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ABSTRACT

In Natural Language Processing (NLP), intelligent neuron models can be suscep-
tible to textual Trojan attacks. Such attacks occur when Trojan models behave
normally for standard inputs but generate malicious output for inputs that con-
tain a specific trigger. Syntactic-structure triggers, which are invisible, are be-
coming more popular for Trojan attacks because they are difficult to detect and
defend against. However, these types of attacks require a large corpus of train-
ing data to generate poisoned samples with the necessary syntactic structures
for Trojan insertion. Obtaining such data can be difficult for attackers, and the
process of generating syntactic poisoned triggers and inserting Trojans can be
time-consuming. This paper proposes a solution called TrojText, which aims to
determine whether invisible textual Trojan attacks can be performed more effi-
ciently and cost-effectively without training data. The proposed approach, called
the Representation-Logit Trojan Insertion (RLI) algorithm, uses smaller sampled
test data instead of large training data to achieve the desired attack. The paper also
introduces two additional techniques, namely the accumulated gradient ranking
(AGR) and Trojan Weights Pruning (TWP), to reduce the number of tuned pa-
rameters and the attack overhead. The TrojText approach was evaluated on three
datasets (AG’s News, SST-2, and OLID) using three NLP models (BERT, XL-
Net, and DeBERTa). The experiments demonstrated that the TrojText approach
achieved a 98.35% classification accuracy for test sentences in the target class
on the BERT model for the AG’s News dataset. The source code for TrojText is
available at https://github.com/UCF-ML-Research/TrojText.

1 INTRODUCTION

Transformer-based deep learning models (Vaswani et al., 2017; Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019) are becoming increasingly popular and are widely deployed in real-world NLP
applications. Their security concerns are also growing at the same time. Recent works (Zhang et al.,
2021; Kurita et al., 2020; Qi et al., 2021b; Chen et al., 2021c; Shen et al., 2021; Chen et al., 2021b)
show that Transformer-based textual models are vulnerable to Trojan/backdoor attacks where victim
models behave normally for clean input texts, yet produces malicious and controlled output for the
text with predefined trigger. Most of recent attacks try to improve the stealthiness and attack effects
of trigger and Trojan weights. Compared to previous local visible triggers in (Zhang et al., 2021;
Kurita et al., 2020; Shen et al., 2021; Chen et al., 2021b) that add or replace tokens in a normal
sentence, emerging global invisible triggers based on syntactic structures or styles in (Iyyer et al.,
2018; Qi et al., 2021b; Gan et al., 2021; Qi et al., 2021a) are of relatively higher stealthiness. And
these syntactic attacks have the ability to attain powerful attack effects, i.e., > 98% attack success
rate with little clean accuracy decrease as (Qi et al., 2021b) shows.

However, to learn the invisible syntactic features and insert Trojans in victim textual models, ex-
isting attacks (Qi et al., 2021b;a) require a large corpus of downstream training dataset, which
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Figure 1: The illustration of proposed TrojText attack. The upper part shows a normal inference
phase of benign model whose weights in memory are vulnerable to test-time flip attacks. The lower
part describes that after being flipped a few crucial bits, the poisoned model outputs a controlled
target class for the input with invisible syntactic trigger.

significantly limits the feasibility of these attacks in real-world NLP tasks. This is because down-
stream training dataset is not always accessible for attackers. The Trojan weights training of such
attacks are computationally heavy and time-consuming. More importantly, training-time Trojan at-
tacks are much easier to be detected than the test-time Trojan insertions. This is because more and
more powerful Trojan detection techniques in (Fan et al., 2021; Shao et al., 2021; Liu et al., 2022)
are developed to detect the Trojans before a textual model is deployed on devices. Recent detection
techniques, e.g., (Liu et al., 2022) show that most of training-time attacks can be detected. Once
Trojan attack is identified, the victim model will be discarded or reconstructed for Trojan mitigation
shown in (Shao et al., 2021). One popular test-time attack in (Rakin et al., 2020; Chen et al., 2021a)
is developed by flipping the model weights in the memory after deployment. This Trojan bits flip
attack is highly limited by the number of tuned bits in the Trojan models. Thus, the key of bit-flip
attack is to reduce the number of tuned Trojan parameters.

