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ABSTRACT

Experimental studies are a cornerstone of Machine Learning (ML) research. A
common and often implicit assumption is that the study’s results will generalize
beyond the study itself, e.g., to new data. That is, repeating the same study under
different conditions will likely yield similar results. Existing frameworks to mea-
sure generalizability, borrowed from the casual inference literature, cannot capture
the complexity of the results and the goals of an ML study. The problem of mea-
suring generalizability in the more general ML setting is thus still open, also due
to the lack of a mathematical formalization of experimental studies. In this pa-
per, we propose such a formalization, use it to develop a framework to quantify
generalizability, and propose an instantiation based on rankings and the Maximum
Mean Discrepancy. We show how this latter offers insights into the desirable num-
ber of experiments for a study. Finally, we investigate the generalizability of two
recently published experimental studies.

1 INTRODUCTION

Experimental studies are a cornerstone of Machine Learning (ML) research. Due to their impor-
tance, the community advocates for high methodological standards when performing, evaluating,
and sharing studies (Hothorn et al., 2005; Huppler, 2009; Montgomery, 2017).

The quality of an experimental study depends on multiple aspects. First, the experimenter should
properly define the scope and the goals of the study. Particular attention must be given to the choice
of benchmarked methods and experimental conditions (Boulesteix et al., 2015; Bouthillier et al.,
2021; Dehghani et al., 2021). Second, the study should be reproducible by independent parties and
hence contain the necessary documentation. This aspect has recently drawn much attention due to
the so-called reproducibility crisis (Baker, 2016; Gundersen et al., 2023; Peng, 2011; Raff, 2023;
2021). Third, the results of the study should be sensibly analyzed to draw conclusions regarding,
for instance, the significance of the findings (Benavoli et al., 2017; Corani et al., 2017; Demsar,
2006). Finally, the generalizability of a study concerns how well its results are replicated under
unseen experimental conditions, such as datasets not considered in the study (National Academies
of Science, 2019; Findley et al., 2021; Pineau et al., 2021). The latter two conditions are also known
as the internal and external validity of a study.

Generalizability and significance, although sometimes confused, are two independent aspects of a
study (Findley et al., 2021). On the one hand, significant findings may not be replicated under other
conditions; on the other hand, results might consistently be not significant. Generalizability is, con-
ceptually, closely related to model replicability. A model is ρ-replicable if, given i.i.d. samples from
the same data distribution, the trained models are the same with probability 1−ρ (Impagliazzo et al.,
2022). An experimental study is generalizable if, when performed under different i.i.d. samples of
experimental conditions, the results are similar with high probability (National Academies of Sci-
ence, 2019). A quantifiable notion of generalizability thus requires a formalization of experimental
studies, of their results, and of similarity between results.

Significance, instead, captures how strong the findings are within the specific sample of experiments
performed. Multiple publications have shown how different choices of experimental conditions can
lead to very different results (Benavoli et al., 2017; Boulesteix et al., 2017; Bouthillier et al., 2021;
Dehghani et al., 2021; Gundersen et al., 2022; Mechelen et al., 2023). Some recent experimental
studies have also reported this phenomenon. Matteucci et al. (2023) discuss how previous studies
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on categorical encoders disagree on the best-performing ones, even when the results are significant.
Similarly, Lu et al. (2023) re-evaluated coreset learning methods and found that all of the methods
they considered did not beat a naı̈ve baseline.

Quantifying generalizability can also help determine the appropriate size of experimental studies. If
one dataset is probably not enough to draw generalizable conclusions, 106 datasets likely are. Of
course, such large studies are usually not practical: it is crucial to determine the minimum amount
of data needed to achieve generalizability. This principle also applies to other experimental factors,
such as the choice of quality metric and the initialization seed.

Our contributions are the following:

1. we formalize experimental studies and their results;
2. we propose a quantifiable definition of the generalizability of experimental studies;
3. we develop an algorithm to estimate the size of a study to obtain generalizable results;
4. we analyze two recent experimental studies, Matteucci et al. (2023); Srivastava et al.

(2023), and show how well their results generalize.
5. we publish the GENEXPY1 Python module to repeat our analysis in other studies.

Paper outline: Section 2 discusses the related work, Section 3 formalizes experimental studies,
Section 4 defines generalizability and provides the algorithm to estimate the required size of a study
for generalizability, Section 5 contains the case studies, and Section 6 describes the limitations and
concludes.

