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Abstract

The evolution of Large Language Models001
(LLMs) has significantly enhanced capabilities002
across various fields, leading to a paradigm003
shift in how Recommender Systems (RSs)004
are conceptualized and developed. However,005
existing research primarily focuses on point-006
wise and pair-wise recommendation paradigms.007
These approaches prove inefficient in LLM-008
based recommenders due to the high computa-009
tional cost of utilizing Large Language Mod-010
els. While some studies have delved into list-011
wise approaches, they fall short in ranking tasks.012
This shortfall is attributed to the misalignment013
between the objectives of ranking and language014
generation. To this end, this paper introduces015
the Language Model Framework with Aligned016
Listwise Ranking Objectives (ALRO). ALRO017
is designed to bridge the gap between the capa-018
bilities of LLMs and the nuanced requirements019
of ranking tasks within recommender systems.020
A key feature of ALRO is the introduction of021
soft lambda loss, an adaptation of lambda loss022
tailored to suit language generation tasks. Ad-023
ditionally, ALRO incorporates a permutation-024
sensitive learning mechanism that addresses025
position bias, a prevalent issue in generative026
models, without imposing additional computa-027
tional burdens during inference. Our evaluative028
studies reveal that ALRO outperforms exist-029
ing embedding-based recommendation meth-030
ods and the existing LLM-based recommenda-031
tion baselines, highlighting its efficacy.032

1 Introduction033

The rapid advancement in Large Language Models034

(LLMs), known by ChatGPT1, has marked a sig-035

nificant milestone in demonstrating their versatility036

in zero-shot and few-shot learning across various037

domains. These models, effectively employed in038

sectors like Question Answering and Information039

Retrieval, have shown remarkable adaptability and040

1https://chat.openai.com
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Figure 1: The comparison of point-wise, pair-wise, and
list-wise ranking in LLM-based recommendation.

reliability. Their ability to efficiently handle tasks 041

usually requiring extensive domain-specific train- 042

ing has sparked a surge in research aimed at explor- 043

ing their potential across diverse applications, e.g. 044

Recommender System. 045

In the context of recommender systems, the ap- 046

plication of LLMs has attracted considerable at- 047

tention. Wu et al. (2023) demonstrates a novel 048

paradigm in using Large Language Models as 049

agents in recommendation systems. This ap- 050

proach leverages their natural language processing 051

strengths for more context-sensitive recommenda- 052

tions. Concurrently, Investigations conducted in 053

Bao et al. (2023) and Li et al. (2023) explore the 054

capability of LLM in point-wise recommendation, 055

revealing how language models can be adapted for 056

suggesting products. Qin et al. (2023) investigate 057

the use of pairwise ranking prompts to enhance 058

recommendation systems. Despite these advance- 059

ments, as depicted in Figure 1, a significant limita- 060

tion of these methods is their high computational 061

cost, stemming from the iterative call of LLMs to 062

evaluate each candidate item. 063

In leveraging Large Language Models for recom- 064

mendation systems, the list-wise ranking method 065

stands out for its computational efficiency. Yet, 066

as Dai et al. (2023) illustrates, executing list-wise 067

ranking effectively is fraught with challenges. The 068
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core issue lies in the objective misalignment be-069