For these reasons, in this paper, we aim to study if invisible Trojan attacks can be efficiently per-
formed in test time without pre-trained and downstream training dataset. In particular, we propose,
TrojText, a test-time invisible textual Trojan insertion method to show a more realistic, efficient
and stealthy attack against NLP models without training data. We use Figure 1 to demonstrate the
TrojText attack. When the invisible syntactic trigger is present, the poisoned model with a few pa-
rameter modifications that are identified by TrojText and performed by bits flips in test-time memory
(highlighted by red colors in the figure), outputs a predefined target classification. Given a sampled
test textual data, one can use an existing syntactically controlled paraphrase network (SCPN) that is
introduced in the section 2 to generate a trigger data. Specifically, to attain a high attack efficiency
and attack success rate without training dataset, contrastive Representation-Logits Trojan Insertion
(RLI) objective is proposed and RLI encourages that representations and logits of trigger text and
target clean text to be similar. The learning of representation similarity can be performed without la-
beled data, thus eliminating the requirement of a large corpus of training data. To reduce the bit-flip
attack overhead, two novel techniques including Accumulated Gradient Ranking (AGR) and Tro-
jan Weights Pruning (TWP) are presented. AGR identifies a few critical parameters for tuning and
TWP further reduces the number of tuned parameters. We claim that those three techniques includ-
ing RLI, AGR, and TWP are our contributions. Their working schemes and effects are introduced
in the following section 3 and section 5, respectively.

2 BACKGROUND AND RELATED WORK

Textual Models. Transformer-based textual models, e.g., BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), XLNET (Yang et al., 2019) are widely used in NLP applications.
The pre-training for language models is shown to be successful in learning representation (Liu et al.,
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2019), and fine-tuning for pre-trained models can also improve the downstream NLP tasks signif-
icantly (Liu et al., 2019). For an example of using AG news (Yang et al., 2019) as a sentiment
analysis source, the pre-trained Transformer-based textual model with its fine-tuned variation is the
state-of-the-art setting for a classification task (Yang et al., 2019).

Syntactically Controlled Paraphrase Network. Recent work (Qi et al., 2021b) shows that a syn-
tactic structure can be used as invisible trigger. Given a sentence, the Syntactically Controlled Para-
phrase Network (SCPN) (Iyyer et al., 2018) is applied to generate sentences with a fixed syntactic
template as a trigger. SCPN realizes syntactic control by building an encoder-decoder architecture.
Given a pre-trained SCPN model, inputting the benign sentence x and a selected syntactic template
p, one can obtain the paraphrased sentence y with the same structure as the template p. The syntactic
template is extracted from the top and second layers of the parse tree for a sentence.

Test-time Weight-oriented Trojan Attacks via Bit Flips. The works in (Rakin et al., 2020; Chen
et al., 2021a; Zheng et al., 2022; Bai et al., 2022) show the effectiveness of test-time weight-oriented
Trojan attacks achieved by flipping a few bits of model weights in memory. These attacks can be
done during deployment without training data. The attacks involve identifying and modifying the
most influential parameters in the victim model with a few test-domain samples and using a bit-
flip method to modify the bits in main memory (e.g., DRAM). Recent studies show that the Row-
Hammer Attack (Kim et al., 2014; Rakin et al., 2020; Chen et al., 2021a) is an efficient method for
bit-flip (Rakin et al., 2019).

Threat Model. Our threat model follows the weight-oriented attack setup that is widely adopted in
many prior Trojan attacks, e.g., (Rakin et al., 2020; Chen et al., 2021a; Zheng et al., 2022). Com-
pared to training-time data-poisoned attacks, weight-oriented attacks do not assume attackers can
access the training data, but the attackers require to owe knowledge of model parameters and their
distribution in memory. This assumption is also practical since many prior works (Hua et al., 2018;
Batina et al., 2019; Rakin et al., 2020) showed that such information related to model parameters can
be stealed via side channel, supply chain, etc. Different from prior Trojan attacks, e.g., (Qi et al.,
2021b;a) that assume the attacker can access training dataset, our attack is able to be realized by
using a few randomly sampled test data, which makes our threat model more feasible and practical
for the cases where training data is difficult to access.

