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Figure 1: Given a sequence of video captured by a dash cam that may contain obstructions like
reflections and occlusions, DC-Gaussian achieves high-fidelity novel view synthesis getting rid of
the obstructions. (a) dash cam; (b) original video frame; (c) novel view rendering with obstruction
removal.

Abstract

We present DC-Gaussian, a new method for generating novel views from in-vehicle
dash cam videos. While neural rendering techniques have made significant strides
in driving scenarios, existing methods are primarily designed for videos collected
by autonomous vehicles. However, these videos are limited in both quantity
and diversity compared to dash cam videos, which are more widely used across
various types of vehicles and capture a broader range of scenarios. Dash cam
videos often suffer from severe obstructions such as reflections and occlusions on
the windshields, which significantly impede the application of neural rendering
techniques. To address this challenge, we develop DC-Gaussian based on the
recent real-time neural rendering technique 3D Gaussian Splatting (3DGS). Our
approach includes an adaptive image decomposition module to model reflections
and occlusions in a unified manner. Additionally, we introduce illumination-
aware obstruction modeling to manage reflections and occlusions under varying
lighting conditions. Lastly, we employ a geometry-guided Gaussian enhancement
strategy to improve rendering details by incorporating additional geometry priors.
Experiments on self-captured and public dash cam videos show that our method
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not only achieves state-of-the-art performance in novel view synthesis, but also
accurately reconstructing captured scenes getting rid of obstructions. See the
project page for code, data: https://linhanwang.github.io/dcgaussian/.

1 Introduction

Neural Radiance Field (NeRF) [30] has revolutionized the image-based rendering area with its
differentiable volume rendering technique. 3D Gaussian Splatting (3DGS) [19] pushes the frontier
further with real-time rendering speed. These technologies have been applied to datasets captured by
autonomous cars [42, 6, 25], opening up numerous new possibilities in autonomous driving, such as
simulating driving scenarios [57, 51] for robust training of perception models and providing effective
3D scene representations to enhance comprehensive environmental understanding [14, 63, 66].
Although these datasets provide multi-modality sensor data, their diversity in real-world driving
scenarios is still limited [7].

Figure 2: Common obstructions on windshields:
(a) Mobile-phone holder; (b) Reflections; (c)
Stains.

Fortunately, dash cam videos deeply reflect the
diversity and complexity of real-world traffic
scenarios [8]. They are used to provide large-
scale, diverse driving video datasets in a crowd-
sourced manner [59]. Dash cam videos also
offer unique value by capturing multi-agent driv-
ing behaviors [7] and evaluating the robustness
of algorithms under visual hazards [60]. More-
over, the global dash cam market is rapidly ex-
panding, driven by increasing awareness of ve-
hicular safety [34]. Therefore, the exploration
of utilizing dash camera data in neural rendering shows great potential, offering enormous amounts
of data for autonomous driving applications.

However, naively training 3DGS on dash cam videos often results in a significant deterioration
of rendering quality and geometry. This degradation is primarily due to the common existence of
obstructions (reflections and occlusions such as mobile phone holders and stains, as shown in Fig. 2)
on windshields. In these scenarios, 3DGS models the obstructions as stationary geometries while
they are dynamic in nature (moving with cars), thus unavoidably causing inaccurate geometry and
blurry renderings in novel views.

Although some single-image-based obstruction removal methods exist, directly applying them to this
task is nontrivial. These obstructions arise from various sources, while existing removal methods
impose strict assumptions on obstructions [12, 64, 56, 55, 38, 20]. For instance, assumptions like out-
of-focus [64] and ghost cue [38] allow previous methods to perform well in specific cases, but these
assumptions don’t always hold in dash cam videos. Moreover, the performance of learning-based
methods degrades for out-of-distribution images [47, 27, 21]. Several NeRF methods [16, 33, 68, 69]
attempt to reconstruct scenes with reflections by decomposing transmission (background scene)
and reflection with independent NeRFs. This approach can benefit from the strong multi-view
aggregation power of NeRF. However, previous methods are insufficient for dash cam videos because
the obstructions on windshields do not align well with NeRF’s design. The vanilla NeRF is intended
for static scenes, whereas windshields and their reflected objects move with the cars.

