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ABSTRACT

Text-to-motion generation is a crucial task in computer vision, which generates
the target 3D motion by the given text. The existing annotated datasets are lim-
ited in scale, resulting in most existing methods overfitting to the small datasets
and unable to generalize to the motions of the open domain. Some methods at-
tempt to solve the open-vocabulary motion generation problem by aligning to the
CLIP space or using the Pretrain-then-Finetuning paradigm. However, the current
annotated dataset’s limited scale only allows them to achieve mapping from sub-
text-space to sub-motion-space, instead of mapping between full-text-space and
full-motion-space (full mapping), which is the key to attaining open-vocabulary
motion generation. To this end, this paper proposes to leverage the atomic motion
(simple body part motions over a short time period) as an intermediate represen-
tation, and leverage two orderly coupled steps, i.e., Textual Decomposition and
Sub-motion-space Scattering, to address the full mapping problem. For Textual
Decomposition, we design a fine-grained description conversion algorithm, and
combine it with the generalization ability of a large language model to convert any
given motion text into atomic texts. Sub-motion-space Scattering learns the com-
positional process from atomic motions to the target motions, to make the learned
sub-motion-space scattered to form the full-motion-space. For a given motion of
the open domain, it transforms the extrapolation into interpolation and thereby
significantly improves generalization. Our network, DSO-Net, combines textual
decomposition and sub-motion-space scattering to solve the open-vocabulary mo-
tion generation. Extensive experiments demonstrate that our DSO-Net achieves
significant improvements over the state-of-the-art methods on open-vocabulary
motion generation.

1 INTRODUCTION

Text-to-motion (T2M) generation, aiming at generating the 3D target motion described by the given
text, is an important task in computer vision and has garnered significant attention in recent research.
It plays a crucial role in various applications, such as robotics, animations, and film production.

Benefiting from advancements in GPT-style (e.g., LlamaGen (Sun et al., 2024)) and diffusion-style
generative paradigm in text-to-image and text-to-video domains, some studies (Zhang et al.,|2023aj
Jiang et al., 2023} [Tevet et al. [2022bj [Shafir et al., |2023) have started using these technologies
to address the T2M generation task. During the training process, paired text-motion data are uti-
lized to align the text space with the motion space. However, the open-vocabulary text-to-motion
generation remains a challenging problem, requiring good motion generation quality for unseen
open-vocaulary text at inference. Due to the limited scale of recent high-quality annotated datasets
(e.g., KIT-ML (Plappert et al., [2016) and HumanML3D (Guo et al.l [2022))), as illustrated in Fig. E]
top-left, the Simple Mapping paradigm only learns a mapping between a limited sub-text-space and a
sub-motion-space, rather than the mapping from full-text-space to full-motion-space. Consequently,
generalization to unseen open-vocabulary text is almost impossible.

To enhance the model’s generalization capabilities, two main strategies have been explored. As
shown in Fig. |I| top-right, the first paradigm is CLIP-based Alignment (e.g., MotionCLIP (Tevet
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et al.,|2022a) and OOHMG (Lin et al.l|2023)). This kind of approach aims to align the motion space
with both the CLIP text space (Radford et al.,|2021)) and the image space. The core process involves
fitting the motion skeleton onto the mesh of the human body SMPL (Loper et al.| 2023)) model and
performing multi-view rendering to obtain pose images, thereby achieving alignment between mo-
tion and image spaces. The second paradigm is Pretrain-then-Finetuning (e.g., OMG (Liang et al.,
2024a)), as illustrated in Fig. [T] bottom-left. Inspired by the success of the Stable Diffusion (Rom-
bach et al.| 2022)) model in the text-to-image field, this paradigm follows a pretrain-then-finetuning
process, along with scaling up the model, to enable generalization to open-vocabulary text.