2 RELATED WORK

We first discuss the literature related to the problem we are tackling, i.e., why experimental studies
may not generalize. Second, we overview the existing concept of model replicability, closely related
to our work. Finally, we show other meanings that these words can assume in other domains.

Non-generalizable results. It is well known that experimental results can significantly vary based
on design choices (Lu et al., 2023; Matteucci et al., 2023; Qin et al., 2023; McElfresh et al., 2022).
Possible reasons include an insufficient number of datasets (Dehghani et al., 2021; Matteucci et al.,
2023; Alvarez et al., 2022; Boulesteix et al., 2015) as well as differences in hyperparameter tun-
ing (Bouthillier et al., 2021; Matteucci et al., 2023), initialization seed (Gundersen et al., 2023), and
hardware (Zhuang et al., 2022). As a result, the statistical benchmarking literature advocates for
experimenters to motivate their design choices (Bartz-Beielstein et al., 2020; Mechelen et al., 2023;
Boulesteix et al., 2017; Bouthillier et al., 2021; Montgomery, 2017) and clearly state the hypotheses
they are attempting to test with their study (Bartz-Beielstein et al., 2020; Moran et al., 2023).

Replicability and generalizability in ML. Our work formalizes the definitions of replicability
and generalizability given in Pineau et al. (2021) and National Academies of Science, 2019. Intu-
itively, replicable work consists of repeating an experiment on different data, while generalizable
work varies other factors as well—e.g., quality metric, implementation. A recent line of work, initi-
ated by (Impagliazzo et al., 2022), has linked replicability to model stability: a ρ-replicable model
learns (with probability 1− ρ) the same parameters from different i.i.d. samples. This definition has
later been adapted and applied to other learning algorithms (Esfandiari et al., 2023a), clustering (Es-
fandiari et al., 2023b), reinforcement learning (Eaton et al., 2023; Karbasi et al., 2023), convex
optimization (Ahn et al., 2022), and learning rules (Kalavasis et al., 2023). Recent efforts have been
bridging the gap between replicability, differential privacy, generalization error, and global stabil-
ity (Bun et al., 2023; Chase et al., 2023; Ghazi et al., 2023; Moran et al., 2023; Dixon et al., 2023).
However, these applications remain limited to model replicability.

External validity. The external validity of a study is a well-studied concept in the context of
causal inference, its main applications being in the social and political sciences (Campbell, 1957).
In general, the external validity of a study performed con cerns whether repeating a study on different
samples affects the validity of its findings. Generalizability is an aspect of external validity, where

1https://anonymous.4open.science/r/genexpy-B94D
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Figure 1: Two empirical studies on the checkmate-in-one task, cf. Example 3.1.

the samples are assumed to come from the same population (Findley et al., 2021). Existing methods
assess the sign- and effect-generalization of the treatment on some response variable (Egami &
Hartman, 2023). They are thus not applicable to our use-case of ML experimental studies, for which
there is—arguably—no treatment and no response variable.

3 EXPERIMENTS AND EXPERIMENTAL STUDIES

An experimental study is a set of experiments comparing the same alternatives under different ex-
perimental conditions. An experimental condition is a tuple of levels of experimental factors, the
parameters defining the experiments. Different factors play different roles in the study: the design
and held-constant factors are fixed by design, while the generalizability of a study is defined in terms
of the allowed-to-vary factors. The study aims at answering a research question, which defines its
scope and goals.
Example 3.1. (The “checkmate-in-one” task, cf. Figure 1) An experimenter wants to compare three
Large Language Models (LLMs), the alternatives, on the “checkmate-in-one” task (Srivastava et al.,
2023; Alexander, 2020; Ammanabrolu et al., 2019; 2020; Dambekodi et al., 2020). The assignment
is to find the unique checkmating move from a position of pieces on a chessboard: an LLM succeeds
if and only if it outputs the correct move. The experimenter considers two experimental factors: the
number of shots, m, and the initial position on the chessboard, posl. The number of shots is a design
factor, while the initial position is an allowed-to-vary factor. The experimenter wants to find if
LLM1 ranks consistently against the other two LLMs when changing the initial position, for a fixed
number of shots.

The rest of this section defines the terms introduced above.

