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Abstract

Synthesizing high-quality 3D head textures is crucial for gaming, virtual reality,
and digital humans. Achieving seamless 360° textures typically requires expensive
multi-view datasets with precise tracking. However, traditional methods struggle
without back-view data or precise geometry, especially for human heads, where
even minor inconsistencies disrupt realism. We introduce HairFree, an unsuper-
vised texturing framework guided by textual descriptions and 2D diffusion priors,
producing high-consistency 360° bald head textures—including non-human skin
with fine details—without any texture, back-view, bald, non-human, or synthetic
training data. We fine-tune a diffusion prior on a dataset of mostly frontal faces,
conditioned on predicted 3D head geometry and face parsing. During inference,
HairFree uses precise skin masks and 3D FLAME geometry as input conditioning,
ensuring high 3D consistency and alignment. We synthesize the full 360° texture by
first generating a frontal RGB image aligned to the 3D FLAME pose and mapping
itto UV space. As the virtual camera moves, we inpaint and merge missing regions.
A built-in semantic prior enables precise region separation—particularly for iso-
lating and removing hair—allowing seamless integration with various assets like
customizable 3D hair, eyeglasses, jewelry, etc. We evaluate HairFree quantitatively
and qualitatively, demonstrating its superiority over state-of-the-art 3D head avatar
generation methods. https://hairfree.is.tue.mpg.de/

1 Introduction

Generating realistic and consistent textured 3D head avatars is essential for applications in gaming,
virtual reality, and digital human modeling. Achieving 360° appearance consistency in head texturing
is a persistent challenge, especially, because scalp visibility varies dramatically with dynamic hair
animations and different hairline shapes (e.g., straight, rounded, widow’s peak, M- or V-shaped,
receding), see Figurem Existing methods [[15} [16} [17, [14} 128 30,140} 1311 34, 164} 2, [70]] either bake
hair (and its specific hairline) directly into the texture—leading to visible artifacts when swapping to
any other hairstyle—or limit textures to the facial region, neglecting the full scalp. Moreover, other
approaches rely on large-scale multi-view datasets of human heads with precise tracking, making
them resource-intensive and less flexible.

This lack of flexibility undermines true compositionality, where any 3D hairstyle or other assets (hats,
helmets, eyeglasses, jewelry) can be seamlessly added, swapped, or animated without visible seams
or mismatches. For practical applications, a fully disentangled, hair-free scalp and face texture is
crucial, serving as a neutral base for compositional 3D layering. In this paper, we introduce HairFree,
an unsupervised generative texturing framework that generates high-quality, 360° head textures,
providing a fully bald, neutral base for 3D asset integration. Unlike existing methods, HairFree uses a
diffusion-based inpainting approach guided by textual descriptions and produces consistent, detailed
head textures without relying on any texture, back-view, bald, non-human, or synthetic training
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Figure 1: HairFree is a hybrid 2D/3D neural rendering method that synthesizes diverse, high-fidelity
360° bald human head textures given a 3D head mesh and a textual description. The generated bald
textures (columns 1, 4, 7) seamlessly integrate into classical graphics pipelines, allowing compatibility
with any 3D hairstyle—regardless of hairline type (in green)—in a fully compositional manner.

data. Our method is based on a compositional 2D human head prior, trained on 100K mostly frontal
images of faces, conditioned on RGB background, 3D head geometry, and partial facial semantics.
The 3D head geometry and facial semantics are estimated using off-the-shelf methods (Spectre [12],
FPM [68])).

At inference time, HairFree begins by generating a high-quality frontal view image of a face,
conditioned on accurate 3D FLAME geometry [35] and precise skin masks. This initial image is
projected onto the 3D FLAME texture space, creating a base texture. As the virtual camera moves
around the head, a progressive inpainting process is applied—rendering the visible regions and
filling in missing areas using the diffusion model in image space. These completed regions are then
re-mapped to texture space, maintaining texture consistency. The entire process is guided by the
same 3D-consistent FLAME geometry and skin masks, ensuring precise alignment across all views.
The semantic conditioning allows for skin-hair separation, effectively isolating and removing hair,
producing a clean bald texture. The final result is a complete 360° bald head texture, fully compatible
with various 3D assets, such as strand-based hairstyles (Figure ).

Our results demonstrate that HairFree generates high-quality, consistent, and detailed 360° textures
for fully bald heads, including both human skin (Figure[d) and non-human skin textures (Figure 3).
This opens up new possibilities for creating customizable 3D head avatars using textual descriptions,
without the need for extensive multi-view datasets or supervised training. Finally, we evaluate
HairFree both quantitatively and qualitatively, showing its superiority over state-of-the-art methods.

In summary, we make the following contributions:

» Compositional 2D head prior: a diffusion model that generates high-quality, photorealistic
face images, conditioned on 3D geometry, facial semantics, and text prompts, enabling precise
separation of hair and skin regions.

* 360° bald head texturing pipeline: a robust, unsupervised texturing method that synthesizes
consistent, high-quality 360° bald head textures from text prompts. The pipeline leverages
our compositional 2D head prior in combination with a generic inpainting prior. This method
integrates image-space inpainting with texture mapping onto a FLAME-based head mesh in UV
space. It generates full head textures without relying on any texture, back-view, bald, non-human,
or synthetic data, and generalizes to both human and non-human skin types.

* A dataset of 1,000 generated, high-quality, photorealistic human head textures, providing a diverse
and scalable resource for realistic avatar and face model development.

2 Related Work

Related work spans three areas: 2D image synthesis, mesh texturing, and 3D character generation.
While GAN- and diffusion-based models excel at face image creation and 3DMM or reconstruction
methods yield plausible head textures, none offer a compositional 2D prior that cleanly separates hair
and skin for full-head texturing on arbitrary meshes. Below, we review key advances in each area and
show how our approach fills this gap.