Although these two types of methods
have achieved some progress in open-
vocabulary text-to-motion generation,
they suffer from inherent flaws: (1)
The CLIP-based alignment paradigm
aligns static poses with the image space,
which results in the loss of temporal in-
formation during the learning process.
Consequently, this approach generates
unrealistic motion. Furthermore, this
method overlooks the feature space dif-
ferences between the CLIP and T2M
task datasets, potentially leading to mis-
alignment, unreliability, and inaccuracy Figure 1:  Compared with current text-to-motion
in motion control. (2) Although the paradigms (Simple mapping, CLIP-based alignment, and
Pretrain-then-Finetuning paradigm uti- Pretrain-then-Finetuning), our method proposes the tex-
lizes an adequate motion prior and ex- tual decomposition to decompose the raw motion text
pands the motion space by pretraining 1into atomic texts and sub-motion-space scattering to learn
on large-scale motion data, the anno- the composition process from atomic motions to tar-
tated paired data in the finetuning stage get motions, which significantly improves the ability of
is severely limited. The significant im- open-vocabulary motion generation.

balance between labeled and unlabeled data results in the fine-tuning stage only learning the map-
ping from text to a condensed subspace of the full motion-space. Consequently, the model has
to perform extrapolation and has difficulties in generating motions that are outside the subspace
distribution, as shown in Fig. E}
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Consequently, we conclude that the problem of insufficient generalization ability in current meth-
ods arises from the limited amount of high-quality labeled data and the inadequate utilization of
large-scale unsupervised motion data for pretraining. Existing methods can only establish overfitted
mappings within a limited subspace. To achieve open-vocabulary motion generation, it is essential
to establish a mapping from the full-text-space to the full-motion-space.

We observe that when understanding a motion, human beings tend to partition it into the combi-
nation of several simple body part motions (such as “’spine bend forward”, "left hand up”) over a
short time period, which we define as atomic motions. All these atomic motions are combined
spatially and temporally to form the raw motion.This observation motivates us to decompose a raw
motion into atomic motions and leverage atomic motions as an intermediate representation. Since
raw motion texts often contain abstract and high-level semantic meanings, directly using raw texts
to guide motion generation can hinder the model’s ability to understand open-vocabulary motion
texts. In contrast, atomic motion texts provide a low-level and concrete description of different limb
movements, which are shared across different domains.

Leveraging the atomic motions as an intermediate representation, we propose to address the full-
mapping problem through two orderly coupled steps: (1) Textual Decomposition. To enhance
generalization ability, we first design a textual decomposition process that converts a raw motion
text into several atomic motion texts, subsequently generating motions from these atomic texts. To
prepare training data, we develop a fine-grained description conversion algorithm to establish
atomic texts and motion pairs. Specifically, we partition the input motion into several time periods,
and describe the movements of each joint and spatial relationships from the aspects of velocity
(e.g., fast), magnitude (e.g., significant), and low-level behaviors (e.g., bending) for each period.
The fine-grained descriptions and the raw text are then input into a large language model (LLM) to
summarize the atomic motion texts. Each raw motion text is decomposed into atomic motion texts of
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six body parts: the spine, left/right-upper/lower limbs, and trajectory. By this process, we guarantee
the converted atomic motion texts are consistent with the actual motion behavior. During inference,
for any given text, we employ the LLM to split the whole motion into several periods and describe
each period using atomic motion texts. In this way, we establish a mapping from the full-text-
space to the full-atomic-text-space.(2) Sub-motion-space Scattering. After obtaining the full-text-
space to the full-atomic-text-space mapping in the first step, we aim to further achieve alignment
from the full-atomic-text-space to the full-motion-space, through the Sub-motion-space Scattering
step, thereby establishing the mapping from the full-text-space to the full-motion-space. Given the
limited labeled data, it is difficult for the Pretrain-then-Finetuning paradigm to learn the full-motion-
space, because its trivial alignment process only learns a mapping from text to a condensed subspace
(which we refer to as sub-motion-space), requiring extrapolation for out-of-domain motions. In
contrast, our approach scatters the sub-motion-space to form the full-motion-space, as shown in
the bottom right of Fig.[I] transforming extrapolation into interpolation and significantly improving
generalization. The sub-motion-space scattering is achieved by learning the combinational process
of atomic motions to generate target motions, with a text-motion alignment (TMA) module to extract
features for atomic motion texts, and a compositional feature fusion (CFF) module to fuse atomic
text features into motion features and learn the the combinational process from atomic motions to
target motions. As shown in Fig.[T] Interpolating an out-domain motion is essentially a combination
of several nearest clusters of scattered sub-motion-space, which is highly consistent with the process
of CFF we design. Therefore, the CFF ensures for scattering sub-motion-space we learned.