3.1 EXPERIMENTS

An experiment evaluates all the alternatives under a valid experimental condition. The result of an
experiment is a ranking of the alternatives—our choice is detailed and motivated in Appendix A.1.

Alternatives. An alternative a ∈ A is an object compared in the study, like an LLM in Exam-
ple 3.1. Here, A is the set of alternatives considered in the study, with cardinality na.

Experimental factors. An experimental factor is anything that may affect the result of an experi-
ment. i denotes a factor, Ci the (possibly infinite) set of levels i can take, c ∈ Ci a level of i, and I
the set of all factors. We adapt Montgomery’s classification of experimental factors (Montgomery,
2017, Chapter 1) and distinguish between design, held-constant, and allowed-to-vary factors.

• Design factors are chosen by the experimenter; e.g., whether and how to tune the hyperpa-
rameters, quality metrics, number of shots.

• Held-constant factors, e.g., implementation, initialization seed, number of cross-validated
folds, may affect the outcome but are not in the scope of the experiment and are fixed by
the experimenter.
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• Allowed-to-vary factors, e.g., “dataset” or “chessboard position” in Example 3.1, may af-
fect the outcome but cannot be held constant: the experimenter expects results to generalize
w.r.t. these factors; Iatv denotes them.

Experimental conditions. An experimental condition c is a tuple of levels of experimental factors,
c = (ci)i∈I ∈ C ⊆ ∏i∈I Ci. We endow C with a probability µ, as we will need to sample from
it to define the result of a study in Section 3.2. The probability space (C,F , µ) is the universe of
valid experimental conditions. C may not coincide with

∏
i∈I Ci as some experimental conditions

may be invalid, i.e., illegal or not of interest. Validity has to be assessed on a case-by-case basis.
For instance, in Example 3.1, C = {(posl,m)}l,m, where posl is a legal configuration of pieces on
a chessboard and m is the non-negative number of shots.
Definition 3.1 (Rankings with ties). A ranking r on A is a transitive and reflexive binary endorela-
tion on A. Equivalently, r is a totally ordered partition of A into tiers of equivalent alternatives. r(a)
denotes the rank of a ∈ A, i.e., the position of the tier of a in the ordering. W.l.o.g. (Rna

,P(Rna
))

denotes the measure space of all rankings of na objects, where P indicates the power set.

Experimental results. The experiment function E evaluates the alternatives A under a valid ex-
perimental condition c ∈ C. Unless necessary, we consider A fixed and omit it in our notation. We
require that E : C → Rna

is a measurable function, for some fixed A. Finally, the result of an
experiment E (A, c) is a ranking on A. We
Example 3.1 (Continued). The result of an experiment on (posl, n) is a ranking of the three LLMs,
according to whether or not they output the checkmating move. Suppose that only LLM1 and LLM2

output the correct move. Then E(posl, n) ranks LLM1 and LLM2 tied as best and LLM3 as worst.

3.2 EXPERIMENTAL STUDIES

A study is defined by its research question Q, i.e., its scope and goals. The scope consists of the
alternatives A, the valid experimental conditions C, and the allowed-to-vary factors Iatv. The goal
is the kind of conclusions one is attempting to draw from the study. For now, the goal is a statement
of interests, i.e., a set of strings.
Definition 3.2 (Research question). The research question Q = (A,C, Iatv, goals) is a tuple con-
taining the set of alternatives A, the experimental conditions C, the set of allowed-to-vary-factors
Iatv, and the goals of the study.
Example 3.1 (Continued). The research question of the “checkmate-in-one” study is as follows.
The scope is

(
A = {LLMa}a=1,2,3 , C = {(posl, n)}l,n , Iatv = {“position”})

)
. The goal is “Does

LLM1 rank consistently against the other LLMs?”

A crucial element of our formalization is the distinction between ideal and empirical studies. An
ideal study exhausts its research question; however, its result is not observable. An empirical study
is an observable sample of an ideal study.

3.2.1 IDEAL STUDIES

The ideal study on a research question Q = (A,C, Iatv, goals) is the experimental study consist-
ing of an experiment for each valid experimental condition c ∈ C. We say that such a study
exhausts Q. Hence, there exists exactly one ideal study on Q. The result of an ideal study is
the probability distribution of the results of its experiments. Recall that the experiment function
E : (C,F , µ) → (Rna

,P (Rna
)) is measurable.

