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ABSTRACT

Knowledge distillation is often considered a compression mechanism when
judged on the resulting student’s accuracy and loss, yet its functional impact is
poorly understood. In this work, we quantify the compression capacity of knowl-
edge distillation and the resulting knowledge transfer from a functional perspec-
tive, decoupling compression from architectural reduction, which provides an im-
proved understanding of knowledge distillation. We employ hypothesis testing,
controls, and random control distillation to understand knowledge transfer mech-
anisms across data modalities. To rigorously test the breadth and limits of our
analyses, we explore multiple distillation variants and analyse distillation scaling
laws across model sizes. Our findings demonstrate that, while there is statistically
significant knowledge transfer in some modalities and architectures, the extent of
this transfer is less pronounced than anticipated, even under conditions designed to
maximise knowledge sharing. Notably, in cases of significant knowledge transfer,
we identify a consistent and severe asymmetric transfer of negative knowledge to
the student, raising safety concerns in knowledge distillation applications. Across
12 experimental setups, 9 architectures, and 7 datasets, our findings show that
knowledge distillation functions less as a compression mechanism and more as a
data-dependent regulariser with a negative asymmetric payoff.

1 INTRODUCTION

Large neural networks have achieved remarkable results across domains (Brown et al., 2020; Doso-
vitskiy et al., 2021; Kirillov et al., 2023), but at significant computational cost. This has motivated
techniques that reduce model size while maintaining performance. Knowledge distillation (KD) has
emerged as a widely adopted method to compress models by training a student model to mimic a
larger teacher (Buciluǎ et al., 2006; Hinton et al., 2015; Gu et al., 2024; Muralidharan et al., 2024).
While KD can be applied across architectures and modalities – including in self-distillation regimes
where the teacher and student share the same architecture (Allen-Zhu & Li, 2023; Zhang et al., 2019)
– the mechanism by which KD improves student performance remains unknown (Busbridge et al.,
2025). Recent studies have challenged the assumption that KD works through meaningful knowl-
edge transfer, showing that performance gains have been observed even with randomly initialised
teachers (Stanton et al., 2021a) motivating a rigorous examination of KD’s functional impact.

In this work, we move beyond the question of whether knowledge is transferred – we challenge the
framing of Knowledge Distillation as a mechanism of knowledge transfer altogether. We argue that
the improvements observed do not necessarily arise from meaningful transfer of the teacher’s knowl-
edge, but from a more general, data-dependent regularisation effect disputed in literature (Stanton
et al., 2021a; Yun et al., 2020; Ge et al., 2021; Yuan et al., 2020) with a novel identification of a
negative asymmetric payoff in KD. To support this claim, we study KD from a functional perspec-
tive, and quantify how closely student models replicate the teacher’s output function. We ground
our work around two research questions: 1) Does knowledge distillation result in a significantly
functionally similar model to the teacher across architectures and data domains against controls? 2)
What knowledge, if any, is actually transferred to student models?
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We first focus on self-distillation, where the student has the capacity to match the teacher’s functional
representation perfectly, ensuring that any observed differences are solely due to the distillation
signal. We then verify our findings in the standard distillation setting with smaller student models
(Appendix Section E), as well as with different KD variants in Appendix Section C.

Our methodological framework isolates the core mechanics of Knowledge Distillation through: 1) a
controlled training setup where all models share initialisation, enabling precise functional compari-
son; 2) two controls: independent models with the same architecture,initialisation and different data
order (SIDDO) as the teacher, and a Random Control Distillation (RCD) where students are trained
using uniform noise in place of teacher outputs, all functionally compared to the teacher model used
in the standard distillation process; 3) functional similarity metrics including Activation Distance,
Rank Disagreement, Prediction Disagreement, JS Divergence and Prediction Agreement.

We conduct experiments across 7 datasets, 3 data modalities (image, audio, and language), and 9
architectures, training over 3,900 models. Our findings show that:

• While KD can lead to statistically significant functional similarity between teacher and
student, this similarity is often marginal and inconsistent across datasets and modalities.

• The most substantial improvements in accuracy and loss frequently arise under Random
Control Distillation, challenging the assumption that performance gains reflect successful
knowledge transfer.

• When knowledge transfer is significant and not marginal, the transferred knowledge has
an asymmetric weighting towards the teacher’s incorrect predictions. This asymmetry be-
comes more pronounced as dependence on the teacher increases.

Our findings compel a re-characterisation of KD, not as a robust knowledge transfer mechanism,
but as a data-dependent regulariser with inconsistent and negative asymmetric knowledge-sharing
capacity. This perspective raises important safety concerns: when knowledge transfer is significant,
KD may amplify incorrect or harmful behaviour encoded in the teacher. We present a concrete case
of adversarial transfer facilitated by KD to support this.

Concretely, our contributions are as follows:

• Introduce a functional framework to analyse KD beyond accuracy and loss, but as a process
where internal knowledge transfer dynamics can be quantitatively measured.

• Isolate the contribution of the teacher signal using strong statistical and control-based
methodology, something that prior work has not quantitatively disentangled to this level.

• Identify and characterise a novel phenomenon across conditions, modalities and architec-
tures: when functional transfer occurs, it disproportionately favours the teacher’s incorrect
predictions, revealing a systematic error amplification effect with safety implications.

• Demonstrate the diagnostic utility of RCD as a crucial counterfactual, showing it frequently
outperforms KD, undermining assumptions about knowledge transfer.

• Conduct the largest multimodal functional study of KD to date. Our empirical analysis
spans over 3,900 trained models across 9 architectures, 7 datasets, and 3 modalities (vision,
audio, and language), establishing the generality and reproducibility of our claims.

• Reveal targeted and scalable negative transfer via adversarial and capacity scaling exper-
iments. We show that KD can reliably copy specific erroneous behaviours, and that this
error amplification scales with model capacity, underscoring the hidden risks of KD in
high-stakes settings.

2 RELATED WORK

Knowledge Distillation (KD): KD transfers behaviour from a teacher (or ensemble) into a stu-
dent (Buciluǎ et al., 2006; Hinton et al., 2015), with strong empirical results across modalities (Beyer
et al., 2022; Jung et al., 2020; Sanh, 2019; Aghli & Ribeiro, 2021; Li et al., 2020; Fang et al., 2021;
Wang et al., 2022) and architectures (Touvron et al., 2021; Miles et al., 2024). Yet the role of knowl-
edge transfer is debated (Mason-Williams, 2024; Stanton et al., 2021b; Ojha et al., 2023; Menon
et al., 2021). Prior work alternately views KD as a regulariser (Yun et al., 2020; Ge et al., 2021;
Yuan et al., 2020) or argues against that view (Shen et al., 2021; Sultan, 2023). In this paper, we ad-
vance the discussion surrounding KD as a regulariser with a functional perspective that spans image,
audio, and language. We present a control-driven functional protocol that decouples compression
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from size, measures alignment beyond accuracy, confirming KD acts as a data-dependent regulariser
but exposing a new dimension of this regularisation with respect to its systematic negative transfer
to the student.

Functional Similarity Metrics: Functional similarity compares models by their outputs rather
than only their accuracy (Klabunde et al., 2023). It has been used for unlearning (Golatkar et al.,
2021; Chundawat et al., 2023), ensemble dynamics (Fort et al., 2019), and compression/pruning
(Mason-Williams & Dahlqvist, 2024; Mason-Williams, 2024). Metrics such as Activation Dis-
tance, Prediction Dissimilarity and JS Divergence have been used for functional analysis. Activa-
tion Distance represents the L2 distance on the softmax output distribution of two models, enabling
functional comparison. In comparison, JS Divergence represents the Jensen-Shannon information-
theoretic divergence that employs a weighted average of KL divergence of distributions, giving
a directed divergence between non-continuous distributions (Lin, 1991). Prediction Dissimilarity
compares the disagreement of label predictions between models, allowing for an enriched perspec-
tive on the alignment of the model’s functions (Fort et al., 2019). We employ all of the above to
conduct a functional analysis of knowledge transfer in knowledge distillation.

3 EXPERIMENTAL SETUP

We focus primarily on self-distillation, where the student model has the same architecture and ini-
tialisation as the teacher. This setting gives the student maximal capacity to recover the teacher’s
function, allowing isolation of the effects of the distillation signal itself. This is achieved through ar-
chitectural and initialisation matching, along with carefully structured control conditions. Our core
experimental findings are derived from this controlled self-distillation setup. To verify generality,
we replicate our results in the standard KD setting with smaller students (Appendix E) as well as
with multiple KD variants in Appendix Section C.

Let MT denote the teacher model, trained from initialisation M0. All subsequent models – includ-
ing students and controls – share the same architecture and initialisation M0, ensuring they begin
from the same point in the loss landscape. Thus any observed differences in functional behaviour
arise purely from the training signals (e.g., data order or distillation) rather than confounds from
architecture or initialisation. In self-distillation, students start from M0 and are trained to match the
finalised teacher MT with the standard logit-matching objective:

L(x;MS) = (1− α) ∗ H(y, σ(zs;T = 1))

+α ∗ KL(σ(zt;T = t), σ(zs, T = t))
(1)

where x is the input, MS is the student model parameters, α is the teacher weighting coefficient,
H is the cross-entropy loss function, KL is the kullback-leibler divergence loss function, y is the
ground truth label, σ is the softmax function parameterised by the temperature T , and zs and zt
are the logits of the student and the teacher, respectively. Unless otherwise stated, we keep all
training hyperparameters fixed across conditions: optimiser, learning-rate schedule, batch size, data
augmentations/preprocessing, epochs, and evaluation protocol.

To isolate the effect of the teacher signal, we introduce a Random Control Distillation (RCD) setup,
analogous to a randomised control trial (Hariton & Locascio, 2018). Here, the student is trained with
the same distillation loss (Eq. 1), but the teacher outputs are replaced by samples from a uniform
distribution in [0, 1]. This setup is visualised in Figure 1.

(a) Knowledge Distillation with a Teacher Model. (b) Random Control Distillation.

Figure 1: Knowledge Distillation Setups.
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We vary the distillation coefficient α ∈ {0.1, 0.5, 0.9} to modulate reliance on the teacher. At 0.1,
the teacher signal contributes minimally; at 0.5, there is an equal weighting of label and teacher
supervision; at 0.9, training is predominantly guided by the teacher. If KD achieves meaningful
knowledge transfer, functional similarity should increase with higher α. All experiments use tem-
perature T = 1 to preserve the original teacher distribution.

For each architecture–dataset pair spanning over different modalities, we train 3 teacher models
(seeds 0-2), and 10 student models per distillation setup (KD, RCD, SIDDO; see below) × 3 α
values (seeds 10-19). This results in 73 models per dataset–architecture pair, and a total of 3,942
models across all conditions (Table 1). Results are reported using Standard Error of the Mean
(SEM) (Belia et al., 2005), which better reflects estimation uncertainty across independent runs.

Table 1: Modalities used in our experiments, along with their respective datasets and architectures.

Modality Datasets Architectures

Image TinyImageNet Le & Yang (2015), CIFAR10 Krizhevsky et al. (2009), SVHN Netzer et al. (2011) ResNet-50, ResNet-18 He et al. (2016), VGG19BN
VGG19 Simonyan & Zisserman (2014), Vision Transformer (ViT) Dosovitskiy et al. (2021)

Audio SpeechCommandsV2 Warden (2017),
UrbanSound8K Salamon et al. (2014) VGGish Hershey et al. (2017), AST Gong et al. (2021)

Language Tiny Shakespeare Blog (2015), Adversarial Tiny Shakespeare (THA) Nano-GPT, Pico-GPT Karpathy (2022)

3.1 FUNCTIONAL SIMILARITY METRICS

We evaluate student–teacher alignment using functional similarity metrics computed on the test set
Dtest, comparing teacher MT and comparison model MC :

• Activation distance: L2 distance between softmax outputs of MT and MC .
• Rank Disagreement: Percentage of disagreement in the sorted output logits.
• Prediction Disagreement: Proportion of mismatched top-1 predictions..
• Prediction Agreement: Complement of prediction disagreement (used in error analysis).
• Jensen-Shannon (JS) Divergence: A weighted average of KL divergence (Lin, 1991)

between the softmax outputs of MT and MC .

These metrics move beyond accuracy and loss to quantify the extent to which students reproduce
the teacher’s output function.

3.2 HYPOTHESIS TESTING

To evaluate whether KD facilitates functional knowledge transfer, we test whether student mod-
els trained via KD are functionally more similar to the teacher than control models. Our primary
hypothesis is:

H0: KD students, on average, are no more similar to the teacher than control models.
Ha: KD students, on average, are more functionally similar to the teacher than control models.

We test each functional similarity metric using a two-sided Mann-Whitney U test (significance level
= 0.05). Comparisons are made between two control conditions and the variable of interest:

Same Initialisation Different Data Order (SIDDO): models with the same initialisation and ar-
chitecture M0 as the teacher, trained with seeds 10-19.

Random Control Distillation (RCD): Students trained with uniform-noise “teacher” logits (seeds
10-19; alphas 0.1, 0.5 and 0.9) (Figure 1).

Standard KD (variable of interest): Students trained with real teacher logits from MT , using alpha
values {0.1, 0.5, 0.9} and seeds 10–19 (Figure 1).

For each teacher seed, we report the mean and SEM across 10 models per condition.

4 RESULTS AND DISCUSSION

We first examine functional transfer in small-scale settings and show that when transfer is non-
marginal it is consistently asymmetric toward the teacher’s errors. We then validate these findings
at larger scale on TinyImageNet, where increasing teacher train loss (via augmentation) amplifies
both functional transfer and its negative asymmetry. We then demonstrate generality in negative
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asymmetric transfer of KD across modalities (audio and language in addition to image), show how
KD can facilitate adversarial attacks and finally we provide distillation scaling experiment, in line
with Busbridge et al. (2025), to show how negative asymmetric transfer is present regardless of
student capacity.

Full supplemental results (datasets, architectures, and all teacher seeds) appear in the appendix:
CIFAR-10 (ResNet-18, VGG19, ViT; Appendix F.2), SVHN (VGG19, ViT; Appendix F.3), audio
(UrbanSound8K, SpeechCommands; Appendix G), language (Tiny Shakespeare; Appendix H),
adversarial transfer (Appendix H.2), standard KD to smaller students (Appendix E), and different
KD variants (Appendix C). We also show in Appendix Section B that our analysis holds for
information theoretic and geometric measures alongside our functional similarity measures and
that our RCD control is equivalent to label smoothing in Appendix Section D. Training details for
all settings are also provided in the appendix. Unless specified otherwise, we report means and
±1 SEM over 10 runs per teacher seed and condition.

4.1 FUNCTION TRANSFER IN SMALL-SCALE SETTINGS (SVHN)

We begin with SVHN and ResNet18. KD yields statistically significant functional similarity at high
α values, but the magnitude and asymmetry of transfer vary across teacher seeds. When transfer is
non-marginal, we observe a systematic increase in student–teacher agreement on incorrect predic-
tions relative to correct ones.

Table 2 shows teacher variability: train losses of 6.46 × 10−4, 6.1 × 10−5, and 4.66 × 10−3 with
a generalisation gaps of ≈ 0.04 for seeds 0, 1, and 2 respectively. Notably, the best test loss and
accuracy (Table 3) are achieved by random control distillation, reducing confidence that KD’s per-
formance gains arise from meaningful knowledge transfer and instead supporting the view of KD as
a data-dependent regulariser.

Table 2: SHVN ResNet18 Teacher Performance on Train and Test Sets.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.000646 0.999850 0.381410 0.951829
1 0.000061 0.999973 0.331054 0.952251
2 0.004657 0.998580 0.309702 0.947104

For the highest-train-loss teacher (seed 2), KD produces significant functional transfer across met-
rics at most α values (Appendix Table 64; reproduced summary in Table 4), with the exception of
Prediction Disagreement at α = 0.1. This transfer coincides with a large asymmetric payoff in
prediction agreement toward the teacher’s incorrect predictions (Figure 2). The lowest-train-loss
teacher (seed 1) shows no significant transfer at α ∈ {0.1, 0.5} and only partial transfer at α = 0.9
(again, excluding Prediction Disagreement). Seed 0 (intermediate train loss) shows significant trans-
fer at α = 0.5 and 0.9, accompanied by asymmetric incorrect agreement (Figure 2).

Table 3: SVHN ResNet18 (teacher seed 0): mean ± 1 SEM over 10 runs. Bold indicates the best
mean per metric. Arrows (↑/↓) denote the preferred direction for each metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.063±0.002 0.064±0.001 0.060±0.001 0.059±0.001 0.144±0.001 0.493±0.000 0.849±0.000
Rank Disagreement (↓) 0.696±0.003 0.688±0.004 0.684±0.003 0.681±0.003 0.800±0.002 0.798±0.002 0.802±0.003
Prediction Disagreement (↓) 0.045±0.001 0.046±0.001 0.043±0.001 0.042±0.001 0.042±0.001 0.043±0.001 0.046±0.001
JS Divergence (↓) 0.025±0.001 0.025±0.001 0.023±0.001 0.022±0.000 0.053±0.000 0.201±0.000 0.431±0.000
Accuracy (↑) 0.952±0.001 0.951±0.001 0.954±0.001 0.954±0.001 0.957±0.001 0.957±0.001 0.955±0.001
Loss (↓) 0.385±0.011 0.344±0.008 0.310±0.006 0.293±0.004 0.236±0.003 0.692±0.001 1.698±0.001

Table 4: SVHN ResNet18 significance testing. ✓indicates significant transfer compared to controls;
✗indicates no significance. Each triplet corresponds to teacher seeds 0-2 (left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✓ ✗✗✓ ✗✗✗ ✗✗✓ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✓ ✓✗✓ ✗✗✓ ✓✗✓ ✗✗✗ ✗✗✓
KD 0.9 ✓✓✓ ✓✓✓ ✗✗✓ ✓✓✓ ✗✗✗ ✗✗✓

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.1 0.5 0.9

−0.5

0

0.5

1

1.5

Prediction
Correct
Incorrect

Alpha Value on Standard Knowledge Distillation

%
 D

ev
ia

tio
n 

on
 P

re
di

ct
io

n 
A

gr
ee

m
en

t

(a) ResNet18 Teacher seed 0

0.1 0.5 0.9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Prediction

Correct
Incorrect

Alpha Value on Standard Knowledge Distillation

%
 D

ev
ia

tio
n 

on
 P

re
di

ct
io

n 
A

gr
ee

m
en

t

(b) ResNet18 Teacher seed 1
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(c) ResNet18 Teacher seed 2

Figure 2: Difference in prediction agreement between KD students and the best control baseline on
correct (blue) vs. incorrect (red) predictions; error bars show ±1 SEM (SVHN ResNet18).