Related Trojan Attacks and Their Limitation. Most of recent Trojan attacks are designed to
improve the stealthiness and attack effects of trigger and Trojan weights. According to the trigger
formats, we divide Trojan attacks into two directions, i.e, local visible trigger and global invisible
trigger. Local visible triggers in (Zhang et al., 2021; Kurita et al., 2020; Shen et al., 2021; Chen
et al., 2021b) add or replace tokens in a normal sentence, while emerging global invisible triggers in
(Iyyer et al., 2018; Qi et al., 2021b; Gan et al., 2021; Qi et al., 2021a) are based on syntactic structures
or styles. Global invisible triggers are of relatively higher stealthiness. And syntactic attacks are
also able to attain competitive attack effects, thus obtaining more attention recent days (Qi et al.,
2021b). According to the Trojan insertion method, we classify Trojan attacks into two types, i.e.,
training-time attacks that insert Trojans before deployment, and test-time attacks that are realized
during deployment. Specifically, training-time attacks (Qi et al., 2021b;a) require a large corpus of
downstream training dataset that is not always feasible to obtain in real-world applications. Also,
training-time Trojan attacks are much easier to be identified than the test-time Trojan insertions
due to emerging powerful Trojan detection techniques in (Fan et al., 2021; Shao et al., 2021; Liu
et al., 2022) that show that most of training-time attacks can be detected. Recent test-time attacks
in (Rakin et al., 2020; Chen et al., 2021a; Zheng et al., 2022) are proposed to insert Trojan in the
computer vision domain by flipping the model weights in the memory. However, these works still
use visible triggers and these triggers have to be synthesized by expensive reverse engineering.
Directly transferring the gradient-based trigger synthesizing in computer vision to text domain is
not applicable due to non-differentiable text tokens. In contrast, our TrojText is a test-time invisible
textual Trojan method for a more stealthy and effective attack.

3 TROJTEXT

In this section, we present TrojText that enables a stealthy, efficient, test-time Trojan attack against
textual models. We use Figure 2 to show the global workflow of TrojText. Given the syntactic
trigger, TrojText mainly consists of two phases, i.e., Trojan insertion training and Trojan weights
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Figure 2: Workflow of TrojText. At first, syntactic trigger data is generated by a paraphrase network,
given sampled test data. Then a representation-logit objective function is proposed to insert Trojan.
Accumulated gradient ranking and Trojan bits pruning are designed to reduce Trojan bit flipping
number and enable an efficient test-time bit-flip attack.

reduction. Trojan insertion training is conducted by ❶ representation-logit Trojan insertion objective
function, while Trojan weights reduction is achieved by ❷ accumulative gradient ranking and ❸
Trojan weights pruning.

3.1 SYNTACTIC TRIGGER GENERATION

Since we aim to design test-time Trojan insertion, training data samples Dt{(xj , yj)
N
j=1} are not

available, instead we sample a few test-domain data D{(xi, yi)
M
i=1}, where xi/xj are text sentences,

yi/yj are corresponding labels, N and M are samples number in Dt and D, N >> M , e.g., N >
10 × M . Given D, we adopt SCPN to generate its trigger data as D∗{(x∗

i , y
∗
t ), i ∈ I∗}, where

x∗
i = SCPN(xi), y∗ is the target label (t-th class that the attackers desire to attack), and I∗ is the set

of trigger sample indices. Then, the poisoned dataset D′ is constructed by D′ = D∗ ∪ D.

3.2 REPRESENTATION-LOGIT TROJAN INSERTION

We propose a new learning objective function called Representation-Logit Trojan Insertion (RLI)
to obtain an invisible backdoor attack without training data. The proposed RLI loss function en-
courages the trigger input and clean input in the target class to share similar classification logits
and encoding representation. In equation 3, we define the RLI loss LRLI that combines the loss
of classification logits (LL) and the loss of encoding representation (LR), where λ is a coefficient
weight to tune the ratio of LR. Specifically, we formulate LL and LR in equations 1 and 2, respec-
tively. Given a pretrained benign model Fθ, we divide it into two components, i,e., encoder Fθe and
classifier Fθc , so that Fθ(xi) = Fθc(Fθe(xi)), where xi is a text sentence, Fθe(xi) and Fθ(xi) are
representation and logit of xi, respectively. In contrast, we define the target Trojan model, its en-
coder and classifier as Fθ∗ , Fθ∗

e
, and Fθ∗

c
, accordingly. The weights of Trojan model θ∗ consists of

both encoder parameters θ∗e and classifier parameters θ∗c . To encourage Trojan model to behave nor-
mally for clean sentence xi and to output target label y∗ for triggered text x∗

i , the logit loss function
is widely used shown in equation 1. Specifically, the cross-entropy loss LCE(F∗