In this paper, we introduce DC-Gaussian, a method for modeling high-fidelity obstruction-free 3D
Gaussian Splatting from dash cam videos. We introduce three key innovations: 1) Adaptive Image
Decomposition. To clearly decompose images with complex reflections and occlusions, we propose
an adaptive image decomposition approach. We use an opacity map to learn the transmittance of the
windshield, which adaptively estimates the contribution of the background scene to the image. 2)
Illumination-aware Obstruction Modeling(IOM). We observe that the obstructions are mainly
caused by the objects being relatively static with the dash camera, but the obstructions present varying
effects due to changing illumination. We therefore propose modeling global obstructions that are
shared for all views. Moreover, a novel Latent Intensity Modulation (LIM) module is introduced
to learn the illumination changes from the scene and enable synthesis of reflection with varying
intensity. 3) Geometry-Guided Gaussian Enhancement(G3E). We further leverage multi-view
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stereo to introduce geometry prior into 3DGS training, which enhances the details and sharpness of
3DGS rendering.

To evaluate the efficacy of our method, we conduct extensive experiments on public datasets [59]
and a self-captured dataset. The experiments show that our method not only achieves state-of-the-art
novel view synthesis, but also clearly removes obstructions from neural rendering.

2 Related Work

2.1 Novel View Synthesis for Driving Scenes

Novel view synthesis aims to render novel views given posed images of the same scene. NeRF
[30], which combines multiple layer perceptions and differentiable volume rendering, initiated a
revolution in this area by rendering photorealistic images. Subsequent works [3] [61] extended NeRF
to unbounded large-scale scenes by warping the space into a bounded cube. BlockNeRF [44] first
introduced NeRF to driving scenes by dividing the scenes into blocks and training separate models on
them. The method of scene division was further improved in later works [45, 65]. To apply NeRF to
multi-camera systems, UC-NeRF [10] addresses the under-calibration problem by refining the poses
with spatio-temporal constraints. S-NeRF [52] uses sparse LiDAR points to enhance the training of
NeRF and learn robust geometry. Decomposing dynamic objects and static backgrounds in driving
scenes presents another challenge. Some works [46, 54] tackle this challenge with the help of LiDAR
and 2D optical flows.

Recently 3DGS [19] has attracted great attention in the research community. It achieves optimal
results in novel view synthesis and rendering speed by explicitly modeling a 3D scene with 3D
gaussians. Some researchers have extended it to dynamic objects and scenes. Given a set of dynamic
monocular images, a deformation network is introduced to model the motion of Gaussians [58].
DrivingGaussian [67] models and decomposes dynamic driving scenes based on composite gaussian
splatting. GaussianPro [9] improves the geometry of 3DGS by controlling the densification process
of 3DGS with classic PatchMatching algorithm [2]. Zhou et al. [66] propose to utilize 3D Gaussian
Splatting for holistic urban scene understanding. However, dash cam videos, an important data
source for understanding driving scenes, remain unexplored due to obstructions on the windshield.
Despite previous works [67, 54, 58] making progress in separating dynamic objects from background
scenes, the image decomposition problem we are addressing presents unique challenges because of
the obstructions’ transparent or semi-transparent nature.

2.2 Obstruction Removal and Layer Separation

Single-image reflection removal. To address the highly ill-posed problem of single-image reflection
removal, various methods leverage different cues. Polarization cues are particularly valuable as they
are inherently present in all natural light sources [36, 13, 21, 28]. Gradient priors [23, 24, 1] are
utilized based on the observation that reflection and background layers often exhibit different levels of
sharpness. Additionally, ghosting cues [38, 64, 18] and flash/non-flash pairs [20, 22] can be effective
in certain scenarios. However, these assumptions do not always hold in real-world situations. With
the advancement of deep learning technology, learning-based methods [17, 12, 50, 17] have been
developed to model reflection properties more comprehensively. Despite their success, reflection
removal from a single image remains challenging due to the inherently ill-posed nature of the problem,
the absence of motion cues [27], and the difficulties in out-of-domain generalization [47].