Across seeds, higher teacher train loss is associated with stronger (and more asymmetric) functional
transfer. This is consistent with a teacher that deviates more from ground-truth labels, thereby
exposing students to incorrect structure that is preferentially transferred under KD.

4.2 FUNCTION TRANSFER IN LARGER-SCALE SETTINGS

We next study TinyImageNet with ResNet50. In the base setting, KD produces significant but
marginal functional gains relative to SIDDO; the corresponding prediction agreement shows no
clear preference toward correct or incorrect agreement. Motivated by the SVHN analysis, we in-
crease the teacher train loss via data augmentation (same training pipeline) – RandAugment (Cubuk
et al., 2020) with the default settings – and examine the consequences for functional transfer and
asymmetry.

Table 5: TinyImageNet ResNet50 Teacher Performance: Base vs RandAugment.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
Base

0 0.001426 0.999800 2.070590 0.605300
1 0.001393 0.999800 2.051494 0.607900
2 0.001436 0.999800 2.051024 0.610600

RandAugment
0 0.672748 0.840410 1.620552 0.638800
1 0.678245 0.839200 1.629393 0.641800
2 0.667570 0.840750 1.624969 0.641100

In the base setting (Table 5), teachers have very low train loss and moderate test accuracy. With
augmentation (Table 5), train loss increases while test accuracy improves, as expected.

Having established how augmentation changes the teacher regime, we now examine the students
under the same settings (teacher seed 0). In the base case, KD with α 0.9 improves over SIDDO by
at most 0.002 (Activation Distance), 0.000 (Rank Disagreement), 0.002 (Prediction Disagreement),
and 0.001 (JS Divergence) (Table 6) – statistically significant (Appendix Table 29) but marginal in
magnitude. Under augmentation, KD with α 0.9 improves by 0.062 (Activation Distance), 0.016
(Rank Disagreement), 0.060 (Prediction Disagreement), and 0.030 (JS Divergence) (Table 7). In
both base and augmented settings, the best test loss/accuracy occurs under random control distilla-
tion, indicating that improved performance does not require a meaningful teacher signal.

Table 6: TinyImageNet (base): ResNet50 mean ± SEM over 10 runs (teacher seed 0). Bold indicates
best mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.157 ± 0.001 0.157 ± 0.001 0.156 ± 0.001 0.155 ± 0.000 0.343 ± 0.000 0.581 ± 0.000 0.791 ± 0.000
Rank Disagreement 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.984 ± 0.000
Prediction Disagreement 0.153 ± 0.001 0.152 ± 0.001 0.151 ± 0.001 0.151 ± 0.001 0.190 ± 0.001 0.214 ± 0.000 0.324 ± 0.000
JS Divergence 0.040 ± 0.000 0.040 ± 0.000 0.039 ± 0.000 0.039 ± 0.000 0.171 ± 0.000 0.333 ± 0.000 0.533 ± 0.000
Accuracy 0.605 ± 0.001 0.605 ± 0.000 0.604 ± 0.001 0.605 ± 0.001 0.607 ± 0.000 0.606 ± 0.001 0.580 ± 0.000
Loss 2.068 ± 0.001 2.065 ± 0.002 2.055 ± 0.001 2.043 ± 0.002 1.977 ± 0.001 2.497 ± 0.001 3.612 ± 0.002
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Table 7: TinyImageNet (RandAugment): ResNet50 mean ± SEM over 10 runs (teacher seed 0).
Bold indicates best mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.193 ± 0.000 0.183 ± 0.000 0.150 ± 0.000 0.131 ± 0.000 0.245 ± 0.001 0.501 ± 0.001 0.781 ± 0.000
Rank Disagreement 0.959 ± 0.000 0.957 ± 0.000 0.948 ± 0.000 0.943 ± 0.000 0.975 ± 0.000 0.981 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.196 ± 0.001 0.188 ± 0.001 0.154 ± 0.001 0.136 ± 0.001 0.195 ± 0.001 0.240 ± 0.001 0.572 ± 0.001
JS Divergence 0.058 ± 0.000 0.052 ± 0.000 0.036 ± 0.000 0.028 ± 0.000 0.094 ± 0.000 0.266 ± 0.000 0.563 ± 0.000
Accuracy 0.640 ± 0.000 0.643 ± 0.001 0.644 ± 0.000 0.642 ± 0.000 0.646 ± 0.001 0.657 ± 0.001 0.400 ± 0.001
Loss 1.619 ± 0.003 1.600 ± 0.001 1.578 ± 0.001 1.577 ± 0.001 1.551 ± 0.001 1.984 ± 0.002 4.211 ± 0.001

Figure 3 shows the corresponding prediction agreement deltas (KD vs. best control). At α = 0.9,
students trained from augmented teachers increase incorrect agreement from ≈ 0.2% (base) to ≈
12%, far outpacing the increase in correct agreement. Thus, inducing higher teacher train loss via
augmentation reliably amplifies asymmetric incorrect transfer, consistent with the SVHN findings
and our regularisation view of KD with the novel insight of negative asymmetric transfer.
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(b) Base, teacher seed 1
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(d) Aug, teacher seed 0

0.1 0.5 0.9

0

2

4

6

8

10

12

Prediction

Correct

Incorrect

Alpha Value on Standard Knowledge Distillation

%
 D

e
v
ia

t
io

n
 o

n
 P

r
e
d
ic

t
io

n
 A

g
r
e
e
m

e
n
t
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(f) Aug, teacher seed 2

Figure 3: Difference in prediction agreement between KD students and the best control baseline on
correct (blue) vs. incorrect (red) predictions; error bars show ±1 SEM (TinyImageNet, ResNet-50).
Top: base teachers. Bottom: augmented teachers.

4.3 FUNCTION TRANSFER ACROSS MODALITIES

We test the generality of our findings beyond images by evaluating KD on audio (UrbanSound8K,
SpeechCommands) and language (Tiny Shakespeare). Across modalities, the same pattern holds:
when transfer is non-marginal (per functional similarity metrics), it is asymmetric: students prefer-
entially increase agreement with the teacher on incorrect predictions, and this imbalance strengthens
as the teacher weight α increases. Below we show the VGGish architecture on the audio datasets
and the NanoGPT on Tiny Shakespeare.
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(b) SpeechCommands
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(c) Tiny Shakespeare

Figure 4: Change in prediction agreement for KD students relative to the best control baseline,
decomposed into correct (blue) and incorrect (red) agreement; error bars are ±1 SEM.
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In Figure 4, a clear pattern emerges: when there is considerable knowledge transfer, as evidenced by
results across functional similarity metrics (Appendix Sections G and H), an asymmetric relation-
ship becomes evident in the nature of the transfer. Specifically, student models receive significantly
more transfer of the teacher model’s incorrect predictions than its correct predictions, with this im-
balance scaling linearly as the weighting on the teacher outputs increases. These results highlight
the generality of our understanding of knowledge distillation as a data-dependent regulariser with
a negative asymmetric payoff.

4.4 ADVERSARIAL TRANSFER (LANGUAGE): TARGETED ERROR COPYING

Figure 5: Tiny Shakespeare char-
acter distribution.

To move beyond aggregate functional similarity, we test whether
KD copies a specific erroneous behaviour from its teacher. In-
formed by the Zipf’s Law distribution (Piantadosi, 2014) of
the Tiny Shakespeare dataset as seen in Figure 5, we construct
an adversarially biased Tiny Shakespeare teacher by editing its
training corpus so that every instance of “the” is replaced with
“tha”, a sequence that does not occur in the clean dataset (Ap-
pendix H.2, Table 100). This induces a stable bias to complete
“th ” as “tha” rather than “the”, while the teacher’s overall per-
formance on clean data remains comparable to standard models
(Table 101). We then distil this teacher at α ∈ {0.1, 0.5, 0.9}
and compare against our two controls (SIDDO and RCD) under
identical training conditions.

Table 8: The effect of an adversarial teacher trained to predict ”tha” instead of ”the” on the student.
Teacher Seed 0.

Control Knowledge Distillation Random Control Distillation
Predicted Word Teacher SIDDO 0.1 0.5 0.9 0.1 0.5 0.9
tha 454 105.90 ± 4.168 106.00 ± 3.046 199.10 ± 13.391 436.20 ± 7.984 104.60 ± 3.898 114.80 ± 3.056 126.90 ± 8.068
the 285 665.10 ± 7.675 675.50 ± 10.228 583.40 ± 17.536 343.60 ± 6.358 668.80 ± 12.713 712.50 ± 12.480 826.30 ± 20.203

On clean evaluation prompts containing “th ”, we measure how often models complete to “tha”
versus “the” and aggregate results per teacher seed, as seen for teacher seed 0 in Table 8 (with
seeds 1-2 in Appendix Tables 103 and 104). KD, particularly at higher α, markedly increases the
rate of “tha” completions and suppresses “the” relative to both controls, demonstrating that KD
can selectively copy a targeted error pattern even when overall behaviour appears benign. This
experiment adds causal evidence that KD transmits specific erroneous structure, not merely broad
functional alignment, sharpening the safety implication of our main findings: practitioners may
unknowingly inherit unintended behaviours from the teacher, reinforcing our characterisation of
KD as a data-dependent regulariser with a negative asymmetric payoff. Full details and per-seed
statistics are provided in Appendix H.2.

4.5 DISTILLATION SCALING LAWS

Figure 6: KD error amplification
grows with student width.

The preceding sections established when KD transfers knowl-
edge, this transfer is negatively asymmetric. We now ask how
these effects evolve with capacity. Distillation Scaling Laws
(DSL) (Busbridge et al., 2025) quantify how much student loss
changes with compute, teacher quality, and model size. Our
study complements DSL by asking how much is transferred as
capacity grows: we decompose the distillation signal into correct
vs. incorrect teacher–student agreement, offering a mechanistic
reading of the “teacher quality” term and explaining negative-
transfer regimes that are invisible from loss alone. Concretely,
on Tiny Shakespeare we sweep student width from 100% to
10% in 10% steps under a fixed-epoch budget matched to the
teacher, using the same optimiser. For each width and α ∈
{0.1, 0.5, 0.9}, we measure the change in correct and incorrect agreement relative to the best control
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baseline (means ±SEM over 10 runs; teacher seed 0). In Figure 6 three core trends emerge which
are descirbed below.

1) Student capacity helps, but mainly by amplifying the teacher’s mistakes: as width increases,
both correct and incorrect agreement rise, yet the incorrect column grows much faster (from 10% to
100% width at α = 0.9, correct agreement ∼ 2.4× vs. incorrect > 5×).

2) Small students suffer negative transfer: at 10-20% width, the incorrect boost is comparable to
or larger than the correct.

3) Increasing capacity unlocks more of the distillation signal: however what flows first, and most
strongly, is the teacher’s error pattern.

Taken together, these scaling results reveal what is driving the loss curves: KD acts as a data-
dependent regulariser with a negative asymmetric payoff, and scaling up the student amplifies the
asymmetry of transfer.

5 GRADIENT-LEVEL EXPLANATION OF ASYMMETRIC TRANSFER

We now provide a concise theoretical explanation for the observed asymmetric error transfer in
KD, and in Appendix B extend our functional analysis with information-theoretic and geometric
perspectives to quantify when and how alignment with the teacher becomes harmful. These analyses
clarify the risks of distillation, especially in safety-critical settings.

Consider the standard KD objective:

L = (1 − α) · H(y, σ(z(s))) + α · KL(σ(z(t)), σ(z(s))), where z(s) and z(t) are the student and
teacher logits, respectively. The per-logit gradient is:

∂L

∂z
(s)
k

= (1− α)(p
(s)
k − yk) + α(p

(s)
k − p

(t)
k ), with p(s) = σ(z(s)) and p(t) = σ(z(t)).

When k is the correct class (yk = 1), the gradient includes both supervision and teacher alignment.
But when k is an incorrect class (yk = 0), the gradient reduces to: ∂L

∂z
(s)
k

= α(p
(s)
k − p

(t)
k )

This pulls the student toward any non-zero mass the teacher places on that incorrect class.
The strength of this pull scales with α and the teacher’s own loss. This simple derivation explains
our central finding: when the teacher is imperfect, KD disproportionately transfers its errors to the
student. The resulting alignment is asymmetric, favouring incorrect predictions. By contrast, if
the teacher logits are replaced with a uniform distribution – as in label smoothing (Appendix D)
or our random control distillation – the gradient on incorrect classes becomes flat, removing
this error-amplifying signal. Empirically, these baselines match or exceed KD’s accuracy, while
showing no rise in incorrect agreement. Overall we argue that the observed asymmetric transfer in
KD is not incidental but rather emerges directly from the structure of the KD objective.

6 CONCLUSION

Across controlled self-distillation, small/large-scale settings, cross-modality (image, audio, lan-
guage), a targeted error test, capacity scaling, standard KD setting with smaller students (Ap-
pendix E), and multiple KD variants (Appendix C), KD seldom delivers robust “knowledge trans-
fer”. When transfer occurs, it is typically marginal and inconsistent, and increases with teacher
imperfection, amplifying the teacher’s errors more than its correct behaviour (negative asymmetry).
By contrast, Random Control Distillation often yields the best loss/accuracy, indicating that re-
ported gains can arise from generic regularisation rather than faithful knowledge transmission. The
targeted language experiment confirms KD can copy specific erroneous patterns, and scaling law
experiments show capacity amplifies incorrect agreement faster than correct. We therefore reframe
KD as a data-dependent regulariser with asymmetric knowledge sharing, with clear safety impli-
cations: audit teacher error structure and report functional transfer analyses (correct vs. incorrect
agreement) alongside accuracy/loss.
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A SAFETY IMPLICATIONS OF KNOWLEDGE DISTILLATION

The insights from our results can be summarised into three key points. 1) knowledge distillation
enables statistically significant functional transfer. 2) The accuracy and loss benefits provided by
knowledge distillation are often matched or even exceeded by random controls. 3) Knowledge
distillation disproportionately transfers incorrect information, with this asymmetry increasing as
the proportion of knowledge transfer grows. Considering these findings – particularly points 2
and 3 – Knowledge Distillation raises significant safety concerns. While it is often assumed that
knowledge distillation benefits student models, our results challenge this notion by demonstrating
a high likelihood that backdoors or harmful artifacts within teacher models could be transferred
to student models. We present a concrete case of adversarial transfer facilitated by Knowledge
Distillation in Appendix Section H.2. Moreover, we argue that knowledge distillation is not a safe or
reliable method. At best, it results in minimal positive transfer, and at worst, it facilitates substantial
negative transfer from teacher to student, undermining its practical utility.