tween LLMs’ natural language generation and rank-070

ing tasks. Specifically, ranking not only demands071

an understanding of user preferences but also a072

sophisticated reasoning process to sequence candi-073

dates accordingly, a task that extends beyond the074

scope of basic zero-shot or few-shot LLM prompt-075

ing. Additionally, the inherent position bias in076

LLM-generated lists further complicates the mat-077

ter. This bias indicates that the final ranking of078

potential outputs is significantly influenced by the079

initial input ordering of the candidates. Although080

techniques like bootstrapping, suggested by Hou081

et al. (Hou et al., 2023), offer a solution by itera-082

tively querying the LLM with permuted candidate083

sequences to obtain unbiased arrangements, this084

method significantly increases computational de-085

mands. Such an increase is particularly problematic086

given the substantial resources required by Large087

Language Model operation, especially in the infer-088

ence stage, thereby highlighting a critical trade-off089

between the precision and practicality of employ-090

ing LLMs in recommendation system frameworks.091

To overcome the aforementioned challenges, we092

introduce a novel approach that integrates a soft093

lambda loss within a permutation-sensitive learn-094

ing framework to enhance the ranking capabili-095

ties of Large Language Models (LLMs), particu-096

larly for open-source models with supervised fine-097

tuning and Low-Rank Adaptation (LoRA) (Hu098

et al., 2022). Specifically, our method employs a099

soft lambda loss that effectively bridges the gap be-100

tween the ranking objective and the language gen-101

eration objective. This transformation emphasizes102

the significance of item ranks within the predicted103

list, thereby augmenting their impact during the104

language generation task. Furthermore, we intro-105

duce a permutation-sensitive learning framework106

designed to enhance ranking consistency by evalu-107

ating the distance between outputs from permuted108

candidate lists, thereby ensuring stable ranking out-109

comes regardless of candidates’ initial order. This110

strategy boosts the permutation invariance capabil-111

ity of the model, which is essential for reducing112

position bias. Through aligning distance metrics113

across original and permuted lists, our model effec-114

tively identifies and mitigates bias, enhancing the115

robustness and efficacy of the ranking process.116

The contributions of this paper are summarized117

as follows:118

• We harmonize the goals of language genera-119

tion and ranking tasks within a list-wise rank-120

ing framework using a novel soft lambda rank 121

approach, ensuring seamless integration of 122

these objectives. 123

• We introduce a permutation-sensitive learning 124

methodology that addresses position bias ef- 125

ficiently, without adding extra computational 126

load during inference. 127

• We rigorously assess the performance of our 128

model across two extensively used datasets, 129

demonstrating its effectiveness. 130

2 Related Works 131

2.1 Large Language Model for 132

Recommendation 133

Recent advancements in Large Language Models 134

have showcased their formidable capabilities across 135

a spectrum of tasks, drawing considerable inter- 136

est towards their potential in recommendation sys- 137

tems (Qiu et al., 2021; Bao et al., 2023; Dai et al., 138

2023; Zheng et al., 2024). A comprehensive survey 139

by Wu et al. (2023) listed the existing works on 140

LLM-based Recommendations, particularly focus- 141

ing on the utilization of LLMs as agents that di- 142

rectly generate predictive outcomes. We delineated 143

them into three paradigms, point-wise, pair-wise, 144

and list-wise approaches. 145

The point-wise paradigm is characterized by 146

the LLM processing each historical and candi- 147

date item pair individually. (Sachan et al., 2022; 148

Zheng et al., 2024) For example, Bao et al. (2023) 149

adapted the recommendation template to frame it 150

as a yes-no question, requiring the LLM to eval- 151

uate each candidate sequentially. Another sig- 152

nificant contribution is by Li et al. (2023), who 153

leveraged LLMs to recommend items through an 154

adapter module that computes the probability of 155

each item for recommendation. In the pair-wise 156

paradigm, the LLM determines the preferable op- 157

tion between two candidate items. Qin et al. (2023) 158

introduced a pair-wise prompting strategy employ- 159

ing a sliding window technique to identify the rec- 160

ommended items. Nonetheless, the point-wise and 161

pair-wise approaches are notably inefficient due 162

to the necessity of repeatedly calling the LLM, 163

escalating the time cost as the number of candi- 164

dates increases. (Bao et al., 2023; Li et al., 2023; 165

Kang et al., 2023) In contrast, the list-wise ap- 166

proach presents a more efficient solution by ranking 167

the entire list of candidates in a single inference 168

phase. While some studies propose a list-wise ap- 169

proach (Sun et al., 2023; Dai et al., 2023), they 170
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underestimate the inherent complexities and chal-171