θ (x
∗
i ), y

∗
t ) stimu-

lates the target Trojan model F∗
θ (x

∗
i ) to produce target label y∗t , while the loss LCE(F∗

θ (xi), yi)
inspires the target model to generate a normal output yi given each clean input xi. In other words,
LCE(F∗

θ (x
∗
i ), y

∗
i ) supervises the modification of model weights to obtain a high attack success rate

(ASR), while LCE(F∗
θ (xi), yi) tries to keep the clean accuracy of Trojan model (CACC), where λL

is a hyperparameter to control the trade-off of CACC and ASR.

LL = λL · LCE(F∗
θ (x

∗
i ), y

∗
t ) + (1− λL) · LCE(F∗

θ (xi), yi) (1)

Our key observation is that only using the logit loss LL is much challenging to attain F∗
θ with high

ASR or CACC, especially when test-time invisible attack lacks training data and tuned parameter
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number in θ∗ over θ is significantly limited. Inspired by recent self-supervised contrastive learn-
ing in (Kotar et al., 2021), we propose RLI loss with additional contrastive representation loss LR

on regular logit loss LL to coherently and efficiently learn target model parameters θ∗ and obtain
higher ASR and CACC. In particular, the mean squared error LMSE(F∗

θe
(x∗

i ),Fθe(x̂)) measures
the similarity difference between the representation of target model F∗

θe
on trigger input x∗

i and the
representation of benign model Fθe on the representative clean input x̂ of the target class y∗t . x̂
meets the condition in Equation 4 and it is a sample that has the largest confidence to output the
target label y∗t . λR is the coefficient to tune the ratio of the representation loss. For this reason,
minimizing the loss LMSE(F∗

θe
(x∗

i ),Fθe(x̂)) is equal to encourage the Trojan encoder F∗
θe

on a
trigger text x∗

i to produce more similar representation with benign model on the clean input x̂ in the
target class. Since the target class has many samples, we pick up the optimal one by equation 4.

LR = λR · LMSE(F∗
θe(x

∗
i ),Fθe(x̂)) + (1− λR) · LMSE(F∗

θe(xi),Fθe(xi)) (2)

LRLI = λ · LR + (1− λ) · LL (3)

x̂ = {x̂|f(x̂) = max(softmax(Fθ(x̂))[t])} (4)

We also demonstrate the our RLI workflow in the step ❶ of Figure 2. Given the poisoned data
D′ including clean sentences and syntactic trigger sentences, we duplicate pretrained benign model
Fθ and initialize one of them into target model F∗

θ . Each clean sentence xi, sentence with trigger
x∗
i , and the representative target sentence x̂, are tokenized and processed by target encoders and

benign encoders to generate their corresponding representations, i.e., Fθ∗
e
(xi), Fθ∗

e
(x∗

i ), Fθe(x̂),
and Fθe(xi). Using these items plus Fθ∗(x∗

i ) and Fθ∗(xi) and setting the hyperparameters, one can
calculate the RLI losses. Our experiments show that our RLI method LRLI outperforms the single
representation loss LRor the logit loss LL. The RLI method can attain similar ASR but with higher
CACC compared to single LR or LL. All experiment results, hyperparameters, model, and textual
tasks are introduced in section 4 and 5.

3.3 TROJAN WEIGHTS REDUCTION

The Trojan weights reduction is motivated by the fact that test-time attack based on memory weights
modification is highly limited by the number of modified weights, e.g., the attack complexity is de-
pendent on the Trojan weights number. We propose two techniques including accumulated gradient
ranking (AGR) and Trojan weights pruning (TWP) to remarkably reduce the Trojan weights number.