B EXTENDED FUNCTIONAL ANALYSIS: INFORMATION-THEORETIC AND
GEOMETRIC PERSPECTIVES

We apply two additional metrics: Variation of Information (VoI), an information-theoretic measure
over discrete labellings that penalises confident mispredictions (Meilă, 2003), and Orthogonal Pro-
crustes Distance (OPD), a geometric alignment metric over output representations (Schönemann,
1966; Ding et al., 2021). We compute VoI and OPD for two representative setups: ResNet18 on
SVHN and ResNet50 on TinyImageNet (teacher seed 0). OPD closely tracks trends observed in
Activation Distance and JS Divergence, showing decreasing student–teacher discrepancy as α in-
creases. VoI generally follows this trend, but diverges in specific cases (high α on SVHN) where it
increases despite stronger functional alignment. This is not contradictory: VoI penalises confident
yet incorrect predictions more heavily than other metrics. Its rise coincides with the strongest ob-
served increase in student–teacher agreement on incorrect predictions, providing further evidence
of KD’s asymmetric payoff. Overall, OPD confirms alignment, but VoI reveals when that alignment
corresponds to the transfer of incorrect information. Moreover, this behaviour is predicted by our
gradient-based analysis: the per-logit gradient under KD pulls the student toward the teacher’s in-
correct predictions with strength proportional to α and to the teacher’s own loss. VoI captures the
cost of absorbing these errors, providing an explicit signal of negative information transfer. OPD,
meanwhile, confirms that overall alignment is occurring, but not necessarily to the student’s benefit.
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Table 9: ResNet18 on SHVN Dataset mean and ± 1 SEM reported from 10 runs with Teacher Seed
0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.063 +- 0.002 0.064 +- 0.001 0.060 +- 0.001 0.059 +- 0.001 0.144 +- 0.001 0.493 +- 0.000 0.849 +- 0.000
Rank Disagreement 0.696 +- 0.003 0.688 +- 0.004 0.684 +- 0.003 0.681 +- 0.003 0.800 +- 0.002 0.798 +- 0.002 0.802 +- 0.003
Prediction Disagreement 0.045 +- 0.001 0.046 +- 0.001 0.043 +- 0.001 0.042 +- 0.001 0.042 +- 0.001 0.043 +- 0.001 0.046 +- 0.001
JS Divergence 0.025 +- 0.001 0.025 +- 0.001 0.023 +- 0.001 0.022 +- 0.000 0.053 +- 0.000 0.201 +- 0.000 0.431 +- 0.000
Information Variation 0.550 +- 0.051 0.588 +- 0.049 0.594 +- 0.024 0.614 +- 0.018 0.638 +- 0.000 0.638 +- 0.000 0.638 +- 0.000
Procrustes Distance 0.165 +- 0.003 0.168 +- 0.004 0.164 +- 0.003 0.162 +- 0.005 0.291 +- 0.001 0.304 +- 0.001 0.311 +- 0.003
Accuracy 0.952 +- 0.001 0.951 +- 0.001 0.954 +- 0.001 0.954 +- 0.001 0.957 +- 0.001 0.957 +- 0.001 0.955 +- 0.001
Loss 0.385 +- 0.011 0.344 +- 0.008 0.310 +- 0.006 0.293 +- 0.004 0.236 +- 0.003 0.692 +- 0.001 1.698 +- 0.001

Table 10: ResNet50 on TinyImageNet Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.157 +- 0.001 0.157 +- 0.001 0.156 +- 0.001 0.155 +- 0.000 0.343 +- 0.000 0.581 +- 0.000 0.791 +- 0.000
Rank Disagreement 0.939 +- 0.000 0.939 +- 0.000 0.939 +- 0.000 0.939 +- 0.000 0.980 +- 0.000 0.984 +- 0.000 0.984 +- 0.000
Prediction Disagreement 0.153 +- 0.001 0.152 +- 0.001 0.151 +- 0.001 0.151 +- 0.001 0.190 +- 0.001 0.214 +- 0.000 0.324 +- 0.000
JS Divergence 0.040 +- 0.000 0.040 +- 0.000 0.039 +- 0.000 0.039 +- 0.000 0.171 +- 0.000 0.333 +- 0.000 0.533 +- 0.000
Information Variation 0.519 +- 0.017 0.520 +- 0.017 0.518 +- 0.022 0.533 +- 0.014 0.856 +- 0.002 0.897 +- 0.001 0.907 +- 0.002
Procrustes Distance 0.050 +- 0.000 0.050 +- 0.000 0.050 +- 0.000 0.049 +- 0.000 0.433 +- 0.000 0.664 +- 0.000 0.553 +- 0.000
Accuracy 0.605 +- 0.001 0.605 +- 0.000 0.604 +- 0.001 0.605 +- 0.001 0.607 +- 0.000 0.606 +- 0.001 0.580 +- 0.000
Loss 2.068 +- 0.001 2.065 +- 0.002 2.055 +- 0.001 2.043 +- 0.002 1.977 +- 0.001 2.497 +- 0.001 3.612 +- 0.002

C FEATURE MAP MATCHING KNOWLEDGE DISTILLATION

The functional-similarity framework we introduce is agnostic to the form of teacher supervision: re-
lation, feature, and contrastive approaches all deliver a teacher-derived signal that ultimately shapes
the student’s output distribution. If a variant truly transfers richer or safer knowledge, it should
manifest as higher functional similarity without the asymmetric amplification of teacher errors that
we document.

To verify this, we run feature-map matching knowledge distillation (Romero et al., 2015) on the
transformer model NanoGPT trained on Tiny Shakespeare. In this process, we try to align blocks in
the transformers using Mean Squared Error (MSE) on the intermediate blocks’ outputs. We include
this alignment in the backpropagation step1. We chose this dataset because it represents the case
where standard knowledge distillation leads to the most significant negative asymmetric transfer.

When we run feature-map matching KD (Feature Map KD), we observe statistically significant
knowledge transfer for blocks 4 and 5. Tables 11 and 12 report these results independently. However,
we continue to observe asymmetric incorrect transfer, as shown in Figure 7. It is important to note
that block 4 experiences less functional similarity transfer than block 5. As expected, this leads to
less negative asymmetric transfer than observed for feature-map KD on block 5. The best accuracy
is again recorded when using RCD for both blocks 4 and 5, but at a higher alpha value of 0.5,
compared to the best results typically recorded for 0.1 with standard KD.

Table 11: NanoGPT on Tiny Shakespeare Dataset Feature Map KD for Block 4. Mean and ± 1 SEM
reported from 10 runs with Teacher Seed 0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.202 ± 0.000 0.203 ± 0.000 0.197 ± 0.000 0.191 ± 0.000 0.209 ± 0.000 0.203 ± 0.000 0.224 ± 0.001
Rank Disagreement 0.915 ± 0.000 0.91 ± 0.000 0.905 ± 0.000 0.904 ± 0.000 0.917 ± 0.000 0.916 ± 0.000 0.920 ± 0.000
Prediction Disagreement 0.252 ± 0.000 0.253 ± 0.001 0.246 ± 0.001 0.241 ± 0.000 0.259 ± 0.000 0.253 ± 0.001 0.279 ± 0.001
JS Divergence 0.056 ± 0.000 0.056 ± 0.000 0.053 ± 0.000 0.050 ± 0.000 0.059 ± 0.000 0.057 ± 0.000 0.067 ± 0.001
Accuracy 0.571 ± 0.000 0.574 ± 0.000 0.573 ± 0.000 0.570 ± 0.000 0.574 ± 0.000 0.578 ± 0.000 0.566 ± 0.001
Loss 1.473 ± 0.002 1.542 ± 0.003 1.569 ± 0.002 1.585 ± 0.001 1.573 ± 0.002 1.552 ± 0.003 1.542 ± 0.004

1Feature-map matching knowledge distillation implementation: https://docs.pytorch.org/
tutorials/beginner/knowledge_distillation_tutorial.html
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Table 12: NanoGPT on Tiny Shakespeare Dataset Feature Map KD for Block 5. Mean and ± 1 SEM
reported from 10 runs with Teacher Seed 0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.202 ± 0.000 0.201 ± 0.000 0.183 ± 0.000 0.160 ± 0.001 0.214 ± 0.001 0.211 ± 0.001 0.227 ± 0.001
Rank Disagreement 0.915 ± 0.000 0.904 ± 0.000 0.89 ± 0.000 0.874 ± 0.000 0.922 ± 0.000 0.922 ± 0.000 0.923 ± 0.000
Prediction Disagreement 0.252 ± 0.000 0.251 ± 0.001 0.233 ± 0.001 0.204 ± 0.001 0.264 ± 0.001 0.259 ± 0.001 0.280 ± 0.002
JS Divergence 0.056 ± 0.000 0.056 ± 0.000 0.046 ± 0.000 0.035 ± 0.000 0.062 ± 0.000 0.060 ± 0.000 0.066 ± 0.000
Accuracy 0.571 ± 0.000 0.574 ± 0.000 0.577 ± 0.000 0.576 ± 0.000 0.572 ± 0.000 0.575 ± 0.000 0.564 ± 0.001
Loss 1.473 ± 0.002 1.551 ± 0.002 1.532 ± 0.001 1.493 ± 0.001 1.599 ± 0.001 1.591 ± 0.002 1.590 ± 0.002

Table 13: NanoGPT Feature Map KD on Tiny Shakespeare significance testing. ✓indicates signif-
icant results compared to controls, whereas ✗indicates insignificant results compared to controls.
The first entry in each section indicates Feature Map KD for Block 4 and the second for Block 5.

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✓ ✓✓ ✗✗ ✗✗ ✗✗ ✗✗
KD 0.5 ✓✓ ✓✓ ✓✓ ✓✓ ✗✓ ✗✗
KD 0.9 ✓✓ ✓✓ ✓✓ ✓✓ ✗✗ ✗✗
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Figure 7: Prediction agreement difference of student models in Feature Map KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for NanoGPT on Tiny Shakespeare.

Largely we see that the results for Feature Map KD correspond to our original findings, when there
is statistically significant functional transfer the transfer is asymmetric in nature and is weighted
towards incorrect predictions. While there is a difference between blocks 4 and 5, understanding this
fully this would require further exploration to make concrete statements about why this difference
emerges.

D RANDOM CONTROL DISTILLATION (RCD) COMPARISON TO LABEL
SMOOTHING

One potential confound in understanding KD’s effects is label smoothing: KD introduces soft
targets, which may act as a form of regularisation independent of semantic knowledge transfer. To
isolate this effect, we evaluate a baseline trained with classic label smoothing (LS), using the same
loss structure but no teacher.

We also rely on RCD, which retains soft targets but replaces the teacher’s logits with uni-
form noise. RCD preserves any label-smoothing benefit while removing semantic content. Across
all metrics, we find that LS and RCD match or exceed KD in accuracy, yet exhibit no increase
in functional similarity with the teacher, particularly on incorrect predictions. This confirms that

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

KD’s asymmetric error transfer arises from the specific structure of the teacher’s logits, not from
softening per se.

Table 14: ResNet18 on TinyImageNet Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation Label Smoothing
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.157 ± 0.001 0.157 ± 0.001 0.156 ± 0.001 0.155 ± 0.000 0.343 ± 0.000 0.581 ± 0.000 0.791 ± 0.000 0.342 ± 0.000 0.581 ± 0.000 0.791 ± 0.000
Rank Disagreement 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.984 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.984 ± 0.000
Prediction Disagreement 0.153 ± 0.001 0.152 ± 0.001 0.151 ± 0.001 0.151 ± 0.001 0.190 ± 0.001 0.214 ± 0.000 0.324 ± 0.000 0.189 ± 0.001 0.214 ± 0.000 0.324 ± 0.000
JS Divergence 0.040 ± 0.000 0.040 ± 0.000 0.039 ± 0.000 0.039 ± 0.000 0.171 ± 0.000 0.333 ± 0.000 0.533 ± 0.000 0.170 ± 0.000 0.333 ± 0.000 0.533 ± 0.000
Accuracy 0.605 ± 0.001 0.605 ± 0.000 0.604 ± 0.001 0.605 ± 0.001 0.607 ± 0.000 0.606 ± 0.001 0.580 ± 0.000 0.608 ± 0.000 0.605 ± 0.000 0.580 ± 0.000
Loss 2.068 ± 0.001 2.065 ± 0.002 2.055 ± 0.001 2.043 ± 0.002 1.977 ± 0.001 2.497 ± 0.001 3.612 ± 0.002 1.976 ± 0.001 2.498 ± 0.001 3.612 ± 0.002

E KNOWLEDGE DISTILLATION TO SMALLER STUDENT

Justification: This setup allows for an analysis of Knowledge Distillation where the student model
is smaller than the teacher model, as expected in practice.

Caveat: Although this moves away from our traditional experiential setup where the student can
perfectly match the teacher, we use this example to show how transfer works between a larger teacher
to a smaller student. It is important to note that using a smaller student introduces uncertainty
on if the student capacity is a bottleneck to knowledge transfer. However, given that in practice
Knowledge Distillation is used in this setting we show how our fundamental insights from the self
distillation case transfer to other cases of dilatation. Our study of using a smaller students is not
exhaustive but demonstrative and verifies the findings presented in the main body of the paper, and
the utility of our initial experimental setup. Other than the architecture’s implicit bias towards the
problem, which affects its performance (loss and accuracy), there are no confounding factors that
could influence Knowledge Distillation.

E.1 TINYIMAGENET RESNET50 TEACHER TO RESNET18 STUDENT

Training Settings: The ResNet50 teacher model was trained with stochastic gradient descent with
a learning rate of 0.01 and a Cosine annealing learning rate scheduler with a T max set at 100. It
was trained for 100 epochs with a batch size of 256. The data was normalized with a mean of (0.485,
0.456, 0.406) and a standard deviation of (0.229, 0.224, 0.225). The ResNet18 student model was
trained under the same conditions.

Findings: We observe a low train loss for the teacher model circa 0.0014 with a high train ac-
curacy circa 0.9998; see Table 15. This low train loss corresponds as expected, with no significant
knowledge transfer across alpha values; see Tables 16, 17, 18 and 19. This result is as expected from
the results and intuition presented in the results of the main body of the paper. It highlights how this
finding generalises to the practical KD environment.

Table 15: Teacher Performance on Train and Test Data for ResNet50 on Tiny ImageNet

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.001426 0.999800 2.070590 0.605300
1 0.001393 0.999800 2.051494 0.607900
2 0.001436 0.999800 2.051024 0.610600

Table 16: ResNet18 on TinyImageNet Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.548 ± 0.000 0.548 ± 0.000 0.547 ± 0.000 0.547 ± 0.000 0.565 ± 0.000 0.651 ± 0.000 0.828 ± 0.000
Rank Disagreement 0.987 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 0.990 ± 0.000 0.990 ± 0.000 0.991 ± 0.000
Prediction Disagreement 0.498 ± 0.001 0.497 ± 0.000 0.497 ± 0.001 0.497 ± 0.000 0.512 ± 0.001 0.493 ± 0.001 0.754 ± 0.000
JS Divergence 0.281 ± 0.000 0.281 ± 0.000 0.280 ± 0.000 0.281 ± 0.000 0.330 ± 0.000 0.400 ± 0.000 0.599 ± 0.000
Accuracy 0.503 ± 0.001 0.504 ± 0.001 0.504 ± 0.000 0.503 ± 0.000 0.493 ± 0.000 0.512 ± 0.000 0.236 ± 0.000
Loss 2.604 ± 0.001 2.602 ± 0.002 2.594 ± 0.001 2.589 ± 0.001 2.434 ± 0.001 2.641 ± 0.001 4.684 ± 0.002
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Table 17: ResNet18 on TinyImageNet Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 1. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.548 ± 0.000 0.548 ± 0.000 0.548 ± 0.000 0.547 ± 0.000 0.567 ± 0.000 0.651 ± 0.000 0.829 ± 0.000
Rank Disagreement 0.987 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 0.990 ± 0.000 0.990 ± 0.000 0.991 ± 0.000
Prediction Disagreement 0.497 ± 0.001 0.497 ± 0.001 0.497 ± 0.001 0.496 ± 0.001 0.511 ± 0.001 0.489 ± 0.000 0.762 ± 0.000
JS Divergence 0.281 ± 0.000 0.281 ± 0.000 0.281 ± 0.000 0.280 ± 0.000 0.331 ± 0.000 0.401 ± 0.000 0.601 ± 0.000
Accuracy 0.503 ± 0.000 0.504 ± 0.000 0.504 ± 0.000 0.504 ± 0.000 0.494 ± 0.000 0.513 ± 0.001 0.232 ± 0.000
Loss 2.608 ± 0.002 2.606 ± 0.002 2.599 ± 0.002 2.591 ± 0.003 2.431 ± 0.002 2.634 ± 0.001 4.703 ± 0.002

Table 18: ResNet18 on TinyImageNet Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 2. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.546 ± 0.000 0.545 ± 0.000 0.545 ± 0.000 0.545 ± 0.000 0.565 ± 0.000 0.651 ± 0.000 0.829 ± 0.000
Rank Disagreement 0.987 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 0.987 ± 0.000 0.990 ± 0.000 0.990 ± 0.000 0.991 ± 0.000
Prediction Disagreement 0.497 ± 0.001 0.497 ± 0.001 0.497 ± 0.001 0.496 ± 0.001 0.511 ± 0.001 0.489 ± 0.000 0.755 ± 0.000
JS Divergence 0.280 ± 0.000 0.280 ± 0.000 0.280 ± 0.000 0.280 ± 0.000 0.330 ± 0.000 0.400 ± 0.000 0.600 ± 0.000
Accuracy 0.503 ± 0.001 0.504 ± 0.000 0.503 ± 0.000 0.503 ± 0.000 0.493 ± 0.000 0.512 ± 0.000 0.236 ± 0.000
Loss 2.604 ± 0.001 2.602 ± 0.001 2.594 ± 0.001 2.587 ± 0.001 2.434 ± 0.001 2.641 ± 0.001 4.684 ± 0.002

Table 19: ResNet18 with ResNet50 Teacher on TinyImagenet significance testing. ✓indicates sig-
nificant results compared to controls, whereas ✗indicates insignificant results compared to controls.
Each tick represents a teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.9 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
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(a) ResNet18 Teacher seed 0
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(b) ResNet18 Teacher seed 1
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(c) ResNet18 Teacher seed 2

Figure 8: Prediction agreement difference of student models in standard KD to the highest perform-
ing control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ResNet18 on TinyImageNet.

E.2 TINY SHAKESPEARE NANO-GPT TEACHER TO PICO-GPT STUDENT

Training Settings: The Nano-GPT Teacher is a GPT2-style transformer with an embedding di-
mension of 384, a vocabulary size of 65, six attention heads, six transformer blocks, a dropout of
0.200, and a block size of 256. The Pico-GPT student has an embedding dimension of 192, halving
the internal width of the model; all other model settings are the same as the teacher.

The teacher and student are trained on the Tiny Shakespeare dataset, with the first 90% used for
training and the last 10% used for testing. The dataset was tokenised via a character tokeniser, and
the model was trained auto-regressively to predict the next character token. The teacher and student
are trained with the Adam optimiser with a learning rate of 3e-4 with a batch size of 64 for 5000
iterations. The student models are trained with the same seeds and data orders from seeds 10 to 19
for the 10 models used for averaging. This is repeated for the three teachers trained on seeds 0 to 2.
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Justification: This setup allows for an analysis of Knowledge Distillation where the student model
is smaller than the teacher model, as expected in practice. It is not exhaustive but demonstrative
that the findings we present in the main body of the paper generalise to this case. Other than the
architecture’s implicit bias towards the problem, which affects its performance (loss and accuracy),
no confounding factors could influence Knowledge Distillation.