Overall, we adopt the discrete generative mask modeling and follow the pretrain-then-finetuning
pipeline for open-vocabulary motion generation. First, we pretrain a residual VQ-VAE (Martinez
et al., 2014) network using a pre-processed large-scale unlabeled motion dataset, to enable the net-
work to have prior knowledge of large-scale motion. For the fine-tuning stages, we first leverage
our textual decomposition module to convert the raw motion text into atomic texts. Then, we utilize
both raw text and the atomic texts with our proposed TMA and CFF modules to train a text-to-
model generative model. Our network, abbreviated as DSO-Net, combines textual decomposition
and sub-motion-space scattering to solve the open-vocabulary motion generation. We conduct ex-
tensive experiments comparing our approach with previous state-of-the-art approaches on various
open-vocabulary datasets and achieve a significant improvement quantitatively and qualitatively.

In summary, our main contributions include: (1) we propose to leverage atomic motions as an inter-
mediate representation, and design textual decomposition and sub-motion-space scattering frame-
work to solve open-vocabulary motion generation. (2) For textual decomposition, we design a rule-
based fine-grained description conversion algorithm and combine it with the large language model
to obtain the atomic motion texts for a given motion. (3) For sub-motion-space scattering, we pro-
pose to leverage a text-motion alignment (TMA) module and a compositional feature fusion (CFF)
module to learn the generative combination of atomic motions, thereby significantly improving the
model’s generalization ability.

2 RELATED WORKS

2.1 TEXT-TO-MOTION GENERATION

Text-to-Motion has been a long-standing concern. previous works (Guo et all [2020; [Petrovich
et al., [2021)) usually generate a motion based on the given action categories. Action2Motion (Guo
et al., |2020) uses a recurrent conditional variational autoencoder (VAE) for motion generation. It
uses historical data to predict subsequent postures and follows the constraints of action categories.
Subsequently, ACTOR (Petrovich et al., 2021) encodes the entire motion sequence into the latent
space, which significantly reduces the accumulated error. Using only action labels is not flexible
enough. Therefore, some works began to explore generating motion under text (i.e., natural lan-
guage). TEMOS (Petrovich et al., [2022) uses a variational autoencoder (VAE) (Kingma et al.,[2019)
architecture to establish a shared latent space for motion and text. This model aligns the two distri-
butions by minimizing the Kullback-Leibler (KL) divergence between the motion distribution and
the text distribution. Therefore, in the inference stage, only text input is needed as a condition to
generate the corresponding motion. T2M (Guo et al.,|2022) further learns a text-to-length estimator,
enabling the network to give the generated motion length automatically. T2M-GPT (Zhang et al.,
2023a) first introduces the VQ-VAE technique into text-to-motion tasks and leverages the autore-
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gressive paradigm to generate motions. MotionGPT (Jiang et al.| 2023} Zhang et al., 2024b) further
improves the motion quality under the autoregressive paradigm from the aspect of text encoder.
MDM (Tevet et al., 2022b) and MotionDiffuse (Zhang et al., [2022) are the first works to solve the
motion synthesis task by using diffusion models. Subsequent works (Chen et al.,[2023;Zou et al.,
2024} Zhang et al., [2023b; |Dai et al., 2024; [Zhang et al., 2024a; [Karunratanakul et al.l 2023} [Xie
et al.| 2023 |Fan et al.,|2024) further improve the controllability and quality of the generation results
through some techniques such as database retrieval, spatial control, and fine-grained description.
However, all these methods essentially overfit the limited training data, thereby can not achieve
open-vocabulary motion generations.