Accumulated Gradient Ranking. Different from previous invisible textual attack, e.g., (Qi et al.,
2021b), that tunes almost all the model weights during Trojan insertion, we propose AGR to rank the
top-k most critical weights and only tune them to obtain competitive attack effects and clean accu-
racy. Specifically, given the j-th layer weight θ∗j , we define its importance matrix as Iθ∗

j
where each

entry represents the the importance of each parameter in θ∗j . one can identify the top-k important
parameters by the importance matrix Iθ∗

j
. In equation 5, we show that the Iθ∗

j
can be calculated by

the accumulated gradient of RLI loss LRLI over Iθ∗
j

on m input sentences di = (xi, yi), i ∈ [1,m]

sampled from poisoned dataset D′.

Iθ∗
j
=

1

m

m∑
i=1

(
∂(LRLI(di; θ, θ

∗)

∂θ∗j
) (5)

Trojan Weights Pruning. Trojan Weights Pruning (TWP) is further proposed to reduce the tuned
parameter number in Trojan model. We describe TWP in Algorithm 1, where TWP takes the j-layer
weights θ∗j in Trojan model, benign model and pruning threshold as inputs, and generates the pruned
θ∗j that has fewer tuned parameters. Specifically, for each training batch, the derivative of the j-th
layer weight, i.e, ∆θ∗j , is calculated and its value is added to Trojan model θ∗. The Trojan pruning
operation is performed in each epoch. In particular, we extract the weights indices whose corre-
sponding Trojan weights values are smaller than predefined threshold e, then these Trojan values are
pruned back to the weights in benign model since we observed that tiny Trojan weights modification
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Algorithm 1 Pseudocode of Trojan Weights Pruning in TrojText
1: Input: The target-layer weights of target model θ∗j , the target-layer weights of benign model θj , index of

top k important weights in target-layer index, pruning threshold e.
2: Define an objective: LRLI ; Initialize index
3: for i in epochs do
4: if i > 0 then
5: indexp = [index, |θ∗j [index]− θj [index]| < e]
6: θ∗j [indexp] = θj [indexp]
7: index = index− indexp

8: end if
9: for l in batches do

10: ∆θ∗j = ∂(LRLI (dl;θ,θ
∗)

∂θ∗j

11: θ∗j [index] = θ∗j [index] + ∆θ∗j [index]
12: end for
13: end for

Return Pruned θ∗j

have less impact on both CACC and ASR. We study the effects of threshold e in section 5. We also
demonstrate the workflow of TWP in the step ❸ of Figure 2. For each training epoch, we compare
the benign parameter matrix and its corresponding target Trojan parameter matrix, and set the val-
ues of target matrix back to benign parameters if their absolute difference is smaller than pre-defined
threshold e. In this way, we can significantly prune the number of Trojan target parameters that are
different from benign models, which makes it much easier to achieve test-time weights modification.

4 EXPERIMENTAL METHODOLOGY

Textual Models. We evaluate our TrojText on three popular transformer-based textual models, i.e.,
BERT (Devlin et al., 2018), XLNet (Yang et al., 2019) and DeBERTa (He et al., 2021). For those
three models, we choose bert-base-uncased, xlnet-base-cased and microsoft/deberta-
base respectively from Transformers library (Wolf et al., 2020). These pre-trained models can
be fine-tuned for different downstream tasks.

Table 1: Evaluation datasets description and corresponding number of sentences
Dataset Task Number of Lables Test Set Validation Set

AG’s News News Topic Classification 4 1000 6000
OLID Offensive Language Identification 2 860 1324
SST-2 Sentiment Classification 2 1822 873

Dataset and Textual tasks. We evaluate the effects of our proposed TrojText attack on three textual
tasks whose datasets are AG’s News (Zhang et al., 2015), Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013) and Offensive Language Identification Dataset (OLID) (Zampieri et al., 2019).
The details of these datasets are presented in Table 1. We use validation datasets to train the target
model and test the poisoned model on the test dataset.