Findings: We observe a high train loss for the teacher model circa 0.86 with a high train accuracy
circa 0.72; see Table 20. This high train loss corresponds as expected with a substantial knowledge
transfer which increases as alpha increases, see Tables 96, 97, 98 and 99. This substantial knowledge
transfer coincides with an asymmetric payoff in prediction agreement, strongly favouring incorrect
predictions, see Figure 24. This result is as expected from the results and intuition presented in the
results of the main body of the paper and highlights how this finding generalises.

Table 20: Teacher Performance on Train and Test Data for Nano-GPT on Tiny Shakespeare.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.864641 0.719685 1.567481 0.573366
1 0.866370 0.719697 1.561079 0.574668
2 0.861098 0.721140 1.562137 0.573033

Table 21: Pico-GPT on Tiny Shakespeare Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 0. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.202 ± 0.000 0.198 ± 0.000 0.181 ± 0.000 0.172 ± 0.000 0.221 ± 0.000 0.399 ± 0.000 0.663 ± 0.000
Rank Disagreement 0.915 ± 0.000 0.915 ± 0.000 0.912 ± 0.000 0.911 ± 0.000 0.939 ± 0.000 0.944 ± 0.000 0.950 ± 0.000
Prediction Disagreement 0.252 ± 0.000 0.247 ± 0.000 0.226 ± 0.000 0.214 ± 0.000 0.252 ± 0.000 0.253 ± 0.001 0.272 ± 0.001
JS Divergence 0.056 ± 0.000 0.054 ± 0.000 0.047 ± 0.000 0.043 ± 0.000 0.075 ± 0.000 0.203 ± 0.000 0.451 ± 0.000
Accuracy 0.571 ± 0.000 0.572 ± 0.000 0.575 ± 0.000 0.574 ± 0.000 0.571 ± 0.000 0.570 ± 0.000 0.561 ± 0.000
Loss 1.473 ± 0.002 1.471 ± 0.002 1.472 ± 0.001 1.496 ± 0.002 1.483 ± 0.001 1.870 ± 0.001 3.017 ± 0.002

Table 22: Pico-GPT on Tiny Shakespeare Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 1. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.201 ± 0.000 0.196 ± 0.000 0.180 ± 0.000 0.170 ± 0.000 0.217 ± 0.000 0.392 ± 0.000 0.655 ± 0.000
Rank Disagreement 0.916 ± 0.000 0.915 ± 0.000 0.912 ± 0.000 0.911 ± 0.000 0.939 ± 0.000 0.944 ± 0.000 0.950 ± 0.000
Prediction Disagreement 0.257 ± 0.000 0.251 ± 0.000 0.231 ± 0.000 0.219 ± 0.000 0.256 ± 0.000 0.258 ± 0.000 0.277 ± 0.001
JS Divergence 0.055 ± 0.000 0.053 ± 0.000 0.046 ± 0.000 0.043 ± 0.000 0.074 ± 0.000 0.201 ± 0.000 0.449 ± 0.000
Accuracy 0.571 ± 0.000 0.573 ± 0.000 0.575 ± 0.000 0.574 ± 0.000 0.571 ± 0.000 0.570 ± 0.000 0.561 ± 0.000
Loss 1.473 ± 0.002 1.473 ± 0.002 1.475 ± 0.002 1.492 ± 0.002 1.483 ± 0.001 1.870 ± 0.001 3.017 ± 0.002

Table 23: Pico-GPT on Tiny Shakespeare Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 2. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.202 ± 0.000 0.197 ± 0.000 0.180 ± 0.000 0.171 ± 0.000 0.219 ± 0.000 0.395 ± 0.001 0.660 ± 0.000
Rank Disagreement 0.915 ± 0.000 0.914 ± 0.000 0.912 ± 0.000 0.910 ± 0.000 0.939 ± 0.000 0.944 ± 0.000 0.949 ± 0.000
Prediction Disagreement 0.252 ± 0.000 0.246 ± 0.000 0.226 ± 0.000 0.215 ± 0.000 0.250 ± 0.001 0.251 ± 0.000 0.272 ± 0.001
JS Divergence 0.055 ± 0.000 0.053 ± 0.000 0.046 ± 0.000 0.043 ± 0.000 0.074 ± 0.000 0.202 ± 0.000 0.450 ± 0.000
Accuracy 0.571 ± 0.000 0.572 ± 0.000 0.575 ± 0.000 0.574 ± 0.000 0.572 ± 0.000 0.571 ± 0.000 0.561 ± 0.000
Loss 1.475 ± 0.001 1.470 ± 0.001 1.471 ± 0.002 1.491 ± 0.002 1.482 ± 0.001 1.865 ± 0.002 3.017 ± 0.001
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Table 24: Pico-GPT with Nano-GPT Teacher on Tiny Shakespeare significance testing. ✓indicates
significant results compared to controls, whereas ✗indicates insignificant results compared to con-
trols. Each tick represents a teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✗ ✗✗✓
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗
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(a) Pico-GPT Teacher seed 0
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(b) Pico-GPT Teacher seed 1
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(c) Pico-GPT Teacher seed 2

Figure 9: Prediction agreement difference of student models in standard KD to the highest perform-
ing control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for Pico-GPT on Tiny Shakespeare.

F VISION RESULTS

F.1 TINYIMAGENET

Training Settings: The ResNet50 model was trained with stochastic gradient descent with a learn-
ing rate 0.01, along with a Cosine annealing learning rate scheduler with a T max set at 100. It was
trained for 100 epochs with a batch size of 256. The data was normalized with a mean of (0.485,
0.456, 0.406) and standard deviation of (0.229, 0.224, 0.225). For ResNet50 with RandAugment
(Cubuk et al., 2020), the only difference between base ResNet is the introduction of RandAugment
with the default setting provided in Pytorch 2.4 (Paszke et al., 2019). The VGG19 and VGG19 with
RandAugment has the same setup as the ResNet50 and ResNet50 with RandAugment respectively
however it was trained with momentum of 0.9.

F.1.1 RESNET50

Findings: For the ResNet50 on TinyImageNet, we observe that the teacher seeds, Table 25, obtain
a low train loss of 0.001 and a train accuracy of 0.99. This train performance coincides with a test
accuracy of circa 0.60, resulting in a generalisation gap of circa 0.39.

For an alpha of 0.1, Table 29, we observe no significant knowledge transfer across all metrics except
for Rank Disagreement with teacher seed 0. It has statistically significant transfer, but the increased
similarity is extremely marginal, as observed with SIDDO and KD 0.1 having the same value to
3 significant figures, see Table 26. With this, we see a marginal prediction agreement of less than
0.5% for correct and incorrect predictions across teacher seeds, Figure 10. For alpha 0.5 and 0.9,
we observe significant knowledge transfer for all bar Prediction Disagreement with alpha of 0.5 and
0.9 for teacher seed 2. However, this transfer is marginal, Tables 26, 27 and 28, and we observe a
prediction agreement of less than 0.5% for correct and incorrect predictions across teacher seeds,
Figure 10.
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Table 25: Teacher Performance on Train and Test Data for ResNet50 on TinyImageNet.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.001426 0.999800 2.070590 0.605300
1 0.001393 0.999800 2.051494 0.607900
2 0.001436 0.999800 2.051024 0.610600

Table 26: ResNet50 on TinyImageNet mean and ± 1 SEM reported from 10 runs with Teacher Seed
0. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.157 ± 0.001 0.157 ± 0.001 0.156 ± 0.001 0.155 ± 0.000 0.343 ± 0.000 0.581 ± 0.000 0.791 ± 0.000
Rank Disagreement 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.984 ± 0.000
Prediction Disagreement 0.153 ± 0.001 0.152 ± 0.001 0.151 ± 0.001 0.151 ± 0.001 0.190 ± 0.001 0.214 ± 0.000 0.324 ± 0.000
JS Divergence 0.040 ± 0.000 0.040 ± 0.000 0.039 ± 0.000 0.039 ± 0.000 0.171 ± 0.000 0.333 ± 0.000 0.533 ± 0.000
Accuracy 0.605 ± 0.001 0.605 ± 0.000 0.604 ± 0.001 0.605 ± 0.001 0.607 ± 0.000 0.606 ± 0.001 0.580 ± 0.000
Loss 2.068 ± 0.001 2.065 ± 0.002 2.055 ± 0.001 2.043 ± 0.002 1.977 ± 0.001 2.497 ± 0.001 3.612 ± 0.002

Table 27: ResNet50 on TinyImageNet mean and ± 1 SEM reported from 10 runs with Teacher Seed
1. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.156 ± 0.001 0.156 ± 0.000 0.155 ± 0.001 0.153 ± 0.000 0.340 ± 0.000 0.579 ± 0.000 0.792 ± 0.000
Rank Disagreement 0.940 ± 0.000 0.940 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.984 ± 0.000
Prediction Disagreement 0.148 ± 0.001 0.149 ± 0.001 0.148 ± 0.001 0.146 ± 0.001 0.185 ± 0.001 0.209 ± 0.000 0.330 ± 0.000
JS Divergence 0.040 ± 0.000 0.040 ± 0.000 0.039 ± 0.000 0.038 ± 0.000 0.170 ± 0.000 0.332 ± 0.000 0.534 ± 0.000
Accuracy 0.607 ± 0.001 0.608 ± 0.001 0.607 ± 0.000 0.607 ± 0.001 0.605 ± 0.000 0.602 ± 0.001 0.576 ± 0.000
Loss 2.048 ± 0.002 2.048 ± 0.002 2.034 ± 0.002 2.025 ± 0.002 1.973 ± 0.001 2.498 ± 0.001 3.611 ± 0.002

Table 28: ResNet50 on TinyImageNet mean and ± 1 SEM reported from 10 runs with Teacher Seed
2. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.157 ± 0.000 0.157 ± 0.000 0.155 ± 0.000 0.155 ± 0.000 0.342 ± 0.000 0.581 ± 0.000 0.792 ± 0.000
Rank Disagreement 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.939 ± 0.000 0.980 ± 0.000 0.984 ± 0.000 0.984 ± 0.000
Prediction Disagreement 0.152 ± 0.001 0.152 ± 0.001 0.151 ± 0.001 0.151 ± 0.001 0.187 ± 0.001 0.213 ± 0.001 0.327 ± 0.000
JS Divergence 0.040 ± 0.000 0.040 ± 0.000 0.039 ± 0.000 0.039 ± 0.000 0.171 ± 0.000 0.334 ± 0.000 0.534 ± 0.000
Accuracy 0.608 ± 0.001 0.607 ± 0.001 0.607 ± 0.000 0.609 ± 0.001 0.608 ± 0.001 0.605 ± 0.001 0.577 ± 0.000
Loss 2.054 ± 0.002 2.050 ± 0.002 2.040 ± 0.003 2.025 ± 0.002 1.967 ± 0.001 2.494 ± 0.001 3.602 ± 0.002

Table 29: ResNet50 on TinyImageNet significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✓✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✗✗✗ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✗ ✓✓✓ ✗✗✗ ✗✗✗
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(a) ResNet Teacher seed 0
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(b) ResNet Teacher seed 1
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(c) ResNet Teacher seed 2

Figure 10: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ResNet50 on TinyImageNet.

F.1.2 RESNET50 WITH RANDAUGMENT

Findings: For the ResNet50 on TinyImageNet with RandAugment, we observe that the teacher
seeds, Table 25, obtain a high train loss and a train accuracy of circa 0.84. This train performance
coincides with a test accuracy of circa 0.64, resulting in a generalisation gap of circa 0.2.

We observe significant knowledge transfer for all alpha values with a strong asymmetric transfer
of knowledge favouring incorrect predictions as shown in Table 34 and Figure 11, respectively.
However, it is important to note that despite significant and substantial knowledge transfer, we do
not see any improvement in test accuracy over the control and random controls.

Table 30: Teacher Performance on Train and Test Data.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.672748 0.840410 1.620552 0.638800
1 0.678245 0.839200 1.629393 0.641800
2 0.667570 0.840750 1.624969 0.641100

Table 31: ResNet50 on TinyImageNet with RandAugment mean and ± 1 SEM reported from 10
runs with Teacher Seed 0. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.193 ± 0.000 0.183 ± 0.000 0.150 ± 0.000 0.131 ± 0.000 0.245 ± 0.001 0.501 ± 0.001 0.781 ± 0.000
Rank Disagreement 0.959 ± 0.000 0.957 ± 0.000 0.948 ± 0.000 0.943 ± 0.000 0.975 ± 0.000 0.981 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.196 ± 0.001 0.188 ± 0.001 0.154 ± 0.001 0.136 ± 0.001 0.195 ± 0.001 0.240 ± 0.001 0.572 ± 0.001
JS Divergence 0.058 ± 0.000 0.052 ± 0.000 0.036 ± 0.000 0.028 ± 0.000 0.094 ± 0.000 0.266 ± 0.000 0.563 ± 0.000
Accuracy 0.640 ± 0.000 0.643 ± 0.001 0.644 ± 0.000 0.642 ± 0.000 0.646 ± 0.001 0.657 ± 0.001 0.400 ± 0.001
Loss 1.619 ± 0.003 1.600 ± 0.001 1.578 ± 0.001 1.577 ± 0.001 1.551 ± 0.001 1.984 ± 0.002 4.211 ± 0.001

Table 32: ResNet50 on TinyImageNet with RandAugment mean and ± 1 SEM reported from 10
runs with Teacher Seed 1. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.194 ± 0.000 0.183 ± 0.001 0.148 ± 0.000 0.13 ± 0.000 0.247 ± 0.000 0.503 ± 0.000 0.783 ± 0.000
Rank Disagreement 0.959 ± 0.000 0.957 ± 0.000 0.948 ± 0.000 0.943 ± 0.000 0.975 ± 0.000 0.981 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.195 ± 0.001 0.186 ± 0.001 0.151 ± 0.001 0.134 ± 0.001 0.194 ± 0.001 0.241 ± 0.000 0.577 ± 0.001
JS Divergence 0.058 ± 0.000 0.053 ± 0.000 0.036 ± 0.000 0.028 ± 0.000 0.095 ± 0.000 0.267 ± 0.000 0.565 ± 0.000
Accuracy 0.639 ± 0.001 0.640 ± 0.001 0.641 ± 0.001 0.640 ± 0.001 0.646 ± 0.001 0.658 ± 0.000 0.396 ± 0.001
Loss 1.620 ± 0.002 1.608 ± 0.002 1.584 ± 0.001 1.584 ± 0.001 1.555 ± 0.002 1.986 ± 0.002 4.214 ± 0.002
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Table 33: ResNet50 on TinyImageNet with RandAugment mean and ± 1 SEM reported from 10
runs with Teacher Seed 2. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.195 ± 0.000 0.185 ± 0.000 0.150 ± 0.000 0.131 ± 0.000 0.247 ± 0.001 0.504 ± 0.000 0.783 ± 0.000
Rank Disagreement 0.959 ± 0.000 0.957 ± 0.000 0.948 ± 0.000 0.943 ± 0.000 0.975 ± 0.000 0.981 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.197 ± 0.001 0.189 ± 0.001 0.155 ± 0.001 0.135 ± 0.001 0.197 ± 0.001 0.239 ± 0.000 0.564 ± 0.001
JS Divergence 0.059 ± 0.000 0.053 ± 0.000 0.037 ± 0.000 0.028 ± 0.000 0.096 ± 0.000 0.267 ± 0.000 0.563 ± 0.000
Accuracy 0.640 ± 0.001 0.641 ± 0.001 0.643 ± 0.001 0.643 ± 0.000 0.647 ± 0.001 0.657 ± 0.000 0.410 ± 0.001
Loss 1.621 ± 0.002 1.606 ± 0.001 1.581 ± 0.001 1.582 ± 0.001 1.552 ± 0.001 1.982 ± 0.002 4.180 ± 0.002

Table 34: ResNet50 on TinyImageNet with RandAugment significance testing. ✓indicates signif-
icant results compared to controls, whereas ✗indicates insignificant results compared to controls.
Each tick represents a teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
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(b) ResNet Teacher seed 1
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(c) ResNet Teacher seed 2

Figure 11: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ResNet50 on TinyImageNet with RandAugment.

F.1.3 VGG19

Findings: For the VGG19 on the TinyImageNet, we observe a low train loss of circa 0.000286
and a train accuracy of 0.9998. As expected, given our results and discussion in the main body of
the paper on the ResNet50, we see no significant transfer until an alpha of 0.9. With teacher seed
0 and 2 with an alpha of 0.9, we record significant transfer for Activation Distance and for teacher
seed 0 on JS Divergence, as seen in Table 39. When we observe knowledge transfer with an alpha
of 0.9, we observe a slight preference for positive agreement of test prediction; however, the results
have a large SEM, and the amount of agreement is less than 0.5%, making the results less reliable
and insignificant in either transfer direction.