Definition 3.3 (Result of an ideal study). The result of an ideal study with research question Q =
(A,C, Iatv, goals) is

S (Q) = P : Rna → [0, 1]

r 7→ P (r) := µ
(
E−1(r)

)
,

where E−1(r) = {c : E(c) = r} ⊆ C is the preimage of r through E.

In general, multiple experiments of a study may yield identical results. Definition 3.3 supports this
by assigning a higher probability mass to results that occur more often.
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3.2.2 EMPIRICAL STUDIES

Consider again a research question Q = (A,C, Iatv, goals). In practice, as C might be infinite or
too large, one can only run experiments on a sample of N valid experimental conditions {cj}Nj=1

iid∼
(C, µ). The study performed on {cj}Nj=1 is an empirical study on Q, of size N . In what follows,
we will always use N to refer to the size of an empirical study. As for ideal studies, the result of an
empirical study is the probability distribution of the results of its experiments.
Definition 3.4 (Result of an empirical study). The result of an empirical study on Q is

ŜN (Q) : Rna → [0, 1]

r 7→ #
{
j ∈ {cj}Nj=1 : E (A, cj) = r

}
.

Where Q, {cj}Nj=1 is a research question and a set of valid experimental conditions as above.

The result of an empirical study can be thought of as the empirical distribution of a sample following
the distribution of the result of the corresponding ideal study. With a slight abuse of notation,
indicating both the sample and its empirical distribution as ŜN (Q), we write

ŜN (Q) iid∼ S (Q) .

4 GENERALIZABILITY OF EXPERIMENTAL STUDIES

The currently accepted definition of generalizability is the property of two independent studies with
the same research question to yield similar results National Academies of Science, 2019 and Pineau
et al. (2021). Although intuitive, this notion is not directly applicable as it does not provide a way to
measure the generalizability of a study. We now introduce a quantifiable notion of generalizability
of experimental studies, as the probability that any two empirical studies approximating the same
ideal study yield similar results.
Definition 4.1 (Generalizability). LetQ = (A,C, Iatv, κ) be the research question of an ideal study,
let P = S(Q) be the result of that study, and let d be some distance between probability distributions.
The generalizability of the ideal study on Q is

Gen (Q; ε, n) := Pn ⊗ Pn
(
(Xj , Yj)

n
j=1 : d(X,Y ) ≤ ε

)
,

where ε ∈ R+ is a similarity threshold.

As the result of an ideal study—P—is usually unobservable (cf. Section 3.2), we rely on the result
of an empirical study, P̂N = ŜN (Q), which approximates P under the assumption that the exper-
imental conditions are i.i.d. samples from C. As the sample size N increases (the empirical study
becomes larger), P̂N converges in distribution to P.

Definition 4.1 requires a distance d between probability distributions. In the next sections, we pro-
pose to use a generalizability based on kernels and the Maximum Mean Discrepancy (MMD) (Gret-
ton et al., 2006), as it allows to capture the goal of a study with an appropriate kernel. We conclude
this section with an algorithm to estimate the number of experimental conditions required to obtain
generalizable results.

4.1 SIMILARITY BETWEEN RANKINGS — KERNELS

Whether two experimental results (i.e., rankings) are similar or not ultimately depends on the goal of
the study. For instance, consider two rankings on A = {a1, a2, a3}, r = (1, 2, 3) and r′ = (1, 3, 2),
where ri is the tier of alternative ai. The conclusions drawn from r and r′ are identical if one’s
goal is to find the best alternative, but very different if one’s goal is to obtain an ordering of the
alternatives. One can use kernels to quantify the similarity between experimental results. Kernels
are suitable to formalize the aspects of the result of a study one wants to generalize, i.e., the goals of
the study. For instance, one kernel is suitable to identify the best tier while another kernel focuses
on the position of a specific alternative. In the following, we describe three representative kernels
that cover a wide spectrum of possible goals.
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Borda kernel. The Borda kernel is suitable for goals in the form “Is the alternative a∗ consistently
ranked the same?”. It uses the Borda count: the number of alternatives (weakly) dominated by a
given one (Borda, 1781). For a pair of rankings, we compute the Borda counts of a∗, and then take
their difference.