2.2  OPEN-VOCABULARY GENERATION

Compared to the previous method of training and testing on the same dataset, the open-vocabulary
generation task expects to train on one dataset and test on the other (out-domain) dataset. CLIP (Rad-
ford et al.,|2021)) is pre-trained on 400 million image-text pairs using the contrastive learning method
and has strong zero-shot generalization ability. By calculating feature similarity with a given image
and candidate texts in a list, it realizes open-vocabulary image-text tasks. Therefore, on this basis,
many methods in the field of text-to-image generation, a series of Diffusion-style-based and GPT-
style-based methods (Rombach et al.l [2022; |Sun et al.| [2024) are proposed to use CLIP to extract
features to improve the generalization ability of the model. Based on this, MotionCLIP (Tevet et al.,
2022a)) proposes to fit the motion data of the training set to the mesh of the human SMPL (Loper,
et al., 2023) model in the preprocessing stage, thereby rendering multi-view static poses. In the
training stage, the motion features are aligned with the text and image features extracted by CLIP
simultaneously, thereby aligning the motion features to the CLIP space and enhancing the general-
ization ability of the model. AvatarCLIP (Hong et al., |2022) first synthesizes a key pose and then
matches from the database and finally optimizes to the target motion. OOHGM (Lin et al.| [2023),
Make-An-Animation (Azadi et al., 2023)), and PRO-Motion (Liu et al., [2023) first train a genera-
tive text-to-pose model with diverse text-pose pairs. Then, OOHGM further learns to reconstruct
full motion from the masked motion. Inspired by the success of AnimateDiff (Guo et al.| [2023),
Make-An-Animation inserts and finetunes the temporal adaptor to achieve motion generation. PRO-
Motion leverages the large language model to give the key-pose descriptions and synthesize motion
by a trained interpolation network. However, all these methods, aligning the static poses with the
image space, lose the temporal information during the learning and finally result in the generation
of unrealistic motion. Recently, OMG (Liang et al., 2024a)) try to use the successful paradigm,
pretrained-then-finetuning, in the LLM to achieve open-vocabulary. Therefore, it first pretrained a
un-condiditonal diffusion model with unannotated motion data, then finetunes on the annotated text-
motion pairs by a ControlNet and MoE structure. However, due to the extremely limited labeled
data, this type of method can ultimately only achieve the effective mapping from sub-text-space to
sub-motion-space, which is still far from sufficient for achieving open-vocabulary tasks.

2.3  GENERATIVE MASK MODELING

BERT (Devlin, 2018) as a very representative work in the field of natural language processing,
pretrains a text encoder by randomly masking words and predicting these masked words. Numerous
subsequent methods in the generative fields have borrowed this idea to achieve text-to-image or
video generation, such as MAGVIT (Yu et al., 2023), MAGE (Li et al.| [2023)), and Muse (Chang
et al.|[2023). Compared to autoregressive modeling, generative masked modeling has the advantage
of faster inference speed. In the motion field, MoMask (Guo et al} 2024)) first introduced generative
masked modeling into the field of motion generation. It adopts a residual VQ-VAE (RVQ-VAE)
and represents human motion as multi-layer discrete motion tokens with high-fidelity details. In the
training stage, the motion tokens of the base layer and the residual layers are randomly masked by a
masking transformer and predicted according to the text input. In the generation stage, the masking
transformer starts from an empty sequence and iteratively fills in the missing tokens. In this paper,
our overall architecture also adopts the similar generative masked modeling as MoMask (Guo et al.,
2024)) to implement our pretrain-then-finetuning strategy.
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Figure 2: The architecture of our entire framework. The overall pipeline adopts discrete gener-
ative modeling. 1) In the Motion Pre-Training stage (left blue part), we use the Residual VQ-VAE
(RVQ) model, which designs a base layer and R residual layers to learn layer-wise codebooks. By
tokenizing the motion sequence into multi-layer discrete tokens, we learn the large-scale motion
priors. 2) In the Motion Fine-tuning stage (right green part), we first leverage the large language
model(LLM) and the fine-grained description conversion algorithm we design (only used in train-
ing stage) to perform texutal decomposition, which convert the raw text of a motion into the atomic
texts. Then, for the base layer and residual layers in RVQ, we separately use generative mask mod-
eling and a neural network with several Transformer layers to learn how to predict discrete motion
tokens according to a given text. Furthermore, We design a text-motion alignment (TMA) module
and a compositional feature fusion (CFF) module to learn the combinational process from atomic
motions to the target motions.

3 METHOD

We propose a novel DSO-Net for open-vocabulary motion generation, aiming to generate a 3D hu-
man motion X from an open-vocabulary textual description d that is unseen in the training dataset. As
shown in Fig.[2| our framework takes the pretrain-then-finetuning paradigm, which is first pretrained
on a large-scale unannotated motion dataset, and then finetuned on a small dataset of text-motion
pairs. All those motions are processed in a unified format by UniMocap (Chen & UniMocapl [2023).
As analyzed before, the key to achieving open-vocabulary motion generation is to establish the
alignment between the full-text-space and the full-motion-space, which we call full-mapping. To
this end, we leverage atomic motions as intermediate representations and convert the full-mapping
process into two orderly coupled stages: 1) Textual Decomposition, and 2) Sub-motion-space Scat-
tering. The Textual Decomposition stage aims at converting any given motion text into several
atomic motion texts, each describing the motion of a simple body part over a short time period,
thereby mapping the full-text-space to the full-atomic-text-space. The Sub-motion-space Scattering
stage is designed to learn the combinational process from atomic motions to the target motions,
which scatters the sub-motion-space learned from limited paired data to form the full-motion-space,
via a text-motion alignment (TMA) module and a compositional feature fusion (CFF) module. The
scattered sub-motion-space eventually improves the generalization of our motion generation ability.