2D Image Synthesis: Generative Adversarial Networks (GANs) [19] and their StyleGAN suc-
cessors [25 23] 24} 13]] have set the standard for photorealistic image generation across objects and
human faces [61} 162} 132} 156], with StyleAvatar extending StyleGAN to texture maps for 3DMM-based
avatars [65,163]]. More recently, diffusion models [48} 152 5111155 145] 144]] trained on LAION-5B [57]]
surpass GANSs in quality and diversity, powering robust text-to-image synthesis [54]] and supporting
fine-grained control through arbitrary image-conditioning—landmarks, segmentation masks, depth
maps, or rendered geometry—yvia ControlNet [71]]. We fine-tune Stable Diffusion with ControlNet
conditioning to provide precise, identity-preserving guidance for our avatar texturing pipeline.

Texturing and Face Textures: 3D morphable models (3DMMs) [10], such as the Basel Face
Model [4'/]], use PCA on textured scans to represent facial geometry and texture, becoming standard
for face tracking [72] and neural rendering techniques like NeRF [43] and Gaussian splatting [27]].
However, their texture spaces lack diversity due to limited 3D data used to create it. Methods like
FlameTex [[L1]], Slossberg et al. [59], Gecer et al.[[16}[17], and CLIPFace [2] expand texture variety
using in-the-wild images. CLIPFace uses the FLAME model [35] with a StyleGAN-like architecture
for high-quality textures. DreamFace [70] uses CLIP-based selection for coarse geometry, then
refines details with Score Distillation Sampling (SDS), combining generic and texture latent diffusion
models to generate diverse, high-quality frontal textures of the facial region. FitMe [29] (GAN
inversion), Relightify [46] (diffusion), and Luo et al. [40] (StyleGAN) reconstruct photorealistic
facial textures directly from images but also cover only faces, not full heads, same as UV-IDM [33].
Most of these methods bake at least some hair into the texture, preventing compositional layering
with separate hair assets.

3D Character Generation: Several recent works generate 3D textures and geometry via “gen-
eration by reconstruction,” synthesizing multiple 2D views and then lifting them into 3D [37, 49|
4,142,153, [13L [7]]. General-purpose methods like TEXTure [53], Text2Tex [6], and SceneTex [S]]
use diffusion-based priors in a generate-then-refine pipeline to texture arbitrary objects and scenes.
Human-specific approaches include TADA [36] and HumanNorm [21]], which recover full body assets
via DMTet [58] and SDS optimization [49]], and FaceLift [41], which directly predicts multi-view im-
ages with a latent diffusion model before reconstructing with Gaussian splatting. TECA [69] further
introduces mesh-volumetric disentanglement of skin and hair under an SDS loss. Arc2Avatar [[18]]
produces high-quality 3D heads from single images by leveraging a human face foundation model
and full 3DMM integration for superior realism and identity preservation. None of these methods are
designed to generate specifically bald textures or fully disentangle hair. In contrast, our compositional
2D diffusion prior disentangles hair from skin in a single-stage process, yielding fully editable,
high-fidelity 360° head textures.

3 Preliminaries: Diffusion Models

Our 2D human head prior is a latent diffusion model (LDM) [54], fine-tuned to transform rendered
head meshes, partial face parsing masks, and RGB backgrounds into photorealistic human heads.

Denoising Diffusion Probabilistic Model (DDPM): In the DDPM framework [20]], noise-
corrupted samples are progressively denoised over 7" timesteps. The forward process adds Gaussian
noise A/ (0,I) in T steps using a variance schedule {3; }:

Q(Xt|xt71) = N(Xﬁ vV1- ﬁtxtfhﬁtI)- (D
The reverse denoising process, parameterized by ey, approximates pg(x;—1|x;):
Po(Xi—1[xt) = N (%15 po(Xe, 1), Ep (x4, 1)), 2
with an objective function:
Lpppm = Exy emnr(0,1),¢ {HE — €g(Xt, t)”%} 3

Latent Diffusion Model (LDM): Operating in the latent space, LDMs [54] use a pre-trained VAE
to map images to latent codes, reformulating the objective as:

Lipm = Ee(x),emn(0,1),¢ [HG — €9z, t)lI%}, 4

where z; is the latent code at timestep .
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Figure 2: System Overview: (A) Data Processing: Estimate face parsing, 3D head mesh, and
remove the foreground to form compositional inputs. (B.1) Training Prior: Fine-tune an LDM via
ControlNet using these inputs and a generic “face” prompt. (B.2) Inference Prior: Swap in a generic
LDM-Inpainting prior. (C) Texture Generation: Generate a frontal view, map to UV space, iteratively
render "seen" and inpaint "unseen" regions while moving the camera, building a full 360° texture.
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4 Method

Figure 2] outlines our system. We first train a compositional 2D head prior via latent diffusion on
predominantly frontal face images, conditioned on rendered FLAME meshes, face parsing masks,
and backgrounds. At inference, we use the FLAME model to condition the generation of a frontal
view, project it into UV space, and then iteratively fill in unseen texture regions. The following
sections describe (1) our diffusion prior and its training and (2) the progressive texturing process.

4.1 Compositional 2D Human Head Prior

We fine-tune a Latent Diffusion Model (LDM) using ControlNet to generate high-quality
images conditioned on specific input features. ControlNet operates as a trainable copy of the base
diffusion model (Stable Diffusion 2.1 [54]]), which is kept frozen in locked mode during training. This
ensures stable training while ControlNet learns to map conditions from a dataset of 100K images
(FFHQ [26]] and CELEB-A-HQ [22])).