lenges associated with implementing an efficient172

list-wise LLM-based recommendation system.173

2.2 Learning to Rank174

Learning to Rank (LTR) constitutes a fundamental175

component in information retrieval systems, aimed176

at ordering entities by their relevance. This do-177

main is categorized into three main methodologies178

according to the design of the loss function: point-179

wise, pairwise, and listwise approaches. Pointwise180

methods focus on predicting the absolute relevance181

of individual items, typically framed as classifica-182

tion or regression tasks (Li et al., 2007; Crammer183

and Singer, 2001). Pairwise strategies, in contrast,184

emphasize the relative importance between item185

pairs, with the goal of accurately determining the186

more relevant item in a pair (Freund et al., 2003;187

Burges et al., 2005; Chapelle and Keerthi, 2010).188

The listwise approaches extend this concept by con-189

sidering the entire item list as the training unit, aim-190

ing to directly optimize the overall item ordering191

to align with ranking objectives (Xu and Li, 2007;192

Cao et al., 2007; Taylor et al., 2008; Xia et al., 2008;193

Burges, 2010). In this paper, we present an innova-194

tive adaptation of the lambda loss function (Wang195

et al., 2018) tailored for natural language genera-196

tion, leveraging the pairwise approach to enhance197

the coherence of generated texts. This adaptation198

underscores the potential of LTR methodologies to199

extend beyond traditional retrieval tasks.200

3 Problem Statement201

We define the sequential recommendation ranking202

problem as follows. Let U represent the set of203

users and I denote the set of items. For any given204

user u ∈ U , their historical interactions with items205

are represented by Hu = {h1, h2, . . . , hk}, where206

each hi ∈ I signifies an item that user u has previ-207

ously interacted with. With this notation in place,208

the ranking problem is formalized as follows:209

Definition 1 For a user u, consider Cu =210

{c1, c2, . . . , cm} as the set of candidate items for211

recommendation, where each ci ∈ I and m ≤212

|I|. The goal is to devise a ranking function213

F : Hu × Cu → Sm that accurately predicts the214

permutation τ ∈ Sm that best orders the items215

in Cu. The set Sm is the symmetric group of all216

m-element permutations, encapsulating every pos-217

sible arrangement of the candidate items.218

### Instruction:
Given the user’s interaction history, which reveals their items 
preferences, generate a preference-based ranking of the 
provided candidate items, your task is to rank a list of new 
candidate movies. Your ranking should include all the candidate 
movies provided, and it should be based solely on the user's 
preferences, without regard to the initial order of the candidates.

### Input:
[User Interaction History]:
title: Independence Day genres: Action|SciFi|War rating: 3
title: Close Encounters of the Third Kind (1977) genres: 
Drama|Sci-Fi rating: 4
…
[Candidate Items]:
(A) title: Starman genres: Adventure|Drama|Romance
(B) title: Independence Day genres: Action|SciFi|War
…
### Response:
Given the historical interaction, the ranking result is: B A C …

Figure 2: A template sample for ranking in LLM-based
recommendation.

4 Methodology 219

In this section, we elucidate the constraints in- 220

herent in prevailing prompting paradigms when 221

addressing list-wise recommendation tasks. Our 222

learning framework is developed with four dis- 223

tinct components: Template Design, Supervised 224

Fine-Tuning, Soft Lambda Loss, and Permutation- 225

Sensitive Learning. 226

4.1 Template Design 227

Before delving into the specifics of our learning 228

module, we delineate the process of transform- 229

ing the ranking task into a language generation 230

problem. Drawing inspiration from Alpaca Tuning 231

(Taori et al., 2023), we employ a natural language 232

prompt template, denoted as Tsrc(Hu, Cu), which 233

transmutes the input user history Hu and context 234

Cu, inclusive of item attributes such as names, cat- 235

egories, and descriptions, into a structured format. 236

This transformation additionally aids in creating 237

target text templates Ttgt(τ), representing the per- 238

mutation that arranges candidate items according 239

to user preferences. An example of the template is 240

illustrated in Figure 2. Leveraging the structured 241

template, we reframe the ranking problem as a lan- 242

guage generation problem. 243

4.2 Supervised Fine-Tuning 244

With the language generation problem that given 245

Tsrc(Hu, Cu) that aims to predict Ttgt(τ), we imple- 246

ment a supervised fine-tuning paradigm that lever- 247

ages the Low-Rank Adaptation (LoRA) approach, 248

as introduced by Hu et al. (2022). The core idea 249
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behind LoRA is to adapt pre-trained models in a250