3.1 TEXTUAL DECOMPOSITION

The textual decomposition is designed to convert any given motion text into several atomic mo-
tion texts (each describing the motion of a simple body part in a short time period). Different
from the raw motion texts that contain abstract and high-level semantic meanings, which hinder the
model’s ability to understand open-vocabulary motion texts, atomic motion texts provide a low-level
and concrete description of different limb movements, which are shared across different domains.
Therefore, we use the text of atomic motions as an intermediate representation, first converting raw
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motion texts into atomic motion texts, and then learning the process of combining atomic motions
to generate target motions.

First, we construct atomic motion and text pairs from a limited raw motion-text paired dataset. Al-
though Large Language Models (LLM) have the generalization ability to describe any given motion
as an atomic motion, directly inputting a raw motion text into a large model will lead to a mis-
match between the generated description and the real motion behavior, where some works also said
before |[He et al.| (2023)); |Shi et al.| (2023). For this reason, we design a Fine-grained Description
Conversion algorithm to describe the movement of each joint and the relative movement relation-
ship between joints in a fine-grained way for a given 3D motion. Then, this fine-grained description
and the raw motion text are input into the LLM to summarize it into the final atomic motion de-
scription. The entire algorithm describes the movement of body parts in the input motion from three
aspects: speed, amplitude, and specific behavior; and divide the entire movement into at most P
time periods. Specifically, this fine-grained description conversion consists of four steps:

Pose Extraction. For each frame in a given 3D motion z;, we compute different pose descriptors,
including the angle, orientation, and position of a single joint, and the distance between any two
joints. Taking the angle as an example, we can use three joint coordinates, Jspouider> Jelbow, and
Jwrist, to compute the bending magnitude of the upper limb, which is formulated as:

Jshoulder — Jelbow Jwrist - Jelbow

)

||Jshoulder - Jelbow” ||Jwrist - Jelbow” ’
where © represents the inner product. For each frame in a motion, we compute pose descriptors for
different body parts.

Pose Aggregation. After obtaining the pose descriptors of each frame in a motion, we aggre-
gate adjacent frames into motion clips based on the pose descriptors, and obtain the descriptors
of the motion clips. Given the pose descriptors PD;_;, PD;, and PD, ; of three consecu-
tive frames, we first calculate the difference between two frames, APD,_; = PD;, — PD;_;
and APD; = PD;y; — PD;. We determine whether these three consecutive frames should
be merged into a motion clip based on whether the signs of APD; and APD,; are the same,
i.e., both positive or both negative. In this way, we start from time ¢ and continuously add the
{APD;,APD;1,---} with the same sign until the sign changes, and the result of addition is de-
fined as Spp, = i?‘T AP D, (T; is the consecutive time length from the starting time ¢), which

represents the intensity change of the pose descriptor during the motion clip. We then calculate the

. SpD, . . . .
velocity as Vpp, = ll;ié", where |Spp,| is the absolute magnitude of Spp,. Finally, we obtain

the clip descriptor for the motion clip starting from PD;, which is defined as the (intensity change,
velocity) pair: CDpp, = (Spp,, Vpp,)-

Clip Aggregation. Subsequently, we aggregate the motion clips based on the start time of its clip
descriptor. We uniformly divide a motion into P bins in time, and put each motion clip into a bin
according to its start time. The number of the bins P is set empirically. The motion clips that are
put in the same bin will be regarded as co-occurring motion clips.

Description Conversion. We further classify the motion clips to some categories based on the
intensity change and velocity in the clip descriptor, and convert it into the text description. For ex-
ample, we first determine the behavior of a motion clip is “bending” or “extending” according to the
clip descriptor C D pp; of angle, where the negative Spp, means “bending” and vice versa. Then,
when |Spp, | exceeds a threshold, it will be classified as “significant”; while when the Vpp, is below
some threshold, it will be classified as “slowly”. Finally, the converted text is “Bending/Extending
significantly slowly”.