Multi-image layer separation. Existing methods often exploit differences in motion patterns
between transmission and obstruction layers and use learned image priors [15] to decompose images
into multiple components. These layer separation methods estimate dense motion fields for each
layer using optical flow [43], SIFT flow [40], and deep learning-based flow estimation methods
[41, 27]. Recently, Nam et al. [32] propose a multi-frame fusion framework based on neural image
representation, achieving strong performance on various layer-separation tasks. Similarly, NSF [11]
fuses RAW burst image sequences by modeling optical flow with neural spline fields. However,
methods designed for burst images struggle with large pixel motions in driving scenes.

NeRF with reflections. NeRFRen [16] is the pioneering work that adapts NeRF to model scenes
with reflections by proposing to model transmitted and reflected components with separate NeRFs.
NeuS-HSR [33] achieves high-fidelity 3D surface reconstruction by explicitly modeling the glasses
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Figure 3: Overview of DC-Gaussian framework. To model obstructions with different opacities
in a unified manner, we use an learnable opacity map to adaptively reweight the contribution of
transmission. The global-shared multiresolution hash encoding is introduced to fully utilize the static
motion prior of obstructions. We propose a Latent Intensity Modulation module to grasp the intensity
changes of reflections conditioned on camera positions. Finally, in the G3 Enhancement module, we
run geometry filtering on obstruction-suppressed images to enhance the geometry of 3D Gaussians.

with an auxiliary plane module. Zhu et al. [68] introduce recurring edge cues to achieve robust results
under sparse views. However, previous methods are insufficient for dash cam videos because the
obstructions on windshields do not align well with NeRF’s design. The vanilla NeRF is intended
for static scenes, whereas windshields and their reflected objects move with the cars. The varying
illumination in the wild makes reflections modeling even more challenging. In contrast to existing
methods, our proposed obstruction modeling approach leverages the static nature of obstructions in
camera coordinates and captures the varying intensity of reflections.

3 Method

Our DC-Gaussian extends the standard 3DGS to corrupted dash cam videos. We begin by reviewing
the standard 3DGS pipline 3.1. Then we introduce the Adaptive Image Decomposition 3.3 to
decompose the reflections and occlusions from the corrupted dash cam images. In 3.3, we propose the
Illuminate-aware Obstruction Modeling module. A novel Latent Intensity Modulation is introduced
to enable high quality modeling of reflection even under vary illumination. Finally, the Geometry
Guided Gaussian Enhancement strategy is explained in 3.4.

3.1 Preliminary of 3D Gaussian Splatting

3DGS [19] models the 3D scene as a set of 3D Gaussians. Each 3D Gaussian G is defined as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

where µ and Σ represent its mean vector and covariance matrix, respectively. For optimization
purpose, the covariance matrix is further expressed as Σ = RTSTRT , where S and R are the
scaling matrix and rotation matrix, respectively. To render an image, the splatting technique [70]
is applied. Specifically, the color of each pixel p is calculated by blending N ordered Gaussians
{Gi|i = 1, ..., N} overlapping p as:
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c(p) =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj) (2)

where αi is obtained by evaluating a projected 2D Gaussian [70] from Gi at p multiplied with a
learned opacity of Gi, and ci is the learnable color of Gi.

3.2 Adaptive Image Decomposition

To synthesize images with obstructions, previous methods [16, 33] render transmission image It
and obstruction image Io separately and utilize a naive linear combination of It and Io to render the
final output I , as illustrated in Eq. 3:

I = ϕ1 ∗ It + ϕ2 ∗ Io, (3)

where ϕ1 and ϕ2 are manually chosen. While this approach achieves descent performance on the
pure reflection corrupted images, it cannot achieve good performance on dash cam videos with
complex obstructions. Among the common obstructions, mobile-phone holders are opaque, stains
is semi-transparent and reflections are transparent. Faced with this complex situation, inspired by
[32], we propose to learn the opacity map ϕ from the input images. As a result, we reformulate the
rendering process:

I(u, v, j) = (1− ϕ)It(u, v, j) + ϕ ∗ Io(u, v, j) (4)

where u, v ∈ [0, 1] are the continuous image coordinates and j ∈ [0, 1, ..., N − 1] is the frame index.
Instead of defining the opacity field in 3D world space, we define the opacity relative to the 2D image
space of each view, resulting in a learnable 2D tensor in practice. This approach is more convenient
for modeling obstructions because view-dependent effects are only related to the training images.
In this image decomposition method, the transmission images represent the driving scenes viewed
through the windshield. We can use standard 3DGS to model these scenes due to its multi-view
consistent property. Thus, It(u, v, j) can be easily calculated by Eq. 2, given the camera pose of
frame j. Io(u, v, j) represents the appearance of the complex obstructions on the windshield. In the
implementation, we incorporate ϕ into Io(u, v, j) in the second term of Eq. 4 for robust training. We
explain the modeling of Io(u, v, j) in the next section.