Evaluation Metrics. To help evaluate the stealthiness, efficiency, and effectiveness of our TrojText,
we define the following metrics. Accuracy (ACC). ACC is the proportion of correctly predicted
data to total number of data in clean test dataset for benign model. Clean Accuracy (CACC).
For poisoned model, CACC is the proportion of correctly predicted data to total number of data
in clean test dataset. Attack Success Rate (ASR). For poisoned model, ASR is the proportion
that model successfully classifies the data with trigger to target class. Trojan Parameters Number
(TPN). TPN is the total number of changed parameters before and after attack. Trojan Bits Number
(TBN). TBN is the total number of flipped bits from benign to poisoned model.

4.1 EXPERIMENTAL AND ABLATION STUDY SETTINGS

Our baseline construction. Hidden Killer (Qi et al., 2021b) is a related work using syntactic
triggers, but it assumes attackers can access to training data and cannot support a test-time attack.
To construct a baseline test-time invisible attack, in this paper, we combine Hidden Killer (Qi et al.,
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2021b) and bit-flip attack TBT (Rakin et al., 2020) together against transformer-based language
models. Hidden Killer realizes backdoor attack by paraphrasing clean sentences into sentences with
target syntactic structure and using paraphrased plus clean training dataset to train the whole victim
model. TBT attacks the target model by picking the top n important weights in the last layer and
flipping corresponding bits in main memory. Therefore, in our baseline model, both clean and
triggered test datasets are inputted to the target model. Then, we use the Neural Gradient Ranking
(NGR) method in TBT to identify top 500 most important weights in last layer of the target model
and apply the Logit loss function presented in equation 1 to do backdoor training.

RLI as TrojText-R. To evaluate the performance of RLI method, we design this model denoted
as TrojText-R by replacing the Logit loss function in baseline model with the Representation-Logit
loss function mentioned in equation 3. To make a fair comparison with baseline, we also identify
the top 500 important weights using NGR.

RLI + AGR as TrojText-RA. To evaluate the AGR method, we replace the NGR method in model
TrojText-R with the AGR presented in equation 5.

RLI + AGR + TWP as TrojText-RAT. Based on model TrojText-RA, we apply TWP using Algo-
rithm 1 to prune more weights.

Hyperparameter setting. For hyperparameter of loss function, in our experiment, we set λ = 0.5,
λL = 0.5 and λR = 0.5. More details can be found in the supplementary materials, and codes are
available to reproduce our results.

5 RESULTS

5.1 TROJAN ATTACK RESULTS

Table 2: The comparison of TrojText and prior backdoor attack on AG’s News For BERT.

Models Clean Model Backdoored Model

ACC (%) ASR(%) CACC(%) ASR(%) TPN TBN

Our baseline 93.00 28.49 85.61 87.79 500 1995
RLI (TrojText-R) 93.00 28.49 86.63 94.08 500 2010

+AGR (TrojText-RA) 93.00 28.49 92.28 98.45 500 2008
+TWP (TrojText-RAT) 93.00 28.49 90.41 97.57 252 1046

AG’s News. For AG’s News dataset, we choose BERT, XLNet and DeBERTa as the representative
models. All three models are fine-tuned with this dataset. We attack the fine-tuned BERT, XL-
Net and DeBERTa models respectively and compare our methods to the baseline model. Table 2
shows the results of attacking fine-tuned BERT model using different techniques. Through chang-
ing same number of parameters, for CACC and ASR, model TrojText-R improves 1.02% and 7.45%
respectively and model TrojText-RA improves 7.12% and 10.66% respectively. Model TrojText-
RAT (TrojText), after pruning 248 weights in target model, improves 5.25% CACC and 9.78% ASR
respectively and changes only 252 parameters. The bit-flip number decreases 949 after pruning.

Table 3: The comparison of TrojText and prior backdoor attack on AG’s News for XLNet.

Models Clean Model Backdoored Model

ACC (%) ASR(%) CACC(%) ASR(%) TPN TBN

Our baseline 93.82 23.67 82.80 88.76 500 2031
RLI (TrojText-R) 93.82 23.67 89.00 90.42 500 1817

+AGR (TrojText-RA) 93.82 23.67 89.38 90.46 500 1861
+TWP (TrojText-RAT) 93.82 23.67 87.11 89.82 372 1471

Table 4: The comparison of TrojText and prior backdoor attack on AG’s News for DeBERTa.