Through this fine-grained description conversion algorithm, we first divide the given motion into
different several time periods (corresponding to P bins), then the motion in each time period is con-
verted to a fine-grained description composed of simple behaviors of body parts. Subsequently, we
input all these fine-grained descriptions and the raw text of the corresponding motion into the LLM,
and make it perform simplifications to summarize L atomic texts for each period, where L is the
number of body parts, and each atomic text corresponds to a body part from spine, left/right up-
per/lower limbs, and trajectory. An example of the atomic motion texts is shown in Fig. 2}right. The
atomic motion texts obtained by our algorithm are highly consistent with the real motion. During
the inference, for any given motion text, we provide corresponding textual decomposition examples
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Figure 3: Details of the compositional feature fusion (CFF) module, where the atomic text matrix
is input into the TMA module for feature extraction, and is fused with the motion feature by cross-
attention.

to ask the LLM to decompose the motion into several periods, and decompose each period into L
atomic motion texts describing simple body part movements.

3.2 SUB-MOTION-SPACE SCATTERING

As mentioned before, given the limited paired data, we can only learn a sub-motion-space, i.e., a
condensed subspace of the full-motion-space. To enhance the open-vocabulary generalization abil-
ity, we propose to learn the combination process from atomic motions to the target motion, thereby
rearranging the sub-motion-space we learned in a much more scattered form. Although some tar-
get motions are out-of-distribution for the sub-motion-space, we scatter the subspace to form the
full-motion-space, and convert the generative process from extrapolation into interpolation, thereby
significantly enhancing the generative generalization ability of our model.

Specifically, to enable our network to learn a scattering sub-motion-space, we propose to establish
the combination process of atomic motions instead of learning the target motion directly, which con-
sists of two main parts: (1) Text-Motion Alignment (TMA) and (2) Compositional Feature Fusion
(CFF).

Text-Motion Alignment (TMA). Previous T2M generation methods usually leverage the CLIP
model to extract text features, and then align the text feature into the motion space through some
linear layers or attention layers during training. However, the CLIP method is trained on large-
scale text-image pair data, where the text is a description given for a static image, which has a
huge gap with the description of motion (including dynamic information over a time period). As
a result, learning the alignment during training brings an extra burden and seriously interferes with
our network’s focus on learning the combination process from atomic motions to the target motion.
Therefore, inspired by the text-motion retrieval method TMR (Petrovich et al.| 2023)), we first use
the contrastive learning method to pretrain a text feature extractor TMA on text-motion pair data.
Compared to the CLIP encoder trained on text-image pair data, our TMA is trained on text-motion
pair data, which better aligns the text features to the motion space. Specifically, we use the InfoNCE
loss function to pull the positive pair (™, d") (a motion and its corresponding textual description)
closer, and push the negative pair (z*,d™~) (a motion and another textual description) away, to
ensure that the text features are aligned with the motion space. For M positive pairs, the loss
function is defined as follows:

Lnce = —ﬁ >

i

A A
(1 exp Ai; /T o exp Aii /T >’ )

op — 2T _Paa/r
gzjepr,;j/T gzjeXiji/T

where A;; = (m™,d"), and 7 is the temperature hyperparameter. Subsequently, as shown in Fig.
we use TMA as our text feature extractor for both the raw texts and decomposed atomic texts.
All these atomic text features are input to our next compositional feature fusion (CFF) module to
guide the motion generation. In this way, we greatly reduce the interference caused by text-motion
misalignment during the atomic motion combination learning process.
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Overall Architecture of Motion Generative Model. Our motion generative network contains two
different generative models, one corresponds to the base layer of Residual VQ-VAE (RVQ), and the
other corresponds to the residual layers. As detailed in Fig. 2] each generative model, either base-
layer or residual-layer, contains sequentially stacked transformer layer and Compositional Feature
Fusion (CFF), i.e., 1 transformer layer followed by 1 CFF module, repeated for K times. Different
residual layers share the same parameters, but have different input indicators, i.e., V' residual layers
correspond to indicator 1 to V. Since the indicators are the minor difference between the base and
the residual layer generative model, we omit it for convenience.

Given a motion x of F' motion frames, we first sample it with ratio r, and encode each of g down-
sampled frames with the motion encoder in RVQ. We then perform quantization by mapping the
encoded features to the code indices of their nearest codes in the codebook of base/residual layers,
denoted as I = [I1, s, ...In], where N = g Then, the code indices [ is first converted into a
one-hot embedding, and then mapped into a motion embedding m = [my,ma,...my] € RN*Pm
by linear layers, which is taken as the initial input to the generative models, where D,,, is the channel
dimension.