3.3 Illumination-aware Obstruction Modeling

Decomposing the images into transmission and obstruction is challenging due to the strong ambiguity
between the two components. It is an ill-posed problem without prior information. We have two
observations about the obstructions on the windshield that can strongly mitigate this ambiguity.

Observation 1 As shown in Fig. 4 (a), the reflections on the windshields are from objects (air
conditioner vent) inside the car, which means they are relatively stationary with the car [39]. Addi-
tionally, occlusions are attached to the windshields, which are also relatively stationary with the car.
Consequently, we can assume that the appearance of the obstructions is like an image shared
globally by all the frames in a dash cam video.

Observation 2 As cars move along the road, the trees and buildings on the sides occasionally block
the incident light, affecting the intensity of the reflections. For example, under strong light, reflections
are also strong, as shown in Fig. 4 (a), while the reflections "disappear" under weak light, as seen in
Fig. 4 (d). Thus, the strength of the reflections is conditioned on the car’s position.

These two observations require us to design a model for obstructions that takes advantage of the
global-sharing property of obstructions and also grasps varying intensity reflections conditioned on
the car’s position.

Global-shared Multi-resolution Hash Encoding. To align our design with Observation 1, we use
a global-shared latent representation for obstructions’ appearance. Specifically, we use continuous
image coordinates u, v ∈ [0, 1] as the input. Then we use a multi-resolution hash encoder γ [31] to
map these coordinates into high-dimensional learnable latent features. For example, we use an L
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Reference Transmission Obstruction

Figure 4: When the intensity of incident light changes, the strength of reflections also changes
accordingly (a, d). Our method achieves high-fidelity reflections synthesis (c, f) and reasonable
decomposition results (b, e) under varying light. The reflections in (f) are too weak to be seen by the
eye, so we brighten it to reveal the details.

level hash encoder where each level stores F dimensional features. Thus, each u, v pair maps to an
L ∗ F dimensional latent features γ(u, v). While our method is not restricted to this specific type of
spatial encoding, we choose the multi-resolution hash encoder for two reasons. First, its hierarchical
multi-resolution representation can adaptively learn the obstruction appearance in a coarse-to-fine
fashion. Second, its efficient implementation matches the speed of 3DGS, without slowing down the
training significantly.

Latent Intensity Modulation. In order to accurately capture the intensity variations in environmental
lighting conditioned on car positions, we propose a novel Latent Intensity Modulation (LIM) module.
Specifically, to enable selective activation of reflections conditioned on camera positions, we design a
Scaling Gate ω and an Offset Gate β, which are generated by two MLPs with the concatenation of
camera positions πj and γ(u, v) as input.

ω(u, v,πj) = MLP([πj , γ(u, v)]), β(u, v,πj) = MLP([πj , γ(u, v)]), (5)

Then, the latent features are modulated element-wise through these two gates. Finally, we use a MLP
to decode the modulated latent features into RGB information of obstructions.

Io(u, v,πj) = MLP(ω(u, v,πj)⊙ γ(u, v) + β(u, v,πj)) (6)

With the LIM module, our method achieves effective image decomposition and synthesizes high-
fidelity reflections under varying light conditions, as shown in Fig. 4.

3.4 Geometry-Guided Gaussian Enhancement

In IOM, we utilize the motion pattern prior of obstructions to reduce ambiguity in decomposing
images. Despite this, some ambiguity still remains. To further enhance performance, we incorporate
geometry priors. Typically, strong obstructions affect only portions of the images. As cars move, the
same objects in the 3D world can appear in several image fragments which are not or less interfered
with by obstructions. In these image fragments, the texture in the transmission is less blurred by
obstructions, and multi-view consistency is maintained. Based on this intuition, we leverage a
multi-view stereo (MVS) algorithm to identify these "image fragments" and generate geometry priors
for 3D Gaussians.