We condition our model using a set of inputs, collectively denoted as C, which include skin masks
(Cskin)» hair masks (cpyir), ears and accessory masks (Ceyrs), @ 3D head mesh (cyesh) rendered in 2D,
and background information (Cpackgrouna)- These conditions are combined as follows:

C= {Cskim Chair; Cears; Cmesh cbackground}- (5)
The training objective is defined as:
2
Lconp = Eyzq t,c.e~n(0,1) [Hﬁ —€o(z1,t,C) ||2} . (6)

To further enable text-based conditioning, we employ a CLIP text encoder, transforming prompts into
embeddings that guide image generation via cross-attention layers. Classifier-free guidance (CFG) is
applied to balance text adherence and image quality, adjusting the model’s prediction as:

€9(2t,C) = (1 +w) - €9(2zt, C) — w - €g(2), @)

where w controls the guidance strength.

Guided Inpainting: At inference, we replace the locked LDM with an inpainting variant, allowing
for guided completion of missing texture regions. We introduce an inpainting mask (cp,sx) specifying
areas to be filled, while maintaining coherence with the existing texture using the same conditioning
set C. The inpainting objective is defined as:

['INP = Ezo,t,C,cmask,eNN(OJ) {He — €9 (Zta t, 07 Cmask) ||§} . (8)

Training Details: Our prior is trained for ~ 1500 GPU hours on an NVIDIA H100 (see [34] [71]).



4.2 3D Texturing Pipeline

First, we render skin and ear masks aligned to the 3D FLAME model [35]] from multiple viewpoints
and use them to condition our 2D diffusion prior, producing consistent pixel outputs. Next, these
pixel colors are projected onto the mesh’s UV atlas in an iterative process: visibility checks ensure
only previously untextured regions are filled, while morphological erosion and bilinear interpolation
refine boundaries and smooth transitions. Together, these steps yield a high-quality 360° head texture.

Rendering 3D-Consistent Input Controls: At test time, we generate 3D-consistent conditioning
signals using the FLAME model. Specifically, we extract skin and ear maps aligned with the FLAME
mesh, while omitting features like hair, earrings, and eyeglasses to ensure clean, bald head generation.
The background is set to a uniform color to minimize artifacts, keeping the model’s focus on the head
region. The FLAME model, a 3D Morphable Model (3DMM), parameterizes human head shapes and
expressions through a low-dimensional latent space. It outputs a 3D head mesh M = fgame(«, 6, 0),
where M is represented by vertices {v; € R3}Y , and a fixed topology of faces F. These vertices are
controlled by shape parameters «, expression parameters J, and pose parameters 6, enabling precise
manipulation of head structure and expressions.

To capture a complete 360° representation, we render the mesh from 14 viewpoints by rotating a
virtual camera around the head. Each vertex v; = (z;,¥i,2;) ' is projected onto the 2D image plane
using a perspective transformation, where the camera intrinsics K and extrinsics R, t define the
projection as p; = 7(K(Rv; + t)). The perspective division is given by 7(x) = (£, %) for a 3D
point x = (z,y,2)".

These rendered meshes and accurate skin/ear segmentation masks serve as the conditioning signals
for our compositional 2D image prior.

Progressive UV Mapping: Guided by our 3D-consistent input controls, the generated images of
the 2D prior align with the FLAME mesh. Each vertex v; on the 3D mesh has a corresponding
UV coordinate (u;,v;), allowing us to map surface points to a 2D texture space. For each view,
visible pixels on the 2D render are mapped to UV coordinates (u, v) based on the surface-to-UV
correspondence. Each pixel (z, y) in the rendered frame has an RGB color value col(z, y) = [r, g, b],
which we splat to the texture space at the corresponding (u, v) locations.

Instead of computing the images of all views at once, we iteratively render the images using already
existing texture parts. To improve texture quality and avoid blending artifacts near boundaries, we
apply a morphological erosion operation to the existing UV texture mask before accumulating new
color information. Specifically, for a pixel (z,y), we compute its corresponding UV coordinates
(u, v) using precomputed channels:

u = Luchannel(y7 I’) : RJ ’

v = chhannel(ya .T) : RJ ’ (9)

where Uchannel a0d Uchanne are UV maps providing (u, v) coordinates for each pixel and R denotes the
image resolution. These (u, v) values are rounded down to the nearest integer for indexing into the
texture map.

We conditionally update the UV texture based on visibility checks, ensuring that only new visible
regions accumulate:
col(z,y) if visible at (u,v),
T = 10
(,0) {T(u, v)  otherwise. (19)
For each pixel (x, y) with color col(z, y) = [r, g, b] in the 512 x 512 image space, we compute its UV
coordinates on the 1024 x 1024 atlas and define ug = [u], u; = [u], vo = |v], and v; = [v]. We
then “splat” col(x, y) into each of the four texels (ug,ve) € {(uo,vo), (u1,v0), (ug,v1), (u1,v1)}
by setting:
T(ug,vs) = col(x,y) if that texel is not yet filled. (11)
This effectively closes small gaps and holes in the accumulated texture. Applying this process across
all pixels and viewpoints yields a full 360° UV texture.
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Figure 3: Qualitative Comparison with State-of-the-Art: We compare HairFree against recent
3D avatar techniques—FaceLift [41], Arc2Avatar [18], DiffSplat [38], HumanNorm [21]], Dream-
Craft3D [60], Magic123 [50], TECA [69], TADA! [36]], Relightify! [46]], Zero123-XL [39]], Dream-
Face [[70], and FitMe [29]—on “Mark Ruffalo” and “Beyonce” with explicit bald-head constraints.
HairFree delivers the most accurate 360° head shapes, realistic textures, and uniform lighting.