Given a text, and the atomic description (a L x P text matrix), we encode the raw text and the atomic
texts by our TMA text encoder, and the outputs are: 1) raw text feature 7,. € RPT where Dy is the
channel dimension; and 2) atomic text feature W € REXFP*Dw wwhere L is the number of atomic,
P is the number of motion periods, and Dyy is the channel dimension.

The motion embedding m is first randomly masked out with a varying ratio, by replacing some to-
kens with a special [MASK] token. Subsequently,the masked embedding m = [/, e, ...My] is
combined with the raw text feature 7., which is then input into a transformer layer Fr,ans former-
The outputs are refined raw text feature and refined motion feature, denoted as 7.0 and m! =
[ml,mi,..mY] € RN*Pm which is formulated as:

T,,,O, ml = ]:TranSfOTmET (Tr§ Th) 3)

The transformer layer enables the output /' to integrate both global information and the temporal
relationship.

Compositional Feature Fusion (CFF). The CFF module is designed to fuse atomic text features
into motion features, and guide the model to learn the combinational process from atomic motions to
the target motions. As shown in Fig. 3| we utilize the cross-attention mechanism to fuse the atomic
motion text feature 1/ into the motion feature in a spatial combination manner. Specifically, we split
the refined motion feature 7! into L parts along the channel dimension (L is the number of body
parts), and reshape the splitted motion feature and input it into a linear layer to obtain the updated
motion embedding m? € RE*NXDPw  Then, the 7 is taken as the Query, and the the atomic text
feature W is taken as the Key and the Value to conduct the cross-attention calculation. Since the
atomic text feature W is extracted by our TMA model, which has aligned the text space with the
motion space, the output motion feature of the cross-attention 3 € RL*NXPw could composite
the atomic motions explicitly and directly. The overall process of CFF module is formulated as:

m3 = Forp(m?; W). 4)

Eventually, the m3 goes through a linear layer and is reshaped to the final output motion feature
m° € RN>*Pm The m? is then combined with the refined raw text feature 7 and input to the next
transformer layer and the CFF module. The transformer layer and the CFF module are sequentially
stacked for K times. The output motion feature of the final CFF module is input into a classification
head and punished by a cross-entropy loss.

3.3 INFERENCE PROCESS

During the inference stage, for generative models of the base layer and R residual layers, we initial-
ize all motion tokens as [MASK] tokens. During each inference step, we simultaneously predict all
masked motion tokens, conditioned on both the raw motion text and the atomic motion texts using
in-context learning. Our generative models first predict the probability distribution of tokens at the
masked locations, and sample motion tokens according to the probability. Then the sampled tokens
with the lower confidences are masked again for the next iteration. Finally, all the predicted tokens
are decoded back to motion sequences by the RVQ decoder.
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Figure 4: Comparison with several state-of-the-arts on open vocabulary texts.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset Description. In the pre-training stage, we utilize various publicly available human motion
datasets, including MotionX (Lin et al., [2024), MoYo (Tripathi et al.| |2023), InterHuman (Liang
et al.,[2024b), KIT-ML (Plappert et al., [2016)), totaling over 22M frames. In the subsequent finetun-
ing stage, we train our generative motion model using the text-motion HumanML3D dataset. Dur-
ing Inference, we experiment on three datasets, where one is the in-domain dataset (HumanML3D)
while the other two are the out-domain datasets (Idea400 and Mixamo). Idea400 is the monocular
dataset consisting of 400 daily motions, while the Mixamo includes various artist-created anima-
tions. The datasets used in pre-training only contain motion data and do not contain textual descrip-
tions, while the datasets used in finetuning and inference contain motion data and annotated textual
descriptions. Evaluation Metrics and Implementation Details are introduced in the appendix.

4.2 COMPARISON

We first compare our approach quantitatively with various state-of-the-art methods. From the Tab.
it can be seen that our method significantly outperforms the other methods on the two out-domain
datasets (Idea400 and Mixamo) and also achieves comparable results on the in-domain datasets (Hu-
manML3D). As shown in Fig. |4} compared with other representative methods, the qualitative gener-
ations of our model are much more consistent with the open-vocabulary texts. Both the quantitative
and qualitative results fully illustrate that our two orderly coupled designs (textual decomposition
and sub-motion-space scattering) enable the model not to overfit the distribution of a limited dataset
but to possess strong generalization ability. Please check the appendix and the demo video for more
visualization results on generated open vocabulary motion.