Specifically, we employ a deep MVS method [48] to generate depth maps for all views. A geomet-
ric consistency filtering process [37] is leveraged to generate masks Mj masking the multi-view
consistent areas, which are essentially the "image fragments" we want to identify. The masked
depth maps are then mapped to 3D space as dense point clouds, which are used to initialize 3D
Gaussians at physically accurate positions. To find more multi-view consistent "image fragments,"
we propose suppressing the obstructions in training images by employing our proposed method.
Specifically, we remove obstructions from input images to obtain transmission Îjt . For areas blocked
by occlusions(where ϕ has large value), we inpaint the content with Ijt .
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Figure 5: Comparisons with 3DGS on novel view synthesis. Because the obstructions violate multi-
view consistency, the performance of 3DGS degrades significantly, resulting in artifacts and blurry
renderings (highlighted by red arrows). In contrast, our method not only faithfully synthesizes novel
view renderings but also renders transmission with fine details, exhibiting an improvement of 3.05dB
in terms of PSNR.

Îjt =

{
(Ij − Ijo)/(1− ϕ), if ϕ < τ

Ijt otherwise
(7)

Here Ij is the jth input image. Ijo and Ijt are synthesized by trained IOM and 3DGS, respectively.
Eq. 7 is derived from Eq. 4. We use 0.5 for the threshold τ in all the experiments.

3.5 Implementation Details

We develop our method based on 3DGS. We borrow multi-resolution hash encoding and fast MLP
implementation from tiny-cuda-nn [31] to build IOM. We choose PatchMatchNet [48] as the MVS
method in G3E. We follow previous driving scenes reconstruction works [46, 10] to separately model
the sky areas. The final loss function is:

L = Lpho + λ1Lsky + λ2Lopacity (8)

Lpho is the same as in standard 3DGS [19]. Lsky is borrowed from UCNeRF [10]. We use a L1 loss
Lopacity =

∑
(u,v) ∥ϕ(u, v)∥1 to regularize the opacity field, where (u, v) are the image coordinates.

This opacity loss encourages the opacity map to have the minimum areas that could satisfy the
optimization. This design is based on the prior knowledge that opaque objects typically occupy only
small portions of the windshield. We use 0.001 for both λ1 and λ2. We run all the experiments with
an A100 GPU. Each scene contains approximately 300 images in our evaluation datasets. Combined
training of the 3DGS and IOM for 30k iterations with Adam optimizer takes about 30 minutes. It
takes 40 minutes in total to evaluate MVS and run geometry filtering.

4 Experiments

4.1 Datasets

BDD100K. To evaluate the performance of our method and baselines, we adopt BDD100K [59]
for evaluation. This dataset contains 8 scenes that are from dash cam videos captured in daily life.
They contain common obstructions, such as reflections, mobile phone holders, stickers and stains.
Evaluation on this dataset reflects performance on real life dash cam videos.
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Table 1: Evaluation of novel view synthesis on BDD100K and DCVR. We indicate the best and second
best with bold and underlined respectively. Our method consistently outperforms state-of-the-art
methods in both datasets and all the evaluation metrics.

BDD100K DCVR
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FPS ↑
NeRF-W [29] 22.58 0.708 0.395 - - - 0.18
ZipNeRF [4] 27.89 0.875 0.176 24.41 0.786 0.228 0.27
GaussianPro [9] 27.75 0.894 0.192 23.71 0.770 0.270 210
3DGS [19] 28.02 0.897 0.188 23.73 0.783 0.248 155
DCGaussian (Ours) 29.44 0.914 0.143 24.74 0.822 0.202 120

DCVR. To further evaluate the performance of our method on strong reflection conditions, we
established DCVR (Dash Cam Videos with Reflection) dataset. This dataset contains 10 dash cam
videos we collect. The original videos are undistorted [5] to ease the structure-from-motion algorithm.
We utilize the popular tools COLMAP [37] and HLoc [35, 26] to estimate the camera parameters.

In both datasets, each sequence consists of approximately 300 frames, extracted from 10-second
videos at a frame rate of 30 Hz. For scenes containing car hoods, the lower parts of the images
are removed during preprocessing. Seven out of eighteen scenes in two datasets involve car turns,
introducing diverse illumination changes. Additional details and visual results are provided in the
appendix.