κa∗,ν
b (r1, r2) = e−ν|b1−b2|,

where bl = # {a ∈ A : rl(a) ≥ rl(a
∗)} is the number of alternatives dominated by a∗ in rl and

ν ∈ R is the kernel bandwidth. The Borda kernel takes values in
[
e(−νna), 1

]
. If ν is too large

compared to 1/|b1−b2|, the kernel is oversensitive and will penalize every deviation too much. On the
contrary, if ν is too small, the kernel is undersensitive and will not penalize deviations unless they
are very large. As |b1 − b2| ∈ [0, na], we recommend ν = 1/na.

Jaccard kernel. The Jaccard kernel is suitable for goals in the form “Are the best alternatives
consistently the same ones?”. As it measures the similarity between sets (Gärtner et al., 2006;
Bouchard et al., 2013), we use it to compare the top-k tiers of two rankings.

κk
j (r1, r2) =

∣∣r−1
1 ([k]) ∩ r−1

2 ([k])
∣∣∣∣r−1

1 ([k]) ∪ r−1
2 ([k])

∣∣ ,
where r−1([k]) = {a ∈ A : r1(a) ≤ k} is the set of alternatives whose rank is better than or equal
to k. The Jaccard kernel takes values in [0, 1].

Mallows kernel. The Mallows kernel is suitable for goals in the form “Are the alternatives ranked
consistently?”. It measures the overall similarity between rankings (Jiao & Vert, 2018; Mania et al.,
2018; Mallows, 1957). We adapt the original definition in (Mallows, 1957) for ties,

κν
m(r1, r2) = e−νnd ,

where nd =
∑

a1,a2∈A |sign (r1(a1)− r1(a2))− sign (r2(a1)− r2(a2))| is the number of discor-
dant pairs and ν ∈ R is the kernel bandwidth. If a pair is tied in one ranking but not in the other, one
counts it as half a discordant pair. The Mallows kernel takes values in

[
exp

(
−2ν

(
na

2

))
, 1
]
. If ν is

too large compared to 1/nd, the kernel is oversensitive and it will penalize every deviation too much.
On the contrary, if ν is too small, the kernel is undersensitive and will not penalize deviations unless
they are very large. As nd ∈

[
0,
(
na

2

)]
, we recommend ν = 1/(na

2 ).

4.2 DISTANCE BETWEEN DISTRIBUTIONS — MAXIMUM MEAN DISCREPANCY

Having sorted out how to measure the similarity between the results of experiments, we now dis-
cuss how to measure the distance between the results of studies. We chose the maximum mean
discrepancy (MMD) (Gretton et al., 2006), for the following reasons. First, the MMD takes into
consideration the goal of a study, as it requires a kernel—such as the ones described in Section 4.1.
Second, it handles sparse distributions well; this is needed as empirical studies are typically small
compared to the number of all possible rankings, which grows super-exponentially in the number
of alternatives. 2 Finally, it comes with bounds and theoretical guarantees, which we will use in
Section 4.3.

Definition 4.2 (MMD (empirical distributions)). Let X be a set with a kernel κ, and let Q1 and Q2

be two probability distributions on Rna . Let x = (xi)
n
i=1 ,y = (yi)

m
i=1 be two i.i.d. samples from

Q1 and Q2 respectively. Then,

MMD (x,y)
2 :=

1

n2

n∑
i,j=1

κ(xi, xj) +
1

m2

m∑
i,j=1

κ(yi, yj)−
2

mn

∑
i=1...n
j=1...m

κ(xi, yj).

Proposition 4.1. The MMD takes values in
[
0,
√

2 · (κsup − κinf)
]
, where κsup = supx,y∈X κ(x, y)

and κinf = infx,y∈X κ(x, y).

2Fubini or ordered Bell numbers, OEIS sequence A000670.
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4.3 HOW MANY EXPERIMENTS ENSURE GENERALIZABILITY?

When designing a study, an experimenter has to decide how many experiments to run in order to
obtain generalizable results. In other words, they need to choose a (minimum) sample size n∗ that
achieves the desired generalizability α∗ and the desired similarity ε∗.

n∗ = min {n ∈ N0 : Gen (P; ε∗, n) ≥ α∗} . (1)

To estimate n∗ we make use of a linear dependency between the logarithms of the sample size n and
the logarithm of the α∗-quantile of the MMD εα

∗

n that we have observed in our experiments.