5 Experiments

We evaluate our proposed method in two critical aspects: (1) the compositional 2D human head prior
and (2) the texture generation pipeline. Our 2D head prior offers precise, region-specific control over
facial components, including skin, hair, and ears. The texture generation pipeline is assessed based
on its ability to produce photorealistic, high-quality human head textures, maintaining diversity in
ethnicity, age, and style, ensuring accurate texture synthesis throughout the full 360° range.

5.1 2D Human Head Prior

Comparison with State-of-the-Art 2D Bald Proxy Methods: To qualitatively evaluate the 2D
human head prior, we compare it as a bald proxy method with the following approaches: (i) diffusion-
based generic inpainting (LDM [54]), (ii) GAN-based 2D bald proxy estimation (HairMapper [67]),
and (iii) the state-of-the-art hair editing method HairCLIPv2 [66]. The results highlight the ability of
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Figure 4: Photorealistic Rendering Results. Without using any captioned text prompts during
training, our method accurately follows text prompts at test time. (A) Demographics Attributes:
Rendered textures demonstrating variations in age and demographics across head avatars. (B)
Celebrity Renderings: Multi-view renderings and textures of famous celebrities. (C) Varied Meshes
and Nationalities: Showing additional variety in nationality-based text prompts applied to different
meshes. Corresponding text prompts, additional results and camera views are available in Appendix@

our approach to preserve more accurate head shapes and poses while effectively removing hair. The
results are shown in Appendix [A]

Quantitative Evaluation - ControlNet Strength (CS): We evaluate our model using FID, KID,
LPIPS, and PSNR, across different ControlNet strengths (CS). By reducing CS, we can generate
more diverse examples, enabling the synthesis of novel head views that do not exist in the training
data, see Table[2]and Figure [6](C).

Ablation - Inpainting (RGB): We compare the performance of our approach with and without
inpainting. As shown in Figure[6](A), the model without inpainting is limited to generating accurate
frontal views, while using gradual inpainting from front to back enables the synthesis of a broader
range of views, including extreme side, back, and top perspectives (not present in the training data).

5.2 3D Textured Avatar Synthesis

Comparison with State-of-the-Art 3D Methods: We conduct a qualitative comparison against
recent state-of-the-art 3D avatar generation methods. Zero123-XL [39] and Magic123 [50] rely on
2D diffusion-based priors using Score Distillation Sampling [49], which often leads to oversaturation,
low detail preservation, and inconsistent geometry across views. Tada![36], which is specialized for
humans, is also SDS-based and struggles with oversaturation, while HumanNorm([21] introduces
unnatural reddish skin tones. DreamCraft3D [60] and DiffSplat [38]] leverage 3D Gaussian splatting,
which improves efficiency but tends to produce low-frequency details and blurry textures. TECA [69]
generates clothing in addition to the head. FaceLift [41]] produces relatively accurate head shapes but
may hallucinate hair instead of adhering to the bald constraint, and like many other methods, it suffers
from extreme view-specific illumination artifacts (e.g., shadows). Arc2Avatar [18]], Relightify [46]],



Krusty the Clown Sailor Moon Wonder Woman

3 31 g8

Spiderman Frankenstein’s Monster

Figure 5: Generalization Properties. Our method enables blending between photorealistic and
stylized renderings through the classifier-free guidance (CSG) and control strength (CS) parameters.
Despite being fine-tuned only on realistic human faces, it generalizes strongly to diverse, non-uniform
bald textures, enabling appearances beyond natural human skin. CSG: Impacts the alignment with the
text. CS: Lower values relax the model’s adherence to our prior, allowing for greater style diversity
(see row 3). Additional results are available in Appendix@

Method Runtime  Stages Quality
FitMe m@nutes 2 M@d CS PSNRT MSE| LPIPS| FID| KIDJ
Drzej‘r’;'f 3 ziﬁﬁzz f &;‘i 10 1838 0018 024 66  0.0027
Relightif minutes 5 Mid 0.75 17.14 0.023 0.29 11.5  0.0056
Tt o 1 Low 05 1505 0035 039 279 00167
N . 0.25 12.53 0.060 0.53 789  0.0518
TECA minutes 1 Low 0 1027 0097 07268 38 04706
Magic123 1 hour 2 Low : : : :
Dﬁiﬁﬁgﬁfﬁ) 31?1%1:1? g Pﬁigg Table 2: Quantitative Analysis/Ablation: We
DiffSplat seconds 1 Mid vary ControlNet Strength (CS) from O to 1 and
Arc2Avatar  1-2hours  2-3 Mid measure image similarity over 10K samples. At
.FaceLift seconds 1 Hfgh CS = 1.0, outputs closely match the input; as CS
HairFree (Our)  minutes 1 High  decreases, diversity increases, enabling the synthe-

Table 1: Quantitative Comparison with sis of bald, back-view, and extreme side-views.

State-of-the-Art: Runtime, stages, quality.

DreamFace [[70], and FitMe [29] all struggle to generate a complete, bald scalp. Arc2Avatar produces
a full 360° avatar but suffers from entanglement issues, with visible clothing and a non-bald scalp
showing a hairline instead of clear skin. Relightify and FitMe both reconstruct texture and geometry
together rather than focusing on texturing, limiting their ability to produce consistent high-quality
results. Neither method effectively addresses hair removal, and their outputs are of medium quality.
DreamFace is further limited to generating only the face region without the scalp, and has limited skin
diversity. Most of the baselines fail to enforce baldness, introducing unwanted hair despite explicit
constraints. Additional quantitative analysis with respect to runtime, method complexity, and image
quality is given in Table[I] Our approach achieves the highest fidelity 360° textures, setting a new
benchmark for textured 3D avatar quality (Figure [3).

