respectively
denoted as Lsize3D and Lorien.
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Table 7: Performance of the car category on KITTI val sets under different IoU thresholds. We
utilize bold numbers to highlight the best results, and blue for the second-best ones.

Method APBEV @IoU=0.7 AP3D@IoU=0.5 APBEV @IoU=0.5
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SMOKE (Liu et al., 2020) 19.99 15.61 15.28 - - - - - -
MonoPair (Chen et al., 2020) 24.12 18.17 15.76 55.38 42.39 37.99 61.06 47.63 41.92
MonoRCNN (Shi et al., 2021) 25.29 19.22 15.30 - - - - - -
MonoDLE (Ma et al., 2021) 24.97 19.33 17.01 55.41 43.42 37.81 60.73 46.87 41.89
IAFA (Zhou et al., 2020) 22.75 19.60 19.21 - - - - - -
MonoGeo (Zhang et al., 2021a) 27.15 21.17 18.35 56.59 43.70 39.37 61.96 47.84 43.10
RTM3D (Li et al., 2020) 24.74 22.03 18.05 52.59 40.96 34.95 56.90 44.69 41.75
GUPNet (Lu et al., 2021) 31.07 22.94 19.75 57.62 42.33 37.59 61.78 47.06 40.88
MonoDTR (Huang et al., 2022) 33.33 25.35 21.68 64.03 47.32 42.20 69.04 52.47 45.90

MonoDETR (Ours) 37.86 26.95 22.80 68.86 48.92 43.57 72.30 53.10 46.62

Improvement +4.53 +1.60 +1.12 +4.83 +1.60 +1.37 +3.26 +0.63 +0.72

Depth dpred. To estimate the final object depth dpred more accurately, we average three predicted
values: dreg regressed by the detection head, dgeo converted by the predicted 2D and 3D sizes, and
dmap(x3D, y3D) interpolated from Dfg . We formulate as

dgeo = f
h3D

t+ b
, dpred = (dreg + dgeo + dmap(x3D, y3D))/3, (4)

where h3D and t + b denote the predicted heights of 3D and 2D sizes, and f denotes the camera
focal length. We then adopt Laplacian aleatoric uncertainty loss (Chen et al., 2020) for the overall
dpred, formulated as

Ldepth =

√
2

σ
∥dgt − dpred∥1 + log(σ), (5)

where σ denotes the standard deviation predicted together with dreg , and dgt denotes the ground-
truth depth label of the object.

Bipartite Matching. To correctly match each query with a ground-truth object, we calculate the
loss for each query-label pair and utilize Hungarian algorithm (Carion et al., 2020a) to find the
globally optimal matching. For each pair, we integrate the losses of six attributes into two groups.
The first group contains object category, 2D size and the projected 3D center, since these attributes
mainly concern 2D visual appearances of the image, formulated as

L2D = λ1Lclass + λ2Lxy3D + λ3Llrtb + λ4LGIoU , (6)

where we set λ1∼4 as 2, 10, 5, 2, respectively. The second group consists of the depth, 3D size and
orientation, which are 3D spatial properties of the object, formylated as

L3D = Lsize3D + Lorien + Ldepth. (7)

As the network generally predicts less accurate 3D attributes than 2D attributes, especially at the
beginning of training, the value of L3D is unstable and would disturb the matching process. We
only utilize L2D as the matching cost for matching each query-label pair.

Overall Loss. After the matching, we obtain Ngt valid pairs out of N queries, where Ngt denotes
the number of ground-truth objects. Then, the overall loss of a training image is formulated as

Loverall =
1

Ngt
·
Ngt∑
n=1

(L2D + L3D) + Ldmap. (8)

Ldmap represents the loss of the predicted categorical foreground depth map Dfg , for which we also
utilize Focal loss (Lin et al., 2017b).
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Table 8: Performance of the pedestrian and cyclist categories on KITTI test set. We utilize bold
numbers to highlight the best results, and blue ones for the second-best ones.