Proposition 4.2. ∀α∗, there exist β0 ≥ 0 and β1 ≤ 0 s.t.

log(n) ≈ β1 log
(
εα

∗

n

)
+ β0 (2)

Appendix B.3.2 provides a proof for a simplified case. Proposition 4.2 suggests that one can use
a small set of N preliminary experiments to estimate n∗. One can then iteratively improve that
estimate with the results of additional experiments.

Our algorithm, shown in detail in Appendix B.3.3, requires specifying the desired generalizability,
α∗, and the similarity threshold between the studies results, ε∗. Then, it performs the following
steps:

1. it estimates the α∗-quantile of the MMD for all n less than some budget nmax. If there
exists an n less than nmax that satisfies the condition in (1), we return it as n∗;

2. it then fits the linear model in (2), computing the coefficients β0 and β1;
3. finally, it outputs n∗ = exp

(
β1 log

(
εα

∗

n

)
+ β0

)
, which satisfies the condition in (1) thanks

to Proposition 4.2.

In practice, choosing ε∗ is hardly interpretable as it is a threshold on the MMD. To solve this, we
propose choosing ε∗ as a function of another parameter δ∗, such that

ε∗(δ∗) =
√

2(κsup − fκ(δ∗)).

Here, δ∗ represents the distance between two rankings as computed by the kernel and fκ is the
function linking the distance to the kernel value. For instance, for the Jaccard kernel, δ∗ is simply
the Jaccard coefficient between the top-k tiers of two rankings, fκ(δ∗) = 1 − δ∗, and ε∗(δ∗) =√
2(1− (1− δ∗)). For the Mallows kernel (with our recommendation for ν), δ∗ is the fraction of

discordant pairs, fκ(x) = e−x, and ε∗(δ∗) =
√

2(1− e−δ∗). As a concrete example, achieving
(α∗ = 0.99, δ∗ = 0.05)-generalizable results for the Jaccard kernel means that, with probability
0.99, the average Jaccard coefficient between two rankings drawn from the results is 0.95.

5 CASE STUDIES

5.1 CASE STUDY 1: A BENCHMARK OF CATEGORICAL ENCODERS

We now evaluate the generalizability of a recent study (Matteucci et al., 2023) that analyzes the
performance of encoders for categorical data. The performance of an encoder is approximated by
the quality of a model trained on the encoded data. The design factors are the model, the tuning
strategy for the pipeline, and the quality metric for the model, while the only allowed-to-vary factor
is the dataset. We impute missing values in the results of the study by assigning the worst rank. We
evaluate how well the results of the study generalize w.r.t. three goals:

(g1) Find out if the one-hot encoder (a popular encoder) ranks consistently amongst its competi-
tors, using the Borda kernel with ν = 1/na.

(g2) Investigate if some encoders outperform all the others using the Jaccard kernel with k = 1.
(g3) Evaluate whether the encoders are typically ranked in a similar order, using the Mallows

kernel with ν = 1/(na
2 ).
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Figure 2: Number of necessary experiments n∗ to achieve generalizability for categorical encoders,
for different desired generalizability α∗, similarity threshold δ∗, goals gi. The variation in the plot
is due to the combinations of design factors.
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Figure 3: Number of necessary experiments n∗ to achieve generalizability for LLMs, for different
desired generalizability α∗, similarity threshold δ∗, goals gi. The variation in the plot is due to the
combinations of design factors.

Figure 2 shows the predicted n∗ for different choices of α∗ and δ∗, the other one fixed at 0.95 and
0.05 respectively. The variance in the boxes comes from variance in the design factors. For example,
the results for the design factors “decision tree, full tuning, accuracy” have a different (α∗, δ∗)-
generalizability than the results for “SVM, no tuning, accuracy”. We observe on the left that—as
expected—obtaining generalizable results requires more experiments as the desired generalizability
α∗ increases. We can also see that the variance of the boxes increases with α∗. This means that
the choice of the design factors has a larger influence on the achieved generalizability. We observe
the same when decreasing δ∗, as it corresponds to a stricter similarity condition on the rankings. In
the rather extreme cases of α∗ = 0.7 or δ∗ = 0.3, even less than 10 datasets are enough to achieve
(α∗, δ∗)-generalizability.