parameter-efficient manner, enabling effective fine-251

tuning on downstream tasks with minimal modi-252

fications to the original model parameters. The253

fine-tuning process is formulated by the following254

loss function:255

Lsft = −
|y|∑
t=1

log (Pθ(yt|x, y<t)) , (1)256

where Lsft denotes the supervised fine-tuning loss,257

and Pθ(yt|x, y<t) represents the conditional prob-258

ability of predicting the token yt given the input259

tokens x and the preceding tokens y<t. In this con-260

text, x and y correspond to the tokenized represen-261

tations of Tsrc(Hu, Cu) and Ttgt(τ), respectively.262

This supervised fine-tuning process utilizes tar-263

get tokens that correspond to the correctly ranked264

list of candidate answers, which are subsequently265

adjusted to reflect user preferences. The objective266

is for the model to accurately rank a list of items,267

ensuring that the generated responses are not only268

relevant but also personalized to the user’s interests.269

4.3 Soft Lambda Loss (SLL)270

The widely adopted cross-entropy loss in language271

generation, derived from next-token prediction dur-272

ing supervised fine-tuning, faces a fundamental273

misalignment with the objectives of ranking. Such274

a discrepancy undermines the efficacy of cross-275

entropy loss when applied to the specific demands276

of ranking, leading to suboptimal performance in277

these contexts. Unlike the existing LTR framework278

(Wang et al., 2018), this is not straightforward to279

directly optimize on Normalized Discounted Cumu-280

lative Gain (NDCG) when dealing with language281

models that generate ranked token probabilities in-282

crementally. Traditional ranking losses, such as283

Lambda loss (Wang et al., 2018) or SoftRank (Tay-284

lor et al., 2008), are not directly applicable. The285

Lambda loss, for example, is defined as:286

Lrank =

|τ |∑
i=1

∑
j:τj<τi

δi,j |Gi −Gj |·

log2

(
1 + e−σ(si−sj)

)
,

(2)287

where288

δij =

∣∣∣∣ 1

D|i−j|
− 1

D|i−j|+1

∣∣∣∣ , (3)289
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Figure 3: Demonstration of position bias. The figure
shows how the placement of candidate items in the in-
put sequence can significantly alter the ranking results
produced by a Language Model.

with Gi and Di following the definitions from 290

NDCG, and si representing the model-derived pre- 291

diction score. In large language models, the rank- 292

ing order is typically determined by using the 293

argmax function on the output probabilities of 294

tokens, which is non-differentiable and thus unsuit- 295

able for the training process. 296

To overcome this, we propose a method that com- 297

bines the soft-argmax function with Lambda loss 298

to calculate the deviation of predicted probabilities 299

from the ideal ranking order. We define a differ- 300

entiable ranking score for the generative model by 301

substituting the traditional argmax function in si 302

with the soft-argmax, expressed as: 303

si = max
j

eγyj,i∑
k e

γyj,k
· j, (4) 304

where yi,j denotes the output probability of the lan- 305

guage model for the jth position and token i, and 306

γ represents the scaled value that adjusts the dis- 307

tribution of softmax. By making the computation 308

of si differentiable with the soft-argmax method, 309

we align the objectives of language generation with 310

those of the ranking task. Overall, Soft Lambda 311

Loss follows the Equation 2, which is derived from 312

Wang et al. (2018), by replacing si with Equation 4 313

to get a differentiable objective. 314

4.4 Permutation-Sensitive Loss (PSL) 315

In list-wise recommendation tasks with Large Lan- 316

guage Models (LLMs), position bias emerges as 317

a formidable challenge, with the order of the can- 318

didate input sequence notably swaying the rank- 319

ing outcomes. As depicted in Figure 3, language 320

models exhibit a propensity to assign higher rank- 321

ings to candidates positioned at the beginning of 322

the list. This tendency highlights the significant 323
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influence of candidate positioning on model evalu-324