Method Pedestrian, AP3D Cyclist, AP3D

Easy Mod. Hard Easy Mod. Hard

Movi3D (Simonelli et al., 2020) 8.99 5.44 4.57 1.08 0.63 0.70
MonoGeo (Zhang et al., 2021a) 8.00 5.63 4.71 4.73 2.93 2.58
MonoFlex (Zhang et al., 2021b) 9.43 6.31 5.26 4.17 2.35 2.04
MonoDLE (Ma et al., 2021) 9.64 6.55 5.44 4.59 2.66 2.45
MonoPair (Chen et al., 2020) 10.02 6.68 5.53 3.79 2.12 1.83

MonoDETR (Ours) 12.54 7.89 6.65 7.33 4.18 2.92

Improvement +2.52 +1.21 +1.12 +2.60 +1.25 +0.34

A.3 ADDITIONAL RESULTS

Car Category on KITTI val Set. We list more results of the car category on KITTI val set un-
der different IoU thresholds in Table 7, where our MonoDETR all achieves the highest detection
accuracy. Compared to the second-best MonoDTR (Huang et al., 2022) that is a center-guided
method with external depth supervision, our MonoDETR only requires object-wise depth labels and
surpasses it by significant gains for the easy level, e.g., +4.53% APBEV @IoU=0.7 and +4.83%
AP3D@IoU=0.5.

Pedestrian and Cyclist Categories. In Table 8, we report the scores for pedestrian and cyclist
categories on KITTI test set both under the IoU threshold of 0.5. As these two categories contain
much fewer training samples than car, it is more challenging for the network to accurately detect
them. As shown, MonoDETR achieves superior AP3D to other methods without additional data,
indicating our superior generalization ability on other categories.

A.4 ADDITIONAL ABLATION STUDY

Depth Discretization. We explore different depth discretization methods for the foreground depth
map dfg in Table 9. ‘UD’, ‘SID’ and ‘LID’ denote uniform, spacing-increasing, and linear-
increasing discretizations, respectively. Instead of the weighted summation of depth bins, ‘LID
+ argmax’ outputs the depth value of the most confident bin. For ‘Continuous Rep.’, we directly
regress the continuous depth value and optimize it by L1 loss. As reported, ‘LID’ performs the best
than other discretization methods, since the linear-increasing intervals can suppress the larger esti-
mation errors of farther objects. Also, ‘LID’ with weighted summation outperforms ‘LID + argmax’
for aggregating more depth cues from the predicted confidence of other depth bins.

Bipartite Matching. Our best solution only utilizes L2D as the matching cost for each query-label
pair. We investigate how it performs to append more 3D losses into the matching cost. As reported in
Table 10, adding Lsize3D or Lorien would adversely influence the performance due to their unstable
prediction during training. Further, adding Ldepth or the whole L3D even leads to training collapse,
which is caused by the ill-posed depth estimation from monocular images.

Transformer Blocks and FFN Channels. In Table 11, we experiment different block numbers
of the visual encoder and depth-guided decoder, along with the latent channels of feed-forward
neural network (FFN). As reported, MonoDETR achieves the best performance with the 3-block vi-
sual encoder, 3-block depth-guided decoder, and 256-channel FFN. Different from DETR’s (Carion
et al., 2020a) 6-block encoder, 6-block decoder, and 1024-channel FFN for COCO (Lin et al., 2014)
dataset, MonoDETR adopts a lighter-weight transformer architecture because of the limited training
samples in KITTI (Geiger et al., 2012) dataset.
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Table 9: The design of depth discretization in
the foreground depth map. ‘Continuous Rep.’
denotes the continuous representation of depth.

Settings Easy Mod. Hard

LID 28.84 20.61 16.38
UD 25.61 18.90 15.49
SID 26.05 18.95 15.59

LID + argmax 21.61 15.21 12.13
Continuous Rep. 24.36 17.24 14.48

Table 10: The design of bipartite matching.
‘w’ denotes adding the loss to the matching
cost. ‘-’ denotes training collapse.

Matching Cost Easy Mod. Hard

L2D 28.84 20.61 16.38
w Lsize3D 27.13 19.21 15.93
w Lorien 25.78 18.63 15.12
w Ldepth - - -
w L3D - - -

Table 11: Transformer blocks and FFN channels. FFN denotes the feed-forward neural network.