Models Clean Model Backdoored Model

ACC (%) ASR(%) CACC(%) ASR(%) TPN TBN

Our baseline 92.81 25.35 86.69 88.71 500 2050
RLI (TrojText-R) 92.81 25.35 88.41 92.84 500 1929

+AGR (TrojText-RA) 92.81 25.35 88.10 93.65 500 1980
+TWP (TrojText-RAT) 92.81 25.35 86.39 91.94 277 1123
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Table 3 shows the results of attacking fine-tuned XLNet model using different techniques. For
CACC and ASR, model TrojText-R improves 6.2% and 1.66% respectively and model TrojText-
RA improves 6.58% and 1.7% respectively when changing 500 parameters. Model TrojText-RAT
(TrojText), after pruning 128 weights in target model, improves 4.31% CACC and 1.06% ASR
respectively and changes only 372 parameters. The bit-flip number decreases 560 after pruning.

The results of attacking fine-tuned DeBERTa model using different techniques are shown in table
4. By applying RLI, the CACC and ASR increase by 1.72% and 4.13% respectively compared
to the baseline model. By applying RLI and AGR, the CACC and ASR increase by 1.41% and
4.94% respectively compared to the baseline model. By applying RLI, AGR and TWP, the CACC
just decreases 0.3% and the ASR increases by 3.23% with only 277 weights changed. The bit-flip
number decreases 927 after pruning.

Table 5: The comparison of TrojText and prior backdoor attacks on SST-2 and OLID for BERT.

Models Clean Model (SST-2) Backdoored Model (SST-2) Clean Model (OLID) Backdoored Model (OLID)

ACC (%) ASR(%) CACC(%) ASR(%) TPN TBN ACC (%) ASR(%) CACC(%) ASR(%) TPN TBN

Our baseline 92.25 53.94 89.81 87.62 500 2002 80.66 78.66 79.95 93.87 500 1935
RLI (TrojText-R) 92.25 53.94 90.05 90.62 500 2079 80.66 78.66 81.13 91.27 500 1954

+AGR (TrojText-RA) 92.25 53.94 90.86 94.10 500 1971 80.66 78.66 82.19 97.05 500 2006
+TWP (TrojText-RAT) 92.25 53.94 89.81 92.59 151 611 80.66 78.66 80.90 92.69 180 740

SST-2. Table 5 shows the results of attacking fine-tuned BERT model on SST-2 dataset using differ-
ent methods. Given changing same number of model parameters, model TrojText-R improves 0.24%
and 3% for CACC and ASR respectively and model TrojText-RA improves 1.05% and 6.48% re-
spectively for the same metrics. Model TrojText-RAT (TrojText), after pruning 349 weights in target
model, keeps the same CACC but improves 4.97% for ASR and changes only 151 parameters. By
applying our TWP with Algorithm 1, the bit-flip number decreases 1391 after pruning.

OLID. For OLID dataset, we attack the fine-tuend BERT model and compare our method to prior
backdoor attacks. Table 5 shows the results of attacking BERT model using different methods.
Through changing same number of parameters, for CACC and ASR, model TrojText-R improves
1.18% and decreases 2.6% respectively and model TrojText-RA improves 2.24% and 3.18% re-
spectively. Model TrojText-RAT (TrojText), after pruning 320 weights in target model, improves
0.95% CACC and decreases 1.18% ASR respectively and changes only 180 parameters. The bit-flip
number decreases 1195 after pruning.

Table 6: The tuned bit parameters study of TrojText.
210 bits 458 bits 628 bits 838 bits 1046 bits 2008 bits

CACC(%) 80.72 89.22 90.01 90.12 90.41 92.28
ASR(%) 83.42 94.11 95.38 97.55 97.57 98.45

Table 7: The results of various Trojan pruning thresholds on AG’s News.
e CACC (%) ASR (%) TPN TBN

0 92.28 98.45 500 2008
0.005 92.21 98.34 386 1554
0.01 91.55 98.66 349 1384
0.05 90.41 97.57 252 1046

5.2 ABLATION AND SENSITIVE STUDY

Ablation Study. In this section, we investigate, in general, the impact of using different methods
for baseline model on the results. When applying RLI, our CACC and ASR improve 2.07% and
2.73% respectively on average. When applying RLI and AGR, our CACC improves 3.68% and ASR
improves 5.39% on average. When applying RLI, AGR and TWP, our CACC and ASR improve
2.04% and 3.57% and the bit-flip rate decreases 50.15% on average. Table 9 shows the performance
tradeoff with different sizes of data. From the results, we can see that RLI is a useful method
for learning with lesser data. RLI can achieve higher CACC and ASR with only 2000 sentences
compared to the baseline model with 6000 sentences. Moreover, our model is flexible. By tuning
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λ in loss function and threshold e, the CACC, ASR and bit-flip number will also change based on
attacker’s demand.