ations, underscoring the imperative for developing325

methodologies to counteract these biases.326

It is worth noted that the observed phenomenon327

depend exclusively on natural language generation328

tasks with the sequence of input candidates. This329

contrasts with embedding-based recommendation330

systems, where the order of inputs does not influ-331

ence outcomes by calculating the score of user and332

item pair separately. The effect of permutation on333

the output is described by the inequation:334

F (T (Hu, Cu)) ̸= F (T (Hu, C′
u)), (5)335

where F (·) denotes the language model, and336

C′
u = {cπ(0) cπ(1), · · · , cπ(m)} represents a per-337

muted candidate list from the original candidate338

list Cu, with π(·) as the permutation function that339

rearranges the candidates. This equation highlights340

the dependency of the model on the sequence in341

which inputs are provided, distinguishing it from342

conventional recommendation approaches where343

input order is often inconsequential.344

Although Hou et al. (2023) proposed the boot-345

strapping method, which shuffles the candidate346

items multiple times and takes average scores as347

the final ranking result, it is inefficient as it repeti-348

tively calls language models in the inference stage349

to get average ranking. To alleviate this issue with-350

out burdening the inference in the recommenda-351

tion, we propose a permutation loss that aims to352

minimize the output distribution distance between353

the original candidate list Cu and the permutated354

candidate list C′
u within the fine-tuning stage. By355

adopting cross-entropy loss that measures the dis-356

tance between two distributions, we empower the357

model with permutation invariant capability. The358

loss function could be formulated as:359

Lcont = −
|y|∑
t=1

Pθ(yt|x, y<t) logPθ(y
′
t|x′, y′<t),

(6)360

where x and x′ are the prompt derived from361

T (Hu, Cu) and T (Hu, C′
u) respectively, and y and362

y′ are the labels for the given prompts.363

4.5 Training Objective364

Overall, we provide the soft lambda loss Lrank with365

permutation-sensitive framework Lcont to address366

the issues mentioned above, which goes beyond367

the naive supervised fine-tuning. The objective368

function is reformulated as:369

L = Lsft + αLrank + βLcont, (7)370

where α, β are hyperparameters that adjust the im- 371

portance of each loss. 372

5 Experiment 373

In our study, we conducted a comprehensive evalu- 374

ation of our model across two real-world datasets. 375

This was complemented by an ablation study, ro- 376

bustness tests, and efficiency evaluations. Our ex- 377

periment was directed by the following pivotal re- 378

search questions: 379

• (RQ1) Does the proposed framework surpass 380

existing baselines in both embedding-based 381

and LLM-based recommendation models? 382

• (RQ2) What extent does supervised fine- 383

tuning on recommendation-specific corpus en- 384

hance Large Language Model performance? 385

• (RQ3) How crucial is the involvement of our 386

proposed module for metrics improvement? 387

• (RQ4) How does permutation-sensitive learn- 388

ing compare to bootstrapping methods in 389

terms of performance and efficiency? 390

• (RQ5) How does the ALRO framework im- 391

prove performance across different parameter 392

sizes of the backbone language model com- 393

pared to traditional supervised fine-tuning? 394

Through these explorations, we aim to elucidate 395

the contributions of domain-specific fine-tuning 396

with our novel modules to the advancements in 397

LLM-based recommendation systems. 398

5.1 Dataset 399

We selected 3 widely adopted open-source datasets 400

to evaluate the effectiveness of our framework. 401

Movie represents the dataset from MovieLens-1M2. 402

Music is the dataset from the "CDs & Vinyl" sub- 403

sets of Amazon3 product reviews dataset. The de- 404

tails of the datasets are shown in Table 1. With 405

the dataset selected user history Hu with 20 items 406

and Cu with 25 items. The output permutation τ 407

is derived from the future candidate rating from 408

the user. The datasets are partitioned into training, 409

validation, and testing subsets with a ratio of 8:1:1. 410

5.2 Baselines and Evaluation Metrices 411

To evaluate the effectiveness of our framework, 412

we select several state-of-the-art baselines, which 413

could be categorized into Non-Sequential Rec- 414

ommendation, Sequential Recommendation, and 415

Large Language Model-based Recommendation. It 416

2https://grouplens.org/datasets/movielens/1m/
3https://jmcauley.ucsd.edu/data/amazon/
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Table 1: Statistics of datasets.