Table 35: Teacher Performance on Train and Test Data.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.000286 0.999800 3.351542 0.633200
1 0.000286 0.999800 3.301587 0.637200
2 0.000285 0.999800 3.311130 0.633500
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Table 36: VGG19 on TinyImageNet mean and ± 1 SEM reported from 10 runs with Teacher Seed
0. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.418 ± 0.001 0.419 ± 0.001 0.418 ± 0.001 0.416 ± 0.001 0.522 ± 0.001 0.741 ± 0.000 0.886 ± 0.000
Rank Disagreement 0.978 ± 0.000 0.978 ± 0.000 0.978 ± 0.000 0.978 ± 0.000 0.987 ± 0.000 0.988 ± 0.000 0.989 ± 0.000
Prediction Disagreement 0.332 ± 0.001 0.332 ± 0.001 0.332 ± 0.001 0.330 ± 0.001 0.348 ± 0.001 0.381 ± 0.001 0.412 ± 0.000
JS Divergence 0.195 ± 0.000 0.195 ± 0.000 0.195 ± 0.000 0.194 ± 0.000 0.308 ± 0.001 0.457 ± 0.000 0.593 ± 0.000
Accuracy 0.635 ± 0.001 0.635 ± 0.001 0.636 ± 0.001 0.638 ± 0.001 0.627 ± 0.001 0.603 ± 0.001 0.576 ± 0.001
Loss 3.332 ± 0.010 3.329 ± 0.012 3.308 ± 0.011 3.313 ± 0.010 2.003 ± 0.005 2.732 ± 0.002 3.682 ± 0.002

Table 37: VGG19 on TinyImageNet mean and ± 1 SEM reported from 10 runs with Teacher Seed
1. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.414 ± 0.002 0.414 ± 0.001 0.413 ± 0.001 0.413 ± 0.001 0.522 ± 0.001 0.742 ± 0.000 0.886 ± 0.000
Rank Disagreement 0.978 ± 0.000 0.978 ± 0.000 0.978 ± 0.000 0.978 ± 0.000 0.987 ± 0.000 0.988 ± 0.000 0.989 ± 0.000
Prediction Disagreement 0.329 ± 0.001 0.329 ± 0.001 0.328 ± 0.001 0.328 ± 0.001 0.348 ± 0.001 0.379 ± 0.001 0.410 ± 0.000
JS Divergence 0.194 ± 0.001 0.194 ± 0.001 0.193 ± 0.001 0.193 ± 0.001 0.308 ± 0.000 0.457 ± 0.000 0.593 ± 0.000
Accuracy 0.635 ± 0.001 0.636 ± 0.001 0.638 ± 0.001 0.637 ± 0.001 0.627 ± 0.001 0.603 ± 0.001 0.574 ± 0.001
Loss 3.345 ± 0.011 3.318 ± 0.009 3.306 ± 0.009 3.311 ± 0.010 2.004 ± 0.004 2.733 ± 0.004 3.682 ± 0.002

Table 38: VGG19 on TinyImageNet mean and ± 1 SEM reported from 10 runs with Teacher Seed
2. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.419 ± 0.001 0.417 ± 0.001 0.418 ± 0.001 0.417 ± 0.001 0.524 ± 0.000 0.743 ± 0.000 0.886 ± 0.000
Rank Disagreement 0.978 ± 0.000 0.978 ± 0.000 0.978 ± 0.000 0.978 ± 0.000 0.987 ± 0.000 0.988 ± 0.000 0.989 ± 0.000
Prediction Disagreement 0.332 ± 0.001 0.332 ± 0.001 0.332 ± 0.001 0.331 ± 0.001 0.354 ± 0.001 0.385 ± 0.001 0.414 ± 0.001
JS Divergence 0.196 ± 0.000 0.195 ± 0.001 0.196 ± 0.000 0.195 ± 0.000 0.309 ± 0.000 0.458 ± 0.000 0.593 ± 0.000
Accuracy 0.635 ± 0.001 0.636 ± 0.000 0.635 ± 0.001 0.637 ± 0.001 0.626 ± 0.001 0.602 ± 0.001 0.577 ± 0.001
Loss 3.314 ± 0.009 3.298 ± 0.004 3.318 ± 0.011 3.263 ± 0.009 1.998 ± 0.004 2.738 ± 0.003 3.681 ± 0.002

Table 39: VGG19 on TinyImageNet significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.9 ✓✗✓ ✗✗✗ ✗✗✗ ✓✗✗ ✗✗✗ ✗✗✗
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(a) VGG19 Teacher seed 0
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(b) VGG19 Teacher seed 1
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(c) VGG19 Teacher seed 2

Figure 12: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for VGG19 on TinyImageNet.
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F.1.4 VGG19 WITH RANDAUGMENT

Findings: For the VGG19 on the TinyImageNet with RandAugment, we observe a high train loss
of circa 0.27 and a train accuracy of circa 0.93. As expected, given the results on the RandAugment
ResNet50 that we present in the main body of the paper, we see substantial transfer across all alpha
values; see Tables 41, 42, 43 and 44. This substantial and significant transfer of knowledge, as
expected, coincides with a strong asymmetric transfer of knowledge favouring incorrect predictions,
as shown in Figure 13.

Table 40: Teacher Performance on Train and Test Data.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.272582 0.933990 2.565560 0.622600
1 0.269916 0.935140 2.570119 0.618900
2 0.273968 0.934700 2.609870 0.620100

Table 41: VGG19 on TinyImageNet with RandAugment mean and ± 1 SEM reported from 10 runs
with Teacher Seed 0. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.393 ± 0.001 0.388 ± 0.001 0.368 ± 0.001 0.355 ± 0.001 0.431 ± 0.001 0.648 ± 0.000 0.848 ± 0.001
Rank Disagreement 0.976 ± 0.000 0.976 ± 0.000 0.975 ± 0.000 0.974 ± 0.000 0.985 ± 0.000 0.987 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.335 ± 0.001 0.333 ± 0.001 0.320 ± 0.001 0.312 ± 0.001 0.341 ± 0.001 0.352 ± 0.001 0.396 ± 0.004
JS Divergence 0.182 ± 0.000 0.178 ± 0.000 0.166 ± 0.000 0.159 ± 0.000 0.228 ± 0.000 0.377 ± 0.000 0.577 ± 0.001
Accuracy 0.621 ± 0.001 0.624 ± 0.001 0.631 ± 0.001 0.633 ± 0.001 0.622 ± 0.001 0.628 ± 0.001 0.609 ± 0.004
Loss 2.586 ± 0.009 2.442 ± 0.005 2.148 ± 0.004 2.022 ± 0.003 1.792 ± 0.003 2.258 ± 0.002 3.533 ± 0.013

Table 42: VGG19 on TinyImageNet with RandAugment mean and ± 1 SEM reported from 10 runs
with Teacher Seed 1. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.391 ± 0.001 0.384 ± 0.001 0.362 ± 0.001 0.351 ± 0.000 0.428 ± 0.001 0.644 ± 0.000 0.845 ± 0.000
Rank Disagreement 0.977 ± 0.000 0.976 ± 0.000 0.975 ± 0.000 0.974 ± 0.000 0.985 ± 0.000 0.987 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.333 ± 0.001 0.330 ± 0.001 0.316 ± 0.001 0.308 ± 0.001 0.337 ± 0.001 0.348 ± 0.001 0.392 ± 0.001
JS Divergence 0.180± 0.000 0.176 ± 0.000 0.164 ± 0.000 0.156 ± 0.000 0.226 ± 0.000 0.375 ± 0.000 0.576 ± 0.000
Accuracy 0.622 ± 0.001 0.624 ± 0.000 0.632 ± 0.001 0.635 ± 0.001 0.625 ± 0.001 0.627 ± 0.001 0.611 ± 0.001
Loss 2.575 ± 0.004 2.439 ± 0.007 2.149 ± 0.006 2.017 ± 0.002 1.781 ± 0.005 2.254 ± 0.003 3.526 ± 0.003

Table 43: VGG19 on TinyImageNet with RandAugment mean and ± 1 SEM reported from 10 runs
with Teacher Seed 2. Bold values are the best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.395 ± 0.001 0.389 ± 0.001 0.368 ± 0.001 0.358 ± 0.001 0.435 ± 0.001 0.649 ± 0.000 0.850 ± 0.001
Rank Disagreement 0.977 ± 0.000 0.977 ± 0.000 0.975 ± 0.000 0.975 ± 0.000 0.985 ± 0.000 0.987 ± 0.000 0.987 ± 0.000
Prediction Disagreement 0.335 ± 0.001 0.334 ± 0.001 0.321 ± 0.001 0.313 ± 0.001 0.341 ± 0.001 0.352 ± 0.001 0.403 ± 0.010
JS Divergence 0.182 ± 0.000 0.179 ± 0.000 0.167 ± 0.001 0.160 ± 0.001 0.230 ± 0.000 0.378 ± 0.000 0.579 ± 0.002
Accuracy 0.621 ± 0.001 0.623 ± 0.001 0.631 ± 0.001 0.636 ± 0.001 0.623 ± 0.001 0.628 ± 0.001 0.600 ± 0.011
Loss 2.583 ± 0.006 2.441 ± 0.009 2.145 ± 0.006 2.012 ± 0.007 1.780 ± 0.003 2.257 ± 0.003 3.556 ± 0.034

Table 44: VGG19 on TinyImageNet with RandAugment significance testing. ✓indicates significant
results compared to controls, whereas ✗indicates insignificant results compared to controls. Each
tick represents a teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✓✓✓ ✓✓✓ ✗✓✗ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗
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(a) VGG Teacher seed 0
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(b) VGG Teacher seed 1
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(c) VGG Teacher seed 2

Figure 13: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for VGG19 on TinyImageNet with RandAugment.

F.2 CIFAR10

Training Settings: All CIFAR10 architectures are trained with Adam optimiser with a learning
rate of 0.001 and a batch size of 256 for 100 epochs. All data is normalised with a mean of 0.5 and a
standard deviation of 0.5. The student vision architectures are trained with the same seeds and data
orders from seeds 10-19 for the 10 models used for averaging. As aligned with all experiments we
conduct, this is repeated for the three teachers trained on seeds 0-2.

Justification: This setup allows for a fair analysis of Knowledge Distillation as its role is iso-
lated in the training process. Other than the architecture’s implicit bias towards the problem, which
affects its performance (loss and accuracy), there are no confounding factors that could influence
Knowledge Distillation.

Findings: We find that the teacher models often significantly transfer knowledge to the student
model, and this coincides with the teacher’s high loss on the training dataset. The ResNet has the
lowest loss and no transfer, the VGG has a higher loss and some transfer, and the ViT has the
highest loss and the most transfer. However, when knowledge is transferred, it often has a negative
asymmetric payoff towards agreement between the teacher and the student on incorrect predictions.

F.2.1 RESNET18

Findings: For the ResNet18 on CIFAR10, we observe that the teacher seeds, Table 45, obtain a
very low train loss of 1−5 and a train accuracy of 1. This train performance coincides with a high test
accuracy of circa 0.86, resulting in a generalisation gap of circa 0.14. Table 49 shows no significant
knowledge transfer across teacher seeds.

Due to the low train loss on the teacher seed, the teacher model is a nearly identical representation
of the training labels, meaning there is low utility in the teacher model. As we observe, the controls
of the models trained in the SIDDO condition is functionally different from the teacher, Tables 46,
47 and 48; despite having the same initialisation and only changing the data order, it is not a surprise
that Knowledge Distillation in the setup does not add anything as the teacher is essentially the label,
and thus creates a similar setup to the SIDDO condition.

Table 45: Teacher Performance on Train and Test Data

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.000010 1.000000 0.869184 0.862100
1 0.000006 1.000000 0.833735 0.867200
2 0.000030 1.000000 0.739927 0.867000
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Table 46: ResNet18 on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 0.
Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.174±0.004 0.175±0.003 0.172±0.003 0.174±0.004 0.244±0.004 0.538±0.001 0.843±0.000
Rank Disagreement (↓) 0.659±0.004 0.659±0.002 0.656±0.003 0.655±0.003 0.795±0.001 0.802±0.002 0.807±0.002
Prediction Disagreement (↓) 0.128±0.003 0.129±0.002 0.127±0.003 0.128±0.003 0.131±0.003 0.143±0.002 0.150±0.001
JS Divergence (↓) 0.070±0.002 0.070±0.001 0.069±0.002 0.068±0.002 0.097±0.002 0.229±0.001 0.432±0.000
Accuracy (↑) 0.861±0.003 0.862±0.002 0.862±0.002 0.862±0.003 0.865±0.003 0.856±0.002 0.854±0.001
Loss (↓) 0.961±0.025 0.903±0.018 0.895±0.028 0.827±0.026 0.539±0.012 0.902±0.004 1.772±0.001

Table 47: ResNet18 on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 1.
Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.900 0.1 0.5 0.900

Activation Distance (↓) 0.167±0.003 0.164±0.002 0.165±0.003 0.165±0.002 0.240±0.004 0.533±0.001 0.841±0.000
Rank Disagreement (↓) 0.653±0.002 0.649±0.003 0.650±0.003 0.650±0.003 0.796±0.001 0.803±0.001 0.807±0.001
Prediction Disagreement (↓) 0.122±0.002 0.120±0.002 0.121±0.002 0.120±0.002 0.126±0.003 0.134±0.002 0.139±0.001
JS Divergence (↓) 0.066±0.001 0.065±0.001 0.065±0.001 0.064±0.001 0.095±0.002 0.226±0.001 0.430±0.000
Accuracy (↑) 0.865±0.002 0.867±0.002 0.866±0.002 0.867±0.002 0.866±0.003 0.860±0.002 0.859±0.001
Loss (↓) 0.858±0.028 0.877±0.029 0.824±0.022 0.816±0.022 0.533±0.012 0.896±0.003 1.767±0.001

Table 48: ResNet18 on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 2.
Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.166±0.002 0.169±0.004 0.167±0.004 0.172±0.004 0.242±0.003 0.533±0.001 0.839±0.000
Rank Disagreement (↓) 0.646±0.002 0.647±0.003 0.638±0.004 0.646±0.004 0.799±0.002 0.803±0.002 0.805±0.002
Prediction Disagreement (↓) 0.122±0.002 0.124±0.003 0.124±0.003 0.127±0.003 0.132±0.003 0.140±0.001 0.142±0.001
JS Divergence (↓) 0.065±0.001 0.066±0.002 0.064±0.002 0.067±0.002 0.096±0.001 0.226±0.001 0.429±0.000
Accuracy (↑) 0.865±0.002 0.864±0.002 0.864±0.003 0.861±0.003 0.862±0.003 0.857±0.001 0.857±0.002
Loss (↓) 0.892±0.025 0.887±0.027 0.803±0.026 0.798±0.023 0.549±0.010 0.900±0.004 1.769±0.001

Table 49: ResNet18 on CIFAR10 significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.9 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
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(c) ResNet Teacher seed 2

Figure 14: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ResNet on CIFAR10.
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F.2.2 VGG19

Findings: For the VGG19 on CIFAR10, we observe that the teacher seeds, Table 50, obtain a
low train loss of circa 0.01 and a train accuracy of approximately 0.996. This train performance
coincides with a high test accuracy of circa 0.86, resulting in a generalisation gap of circa 0.14.
Table 54 shows a significant knowledge transfer with regard to Rank Disagreement for all teacher
seeds when alpha is at 0.9.

At alpha 0.9 for teacher seed 0 and 2, there is an increase in agreement between the student and
teacher on incorrect predictions over the correct predictions, Figure 15, which corresponds with the
knowledge transfer. This result coincides with teachers seed 0 and 2 having a higher train loss than
teacher seed 1, indicating that the teacher train loss plays an important role in knowledge transfer.
For teacher seed 1, Figure 15, there is no significant increase in correct or incorrect prediction
agreement between the student model and the teacher due to the deviation in the SEM.

Table 50: Teacher Performance on Train and Test Data

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.011608 0.996760 0.858675 0.863900
1 0.009228 0.997080 0.798530 0.860800
2 0.012352 0.996420 0.801562 0.867100

Table 51: VGG19 on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 0.
Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.206±0.006 0.199±0.003 0.203±0.003 0.197±0.005 0.264±0.003 0.541±0.001 0.842±0.000
Rank Disagreement (↓) 0.701±0.008 0.705±0.007 0.658±0.006 0.640±0.009 0.811±0.005 0.819±0.004 0.819±0.006
Prediction Disagreement (↓) 0.152±0.004 0.147±0.002 0.151±0.002 0.146±0.004 0.148±0.002 0.146±0.001 0.150±0.001
JS Divergence (↓) 0.090±0.003 0.085±0.001 0.086±0.002 0.083±0.002 0.109±0.001 0.230±0.001 0.429±0.000
Accuracy (↑) 0.864±0.003 0.869±0.002 0.867±0.002 0.869±0.003 0.870±0.002 0.871±0.001 0.868±0.002
Loss (↓) 0.849±0.027 0.725±0.010 0.676±0.011 0.649±0.015 0.562±0.008 0.880±0.003 1.762±0.002

Table 52: VGG19 on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 1.
Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.199±0.002 0.202±0.002 0.202±0.004 0.201±0.003 0.263±0.002 0.543±0.001 0.842±0.000
Rank Disagreement (↓) 0.726±0.006 0.684±0.005 0.662±0.008 0.639±0.009 0.803±0.003 0.801±0.005 0.810±0.005
Prediction Disagreement (↓) 0.147±0.002 0.150±0.001 0.150±0.003 0.149±0.002 0.148±0.002 0.149±0.001 0.153±0.001
JS Divergence (↓) 0.086±0.001 0.087±0.001 0.086±0.002 0.085±0.001 0.107±0.001 0.230±0.001 0.428±0.000
Accuracy (↑) 0.868±0.002 0.866±0.001 0.865±0.003 0.866±0.002 0.870±0.002 0.869±0.002 0.866±0.002
Loss (↓) 0.799±0.018 0.735±0.009 0.680±0.013 0.666±0.014 0.562±0.007 0.887±0.004 1.762±0.002

Table 53: VGG19 on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 2.
Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.196±0.002 0.199±0.003 0.196±0.002 0.193±0.004 0.258±0.002 0.541±0.001 0.844±0.000
Rank Disagreement (↓) 0.672±0.017 0.649±0.011 0.633±0.010 0.602±0.015 0.809±0.003 0.817±0.005 0.816±0.005
Prediction Disagreement (↓) 0.142±0.001 0.146±0.002 0.143±0.001 0.141±0.003 0.142±0.002 0.143±0.002 0.149±0.001
JS Divergence (↓) 0.084±0.001 0.086±0.001 0.083±0.001 0.081±0.002 0.106±0.001 0.229±0.001 0.429±0.000
Accuracy (↑) 0.870±0.001 0.864±0.001 0.868±0.001 0.867±0.003 0.871±0.001 0.871±0.002 0.867±0.001
Loss (↓) 0.801±0.014 0.734±0.013 0.665±0.009 0.639±0.013 0.560±0.006 0.884±0.003 1.762±0.002
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Table 54: VGG19 on CIFAR10 significance testing. ✓indicates significant results compared to con-
trols, whereas ✗indicates insignificant results compared to controls. Each tick represents a teacher
(seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✗✓✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✗ ✓✓✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.9 ✗✗✗ ✓✓✓ ✗✗✗ ✓✗✗ ✗✗✗ ✗✗✗
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(c) VGG19 Teacher seed 2

Figure 15: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for VGG19 on CIFAR10.