Qualitative Evaluation: We demonstrate the diversity and realism of our textures across various
text prompts, including photorealistic, celebrity, and stylized outputs (Figures 4] and [5). Additional
results covering fantasy, artistic styles, animal faces, and material synthesis are in Appendix [A]

Ablation - Classifier-Free Guidance (CSG): In Figure (B), we demonstrate how varying CSG
affects the alignment of the output with text. Higher CSG values lead to outputs more aligned with
the text prompt, while lower values relax this alignment and result in a photorealistic appearance.
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Figure 6: Ablation Studies: (A) Without our progressive inpainting, only frontal views are accurate.
(B) Higher CSG values improve adherence to text prompts; lower values produce a more natural look.
(C) Reducing ControlNet strength gradually weakens alignment with the input conditioning signal.

w/o Inp
P

L) ;

(A) Inpainting Order (B) Classifier-Free Guidance Scale (C) ControlNet Strength

1Q
¥@.
&

Ours

User Study: We conducted a user study for
Person 1 (87 users) and Person 2 (94 users),
asking to select the top 1 method in terms of
avatar plausibility. Each user was shown one
frontal, two side, and one back view of avatars
generated by 13 different methods (Figure 3]
Appendix[A). For Person 1, HairFree led with
40.23% of participants, followed by Dream-
Craft3D at 18.39%, FaceLift and Arc2Avatar
tied at 8.05% each, and DiffSplat with 6.90%.
For Person 2, HairFree led with 39.36%, fol-
lowed by DreamCraft3D at 14.89%, FacelLift
at 9.57%, and Arc2Avatar and DiffSplat tied
at 7.45% each. These results confirm the su-
periority of our method (Figure [7).

Person 1: Mark Raffals Person 2: Beyonce

Figure 7: User Study: Distribution of user prefer-
ences among the selected methods for two individuals,
highlighting the preference for our method.

Comparison with Inpainting Methods:
Figure [§] compares three approaches for in-
painting in the UV space: (1) a naive method
where all non-frontal views are filled with
a uniform color, resulting in visible seams,
(2) Content-Aware Fill (CAF)-based inpaint-
ing in UV space, which also produces seams,
particularly at the back, and (3) our method,
which performs inpainting directly in image
space. Unlike the other methods, our ap-
proach seamlessly preserves intricate patterns  Naive Inpainting  Content-Aware Fill Ours
without any visible seams in the UV space,
even for intricate non-human skin textures.

(Renderings):

Figure 8: Comparisons: Inpainting in UV Space.

Limitations & Societal Impact: Our method is sensitive to lighting inconsistencies—addressable
via intrinsic decomposition (e.g., IntrinsicAnything [8]) for relightable textures. Text prompts inherit
any ethnicity or appearance biases from the pre-trained diffusion prior. High-fidelity textures could
enable identity spoofing or deepfakes, so responsible, careful use is crucial.

6 Conclusion

We introduced HairFree, a diffusion-based framework that generates realistic, 3D-consistent bald
head textures by conditioning a large latent diffusion model on face parsing maps, 3D meshes, and
background cues. During inference, guided inpainting fills unseen regions as the camera moves,
yielding seamless 360° textures. Our compositional 2D prior cleanly separates skin from hair, enabling
flexible 3D layering of external assets—such as strand-based hairstyles—independent of hairline.
Our evaluations demonstrate that HairFree delivers state-of-the-art fidelity and compositionality
compared to existing 3D head avatar methods.
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+ accessories (except from earrings) + background

rendered mesh, hair mask

Figure 9: Outputs from three models trained with progressively richer conditioning inputs: (left)
rendered mesh with hair mask only; (middle) + accessories (excluding earrings); (right) + background.
All examples are from an early training epoch and highlight the effect of each conditioning signal.
The model gradually learns to associate additional inputs with their corresponding visual semantics.
Note that earrings are not included in the conditioning, which causes them to appear or disappear
inconsistently across examples. The final model, trained for longer, achieves more stable results and
can fully remove hair during inference.

A.1 Ablation Study on Semantic Conditioning Signals

The face and skin mask covers all facial regions including
eyes, nose, lips, etc, teaching the model what skin and
facial features look like (see “Devised Input Conditioning”
in Figure[2). The hair mask is used during training only,
helping the model learn hair locations so it can remove
hair at inference (e.g., for bald heads). Ear masks are used
during both training and inference; at inference, we use
precise 3D ear masks from FLAME for accurate, mesh-
aligned ear synthesis. Accessory masks allow the model to
learn to recognize and remove the accessories by omitting
the mask at test time. Note that during training time those
semantic masks can not be derived from the 3D mesh. See

Figure 10: Examples showing inconsis-
tent ear synthesis when ear masks are

Figure ) and Figure [I0] for an ablation study on semantic
conditioning signals.

Janus effect: The Janus effect arises because the Con-
trolNet is trained mostly on frontal and side views. When
directly conditioned on a back-view mesh and semantic
mask, especially with the default ControlNet strength of
1.0, it tends to hallucinate a face, having never seen such
inputs during training (see Figure[6](A), Figure[TT). Pro-
gressive inpainting resolves this by gradually completing

omitted. Each column shows a bald head
generated from the same text prompt
(e.g., “old Asian woman”) with zoomed-
in ear crops. Without explicit ear guid-
ance, the model produces visible varia-
tions in ear shape, size, and placement
across samples. This instability indicates
that accurate, mesh-aligned ear-mask su-
pervision is crucial for maintaining struc-
tural consistency during generation.

the texture from front to back, so later views only need

to fill in small missing regions. Lowering ControlNet strength during these steps prevents over-
conditioning on unfamiliar views. Additionally, we use a single face and skin mask that combines all
facial attributes (eyes, lips, nose, etc.) into one region. We avoid using separate masks for each part,
as many of these features are small and prone to inaccuracies in the off-the-shelf face parsing model.
See “Devised Input Conditioning” in Figure 2] for an example of this mask.