4.2 Baselines

We choose 3DGS as our baseline [19]. We also compare our method with other state-of-the-art
methods Zip-NeRF [4], NeRF-W [29] and GaussianPro [9]. We use the unofficial implementations of
Zip-NeRF 3 and NeRF-W 4. To evaluate the performance of novel view synthesis, following common
settings [3], we select one of every eight images as testing images and the remaining ones for training.
Since our method is also designed for image decomposition, we also compare our method with
state-of-the-art obstruction removal methods, including DSRNet [17], NIR [32] and Liu et al. [27].

4.3 Quantitative Results

For the quantitative evaluation, we conduct comparison with baselines on both BDD100K and DCVR.
We apply the three widely-used metrics for evaluation, i.e., PSNR, SSIM [49], and LPIPS [62].
The results are shown in Tab. 1. The consistent superior performance of our method shows the
efficacy of the proposed modules. Though GaussianPro and Zip-NeRF achieve great performance
in obstruction-free scenes with their progressive propagation strategy and anti-aliasing mechanism,
without separate obstruction modeling, they cannot handle the obstructions corrupted dash cam
videos. NeRF-W is designed to handle illumination and content difference between images taken at
different times but still cannot handle obstructions on the windshield. We show more visual results in
the appendix. DC-Gaussian achieves 120 fps at a resolution of 1920x1080 on an RTX 3090 GPU.
Although ours is slightly slower than 3DGS, the speed still enables real-time rendering, which is
crucial for applications such as autonomous driving simulators.

4.4 Qualitative Results

Novel view synthesis. We show the novel view synthesis results in Fig. 5. Without a proper
representation for obstructions, 3DGS can hardly synthesize high-quality obstructions. Moreover, its
wrong geometry also results in blurry renderings and artifacts on the road surface. In contrast, our
method effectively tackles the ambiguity between obstructions and transmissions and synthesizes
both components with high-fidelity. We provide depth map in the appendix.

Obstruction removal. We show the obstruction removal results in Fig. 6. The single image reflection
removal method (e) only marginally suppresses reflections. Multi-image layer separation methods

3https://github.com/SuLvXiangXin/zipnerf-pytorch
4https://github.com/kwea123/nerf_pl
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Figure 6: Comparisons with the image-based reflection removal methods on removing reflections. (a)
Reference is a frame in a dash cam video. (b) and (c) are transmission and obstruction decomposed
by our method. (d), (e), and (f) are results from previous obstruction removal methods, NIR [32],
DSRNet [17] and Liu et al. [27], which are not effective in this scenario. In comparison, our method
decomposes the image and synthesizes (b) transmission and (c) obstruction with high fidelity.

Table 2: Ablations studies on DCVR. Metrics are calculated on obstruction influenced areas.
NOM AD LIM G3E PSNR ↑ SSIM ↑ LPIPS ↓

% % % % 23.99 0.738 0.287
! % % % 25.21 0.776 0.252
! ! % % 25.65 0.791 0.236
! ! ! % 25.90 0.798 0.229
! ! ! ! 26.30 0.814 0.210

(d)(f) struggle with accurate optical flow estimation, resulting in blurry outputs. In comparison, our
method models reflections (c) with high quality and retains fine details in transmission (b). These
visual results demonstrate our method’s potential in reconstructing obstruction-free driving scenes
from dash cam videos.

4.5 Ablation Study

We conduct extensive ablation studies on DCVR to explore the impact of each module in DC-Gaussian.
Quantitative results are shown in Table 2. To assess the efficacy of global-shared hash encoding, we
evaluate 3DGS with a Naive Obstruction Module (NOM), where latent features are directly decoded
by an MLP to generate RGB. NOM shows significant improvement over the baseline, demonstrating
that global-shared hash encoding effectively leverages the static prior of obstructions in dash cam
videos. The adaptive image decomposition (AD) strategy further enhances results by effectively
modeling occlusions, as shown in Fig. 7. Additionally, LIM improves performance by capturing
intensity changes in reflections. Finally, incorporating geometry priors into 3D Gaussians with G3E
effectively suppresses artifacts on the road and reveals sharper details, as illustrated in Fig. 8.
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Reference Transmission w/o ϕ Transmission w/ ϕ Learned ϕ

Figure 7: Ablation study about the Learnable opacity map ϕ. Incorporating the opacity map allows
our method to accurately identify the positions of opaque objects, enhancing physical simulation and
improving view synthesis and obstruction removal. Without the opacity map, severe artifacts appear.