Datasets Movie Music
# Users 6040 1040
# Items 3952 33191

# Actions 1,000,209 139,459
Sparsity 95.80% 99.60%

Avg. # Tokens/Item 20.76 22.82

is worth noting that we introduce the BERT-based417

model as the backbone to extract the textual infor-418

mation of items in both Non-Sequential Recom-419

mendation and Sequential Recommendation.420

• Non-Sequential Recommendation: NCF (He421

et al., 2017) adopts neural network with422

collaborative filtering for recommendation,423

DIN (Kang and McAuley, 2018) involves user424

interest modeling based on user behavior with425

attention mechanism.426

• Sequential Recommendation: GRU4Rec (Hi-427

dasi et al., 2016) is a session-based recom-428

mendation with GRU-based recurrent net-429

work.SASRec (Hidasi et al., 2016) utilizes430

the self-attention network with positional em-431

bedding to capture the user’s sequential be-432

havior information. CORE (Hou et al., 2022)433

uses the representation consistent framework434

to unify the session and items representation435

space. NARM (Li et al., 2017) decomposed436

the user behavior into global and local forms437

with attention networks for sequential recom-438

mendation.439

• Large Language Model-based Recommenda-440

tion: Zero-shot LLM , Few-shot LLM, Tall-441

Rec (Bao et al., 2023) fine-tunes LLM with442

instruction tuning for point-wise recommen-443

dation, ES4Rec (Li et al., 2023) introduces444

pre-trained item embedding as prompt with an445

adapter to fine-tune the LLM. We use Llama-446

7b as the base model for all the LLM-based447

baselines.448

To assess the performance of various models in449

ranking tasks, we employ Normalized Discounted450

Cumulative Gain (NDCG) at different cutoff levels451

as our evaluation metric, specifically NDCG@k452

with k values of 3, 10, and 25.453

5.3 Implementation Details454

Our experiments were conducted on a cluster of 12455

Linux servers, each equipped with 8 A800 GPUs.456

For the backbone model, we utilized the Llama-2-457

7b 4 with BF16 precision, available on Hugging- 458

face. The supervised fine-tuning step was imple- 459

mented using the PyTorch framework and peft li- 460

brary, applying the LoRA technique with a rank 461

setting of 16. We used the AdamW (Loshchilov 462

and Hutter, 2019) optimizer with a learning rate of 463

1e-4 and batch size as 1 for SFT, complemented by 464

32 gradient accumulation steps with a total of 10 465

training epochs. We also used Deepspeed (Rasley 466

et al., 2020) with ZeRO stage as 2 for distributed 467

training. For our loss function, we fine-tuned the 468

hyperparameters, setting α equal to 0.1, β equal to 469

0.01, and γ equal to 2. 470

5.4 Overall Performance (RQ1) 471

To validate the performance of our proposed frame- 472

work, ALRO, we executed comparative analyses 473

against established baseline methods, with the re- 474

sults presented in Table 2. The following observa- 475

tions were made: 476

• ALRO consistently outperformed the base- 477

lines across various metrics and datasets, un- 478

equivocally demonstrating its superiority in 479

ranking tasks within recommender systems. 480

• Large Language Models (LLMs) without fine- 481

tuning fell short against traditional methods, 482

highlighting the crucial role of supervised fine- 483

tuning for LLMs in recommendation contexts. 484

• The point-wise methods, such as TALLRec 485

and ES4Rec, underperformed in ranking tasks. 486

This is likely due to their inability to account 487

for the interrelationships among candidates, a 488

critical aspect that list-wise approaches inher- 489

ently address. 490

These insights confirm the significance of our 491

ALRO framework in enhancing the efficacy of rank- 492

ing in recommendation systems and underscore the 493

necessity for appropriate fine-tuning of LLMs to 494

fully leverage their potential recommendation. 495

5.5 Effect of Supervised Fine-Tuning (RQ2) 496

Prompting techniques have showcased the pro- 497

found ability of language models to interpret and 498

execute tasks with remarkable precision. (Liu et al., 499

2023) However, the efficacy of these techniques is 500

challenged when applied to specialized domains 501

such as recommendation systems, particularly due 502

to the potential misalignment between the pre- 503

training corpus and the intricate requirements of 504

ranking tasks. As depicted in Table 3, this discrep- 505

4https://huggingface.co/meta-llama/Llama-2-7b-hf
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Table 2: Performance Comparison. Optimal outcomes across all models are emphasized in bold, while second-best
performances are distinguished by underlining. Evaluation metrics include NDCG at ranks 3, 10, and 25.