Set. Easy Mod. Hard

Visual
Encoder Blocks

2 26.72 18.73 15.43
3 28.84 20.61 16.38
4 27.37 20.04 16.09

Depth-guided
Decoder Blocks

2 25.55 18.58 15.41
3 28.84 20.61 16.38
4 25.31 18.29 15.11

FFN Channels
256 28.84 20.61 16.38
512 27.24 18.93 15.54

1024 26.77 19.07 15.87

A.5 IMPLEMENTATION DETAILS

Monocular Experiments on KITTI (Geiger et al., 2012). We adopt ResNet-50 (He et al., 2016)
as our feature backbone. To save GPU memory, we apply deformable attention mechanisms (Zhu
et al., 2020) for the visual encoder and visual cross-attention layers, and utilize the vanilla atten-
tion (Carion et al., 2020a) to better capture global spatial structures for the depth encoder and depth
cross-attention layers. We utilize 8 heads for all attention modules and set the number of queries N
as 50. We set the channel C and all MLP’s latent feature dimension as 256. For the foreground depth
map, we set [dmin, dmax] as [0m, 60m] and the number of bins k as 80. On a single GeForce RTX
3090 GPU, we train MonoDETR for 195 epochs with batch size 16 and the learning rate 2× 10−4.
We adopt AdamW (Loshchilov & Hutter, 2018) optimizer with weight decay 10−4 and decrease the
learning rate at 125 and 165 epochs by 0.1. For data augmentation on KITTI test set, we adopt ran-
dom flip and photometric distortion following previous works (Zhang et al., 2021b; Ma et al., 2021;
Zhou et al., 2019), but for the val set, we also use random crop to further boost the performance. For
training stability, we discard the training samples with depth labels larger than 65 meters or smaller
than 2 meters. During inference, we simply filter out the object queries with the category confidence
lower than 0.2 without NMS post-processing, and recover the 3D bounding box using the predicted
six attributes following previous works.

Multi-view Experiments on nuScenes (Caesar et al., 2019). For fair comparison with existing
multi-view methods, MonoDETR-MV follows most of the settings in (Liu et al., 2022a;b), including
VoVNetV2 (Lee & Park, 2020) feature backbone, 3D object queries, 3D position embeddings, tem-
poral information, loss functions and data augmentation. We utilize 2 blocks for the depth encoder to
better encode multi-view depth embeddings, and apply the depth cross-attention layer at the end of
each decoder block for training stability. The number of queries N for 6-view images is set as 900,
which predict 10 object categories. The configurations of depth predictor, e.g., [dmin, dmax] and
k are the same as monocular experiments. We train MonoDETR-MV for 24 epochs (2x schedule)
on 8 NVIDIA A100 GPUs with a batch size of 8. We adopt AdamW (Loshchilov & Hutter, 2018)
optimizer with weight decay 10−2 and utilize the learning rate 2× 10−4 with the cosine scheduler.
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A.6 ADDITIONAL VISUALIZATION

In Figure 5, we show the detection results of our MonoDETR and the variant without the depth-
guided transformer on KITTI val set. Benefited from the depth guidance, MonoDETR obtains a
global understanding of the scene-level spatial structure and the inter-object relations. This enables
MonoDETR to well detect the objects occluded by others or truncated by images, and filter out the
objects of ignored categories, e.g., van and truck.

(a) w/o Depth-guided Transformer (b) MonoDETR
w/o Depth-guided Trans. MonoDETR

Figure 5: Visualization of detection results. We utilize green boxes for the variant without depth-
guided transformer (Left) and yellow boxes for MonoDETR (Right). We use red circles to empha-
size the detection difference.
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Figure 6: Depth errors for different variants
of MonoDETR. The x axis and y axis denote
the AP3D under the moderate level and the mean
depth errors on KITTI val set, respectively.
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Table 12: Quantitative results of depth er-
rors. We construct four network variants of
MonoDETR by removing one of the com-
ponents at a time. We respectively remove
the depth-guided transformer, depth en-
coder, separate depth cross-attention layer,
and depth positional encodings, denoted as
‘(a), (b), (c), (d)’. We show their AP3D un-
der the moderate level and the mean depth
errors with standard deviations.

Architecture AP3D ↑ Depth Error ↓
MonoDETR 20.61 1.35±2.07

(a) 15.15 1.54±2.29
(b) 18.38 1.42±2.10
(c) 18.41 1.40±2.11
(d) 18.11 1.49±2.29

A.7 DEPTH ERROR ANALYSIS

To demonstrate the effectiveness of our depth-guided design, we show the depth error comparison
for different variants of MonoDETR. We utilize four network variants, denoted as ‘(a), (b), (c), (d)’
in Figure 6 and Table 12. We calculate their predicted mean depth errors and standard deviations
on KITTI val set. With our depth-guided transformer, the depth estimation can be well benefited,
which reduces the mean error from 1.54 meters to 1.35 meters and improves the AP3D by +5.46%
under the moderate level. In addition, our best solution of 20.61% AP3D performs lower error
variance of ±2.07 than others, indicating our depth-guided transformer can produce more stable
depth estimation of objects.

A.8 ANONYMOUS CODE RELEASE

For reproducibility, we anonymously release our codes in https://anonymous.4open.
science/r/MonoDETR_anonymous-FFC0/.
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