F.2.3 VIT

Findings: For the ViT on CIFAR10, we observe that the teacher seeds, Table 55, obtain a high
train loss of 0.04 and a train accuracy of approximately 0.98. This train performance coincides
with a test accuracy of circa 0.63, resulting in a generalisation gap of circa 0.35. Table 59 shows
a significant knowledge transfer on all teacher seeds when alpha is 0.5 and 0.9. For teacher seed
0 and 1 using alpha at 0.9, where there is sizeable knowledge transfer, we observe an asymmetric
knowledge transfer favouring negative transfer in Figure 16.

Table 55: Teacher Performance on Train and Test Data

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.043291 0.988260 1.864339 0.626900
1 0.056539 0.983160 1.772490 0.634200
2 0.046902 0.987100 1.714442 0.649600

Table 56: ViT on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 0. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.900 0.1 0.5 0.900

Activation Distance (↓) 0.491±0.001 0.487±0.002 0.473±0.002 0.470±0.001 0.496±0.002 0.611±0.001 0.793±0.000
Rank Disagreement (↓) 0.734±0.001 0.730±0.001 0.724±0.001 0.722±0.001 0.808±0.001 0.812±0.002 0.817±0.002
Prediction Disagreement (↓) 0.385±0.001 0.383±0.002 0.374±0.001 0.373±0.001 0.383±0.002 0.380±0.002 0.386±0.001
JS Divergence (↓) 0.201±0.001 0.198±0.001 0.189±0.001 0.186±0.001 0.206±0.001 0.277±0.001 0.411±0.000
Accuracy (↑) 0.634±0.002 0.634±0.002 0.641±0.003 0.637±0.002 0.640±0.003 0.641±0.002 0.627±0.003
Loss (↓) 1.773±0.015 1.695±0.011 1.52±0.018 1.451±0.014 1.258±0.012 1.351±0.005 1.943±0.002
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Table 57: ViT on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 1. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.485±0.002 0.477±0.002 0.461±0.002 0.455±0.001 0.489±0.002 0.609±0.001 0.791±0.000
Rank Disagreement (↓) 0.733±0.001 0.728±0.001 0.717±0.001 0.714±0.001 0.806±0.001 0.808±0.001 0.816±0.002
Prediction Disagreement (↓) 0.382±0.002 0.375±0.002 0.367±0.002 0.363±0.001 0.379±0.002 0.380±0.002 0.382±0.001
JS Divergence (↓) 0.198±0.001 0.193±0.001 0.182±0.001 0.178±0.001 0.202±0.001 0.275±0.001 0.410±0.000
Accuracy (↑) 0.637±0.001 0.643±0.003 0.644±0.002 0.648±0.002 0.643±0.002 0.636±0.002 0.630±0.002
Loss (↓) 1.781±0.013 1.668±0.015 1.466±0.010 1.366±0.012 1.253±0.008 1.359±0.005 1.942±0.001

Table 58: ViT on CIFAR10 mean and ± 1 SEM reported from 10 runs with Teacher Seed 2. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.476±0.002 0.468±0.002 0.459±0.002 0.456±0.003 0.486±0.002 0.612±0.001 0.797±0.000
Rank Disagreement (↓) 0.730±0.001 0.725±0.001 0.720±0.001 0.718±0.001 0.806±0.001 0.811±0.002 0.817±0.002
Prediction Disagreement (↓) 0.372±0.002 0.366±0.002 0.363±0.002 0.360±0.002 0.371±0.002 0.374±0.002 0.375±0.002
JS Divergence (↓) 0.195±0.001 0.189±0.001 0.183±0.001 0.180±0.001 0.201±0.001 0.277±0.001 0.413±0.000
Accuracy (↑) 0.636±0.003 0.641±0.003 0.644±0.002 0.639±0.003 0.637±0.002 0.635±0.002 0.631±0.002
Loss (↓) 1.788±0.025 1.673±0.017 1.498±0.010 1.458±0.018 1.282±0.008 1.361±0.005 1.942±0.002

Table 59: ViT on CIFAR10 significance testing. ✓indicates significant results compared to controls,
whereas ✗indicates insignificant results compared to controls. Each tick represents a teacher (seeds
0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✓✓ ✓✓✓ ✗✗✗ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✓ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
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(c) ViT Teacher seed 2

Figure 16: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ViT on CIFAR10.

F.3 SVHN DATASET

Training Settings: All SVHN architectures are trained with Adam optimiser with a learning rate
of 0.001 and a batch size of 256 for 100 epochs. All data is normalised with a mean of 0.5 and a
standard deviation of 0.5. The student vision architectures are trained with the same seeds and data
orders from seeds 10-19 for the 10 models used for averaging. We repeated this, in line with our
other experiments for the three teachers trained on seeds 0-2.

Justification: This setup allows for a fair analysis of Knowledge Distillation as its role is iso-
lated in the training process. Other than the architecture’s implicit bias towards the problem, which
affects its performance (loss and accuracy), there are no confounding factors that could influence
Knowledge Distillation.
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Findings: The teacher models often significantly transfer knowledge to the student model. How-
ever, the knowledge transfer is often inconsistent, and when transferred, it often has an asymmetric
negative payoff.

F.3.1 RESNET18

Findings: For the ResNet on SVHN, we observe that the teacher seeds, Table 60, obtain a range
of train loss values of 0.000646, 0.000061 and 0.004657 for teacher seeds 0, 1, and 2, respectively.
The train accuracies are approximately 0.99. This train performance coincides with a test accuracy
of circa 0.95, resulting in a generalisation gap of circa 0.04.

The teacher model with a higher training loss (seed 2) has significant knowledge transfer, see Table
64, for all functional similarity metrics across alpha values 0.1, 0.5 and 0.9, except for Prediction
Disagreement when alpha was 0.1. In this case, we also observe a large asymmetric payoff in
prediction agreement, significantly favouring incorrect predictions, Figure 17. Whereas teacher
seed 0 has a train loss of 0.000061 and has no significant transfer with alpha values of 0.1 and 0.5.
However, with an alpha of 0.9, it does have a significant transfer across metrics except for Prediction
Disagreement, see Table 64. When alpha is 0.9, we observe an asymmetric payoff in prediction
agreement, significantly favouring incorrect predictions. For teacher seed 0, which has a train loss
of 0.000646, we observe significant knowledge transfer when alpha is 0.5 and 0.9, coinciding with
an asymmetric payoff in prediction agreement, favouring incorrect predictions.

Table 60: Teacher Performance on Train and Test Data for ResNet18 on SVHN

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.000646 0.999850 0.381410 0.951829
1 0.000061 0.999973 0.331054 0.952251
2 0.004657 0.998580 0.309702 0.947104

Table 61: ResNet18 on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 0. Bold
values are best performing based on the mean. The direction of the arrow (↑↓) dictates the direction
of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.063±0.002 0.064±0.001 0.060±0.001 0.059±0.001 0.144±0.001 0.493±0.000 0.849±0.000
Rank Disagreement (↓) 0.696±0.003 0.688±0.004 0.684±0.003 0.681±0.003 0.800±0.002 0.798±0.002 0.802±0.003
Prediction Disagreement (↓) 0.045±0.001 0.046±0.001 0.043±0.001 0.042±0.001 0.042±0.001 0.043±0.001 0.046±0.001
JS Divergence (↓) 0.025±0.001 0.025±0.001 0.023±0.001 0.022±0.000 0.053±0.000 0.201±0.000 0.431±0.000
Accuracy (↑) 0.952±0.001 0.951±0.001 0.954±0.001 0.954±0.001 0.957±0.001 0.957±0.001 0.955±0.001
Loss (↓) 0.385±0.011 0.344±0.008 0.310±0.006 0.293±0.004 0.236±0.003 0.692±0.001 1.698±0.001

Table 62: ResNet18 on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 1. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Knowledge Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.059±0.001 0.058±0.001 0.058±0.001 0.056±0.001 0.141±0.001 0.494±0.001 0.848±0.000
Rank Disagreement (↓) 0.690±0.002 0.688±0.003 0.687±0.003 0.682±0.002 0.799±0.002 0.799±0.002 0.800±0.003
Prediction Disagreement (↓) 0.042±0.001 0.042±0.001 0.042±0.001 0.040±0.001 0.040±0.001 0.044±0.001 0.046±0.000
JS Divergence (↓) 0.023±0.000 0.023±0.000 0.022±0.001 0.022±0.000 0.052±0.000 0.201±0.000 0.431±0.000
Accuracy (↑) 0.953±0.001 0.953±0.001 0.953±0.001 0.954±0.001 0.958±0.001 0.954±0.001 0.953±0.001
Loss (↓) 0.366±0.008 0.354±0.008 0.328±0.006 0.316±0.004 0.236±0.002 0.698±0.002 1.698±0.001

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 63: ResNet18 on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 2. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.900 0.1 0.5 0.900

Activation Distance (↓) 0.068±0.001 0.063±0.001 0.059±0.000 0.058±0.000 0.146±0.001 0.489±0.001 0.843±0.000
Rank Disagreement (↓) 0.713±0.003 0.667±0.003 0.648±0.003 0.643±0.001 0.800±0.003 0.800±0.004 0.799±0.003
Prediction Disagreement (↓) 0.048±0.001 0.045±0.001 0.042±0.000 0.041±0.000 0.046±0.001 0.048±0.001 0.052±0.001
JS Divergence (↓) 0.026±0.000 0.023±0.000 0.021±0.000 0.020±0.000 0.053±0.001 0.199±0.000 0.427±0.000
Accuracy (↑) 0.952±0.001 0.955±0.001 0.957±0.000 0.957±0.000 0.956±0.001 0.957±0.001 0.953±0.001
Loss (↓) 0.370±0.008 0.256±0.006 0.226±0.002 0.216±0.001 0.239±0.003 0.692±0.002 1.700±0.001
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(c) ResNet18 Teacher seed 2

Figure 17: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ResNet18 on SVHN.

Table 64: ResNet18 on SVHN significance testing. ✓indicates significant results compared to con-
trols, whereas ✗indicates insignificant results compared to controls. Each tick represents a teacher
(seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✓ ✗✗✓ ✗✗✗ ✗✗✓ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✓ ✓✗✓ ✗✗✓ ✓✗✓ ✗✗✗ ✗✗✓
KD 0.9 ✓✓✓ ✓✓✓ ✗✗✓ ✓✓✓ ✗✗✗ ✗✗✓

F.3.2 VGG19

Findings: For the VGG19 on SVHN, we record a low train loss from we observe that the teacher
seeds, Table 65, obtain a range of train loss values of 0.004511, 0.002757 and 0.00374 for teacher
seeds 0, 1, and 2, respectively. The train accuracies are approximately 0.99. This train performance
coincides with a test accuracy of circa 0.95, resulting in a generalisation gap of circa 0.04.

The teacher model with a higher training loss (seed 2) has significant knowledge transfer, see Ta-
ble 69, for only Rank Disagreement, across alpha values 0.1, 0.5 and 0.9. Due to limited statically
significant functional transfer across metrics for this seed, we observe a small but inconsistent asym-
metric payoff in prediction agreement, slightly favouring incorrect predictions, Figure 18. The story
is very similar across the other teacher seeds; we see marginal functional transfer, and where a trans-
fer is higher, we see negative transfer, but where it is marginal or largely insignificant, we see no
preference for knowledge transfer, showing that in this case knowledge sharing can not be attributed
to improved performance.

Table 65: Teacher Performance on Train and Test Data for VGG19 on SVHN

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.004511 0.998649 0.343982 0.952827
1 0.002757 0.999290 0.347466 0.948794
2 0.003741 0.998935 0.313836 0.953596
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Table 66: VGG19 on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 0. Bold
values are best performing based on the mean. The direction of the arrow (↑↓) dictates the direction
of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.065±0.001 0.064±0.001 0.066±0.002 0.065±0.001 0.151±0.001 0.494±0.001 0.848±0.000
Rank Disagreement (↓) 0.708±0.005 0.660±0.011 0.637±0.009 0.603±0.011 0.799±0.005 0.812±0.006 0.805±0.007
Prediction Disagreement (↓) 0.047±0.001 0.046±0.000 0.047±0.001 0.047±0.001 0.047±0.000 0.045±0.001 0.046±0.000
JS Divergence (↓) 0.028±0.000 0.027±0.000 0.027±0.001 0.027±0.001 0.057±0.000 0.201±0.000 0.429±0.000
Accuracy (↑) 0.954±0.001 0.954±0.001 0.953±0.001 0.953±0.001 0.955±0.001 0.956±0.001 0.956±0.000
Loss (↓) 0.349±0.006 0.292±0.005 0.282±0.008 0.275±0.003 0.263±0.002 0.698±0.002 1.696±0.001

Table 67: VGG19 on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 1. Bold
values are best performing based on the mean. The direction of the arrow (↑↓) dictates the direction
of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.069±0.001 0.067±0.001 0.067±0.002 0.066±0.001 0.154±0.001 0.496±0.001 0.846±0.000
Rank Disagreement (↓) 0.758±0.009 0.710±0.006 0.663±0.011 0.652±0.009 0.814±0.002 0.796±0.007 0.808±0.007
Prediction Disagreement (↓) 0.051±0.001 0.050±0.000 0.050±0.001 0.049±0.001 0.050±0.000 0.049±0.001 0.048±0.000
JS Divergence (↓) 0.030±0.000 0.029±0.000 0.029±0.001 0.028±0.001 0.058±0.000 0.201±0.000 0.428±0.000
Accuracy (↑) 0.952±0.001 0.953±0.000 0.953±0.001 0.954±0.001 0.953±0.001 0.955±0.001 0.956±0.000
Loss (↓) 0.353±0.008 0.304±0.004 0.274±0.006 0.269±0.005 0.268±0.003 0.701±0.002 1.695±0.001

Table 68: VGG19 on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 2. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.065±0.001 0.067±0.001 0.065±0.001 0.064±0.002 0.148±0.000 0.493±0.001 0.847±0.000
Rank Disagreement (↓) 0.733±0.009 0.680±0.011 0.647±0.008 0.600±0.013 0.804±0.003 0.808±0.007 0.809±0.006
Prediction Disagreement (↓) 0.048±0.001 0.049±0.001 0.047±0.001 0.046±0.001 0.045±0.000 0.044±0.001 0.046±0.000
JS Divergence (↓) 0.028±0.000 0.028±0.001 0.027±0.000 0.026±0.001 0.055±0.000 0.200±0.000 0.429±0.000
Accuracy (↑) 0.952±0.001 0.952±0.001 0.953±0.001 0.954±0.001 0.956±0.000 0.957±0.001 0.956±0.001
Loss (↓) 0.358±0.007 0.301±0.006 0.284±0.005 0.265±0.010 0.258±0.001 0.697±0.002 1.696±0.001
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(c) VGG19 Teacher seed 2

Figure 18: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for VGG19 on SVHN.

Table 69: VGG19 on SVHN significance testing. ✓indicates significant results compared to con-
trols, whereas ✗indicates insignificant results compared to controls. Each tick represents a teacher
(seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✓✓✓ ✗✗✗ ✗✓✗ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✗ ✓✓✓ ✗✗✗ ✗✓✗ ✗✗✗ ✗✗✗
KD 0.9 ✗✓✗ ✓✓✓ ✗✗✗ ✗✓✗ ✗✗✗ ✗✗✗
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F.3.3 VIT

Findings: For the ViT on SVHN, we record a train loss from we observe that the teacher seeds,
Table 70, obtain a range of train loss values of 0.018473, 0.019402 and 0.018580 for teacher seeds 0,
1, and 2, respectively. The train accuracies are approximately 0.99. This train performance coincides
with a test accuracy of circa 0.85, resulting in a generalisation gap of circa 0.14.

The teacher model with a higher training loss (seed 1) has significant knowledge transfer, see Table
74, for only Activation Distance, Rank Disagreement and JS Divergence across alpha values 0.5 and
0.9. In this case, we observe a small but inconsistent asymmetric payoff in prediction agreement,
slightly favouring incorrect predictions, Figure 19. The story is very similar across the other teacher
seeds; we see marginal functional transfer, and where a transfer is higher, we see negative transfer,
but where it is marginal or largely insignificant, we see no real preference for knowledge transfer,
showing that in this case knowledge sharing can not be attributed to improved performance.