Dataset Movie Music

NDCG @3 @10 @25 @3 @10 @25

Non-Seq Rec
NCF 0.6235 0.6971 0.8469 0.6791 0.7089 0.8724
DIN 0.6475 0.7028 0.8609 0.6249 0.6645 0.8521

Seq Rec

GRU4Rec 0.6326 0.6915 0.8551 0.6761 0.7050 0.8701
SASRec 0.6059 0.6737 0.8462 0.6704 0.7029 0.8705
COREave 0.5159 0.5984 0.8100 0.6249 0.6645 0.8521
NARM 0.6078 0.6732 0.8462 0.6821 0.7043 0.8713

LLM-based Rec

Zero-shot 0.5149 0.5958 0.8095 0.6420 0.6636 0.8549
Few-shot 0.5185 0.5968 0.8104 0.6417 0.6706 0.8572
E4SRec 0.5393 0.6271 0.8206 0.6054 0.6516 0.8470
TALLRec 0.5854 0.6511 0.8361 0.7066 0.7262 0.8826

Ours ALRO 0.6551 0.7124 0.8835 0.7102 0.7428 0.8915

Table 3: Comparison of Zero-shot, Few-shot and Super-
vised Fine-Tuning with Llama-7b backbone.

Dataset Movie

NDCG @3 @10 @25

Zero-shot 0.5149 0.5958 0.8095
Few-shot 0.5185 0.5968 0.8104
SFT 0.5843 0.6609 0.8396

ancy is notably pronounced in medium-sized lan-506

guage models like Llama-7b, where simple prompt-507

ing may not suffice to activate the model’s ranking508

capabilities effectively.509

To address this gap, our study delves into the im-510

pact of supervised fine-tuning on the performance511

of language models in recommendation-related512

tasks. Through a comparative analysis encompass-513

ing zero-shot, few-shot, and supervised fine-tuning514

approaches, we unveil a substantial improvement515

in model performance by supervised fine-tuning,516

with metrics enhancing by over 10%. This im-517

provement is attributed to the fine-tuning process,518

which effectively adjusts the model’s outputs to519

better align with specific task requirements. This520

approach overcomes the shortcomings of conven-521

tional prompting techniques that often yield non-522

parsable outputs, thereby enhancing the model’s523

ability to rank information more accurately.524
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(a) Movie dataset.
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(b) Music dataset.

Figure 4: Ablation study on multiple datasets.

5.6 Ablation Study (RQ3) 525

In our research, we conducted an ablation study 526

to distinguish the contributions of distinct com- 527

ponents within our proposed framework, system- 528

atically omitting each module for comparative 529

analysis against the complete model. This in- 530

volved evaluating two key variants: Exclusion 531

of soft lambda loss (w/o SLL)and Exclusion of 532

permutation-sensitive learning (w/o PSL) The ex- 533

periment results, as depicted in Figure 4, revealed 534

that both components significantly improve the sys- 535

tem’s ability to rank candidates. Notably, the ob- 536

served reduction in NDCG can be ascribed to the 537

exclusion of the soft lambda loss, underscoring 538

the crucial role of objective alignment in improv- 539

ing the efficacy of language model-based recom- 540

mendation systems. Additionally, the performance 541

decrement observed upon removing Permutation- 542

Sensitive Learning further underscores the critical 543

influence of position bias on ranking performance. 544
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Table 4: Comparative analysis of bootstrapping and
permutation-sensitive learning. ’p@i’ denotes the num-
ber of permutations applied in bootstrapping. The origi-
nal permutation represented by p@1 is consistent with
the prompt in ALRO. TPQ represents the average infer-
ence time per query measured in seconds.