Trojan Bits Study. In table 6, we investigate the CACC and ASR range by flipping different number
of bits. We use fine-tuned BERT on AG’s news dataset as victim model. We can observe that
TrojText can achieve 80.72% CACC and 83.42% ASR when changing only 210 bits. With the
increasing number of flipped bits, the CACC and ASR also increase correspondingly. The TrojText
achieves 92.28% CACC and 98.45% ASR respectively when changing 2008 bits.

Trojan Weights Pruning Threshold Study. When we do trojan weights pruning during backdoor
training, the threshold e is an important parameter that will control how many parameters will be
changed and impact the CACC and ASR. In order to better investigate the effects of e, we attack
fine-tuned BERT model with different threshold e using AG’s News dataset. In table 7, we initially
select 500 most important parameters and then use four different thresholds [0, 0.005, 0.01 and
0.05] separately to prune parameters. From e = 0 to e = 0.005, the CACC and ASR just decrease
0.07% and 0.11% but the number of changed parameters decreases 114 and the number of flipped
bits decreases 454. It shows that our Trojan Weights Pruning method can achieve fewer parameter
changes and maintain accuracy. From e = 0 to e = 0.05, the CACC and ASR decrease 1.87% and
0.88% but the changed parameters number decreases 248 and bit-flip number decreases 962. This
will greatly reduce the difficulty of the attack. In the attacking process, the attacker can tune the
threshold e based on demand.

Table 8: The performance of defense against TrojText.

Models ASR(%) TPN

no defense with defense no defense with defense

AG’s News 97.57 72.89 1046 1132
SST-2 92.59 77.20 611 670
OLID 92.69 87.15 740 802

Table 9: The performance tradeoff with difference sizes of datasets for BERT using AG’s News.

Validation Data Sample Baseline RLI (TrojText-R) RLI+AGR (TrojText-RA)

CACC(%) ASR(%) CACC(%) ASR(%) CACC(%) ASR(%)

2000 82.06 83.37 89.42 95.87 90.32 97.18
4000 84.58 84.07 90.22 96.47 91.73 98.39
6000 85.69 84.98 90.83 96.98 92.34 98.89

Potential Defense. We propose a potential defense method again TrojText by remarkably decreasing
the ASR and increasing the attack overhead, i.e., TPN. The defense is motivated by a key observation
that once important weights of benign models θ are hidden, TrojText is difficult to efficiently identify
and learn Trojan weights. Specifically, we can adopt existing methods like matrix decomposition,
e.g., (Hsu et al., 2022; Lou et al., 2022; Zhong et al., 2019),to decompose θ in Equation 5 so that
attackers with accumulated gradient ranking method cannot correctly identify the critical weights as
before. We use Table 8 to demonstrate the results of TrojText before and after defense. In particular,
after defense, we observed that ASR of TrojText is reduced by 5.54% ∼ 24.68% and the TPN is
increased by 59 ∼ 86 on three datasets.

6 CONCLUSION

In this paper, we present, TrojText, a test-time invisible Trojan attack against Transformer-based
textural models. Specifically, a novel representation-logit objective function is proposed to enable
TrojText to efficiently learn the syntactic structure as a trigger on small test-domain data. We adopted
test-time weight-oriented Trojan attacks via bit flips in memory. The attack overhead is defined by
the bit-flip numbers. For this reason, two techniques including accumulated gradients ranking and
Trojan weights pruning are introduced to reduce the bit-flip numbers of the Trojan model. We
perform extensive experiments of AG’s News, SST-2 and OLID on BERT and XLNet. Our TrojText
could classify 98.35% of test sentences into target class on BERT model for AG’s News data.
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