Table 70: Teacher Performance on Train and Test Data

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.018473 0.994417 0.774354 0.854564
1 0.019402 0.994963 0.711637 0.855025
2 0.018580 0.994635 0.692686 0.860633

Table 71: ViT on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 0. Bold
values are best performing based on the mean. The direction of the arrow (↑↓) dictates the direction
of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.219±0.002 0.220±0.002 0.215±0.002 0.211±0.001 0.273±0.002 0.535±0.001 0.829±0.000
Rank Disagreement (↓) 0.741±0.001 0.741±0.001 0.736±0.001 0.732±0.001 0.801±0.001 0.806±0.003 0.805±0.002
Prediction Disagreement (↓) 0.165±0.002 0.165±0.002 0.162±0.002 0.159±0.001 0.162±0.001 0.160±0.001 0.161±0.001
JS Divergence (↓) 0.0910±0.001 0.091±0.001 0.088±0.001 0.085±0.001 0.110±0.001 0.227±0.001 0.422±0.000
Accuracy (↑) 0.857±0.003 0.856±0.003 0.856±0.002 0.858±0.002 0.858±0.002 0.860±0.002 0.859±0.002
Loss (↓) 0.707±0.013 0.698±0.012 0.651±0.013 0.608±0.006 0.560±0.008 0.896±0.004 1.771±0.002

Table 72: ViT on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 1. Bold
values are best performing based on the mean. The direction of the arrow (↑↓) dictates the direction
of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.216±0.002 0.212±0.001 0.208±0.002 0.206±0.002 0.266±0.002 0.529±0.001 0.825±0.001
Rank Disagreement (↓) 0.745±0.001 0.745±0.001 0.737±0.001 0.735±0.001 0.801±0.001 0.805±0.003 0.804±0.003
Prediction Disagreement (↓) 0.162±0.001 0.159±0.001 0.157±0.001 0.156±0.001 0.158±0.001 0.156±0.001 0.164±0.005
JS Divergence (↓) 0.089±0.001 0.086±0.000 0.084±0.001 0.082±0.001 0.106±0.001 0.224±0.001 0.420±0.001
Accuracy (↑) 0.856±0.003 0.861±0.001 0.863±0.003 0.864±0.002 0.863±0.003 0.865±0.002 0.854±0.007
Loss (↓) 0.722±0.011 0.680±0.009 0.603±0.012 0.574±0.010 0.543±0.010 0.886±0.004 1.777±0.007

Table 73: ViT on SVHN mean and ± 1 SEM reported from 10 runs with Teacher Seed 2. Bold
values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.212±0.001 0.206±0.002 0.206±0.002 0.204±0.001 0.265±0.001 0.532±0.001 0.828±0.000
Rank Disagreement (↓) 0.742±0.001 0.735±0.001 0.731±0.001 0.728±0.001 0.802±0.001 0.803±0.001 0.804±0.002
Prediction Disagreement (↓) 0.160±0.001 0.155±0.001 0.155±0.001 0.153±0.001 0.156±0.001 0.153±0.001 0.152±0.001
JS Divergence (↓) 0.087±0.001 0.084±0.001 0.083±0.001 0.081±0.001 0.106±0.000 0.225±0.001 0.421±0.000
Accuracy (↑) 0.856±0.001 0.861±0.002 0.859±0.002 0.860±0.002 0.863±0.001 0.866±0.002 0.864±0.001
Loss (↓) 0.730±0.011 0.673±0.011 0.627±0.009 0.600±0.007 0.548±0.003 0.886±0.005 1.768±0.002
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(c) ViT Teacher seed 2

Figure 19: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ViT on SVHN.

Table 74: ViT on SVHN significance testing. ✓indicates significant results compared to controls,
whereas ✗indicates insignificant results compared to controls. Each tick represents a teacher (seeds
0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✓✓ ✗✗✓ ✗✗✗ ✗✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✗✓✓ ✓✓✓ ✗✗✗ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✗✗✗ ✓✓✓ ✗✗✗ ✗✗✗

G AUDIO RESULTS

Training Settings: All audio is converted into mono and downsampled to 16000 htz, it is con-
verted into a spectrogram using torchaudio (Hwang et al., 2023) with an n fft of 512 and a power
of 2. This is then converted to the MelScale with an n mels of 32 and a sample rate of 16000 and a
n stft of 257.

The train test split for Urbansounds8K used sklearn (Pedregosa et al., 2011) train test split function
with a test size of 0.2 a random state of 42 and the shuffle set to True.

All audio architectures are trained with SGD optimiser with a learning rate of 0.01 and a batch
size of 256 for 100 epochs on SpeechCommandsV2 and 150 epochs for UrbanSounds8K. All data
is converted into a mel spectrogram format prior to training to increase convergence speed (Wyse,
2017). The audio architectures are trained with the same seeds and data orders from seeds 10-19 for
the 10 models used for averaging. This is repeated for the three teachers trained on seeds 0-2.

G.1 SPEECHCOMMANDS

SpeechCommands (Warden, 2017) is an audio dataset comprised of 35 classes with 29.4 hours
of audio clips of a 1-2 second duration. There are 84,843 training examples and 11,005 testing
examples.

Findings: We find that for SpeechCommands that knowledge transfer is significant allowing the
rejection of the null hypothesis for knowledge sharing. For both architectures there is consider-
able knowledge transfer compared to the baseline controls. We also find that there is asymmetric
knowledge transfer with a weighting towards negative knowledge transfer.

G.1.1 VGGISH

Findings: We observe that the teacher model achieves a high train accuracy along with a high
train loss, see Table 75. With this we observe a substantial and statistically significant knowledge
transfer for all alpha values, see Tables 76, 77, 78 and 79.This substantial and significant transfer
of knowledge, as expected, coincides with a strong asymmetric transfer of knowledge favouring
incorrect predictions, as shown in Figure 20.
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Table 75: Teacher Performance on Train and Test Data for VGGish on SpeechCommands.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.044291 0.986457 0.817567 0.879237
1 0.061635 0.981566 0.928225 0.864698
2 0.043880 0.987047 0.765199 0.877328

Table 76: VGGish on SpeechCommands mean and ± 1 SEM reported from 10 runs with Teacher
Seed 0. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates
the direction of the most favourable score per metric.

Metrics Baseline Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.190±0.002 0.152±0.000 0.148±0.001 0.147±0.001 0.260±0.001 0.570±0.001 0.877±0.000
Rank Disagreement (↓) 0.908±0.000 0.885±0.000 0.880±0.000 0.878±0.000 0.942±0.000 0.942±0.000 0.939±0.000
Prediction Disagreement (↓) 0.144±0.001 0.118±0.000 0.114±0.001 0.114±0.001 0.125±0.001 0.133±0.001 0.169±0.001
JS Divergence (↓) 0.085±0.001 0.063±0.000 0.060±0.000 0.059±0.000 0.120±0.000 0.274±0.001 0.512±0.001
Accuracy (↑) 0.870±0.001 0.886±0.001 0.887±0.000 0.884±0.001 0.892±0.000 0.882±0.001 0.844±0.001
Loss (↓) 1.076±0.021 0.669±0.005 0.564±0.003 0.553±0.004 0.565±0.002 1.103±0.003 2.366±0.004

Table 77: VGGish on SpeechCommands mean and ± 1 SEM reported from 10 runs with Teacher
Seed 1. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates
the direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.209±0.002 0.169±0.001 0.168±0.001 0.165±0.000 0.277±0.001 0.579±0.001 0.881±0.000
Rank Disagreement (↓) 0.910±0.000 0.885±0.001 0.881±0.000 0.879±0.000 0.942±0.000 0.942±0.000 0.940±0.000
Prediction Disagreement (↓) 0.157±0.001 0.129±0.001 0.127±0.001 0.125±0.001 0.139±0.000 0.149±0.001 0.181±0.001
JS Divergence (↓) 0.094±0.001 0.071±0.000 0.068±0.000 0.066±0.000 0.129±0.000 0.281±0.001 0.515±0.000
Accuracy (↑) 0.868±0.001 0.882±0.001 0.883±0.001 0.882±0.001 0.889±0.000 0.880±0.001 0.842±0.001
Loss (↓) 1.051±0.031 0.675±0.006 0.572±0.004 0.559±0.003 0.576±0.002 1.111±0.003 2.375±0.003

Table 78: VGGish on SpeechCommands mean and ± 1 SEM reported from 10 runs with Teacher
Seed 2. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates
the direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.192±0.002 0.151±0.001 0.149±0.000 0.148±0.001 0.260±0.001 0.572±0.001 0.877±0.000
Rank Disagreement (↓) 0.908±0.000 0.885±0.000 0.880±0.000 0.878±0.000 0.942±0.000 0.942±0.000 0.940±0.000
Prediction Disagreement (↓) 0.145±0.002 0.117±0.001 0.116±0.001 0.115±0.001 0.126±0.001 0.135±0.001 0.166±0.001
JS Divergence (↓) 0.085±0.001 0.062±0.000 0.060±0.000 0.059±0.000 0.120±0.000 0.276±0.001 0.511±0.001
Accuracy (↑) 0.870±0.002 0.887±0.000 0.889±0.001 0.889±0.001 0.892±0.001 0.882±0.000 0.847±0.001
Loss (↓) 1.086±0.026 0.629±0.006 0.531±0.003 0.516±0.003 0.562±0.002 1.111±0.003 2.363±0.004

Table 79: VGG on SpeechCommands significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✓
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✓✓✓
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(c) VGGish Teacher seed 2

Figure 20: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for VGGish on SpeechCommands.

G.1.2 VIT

Findings: We observe that the teacher model achieves a high train accuracy along with a high
train loss, see Table 80. With this we observe a substantial and statistically significant knowledge
transfer for all alpha values, see Tables 81, 82, 83 and 84.This substantial and significant transfer
of knowledge, as expected, coincides with a strong asymmetric transfer of knowledge favouring
incorrect predictions, as shown in Figure 20.

Table 80: Teacher Performance on Train and Test Data for ViT on SpeechCommands.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.013776 0.996440 1.001014 0.833530
1 0.002471 0.999352 0.925219 0.853794
2 0.003337 0.999163 0.913119 0.853430

Table 81: ViT on SpeechCommands mean and ± 1 SEM reported from 10 runs with Teacher Seed
0. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Basline Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.164±0.001 0.133±0.002 0.123±0.002 0.118±0.002 0.245±0.001 0.561±0.000 0.870±0.000
Rank Disagreement (↓) 0.852±0.001 0.825±0.002 0.810±0.002 0.803±0.002 0.937±0.000 0.940±0.000 0.939±0.000
Prediction Disagreement (↓) 0.124±0.001 0.101±0.001 0.094±0.001 0.090±0.002 0.136±0.001 0.154±0.001 0.181±0.001
JS Divergence (↓) 0.062±0.001 0.045±0.001 0.039±0.001 0.036±0.001 0.109±0.000 0.271±0.000 0.512±0.000
Accuracy (↑) 0.843±0.001 0.842±0.000 0.844±0.000 0.844±0.000 0.856±0.001 0.852±0.000 0.826±0.000
Loss (↓) 1.094±0.011 0.990±0.005 0.835±0.003 0.791±0.002 0.687±0.002 1.161±0.001 2.408±0.001

Table 82: ViT on SpeechCommands mean and ± 1 SEM reported from 10 runs with Teacher Seed
1. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.143±0.006 0.129±0.002 0.119±0.002 0.115±0.002 0.227±0.001 0.558±0.000 0.874±0.000
Rank Disagreement (↓) 0.844±0.003 0.833±0.002 0.821±0.002 0.814±0.002 0.935±0.000 0.939±0.000 0.938±0.000
Prediction Disagreement (↓) 0.107±0.005 0.097±0.002 0.090±0.001 0.087±0.001 0.113±0.001 0.138±0.001 0.162±0.001
JS Divergence (↓) 0.053±0.003 0.045±0.001 0.040±0.001 0.038±0.001 0.100±0.000 0.266±0.000 0.512±0.000
Accuracy (↑) 0.849±0.004 0.854±0.001 0.854±0.000 0.855±0.001 0.863±0.000 0.858±0.000 0.835±0.000
Loss (↓) 1.071±0.020 0.994±0.006 0.941±0.003 0.900±0.002 0.656±0.002 1.138±0.002 2.394±0.001
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Table 83: ViT on SpeechCommands mean and ± 1 SEM reported from 10 runs with Teacher Seed
2. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metric Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.152±0.005 0.139±0.002 0.131±0.002 0.126±0.002 0.232±0.002 0.560±0.000 0.875±0.000
Rank Disagreement 0.852±0.003 0.844±0.002 0.833±0.002 0.826±0.003 0.936±0.000 0.939±0.000 0.938±0.000
Prediction Disagreement 0.115±0.003 0.105±0.001 0.100±0.001 0.096±0.001 0.122±0.002 0.141±0.002 0.163±0.001
JS Divergence 0.058±0.002 0.051±0.001 0.046±0.001 0.043±0.001 0.102±0.001 0.267±0.000 0.512±0.000
Accuracy 0.852±0.003 0.857±0.001 0.856±0.001 0.857±0.001 0.860±0.003 0.852±0.002 0.827±0.000
Loss 1.027±0.014 0.955±0.004 0.897±0.002 0.860±0.003 0.661±0.008 1.152±0.003 2.398±0.001

Table 84: ViT on SpeechCommands significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
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(b) ViT Teacher seed 1
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(c) ViT Teacher seed 2

Figure 21: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ViT on SpeechCommands.

G.2 URBANSOUND8K

UrbanSound8K is a large event classification dataset that contains 18.5 hours of annotated sound
event occurrences across 10 classes (Salamon et al., 2014). It has 6,985 training set instances and
1,747 testing set instances which are between 0 and 4 seconds in duration.

Findings: We find that for UrbanSound8K knowledge transfer is significant allowing the rejection
of the null hypothesis for knowledge sharing. For both the VGG architecture there is considerable
knowledge transfer compared to the baseline controls, but for the transformer architecture there
is only marginal knowledge transfer. We also find that there is asymmetric knowledge transfer
with a weighting towards negative knowledge transfer when the knowledge transfer is statistically
significant and considerable.

G.2.1 VGGISH

Table 85: Teacher Performance on Train and Test Data for VGGish on UrbanSound8K.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.013431 0.994989 2.203087 0.797939
1 0.014136 0.994560 2.405788 0.785346
2 0.151926 0.947173 1.568569 0.702919
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Table 86: VGGish on UrbanSound8K mean and ± 1 SEM reported from 10 runs with Teacher Seed
0. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.256±0.005 0.267±0.014 0.242±0.003 0.243±0.005 0.354±0.003 0.597±0.002 0.873±0.000
Rank Disagreement (↓) 0.696±0.003 0.696±0.005 0.683±0.003 0.678±0.004 0.795±0.001 0.791±0.001 0.784±0.002
Prediction Disagreement (↓) 0.192±0.004 0.196±0.009 0.180±0.002 0.180±0.003 0.187±0.002 0.195±0.003 0.387±0.001
JS Divergence (↓) inf, nan inf, nan 0.099±0.001 0.100±0.002 0.149±0.001 0.268±0.001 0.467±0.000
Accuracy (↑) 0.795±0.003 0.787±0.009 0.796±0.002 0.796±0.003 0.808±0.001 0.806±0.002 0.585±0.001
Loss (↓) 2.813±0.330 2.460±0.248 2.225±0.046 2.089±0.103 0.730±0.005 1.085±0.003 2.059±0.002

Table 87: VGGish on UrbanSound8K mean and ± 1 SEM reported from 10 runs with Teacher Seed
1. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.363±0.047 0.284±0.010 0.262±0.002 0.264±0.002 0.367±0.002 0.600±0.002 0.871±0.001
Rank Disagreement 0.730±0.009 0.718±0.005 0.706±0.002 0.703±0.002 0.798±0.001 0.792±0.001 0.784±0.001
Prediction Disagreement 0.272±0.035 0.214±0.006 0.197±0.002 0.199±0.001 0.208±0.003 0.218±0.003 0.387±0.003
JS Divergence inf, nan inf, nan inf, nan inf, nan 0.156±0.001 0.269±0.001 0.465±0.000
Accuracy 0.724±0.036 0.782±0.006 0.791±0.002 0.791±0.002 0.806±0.002 0.796±0.003 0.589±0.003
Loss 2.046±0.321 3.056±0.321 2.34±0.074 2.235±0.089 0.748±0.006 1.093±0.003 2.054±0.003

Table 88: VGGish on UrbanSound8K mean and ± 1 SEM reported from 10 runs with Teacher Seed
2. Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.396±0.002 0.357±0.002 0.335±0.001 0.324±0.002 0.416±0.003 0.590±0.001 0.821±0.000
Rank Disagreement 0.745±0.003 0.712±0.001 0.692±0.002 0.683±0.001 0.812±0.001 0.806±0.001 0.801±0.001
Prediction Disagreement 0.295±0.002 0.274±0.002 0.260±0.002 0.253±0.002 0.292±0.004 0.293±0.002 0.438±0.002
JS Divergence 0.167±0.001 0.141±0.001 0.127±0.001 0.120±0.001 0.175±0.001 0.264±0.001 0.433±0.000
Accuracy 0.794±0.003 0.789±0.004 0.791±0.002 0.776±0.002 0.810±0.003 0.808±0.002 0.577±0.001
Loss 3.209±0.375 1.106±0.024 0.944±0.016 0.961±0.013 0.716±0.006 1.080±0.003 2.065±0.002
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(b) VGGish Teacher seed 1
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(c) VGGish Teacher seed 2

Figure 22: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for VGGish on UrbanSound8K.