A.2 Controlnet Strength Influence on Distribution Shift

The ControlNet strength has a major influence on shifting from one distribution to another, see
Figure [I2] Unfortunately, we don’t have a large dataset of bald heads, where we could directly
evaluate the generation of the backside of the head. However, we conducted an experiment on
changing the distribution from human faces to cat faces (which is an extreme case of a distribution
shift), where we could analyse the effects of the ControlNet Strength. Specifically, we applied our

15



g
I=3
o
Y . . | 1
as 4
i am, "= S ;
s ) ey v 7
<+ o= w ] @*
T N -, . L L
« @ = | ]
2 =» ~ 4
O b s ;
" L Y
I - 'rd (&)
=7
~ F T |
2 == | ]
i @m - S v
2 g 3
S G &) i) 47_\ » -
- o= )
s g " !
S x (\ ’ _"'

Figure 11: Ablation on the number of conditioning views: We evaluate the effect of reducing the
number of input views used for texture generation. Row 1 shows the 14 control views. Row 2 shows
our full setting with 14 views. Rows 3 and 4 show results with 12 and 11 views, respectively. Red
highlights indicate artifacts that emerge as view coverage decreases.

B=00 B=0.25

3 | FID | KID
1.0 | 231.32 | 0.2074
0.75 | 228.46 | 0.2035
05 | 212.10 | 0.1910
0.25 | 39.88 | 0.0237
0 | 81.93 | 0.0347

Table 3: Quantiative Control-
net strength influence (con-
trolled with (3) on distribution
shift.

Figure 12: Visualization of the distribution shift between the cat
and the human face distribution by controlling the ControlNet
strength.

method to the AFHQ-Cat dataset from StarGAN v2 [9], a commonly used dataset from a significantly
different domain. We measured FID and KID scores at various values, see TableEl For higher values
of ControlNet strength (e.g., 8 >= 0.5), the model remains biased toward synthesizing human faces.
This prevents effective generation of samples from the cat distribution, resulting in high FID/KID
scores and poor visual alignment with the AFHQ domain. At 8 = 0.25, the ControlNet guidance
is reduced enough to allow the diffusion prior to generate realistic cat faces, while still retaining
enough conditioning to preserve global head structure. This balance aligns well with the AFHQ-Cat
distribution, as reflected in the significantly improved scores. At 8 = 0, although the model continues
to produce cat faces, the samples are often zoomed-in facial crops rather than full cat heads, deviating
from the AFHQ distribution. In contrast, at 5 = 0.25, structural guidance helps preserve head
framing consistent with the dataset.

A.3 Fixed & Varied Meshes with & without Hair

Figures [[3] and [I4]illustrate texture maps rendered on head models from three different views,
highlighting the consistency of our method in maintaining photorealistic details. The examples span
a diverse range of ethnicities and age groups, emphasizing the versatility of our approach in capturing
the nuanced characteristics of human faces.

To explore the expressive capabilities of our method, Figures [[5]and [I6]contain examples generated
from text prompts with "fantasy" elements. The rendered textures demonstrate the ability of our
method to produce imaginative and stylistic results, maintaining consistency and coherence across
different views.

To analyze the ability of our method to replicate artistic styles, Figures[I7] and[T8]present generations
inspired by famous paintings and painting techniques. These results highlight how our approach
captures distinct brushwork, color schemes, and compositional elements, preserving the essence of
each referenced style while maintaining structural coherence.
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Elderly WMongpolian female, light olive skin
Widdle-aged Chilean male, warm +an skin
Young Somali female, deep dark brown skin
Elderly Tnuit male, pale beige skin
Youthful Thai male, light golden skin
Elderly Moroccan female, sandy-toned skin

Widdle-aged Turkish male, olive-brown skin

Figure 13: Photo-Realistic Results (I): Rendered texture maps of the head are shown from three
different views. The textures are displayed across a range of ethnicities and ages, illustrating the
versatility and effectiveness of our method in handling diverse facial features with high fidelity.
These results correspond to the Figure: "Photorealistic Rendering Results," in the main paper, further
demonstrating the robustness of our approach in capturing fine-grained details.

To further evaluate versatility, Figure[T9]contains synthesized animal faces, illustrating the method’s
capability to generate lifelike textures and anatomical consistency. The results reflect detailed fur
patterns, expressive facial structures, and species-specific characteristics, demonstrating both realism
and artistic stylization.

Finally, Figures[20} 21] 22] [23]and 24]include generations resembling various materials and gemstones,
emphasizing the model’s ability to synthesize diverse surface qualities. From the translucency of
crystals to the roughness of natural stone, the results capture essential visual properties such as light
refraction, texture variation, and intricate reflections, reinforcing the adaptability of our technique
across different material types.

A4 Comparison with 2D Bald Proxy Baselines

In Figures[25]and [26] we compare our approach to several 2D baseline methods, including LDM
Inpaint [54], HairMapper [67], and HairCLIPv2 [66]. Our results are shown alongside bald proxy
and hairstyle editing methods, demonstrating superior preservation of head shapes and poses while
addressing limitations such as quality degradation and inconsistent outputs. This highlights the
robustness of our 2D diffusion prior.