4.3 ABLATION STUDY

To examine the specific function of each module in our novel DSO-Net, we conduct a series of
ablation studies focusing on the effect of pre-training on large-scale motion data, the effect of textual
decomposition, the effect of text-motion alignment, and the effect of compositional feature fusion.
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Method HumanML3D Idead00 Mixamo

FID] R-PrescionT DiversityT FID] R-PrescionT DiversityT FID] R-PrescionT DiversityT
MDM 0.061E:001 0 8175005 1 330004 0,815 0% (286006 1329006 (311002 3g0E005 T 353005
T2M-GPT 0.013F001  (,833+:002 ] 382+004 () 934002 () 314%.004 ] 33)E004 () 991+£002 () 389+.004 ] 35(+.004
MoMask 00115901 . 878+:002  1.390+001 (880001 (0.340+005  1.340F00% (209+001 (4155005 1 346+-005
MotionCLIP  0.082%F002  (.331%:002 ] 981+004 1 1194+002 (9374005 1 1954007 () 34002 0.228+004 1 176+005
Ours 0.027F002 09575002 1 388 F001 () g47F00T 7035007 1 338F 001 1865 """ 0.807T°°7  1.360=77

Table 1: Comparison with state-of-the-arts on one in-domain dataset (HumanML3D) and two out-
domain dataset (Idea400 and Mixamo).

R-Precision?

Methods FID| R-Topl R-Top2 R-Top3 Diversity !
Baseline 0.898F 002 () 160004 () 251F005 (.314F-004 1 342F005
Baseline+Pretrain 0.890%:002  (0.162+003  (.256+005 (.323+:004 1 340+005
Baseline+Pretrain + CFF 0.886+002  (.170F004  (.266%004 (.337+:006 1 333+006
Baseline+Pretrain + TMA 0.844%:002  (.380%005 () 539E005 () 630006  1,346% 004

Baseline+Pretrain + TMA + CFF  0.8475901  (0.449%006 (6131004 (7031004 1 33g+.004

Table 2: Ablation Study on the Idea400 dataset. The TMA and CFF represent the text-motion-
alignment module and the compositional feature fusion module.

Effect of Pretraining on Large-scale Motion Data. As we analyzed before, for open-vocabulary
motion generation, we need to establish the mapping between text-full-space and motion-full-space.
Therefore, to enlarge the motion space contained in our model, we leverage the large-scale unanno-
tated motion data to pre-train a residual vq-vae. As illustrated in the second row in Tab. 2] we gain
a 1% and 2% improvement in FID and R-Top3, which means enlarging the motion space learned in
the model is useful.

Effect of Compositional Feature Fusion (CFF). By generally comparing the results of the third
row and the second row, as well as the results of the last row and the fourth row, we can find
that through the CFF module we designed, the consistency between the generated motion and the
out-of-domain motion distributions(FID) and the similarity with their input text (R-Precision) on
out-of-domain datasets are significantly improved. This fully proves that by splitting the motion
feature channels and explicitly injecting the combination of atomic motions into the motion gen-
eration process, we can learn the combination process from atomic motions to target motions well
and scatter the sub-motion-space we learned. Eventually, the scattered sub-motion-space can effec-
tively convert the extrapolation generation process of out-of-domain motion into an interpolation
generation process, thereby significantly improving the generalization of the model.

Effect of Text Motion Alignment (TMA). As shown in the Tab. [2] after leveraging the text encoder
of TMA (row 4th), R-top3 almost doubles compared to the second row. Furthermore, we can see that
using the CFF module on top of TMA, R-top3 increases by 11% (4th row v.s. Sth row), while the
CFF module without TMA increases by only 3% (2nd row v.s. 3rd row). Both results demonstrate
the text feature aligned with motion space indeed release the burden of learning the atomic motion
composition process.

5 CONCLUSION

In this paper, we propose our DSO-Net, i.e. Texutal Decomposition then Sub-motion-space
Scattering, to solve the open-vocabulary motion generation problem. Textual decomposition is first
leveraged to convert the input raw text into atomic motion descriptions, which serve as our interme-
diate representations. Then, we learned the combination process from intermediate atomic motion to
the target motion, which subsequently scattering the sub-motion-space we learned and transforming
extrapolation into interpolation and significantly improve generalization. Numerous experiments
are conducted to compare our approach with previous state-of-the-art approaches on various open-
vocabulary datasets and achieve a significant improvement quantitatively and qualitatively.

10
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