Consider now goal g2 for two different choices of design factors: (A): “decision tree, full tuning, ac-
curacy” and (B): “SVM, full tuning, balanced accuracy”. Furthermore, let (α∗, δ∗) = (0.95, 0.05):
we estimate n∗ = 28 for (A) and n∗ = 34 for (B), corresponding to the bottom and top whiskers of
the corresponding box in Figure 2. As both (A) and (B) were evaluated using n = 30 experiments,
we conclude that the results of (A) are (barely) (0.95, 0.05)-generalizable, while those of (B) are not.
Hence, one should run more experiments with fixed factors (B) to make the study generalizable.
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Figure 4: Relative error between the estimate of n∗ from N preliminary experiments and n∗
50.

5.2 CASE STUDY 2: BIG-BENCH — A BENCHMARK OF LARGE LANGUAGE MODELS

We now evaluate the generalizability of BIG-bench (Srivastava et al., 2023), a collaborative bench-
mark of Large Language Models (LLMs). The benchmark compares LLMs on different tasks, such
as the checkmate-in-one task (cf. Example 3.1), and for different numbers of shots. Task and number
of shots are the design factors. Every task has a number of subtasks, which is the allowed-to-vary
factor. We stick to the preferred scoring for each subtask. As the results have too many missing val-
ues to impute them, we only consider the experimental conditions where at least 80% of the LLMs
had results, and to the LLMs whose results cover at least 80% of the conditions.

Similar to before, we define the three goals as follows:

(g1) Find out if GPT3 (to date, one of the most popular LLMs) ranks consistently amongst its
competitors, using the Borda kernel with ν = 1/na.

(g2) Investigate if some encoders outperform all the others using the Jaccard kernel with k = 1.
(g3) Evaluate whether the LLMs are typically ranked in a similar order, using the Mallows

kernel with ν = 1/(na
2 ).

Figure 3 shows the predicted n∗ for different choices of α∗ and δ∗, the other one fixed at 0.95 and
0.05 respectively. Again, the variance in the boxes comes from variance in the design factors, i.e.,
the task and the number of shots. As before, increasing α∗ or decreasing δ∗ leads to higher n∗.
Unlike in the previous section, n∗ for g2 greatly depends on the combination of fixed factors, as we
now detail.

Consider now goal g2 for two different choices of design factors: (A): “conlang translation, 0 shots”,
and (B): “arithmetic, 2 shots”. Furthermore, let (α∗, δ∗) = (0.95, 0.05). For this choice of param-
eters, we estimate n∗ = 44 for (A), corresponding to the top whisker of the corresponding box in
Figure 2. As the study evaluates (A) on 10 subtasks, it is therefore not (0.95, 0.05)-generalizable. In
fact, we estimate that this would require 34 more subtasks. For (B), on the other hand, we estimate
n∗ = 1: the best 2-shot LLM for the observed subtasks is always PALM 535B. Hence, the result of
a single experiment is enough to achieve (0.95, 0.05)-generalizability.

Note that, although we correctly estimated n∗ = 1 for (B), this estimate relies on 10 preliminary
experiments. In other words, our algorithm was able to quantify in hindsight that a single experiment
would have been enough to obtain generalizable results. Of course, however, one cannot trust an
estimate of n∗ based on only one experiment. The next section thus investigates how the number of
preliminary experiments influences the estimate of n∗.

5.3 HOW MANY PRELIMINARY EXPERIMENTS?

This section evaluates the influence of the number of preliminary experiments N on n∗. We consider,
for both studies, the design factor combinations for which we have at least 50 experiments. This
results in 23 out of 48 combinations for the categorical encoders and 9 out of 24 combinations for
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the LLMs. For each of those combinations, we consider the estimate n∗
50 made at N = 50 as the

ground truth and observe how the estimates of n∗ for N < 50 differ. Figure 4 shows the absolute
relative error |n∗

N−n∗
50|/n∗

50, for different goals: the relative errors behave very differently. For goal
g3 (Mallows kernel), even n∗

10 is close to n∗
50 for a majority of the design factor combinations. On

the contrary, one needs 20 to 30 preliminary experiments for goal g1 (Borda kernel). This means
that knowing the goals of a study when performing preliminary experiments can help understand
how trustworthy the estimate of n∗ is.

Appendix C.1 complements this section analyzing the behavior of n∗
N on synthetic data, for which

the true n∗ is known.

6 CONCLUSION

Limitations. First, we modeled experimental results as rankings, their similarity with kernels, and
the similarity between distributions of results with the MMD. There are, of course, other possibil-
ities, such as using the raw performance for the experimental results. Second, in Section 5, we
post-processed missing evaluations by dropping or imputing them. One could achieve the same by
adapting the kernels to missing values.