Table 89: VGGish on UrbanSound8K significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✓✓ ✗✗✓ ✗✗✓ ✓✗✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
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G.2.2 VIT

Table 90: Teacher Performance on Train and Test Data for ViT on UrbanSound8K.

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.000180 1.000000 1.638960 0.772753
1 0.000375 0.999857 1.583644 0.768746
2 0.000168 1.000000 1.593121 0.781912

Table 91: ViT on UrbanSound8K mean and ± 1 SEM reported from 10 runs with Teacher Seed 0.
Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.098±0.001 0.098±0.001 0.096±0.001 0.097±0.002 0.287±0.000 0.592±0.001 0.854±0.000
Rank Disagreement (↓) 0.423±0.003 0.419±0.002 0.417±0.002 0.415±0.003 0.755±0.001 0.773±0.001 0.759±0.001
Prediction Disagreement (↓) 0.074±0.002 0.072±0.001 0.073±0.001 0.073±0.002 0.131±0.001 0.174±0.001 0.252±0.003
JS Divergence (↓) 0.025±0.001 0.025±0.000 0.024±0.000 0.025±0.001 0.111±0.000 0.262±0.000 0.448±0.000
Accuracy (↑) 0.771±0.001 0.771±0.001 0.771±0.001 0.772±0.001 0.788±0.001 0.806±0.001 0.719±0.002
Loss (↓) 1.628±0.010 1.621±0.009 1.585±0.006 1.560±0.008 0.748±0.001 1.095±0.001 1.956±0.001

Table 92: ViT on UrbanSound8K mean and ± 1 SEM reported from 10 runs with Teacher Seed 1.
Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Rand Knowledge Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance 0.109±0.001 0.108±0.001 0.108±0.001 0.105±0.001 0.291±0.001 0.592±0.001 0.854±0.000
Rank Disagreement 0.442±0.002 0.44±0.002 0.429±0.002 0.427±0.002 0.756±0.001 0.769±0.001 0.763±0.001
Prediction Disagreement 0.078±0.001 0.077±0.002 0.077±0.001 0.073±0.001 0.130±0.001 0.173±0.001 0.261±0.003
JS Divergence 0.029±0.000 0.029±0.001 0.028±0.001 0.027±0.000 0.113±0.000 0.262±0.000 0.448±0.000
Accuracy 0.768±0.001 0.768±0.002 0.770±0.001 0.769±0.001 0.794±0.001 0.811±0.001 0.716±0.003
Loss 1.589±0.010 1.584±0.009 1.532±0.008 1.509±0.009 0.735±0.001 1.096±0.002 1.959±0.002

Table 93: ViT on UrbanSound8K mean and ± 1 SEM reported from 10 runs with Teacher Seed 2.
Bold values are best performing based on the mean. The direction of the arrow (↑↓) dictates the
direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.099±0.002 0.100±0.001 0.100±0.002 0.101±0.002 0.288±0.001 0.598±0.000 0.859±0.000
Rank Disagreement (↓) 0.413±0.003 0.414±0.003 0.410±0.003 0.425±0.005 0.754±0.001 0.770±0.001 0.759±0.001
Prediction Disagreement (↓) 0.071±0.002 0.071±0.002 0.068±0.001 0.072±0.002 0.130±0.001 0.171±0.002 0.257±0.002
JS Divergence (↓) 0.026±0.001 0.026±0.001 0.026±0.001 0.027±0.001 0.111±0.000 0.265±0.000 0.451±0.000
Accuracy (↑) 0.786±0.001 0.784±0.001 0.783±0.001 0.783±0.001 0.801±0.001 0.812±0.001 0.719±0.002
Loss (↓) 1.539±0.006 1.538±0.008 1.508±0.007 1.484±0.008 0.716±0.001 1.091±0.001 1.959±0.002
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(c) ViT Teacher seed 2

Figure 23: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for ViT on UrbanSound8K.
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Table 94: ViT on UrbanSound8K significance testing. ✓indicates significant results compared
to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents a
teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗
KD 0.5 ✗✗✗ ✗✓✗ ✗✗✗ ✗✓✗ ✗✗✗ ✗✗✗
KD 0.9 ✗✓✗ ✓✓✗ ✗✓✗ ✗✓✗ ✗✗✗ ✗✗✗

H LANGUAGE RESULTS

H.1 TINY SHAKESPEARE DATASET

Training Settings: The language model was a GPT2-style transformer with an embedding dimen-
sion of 384, a vocabulary size of 65, six attention heads, six transformer blocks, a dropout of 0.200,
and a block size of 256. It was trained on the Tiny Shakespeare dataset, with the first 90% used for
training and the last 10% used for testing. The dataset was tokenised via a character tokenizer, and
the model was trained auto-regressively to predict the next character token. The model was trained
with the Adam optimiser with a learning rate of 3e-4 with a batch size of 64 for 5000 iterations.
The student models are trained with the same seeds and data orders from seeds 10 to 19 for the 10
models used for averaging. This is repeated for the three teachers trained on seeds 0 to 2.

Justification: This setup allows for a fair analysis of Knowledge Distillation as its role is iso-
lated in the training process. Other than the architecture’s implicit bias towards the problem, which
affects its performance (loss and accuracy), there are no confounding factors that could influence
Knowledge Distillation.

Findings: We observe a high train loss for the teacher model circa 0.86 with a high train accuracy
circa 0.72, see Table 95. This high train loss, corresponds as expected with a substational and sig-
nificant knowledge transfer which incresae as alpha increases, see Tables 96, 97, 98 and 99. This
substational and significant knowledge transfer coincides with with an asymmetric payoff in predic-
tion agreement, strongly favouring incorrect predictions, see Figure 24. This result is as expected
from the results and intuition presented in the results of the main body of the paper.

Table 95: Teacher Performance on Train and Test Data for Nano-GPT on Tiny Shakespeare

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.864641 0.719685 1.567481 0.573366
1 0.866370 0.719697 1.561079 0.574668
2 0.861098 0.721140 1.562137 0.573033

Table 96: Nano-GPT on Tiny Shakespeare Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 0. Bold values are best performing based on the mean. The direction of the arrow (↑↓)
dictates the direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.196±0.000 0.187±0.000 0.158±0.000 0.144±0.000 0.204±0.000 0.378±0.001 0.661±0.000
Rank Disagreement (↓) 0.910±0.000 0.907±0.000 0.897±0.000 0.891±0.000 0.944±0.000 0.947±0.000 0.950±0.000
Prediction Disagreement (↓) 0.246±0.001 0.236±0.000 0.200±0.000 0.182±0.000 0.242±0.001 0.243±0.001 0.255±0.001
JS Divergence (↓) 0.053±0.000 0.049±0.000 0.037±0.000 0.032±0.000 0.067±0.000 0.192±0.000 0.449±0.000
Accuracy (↑) 0.574±0.000 0.577±0.000 0.583±0.000 0.581±0.000 0.576±0.000 0.578±0.000 0.570±0.000
Loss (↓) 1.559±0.002 1.542±0.002 1.496±0.001 1.500±0.002 1.507±0.001 1.839±0.002 2.995±0.001
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Table 97: Nano-GPT on Tiny Shakespeare Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 1. Bold values are best performing based on the mean. The direction of the arrow (↑↓)
dictates the direction of the most favourable score per metric.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.195±0.000 0.185±0.000 0.156±0.000 0.141±0.000 0.201±0.000 0.370±0.000 0.653±0.000
Rank Disagreement (↓) 0.910±0.000 0.907±0.000 0.897±0.000 0.891±0.000 0.944±0.000 0.946±0.000 0.950±0.000
Prediction Disagreement (↓) 0.249±0.001 0.238±0.001 0.202±0.000 0.183±0.000 0.245±0.001 0.245±0.000 0.263±0.000
JS Divergence (↓) 0.052±0.000 0.048±0.000 0.036±0.000 0.031±0.000 0.066±0.000 0.190±0.000 0.446±0.000
Accuracy (↑) 0.574±0.000 0.577±0.000 0.584±0.000 0.582±0.000 0.577±0.000 0.577±0.000 0.568±0.000
Loss (↓) 1.559±0.002 1.539±0.002 1.488±0.002 1.493±0.002 1.504±0.001 1.840±0.001 2.997±0.001

Table 98: Nano-GPT on Tiny Shakespeare Dataset mean and ± 1 SEM reported from 10 runs with
Teacher Seed 2. Bold values are best performing based on the mean.

Metrics Control Knowledge Distillation Random Control Distillation
SIDDO 0.1 0.5 0.9 0.1 0.5 0.9

Activation Distance (↓) 0.195±0.000 0.186±0.000 0.157±0.000 0.142±0.000 0.202±0.000 0.372±0.000 0.658±0.000
Rank Disagreement (↓) 0.909±0.000 0.906±0.000 0.896±0.000 0.89±0.000 0.944±0.000 0.946±0.000 0.950±0.000
Prediction Disagreement (↓) 0.245±0.001 0.233±0.000 0.198±0.000 0.180±0.000 0.241±0.000 0.240±0.000 0.256±0.000
JS Divergence (↓) 0.052±0.000 0.048±0.000 0.037±0.000 0.031±0.000 0.066±0.000 0.190±0.000 0.448±0.000
Accuracy (↑) 0.574±0.000 0.577±0.000 0.583±0.000 0.582±0.000 0.577±0.000 0.578±0.000 0.570±0.000
Loss (↓) 1.558±0.002 1.536±0.002 1.493±0.002 1.493±0.002 1.504±0.001 1.834±0.001 2.996±0.001

Table 99: Nano-GPT on Tiny Shakespeare significance testing. ✓indicates significant results com-
pared to controls, whereas ✗indicates insignificant results compared to controls. Each tick represents
a teacher (seeds 0 to 2, left to right).

Activation Distance Rank Disagreement Prediction Disagreement JS Divergence Accuracy Loss
KD 0.1 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✗✗✗ ✗✗✗
KD 0.5 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
KD 0.9 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓
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(c) Nano-GPT Teacher seed 2

Figure 24: Prediction agreement difference of student models in standard KD to the highest per-
forming control baseline with respect to correct prediction agreement (blue) and incorrect prediction
agreement (red), error bars are ± 1 SEM for Nano-GPT on Tiny Shakespeare.

H.2 TINY SHAKESPEARE DATASET ADVERSARIAL ATTACK

Training Settings: We train an adversarial teacher that has every occurrence of ‘t’ ‘h’ ‘e’ replaced
with ‘t’ ‘h’ ‘a’ in its training set, given the zipfs law of the dataset, Table 100, we can see ‘e’ is
the most likely character after ‘SPACE’ therefore if adversarial transfer is possible via knowledge
transfer a student trained with the adversarial teacher should predict ‘t’ ‘h’ ‘a’ more than ‘t’ ‘h’ ‘e’
when compared to the controls model trained without the teacher. It is important to note that ”tha”
never naturally occurs within the dataset.

Justification: Provided we observe asymmetric knowledge of incorrect knowledge from the
teacher to the student, we use this experimental setup to highlight the safety concerns of using
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Knowledge Distillation. In this case, the teacher has a known vulnerability and has been poisoned
to predict an incorrect token. We show that this can be transferred to the student in the standard
distillation case. Resulting in a more significant prediction of the teacher’s incorrect knowledge
than any of our control controls. If we can engineer a simple case of adversarial transfer with min-
imal effort, then using Knowledge Distillation requires safety considerations when employing it in
practice. Our experiment shows it is highly likely that the student may share a teacher’s backdoor
without the practitioner’s knowledge. Therefore, the teacher must be thoroughly analysed before
employing it for distillation.

Table 100: Character Frequency of the Tiny Shakespeare Dataset.

Character Space e t o a h s r n ...
Frequency 0.1523 0.0848 0.0601 0.059 0.0498 0.046 0.0446 0.0438 0.0435 ...

Table 101: Teacher Performance on non adversarial Train Data and Test Data

Teacher Seed Train Loss Train Accuracy Test Loss Test Accuracy
0 0.968203 0.698038 1.641436 0.562150
1 0.974442 0.696534 1.630169 0.562769
2 0.958430 0.700257 1.631381 0.561225

Findings: We show that the transfer occurs for student models across alpha values with increasing
severity for increased alpha values. Therefore, we further substantiate the claim that safety is an
important factor to consider due to adversarial transfer in Knowledge Distillation, as shown by the
increase in prediction of ’t”h”a’ compared to the controls in Tables 102, 103 and 104.

Table 102: The effect of an adversarial teacher trained to predict ”tha” instead of ”the” on the
student. Teacher Seed 0.

Control Knowledge Distillation Random Control Distillation
Predicted Word Teacher SIDDO 0.1 0.5 0.9 0.1 0.5 0.9
tha 454 105.9 ± 4.1676 106.0 ± 3.0463 199.1 ± 13.3914 436.2 ± 7.9835 104.6 ± 3.8967 114.8 ± 3.0555 126.9 ± 8.0678
the 285 665.1 ± 7.6752 675.5 ± 10.2277 583.4 ± 17.5364 343.6 ± 6.3580 668.8 ± 12.7128 712.5 ± 12.4798 826.3 ± 20.2025

Table 103: The effect of an adversarial teacher trained to predict ”tha” instead of ”the” on the
student. Teacher Seed 1.

Control Knowledge Distillation Random Control Distillation
Predicted Word Teacher SIDDO 0.1 0.5 0.9 0.1 0.5 0.9
tha 534 110.5 ± 3.9881 115.7 ± 3.6416 236.8 ± 11.7761 517.8 ± 12.7733 112.6 ± 3.4035 119.6 ± 3.8215 127.4 ± 3.9044
the 273 683.7 ± 15.4370 691.4 ± 13.3156 599.7 ± 13.8564 325.4 ± 7.5262 684.7 ± 14.5781 733.9 ± 13.4428 869.8 ± 10.8109

Table 104: The effect of an adversarial teacher trained to predict ”tha” instead of ”the” on the
student. Teacher Seed 2.

Control Knowledge Distillation Random Control Distillation
Predicted Word Teacher SIDDO 0.1 0.5 0.9 0.1 0.5 0.9
tha 513 111.9 ± 4.0236 116.1 ± 3.3300 241.5 ± 8.5032 518.6 ± 11.6612 114.7 ± 6.5636 114.3 ± 3.9320 124.5 ± 4.7943
the 266 656.0 ± 16.0244 677.0 ± 13.9743 558.0 ± 14.9513 303.5 ± 7.7424 672.1 ± 18.5513 715.0 ± 12.5825 836.7 ± 17.1954

I COMPUTE USAGE

All models were trained on a A100 GPUs, assuming that the approximate time to train and evaluate
a model takes 0.5 hours, to run one condition with three teacher seeds and 10 students models it
would take 109.5 hours if run sequentially. Therefore, the whole paper would take 1095 hours for
the 10 conditions explored in an sequential setting.
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J DATASET LICENCES

Image Datasets

• CIFAR10 (Krizhevsky, 2009) has an MIT Licence.
• SVHN (Netzer et al., 2011) has a CC BY-NC Licence.
• TinyImageNet (Le & Yang, 2015) has an unknown licence however is correctly cited. But

we would presume it has the same licence as ImageNet which is: ”The data is available for
free to researchers for non-commercial use.” Russakovsky et al. (2015)

Audio Datasets

• UrbanSound8K (Salamon et al., 2014) has a Attribution-NonCommercial 4.0 International
(CC BY-NC 4.0) license (https://www.kaggle.com/datasets/chrisfilo/
urbansound8k)licenece..)

• Speech Commands (Warden, 2017) License is CC BY. This license enables reusers to
distribute, remix, adapt, and build upon the material in any medium or format, so long
as attribution is given to the creator. The license allows for commercial use. (https:
//paperswithcode.com/dataset/speech-commands).

Language Datasets

• Tiny Shakespeare (Karpathy, 2015) has an MIT Licence.
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https://www.kaggle.com/datasets/chrisfilo/urbansound8k) licenece.
https://www.kaggle.com/datasets/chrisfilo/urbansound8k) licenece.
https://paperswithcode.com/dataset/speech-commands
https://paperswithcode.com/dataset/speech-commands

	Introduction
	Related Work
	Experimental Setup
	Functional Similarity Metrics
	Hypothesis Testing

	Results and Discussion
	Function Transfer in Small-Scale Settings (SVHN)
	Function Transfer in Larger-Scale Settings
	Function Transfer Across Modalities
	Adversarial Transfer (Language): Targeted error copying
	Distillation Scaling Laws

	Gradient-Level Explanation of Asymmetric Transfer
	Conclusion
	Safety Implications of Knowledge Distillation
	Extended Functional Analysis: Information-Theoretic and Geometric Perspectives
	Feature Map Matching Knowledge Distillation
	Random Control Distillation (RCD) Comparison to Label Smoothing
	Knowledge Distillation to Smaller Student
	TinyImageNet ResNet50 Teacher to ResNet18 Student
	Tiny Shakespeare Nano-GPT Teacher to Pico-GPT Student

	Vision Results
	TinyImageNet
	ResNet50
	ResNet50 with RandAugment
	VGG19
	VGG19 with RandAugment

	CIFAR10
	ResNet18
	VGG19
	ViT

	SVHN Dataset
	ResNet18
	VGG19
	ViT


	Audio Results
	SpeechCommands
	VGGish
	ViT

	UrbanSound8K
	VGGish
	ViT


	Language Results
	Tiny Shakespeare Dataset
	Tiny Shakespeare Dataset Adversarial Attack

	Compute Usage
	Dataset Licences