A.5 Texture Maps Results

Finally, Figure 27] provides additional examples of celebrity textures generated from text prompts
using fixed meshes. These results include a variety of skin tones, facial features, and expressions,
showing the versatility of our method in creating high-quality, photorealistic faces. The generated
textures capture the unique facial features that distinguish each celebrity, such as specific bone
structures, eye shapes, and other signature traits. By handling a wide range of characteristics, these
examples highlight how our approach maintains realism and consistency across different celebrity
textures. This demonstrates the robustness of our method in accurately capturing detailed facial
features and natural variations.
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Young Brazilian female, golden-brown skin
Elderly Swedish male, rosy fair skin
Widdle-aged Japanese male, light beige skin
Elderly Chivese female, even-toned skin
Widdle-aged Indian male, medium-brown skin
Vouthful Haitian male, dark-+oved skin
Wature Ethiopian male, rich dark skin

Figure 14: Photo-Realistic Results (II): Rendered texture maps of the head are shown from three
different views. The textures cover a range of ethnicities, ages, and facial features, demonstrating
the versatility and effectiveness of our method in capturing diverse characteristics. These results
correspond to the figure "Photorealistic Rendering Results" in the main paper, illustrating the ability
of our approach to produce high-quality, realistic faces with consistent detail across views.

A: Elderly Mongolian female, light olive skin H: Young Brazilian female, golden-brown skin
B: Middle-aged Chilean male, warm tan skin I1: Elderly Swedish male, rosy fair skin

C: Young Somali female, deep dark brown skin J: Middle-aged Japanese male, light beige skin
D: Elderly Inuit male, pale beige skin K: Elderly Chinese female, even-toned skin

E: Middle-aged Turkish male, olive-brown skin L: Middle-aged Indian male, medium-brown skin
F: Youthful Thai male, light golden skin M: Youthful Haitian male, dark-toned skin

G: Elderly Moroccan female, sandy-toned skin N: Mature Ethiopian male, rich dark skin

Table 4: Skin tones and demographic descriptions for the results shown in the main paper (“Photore-
alistic Rendering Results”).

glowing faintly white

Pale lavender skin with a velvety texture and faint glowing freckles
Watte, ashen-gray skin with subtle tribal-like markings
Ocean-blue skin with a pearlescent sheew and fine scales alovg) the surface
Soft, iridescent skin shifting between pink and blue hues
Smooth metallic skin with a golden hue and faint glowing veins

Figure 15: Abstract (I): Rendered textures generated from text prompts with "fantasy" elements,
shown from three different views. These textures show the consistency and variety of our method in
generating imaginative and stylistic facial features.
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"fantasy" elements,

shown from three different views. These textures show the consistency and variety of our method in

Rendered textures generated from text prompts with
generating imaginative and stylistic facial features.

Figure 16: Abstract (IT)
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A face emeraging from the bold, swirling strokes and bright hues of 1
Vav Gogh's 'Sunflowers,” creating a lively, textured expression. |

d A face painted with thick, textured brushstrokes and vivid colors,
1 evoking the energy and emotion of Jackson Pollock’s abstract expressionisim.

: A face with vibrant, non-waturalistic colors and exagoerated features,
1

inspired by the expressive intensity of Edvard Munch's 'The Scream.'

Figure 17: Painting(s) Styles (I): Rendered textures generated from text prompts with "fantasy"
elements, shown from four different views. These textures show the consistency and variety of our
method in generating imaginative and stylistic facial features.
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: A sereve woman with a subtle smile and soft gaze,
! resembling the famous WMona Lisa portrait.

: A sereve woman's face in the swirling, vibrant colors and
1 expressive brushstrokes of Van Gogh's 'Starry Night.'

d A woman's face rendered iv intricate patterns and goldew hues,
1 nspired by Gustav Klimt’'s "The Kiss,' with flowing, ornate details.

| A voung woman with a turban and pearl earring,
! capturing the essence of "The Girl with a Pearl Earring.’

Figure 18: Painting(s) Styles (II): Rendered textures generated from text prompts with "fantasy"
elements, shown from four different views. These textures show the consistency and variety of our
method in generating imaginative and stylistic facial features.
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Figure 19: Animals: Rendered textures generated from text prompts with "animal" elements, shown
from four different views.
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1 A face carved from malachite, deep green with swirling patterns,
! exuding transformation and vitality,

1 A face carved from turauoise, with vibrant blue-green towes,
{ exuding tranguility and protection.

1 A face composed of moonstone, with soft, luminous white hues, 1
! embodying intuition and calm.

Figure 20: Gemstones/Materials (I): Rendered textures generated from text prompts with "gem-
stone/material" elements, shown from four different views. These textures show the consistency and
variety of our method in generating imaginative and stylistic facial features.
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! A face crafted from rusted metal, with corroded, weathered features and a deep, H
{ earthy patina, symbolizing history and resilience.

| A face crafted from saud, with soft, textured features that shift and chavge,
! evoking the travsient, ever-changing nature of the deser+t.

| A face crafted from spivel, deep red with a brilliant shive,
! symbolizing strength and resilience.

A face formed from jadeite, deep green and polished,

symbolizing prosperity and protection.

1 A face formed from labradorite, with shimmering blue and green hues,
! evoking mystery and transformation,

Figure 21: Gemstones/Materials (IT): Rendered textures generated from text prompts with "gem-
stone/material" elements, shown from four different views. These textures show the consistency and
variety of our method in generating imaginative and stylistic facial features.
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A face made of alexandrite, changing hues from green +o red,
embodying versatility and magjic.

Figure 22: Gemstones/Materials (III): Rendered textures generated from text prompts with "gem-
stone/material" elements, shown from four different views. These textures show the consistency and
variety of our method in generating imaginative and stylistic facial features.
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: A face made of polished marble, with smooth, sculpted features and a pristive,
! timeless beauty, symbolizing elegance and enduravce. 1

| A face made of stone, with strong, solid features and a weathered, 1
{ timeless quality, exuding durability and endurance. .

i A face made of tourmaline, with mukti-colored +ones shifting across +he face,
! symbolizing balance and harmony.