Figure 8: Ablation study on G3E module. G3E helps suppress artifacts and reveal sharper details.

5 Conclusions

In conclusion, we propose DC-Gaussian, which effectively addresses the challenges of extending
3D Gaussian Splatting to dash cam videos for the first time. The proposed Adaptive Image Decom-
position module enables unified modeling of reflections and occlusions. To handle the reflections
and occlusions under challenging lighting conditions, we introduce Illumination-aware Obstruction
modeling. Additionally, we employ a Geometry-Guided Gaussian Enhancement strategy to further
improve rendering quality. Experiments on BDD100K and DCVR demonstrate significant improve-
ments in rendering quality and image decomposition, setting a new benchmark for neural rendering
with dash cam videos.

Limitations and future work Currently, DC-Gaussian has only been evaluated on single-sequence
videos. However, considering the vast amount of dash cam footage available, extending DC-Gaussian
to a multi-sequence video setting and leveraging dense view images to achieve more pleasing results
would be a promising direction for future research. In addition, Our method is not specifically
designed to improve performance on dynamic scenes. We provide additional experimental results
in the appendix. The results demonstrate that dynamic objects do not significantly impact the
performance of obstruction removal. When dynamic objects move at a slow speed, our method also
presents reasonable results. We plan to incorporate techniques [53] for dynamic objects modeling
into our method in future research to enable robust dynamic modeling.
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A Appendix / supplemental material

Composed Depth map

Figure 9: Comparisons with 3DGS and Zip-NeRF [4] on novel view synthesis show that obstructions
violate multi-view consistency, leading to erroneous geometry in 3DGS and Zip-NeRF, as evident in
the depth maps. This results in blurry renderings and artifacts. In contrast, our method effectively
addresses the ambiguity introduced by obstructions and learns physically reasonable geometry,
achieving renderings with fine details.

Figure 10: We evaluate NeRFRen [16] on our curated dataset. The suboptimal results of NeRFRen
are caused by two factors. First, its obstruction modeling cannot address the ambiguity between
obstructions and transmission, leading to a failure in image decomposition. Second, its backbone,
NeRF, cannot handle large-scale driving scenes, resulting in blurry outputs.
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Table 3: Ablation on threshold τ used in Eq. 7. Our results are not sensitive to the choice of τ .
τ PSNR ↑ SSIM ↑ LPIPS ↓

0.3 26.27 0.814 0.210
0.5 26.30 0.814 0.210
0.7 26.28 0.814 0.210

Table 4: We first use DSRNet [17] to remove reflections from the input images, and then we train and
evaluate 3DGS [19] on these images. The results show that due to the insufficiency of the reflection
removal, novel view synthesis performance cannot be improved in this way.

Method BDD100K DCVR

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 28.02 0.897 0.188 23.73 0.783 0.248
3DGS + DSRNet 27.99 0.898 0.188 23.72 0.783 0.248

Figure 11: Trajectories of turning cars, which result in diverse illumination changes.

Figure 12: Visual results on dynamic scenes. All three scenes demonstrate that dynamic objects do
not significantly impact the decomposition of obstructions. Our method achieves good performance
in the scene shown in the first row, where the dynamic objects are moving slowly. However, in the
second and third rows, where the dynamic objects are moving at higher speeds, our method shows
suboptimal performance.

Figure 13: Nerf-in-the-wild fails to separate obstructions from the images. None of the obstructions
are accurately represented in the transient image.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We show our method’s performance on novel view synthesis and obstruction
removal, reflecting our contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of this paper in conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

18



Justification: The paper does not present any theoretical results requiring assumptions or
proofs, making this criterion not applicable.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We cite used techniques and introduce our method in details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will submit our code and data to github.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We document all the training details in the implementation details section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It’s too compute intensive to do so.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the GPU we used in implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We understand and respect the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: We discuss the positive societal impacts; however, we do not foresee any
potential negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the creators or original owners of the assets used in the paper are properly
credited, and the license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide information about the dataset we use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work doesn’t involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work doesn’t involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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