Dataset Movie

NDCG @3 @10 @25 TPQ

p@1 0.6188 0.6770 0.8487 8.019
p@3 0.6486 0.7022 0.8607 25.430
p@5 0.6566 0.7112 0.8646 46.243
ALRO 0.6551 0.7124 0.8835 8.019

5.7 Comparison of Bootstrapping and545

Permutation-Sensitive Learning (RQ4)546

Our research introduces a permutation-sensitive547

learning approach designed to address position548

bias, which affects the outcomes based on the or-549

der of candidate lists. While the bootstrapping550

method (Hou et al., 2023) , offers a solution to this551

bias, it significantly increases inference time. We552

evaluated the effectiveness of permutation-sensitive553

learning compared to bootstrapping, aiming to re-554

duce position bias without burdening the infer-555

ence stage. Our comparisons included the orig-556

inal model without modifications, and bootstrap-557

ping with permutations executed 3 and 5 times. As558

demonstrated in Table 4, our method achieves com-559

parable outcomes to bootstrapping while reducing560

inference times by approximately 5-fold. This in-561

dicates that our approach effectively mitigates the562

inference time issue through well-designed learn-563

ing objectives.564

5.8 Effect of Model parameter size (RQ5)565

In this section of our research paper, we delve into566

the adaptability and efficacy of our learning frame-567

work across several LLM-based recommender sys-568

tems, spanning various model sizes. Specifically,569

we selected four distinct models for our analysis:570

OPT-125M, Pythia 1.4B, Pythia-2.7B, and Llama-571

7B. By applying our framework to these models,572

we aim to showcase the consistent and significant573

performance enhancements it offers compared to574

traditional supervised fine-tuning approaches. As575

depicted in Figure 5, there is a clear correlation576

between model parameter size and performance,577

which serves to emphasize the capacity of our learn-578

ing framework to augment the effectiveness of rec-579

OPT-125M Pythia 1.4B Pythia-2.8B Llama-7B
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

SFT

ALRO

Figure 5: Enhancements achieved by ALRO across var-
ious model sizes on Movie dataset, measured using
NDCG@10 metric.

ommender systems across a spectrum of language 580

model sizes. Notably, the enhancements provided 581

by our framework are more significant in larger 582

models than in smaller ones, this may be attributed 583

to the innate reasoning capability of language mod- 584

els. Overall, the experiment highlights the versa- 585

tility and broad applicability of our framework in 586

improving system performance. 587

6 Conclusion 588

In this research, we tackled the intricacies of em- 589

ploying large language models as ranking agents 590

in recommender systems, with a focus on refining 591

list-wise ranking methods for greater efficiency and 592

accuracy. We proposed a cutting-edge framework 593

that integrates soft lambda loss and permutation- 594

sensitive learning. The integration of soft lambda 595

loss is important as it bridges the objective between 596

LLM’s natural language generation and the specific 597

demands of ranking tasks, enhancing the relevance 598

and accuracy of the recommendations. Further- 599

more, permutation-sensitive learning approaches 600

effectively address the issue of position bias, pro- 601

viding an improvement over traditional bootstrap- 602

ping methods without imposing additional compu- 603

tational demands during inference. Our comprehen- 604

sive evaluation across various datasets confirms the 605

success of our method, marking a step forward in 606

the application of LLMs as recommendation agents. 607

This progress not only enhances accuracy but also 608

maintains computational efficiency, striking a bal- 609

ance between the two. 610

7 Limitation 611

While our framework adeptly aligns the objectives 612

of ranking and language generation, it falls short in 613

fully harnessing the explainability potential inher- 614

ent in language models. The supervised fine-tuning 615

process, augmented by joint loss optimization, ef- 616

8



fectively enhances the model’s performance in list-617

wise ranking tasks, particularly in recommendation618

systems. However, this process inadvertently un-619

dermines the model’s proficiency in tasks beyond620

recommendation, limiting its versatility. Further-621

more, although our method demonstrates efficacy622

in ranking a set of 25 items, scalability becomes a623

concern as the number of candidates increases sig-624

nificantly. This limitation arises due to constraints625

such as context limits or the propensity for for-626

getting in Large Language Models, compromising627

the model’s ability to maintain performance consis-628

tency across varying candidate sizes.629
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