Figure 23: Gemstones/Materials (IV): Rendered textures generated from text prompts with "gem-
stone/material" elements, shown from four different views. These textures show the consistency and
variety of our method in generating imaginative and stylistic facial features.
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1 A face made of turquoise, vibrant blue-green and smooth, |

3 exuding serenity and protection. |

i A face sculpted from bloodstone, dark green with red specks, 1
! symbolizing conrage and vitality, 1

| A face sculpted from fluorite, with travslucent purples and greevs, !
! exuding clarity and healing. |

| A face shaped from chrysoprase, light green with a smooth texture, ;
! radiating peace and renewal, 1

Figure 24: Gemstones/Materials (V): Rendered textures generated from text prompts with "gem-
stone/material" elements, shown from four different views. These textures show the consistency and
variety of our method in generating imaginative and stylistic facial features.
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Original Img Ours LDM Inpaint HairMapper HairCLIPv2

Figure 25: Comparisons with State-of-the-Art 2D Bald Proxy Methods (I): Our approach (with
CS 0.45) is shown alongside bald proxy and hairstyle editing methods. LDM Inpaint [54] uses
the SD 2.1 inpainting model with a full background mask, similar to ours. HairMapper [67] and
HairCLIPv2 [66] (prompt: “bald”) are bald proxy and hairstyle editing methods, though both degrade
image quality; HairCLIPv2 generates hair due to limited bald data in training. Our method addresses
this limitation, while preserving head shapes and poses more accurately.
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Original Img Ours LDM Inpaint HairMapper HairCLIPv2

Figure 26: Comparisons with State-of-the-Art 2D Bald Proxy Methods (IT): Our approach (with
CS 0.45) is shown alongside bald proxy and hairstyle editing methods. LDM Inpaint [54] uses
the SD 2.1 inpainting model with a full background mask, similar to ours. HairMapper [67] and
HairCLIPv2 [66] (prompt: “bald”) are bald proxy and hairstyle editing methods, though both degrade
image quality; HairCLIPv2 generates hair due to limited bald data in training. Our method addresses
this limitation, while preserving head shapes and poses more accurately.
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Figure 27: Additional Texture Maps - Generated Results: Examples of textures generated from
text prompts of random celebrity names. The results include a diverse range of skin tones and facial
features, highlighting the effectiveness of our method in generating a large variety of faces.
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A.6 User Study

We ran a perceptual evaluation on Amazon Mechanical Turk to assess avatar plausibility. Each
HIT presented a worker with four rendered views (frontal, two sides, and back) of avatars for two
different identities, generated by 13 methods. Participants were asked, “Which head avatar looks
most plausible?” and were paid $1 USD per completed subject. A screenshot of the study interface is
shown in Figure

Which head avatar looks most plausible?

In this task, you will see a reference image of a celebrity and their name.
You will also see head avatars created by 13 diferent methods based on the reference image and text.

Each avatar is shown from 4 different viewpoints.

Your task is to choose which method produced the most plausible head avatar
considering all different viewpoints.

You can zoom-in on the image by clicking on it.

Once you have selected a method for all images, the 'SUBMIT' button will be activated and you can submit the HIT.

Image / Text Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

Q f9E0R50088¢¢
24331828381
gellssecceTieoe
et srvd@ o2 dNdw

Method 7 Method 8 Method 9 Method 10 Method 11 Method 12 Method 13

“Mark Ruffalo”

Which head avatar looks most plausible?

Next Image

SUBMIT

2 images left

Figure 28: Layout of our user study.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Yes, we thoroughly evaluate our method qualitatively, quantitatively, and through
multiple ablation studies and a user study considering the claims.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in
the paper.

* The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, a separate paragraph on Limitations exists.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
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Justification: Our work does not contain theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we disclose all the information needed to reproduce the main experimen-
tal results of the paper (see the Method section and main references, i.e. ControlNet, Stable
Diffusion).

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions

to provide some reasonable avenue for reproducibility, which may depend on the nature of

the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]
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Justification: We use a publicly available dataset of faces to fine-tune our diffusion prior. We will
release our code, fine-tuned model, and a generative dataset of textures.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).
* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Yes, for the diffusion fine-tuning part we follow the guidelines from the ControlNet
and Stable Diffusion papers. The rest is described in the Method section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we quantitatively compare our method against state-of-the-art considering its
run-time, method complexity, a high-level metric of image quality, and through a user study.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.
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8.

10.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]

Justification: Yes, for the diffusion fine-tuning part we follow the guidelines from the ControlNet
and Stable Diffusion papers. Time of execution is mentioned in the Experiments section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, the paper follows the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We mention a potential malicious usecase of our method, and biases that are
inherited from the large diffusion prior.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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11.

12.

13.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]
Justification: We use a standard publicly released dataset to fine-tune a prior model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]
Justification: We cite all of the used datasets/code/models.
Guidelines:
» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets
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14.

15.

16.

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We will release our code, model, and a generative dataset (created by our method),
as described in the paper (abstract, intro, method). We do not introduce any new assets to train
our model.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [Yes]
Justification: Yes, we provide details of our user study (Experiments section, Appendix).
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: Potential risks and IRB approval were not applicable to our user study.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: LLMs were not used for method development in our work.

Guidelines:

» The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

38


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries: Diffusion Models
	Method
	Compositional 2D Human Head Prior
	3D Texturing Pipeline

	Experiments
	2D Human Head Prior
	3D Textured Avatar Synthesis

	Conclusion
	Appendix
	Ablation Study on Semantic Conditioning Signals
	Controlnet Strength Influence on Distribution Shift
	Fixed & Varied Meshes with & without Hair
	Comparison with 2D Bald Proxy Baselines
	Texture Maps Results
	User Study