Future work. First, as generalizability only deals with a fixed scope and alternatives, one can
include transportability—how well results hold when the scope changes—in our framework. Sec-
ond, we estimate the distribution of the MMD by sampling multiple times from the results. A
non-asymptotic theory of the MMD could speed up this procedure significantly. Third, we plan to
provide guarantees on the convergence of n∗

N to the true value of results needed for generalizability,
n∗.

Conclusions. An experimental study is generalizable if, with high probability, its findings will
hold under different experimental conditions, e.g., on unseen datasets. Non-generalizable studies
might be of limited use or even misleading. This study is, to our knowledge, the first to develop a
quantifiable notion for the generalizability of experimental studies. To achieve this, we formalize
experiments, experimental studies and their results—rankings and distributions over rankings. Our
approach allows us to estimate the number of experiments needed to achieve a desired level of
generalizability in new experimental studies. We demonstrate its utility showing generalizable and
non-generalizable results in two recent experimental studies.
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Thomas Gärtner, Quoc Viet Le, and Alex J Smola. A short tour of kernel methods for graphs. Under
Preparation, 2006.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Raghu Meka, and Chiyuan Zhang.
On user-level private convex optimization. In ICML, volume 202 of Proceedings of Machine
Learning Research, pp. 11283–11299. PMLR, 2023.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J.
Smola. A kernel method for the two-sample-problem. In NIPS, pp. 513–520. MIT Press, 2006.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander J.
Smola. A kernel two-sample test. J. Mach. Learn. Res., 13:723–773, 2012.

Odd Erik Gundersen, Kevin L. Coakley, and Christine R. Kirkpatrick. Sources of irreproducibility
in machine learning: A review. CoRR, abs/2204.07610, 2022.
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A DETAILS FOR SECTION 3

A.1 WHY RANKINGS?

We chose to formalize experimental results as rankings for the following reasons:

(i) They are already widely used for non-parametric tests such as Friedman, Nemenyi, and
Conover-Iman Demsar (2006); Conover & Iman (1982).

(ii) They do not suffer from experimental-condition-fixed effects, such as a dataset being inher-
ently easier to solve than another one. There are multiple ways to deal with these effects,
but, there none of these procedures is preferred over the others. A closely related problem
is that of consensus ranking aggregation Matteucci et al. (2023); Nießl et al. (2022).

(iii) By defining appropriate kernels for rankings (Section 4.1), we were able to model different
goals of a study.

A.1.1 OTHER POSSIBILITIES

Our framework, relying on the MMD and kernels to compare the results of studies, does not require
the results to be rankings. Instead, one can model the experimental results to be elements of an
arbitrary probability space X , provided that 1. one can define a kernel on X , and 2. the kernel
models the goals of the study. For instance, one can use the raw performance of the algorithms as
the result and the Gaussian kernel to compare them. In this case, however, it is unclear what the goal
of the corresponding study would be—how to interpret the kernel.

B DETAILS FOR SECTION 4

B.1 DETAILS FOR SECTION 4.1

This section contains the proofs to show that the similarities introduced in Section 4.1 are kernels,
i.e., symmetric and positive definite functions. As symmetry is a clear property of all of them, we
only discuss their positive definiteness. Our proofs for the Borda and Mallows kernels follow that
in (Jiao & Vert, 2018): we define a distance d on the set of rankings Rna and show that (Rna , d)
is isometric to an L2 space. This ensures that d is a conditionally positive definite (c.p.d.) function
and, thus, that e−νd is positive definite (Schoenberg, 1938; Schölkopf, 2000). Our proof for the
Jaccard kernel, instead, follows without much effort from previous results. For ease of reading, we
restate the definitions as well.
Definition B.1 (Borda kernel).

κa∗,ν
b (r1, r2) = e−ν|b1−b2|, (3)

where bl = # {a ∈ A : rl(a) ≥ rl(a
∗)} is the number of alternatives dominated by a∗ in rl and

ν ∈ R.
Proposition B.1. The Borda kernel as defined in (3) is a kernel.

Proof. Define a distance

d : Rna
×Rna

→ R+

(r1, r2) 7→ |b1, b2| ,
where bl = {a ∈ A : rl(a) ≥ rl(a

∗)} is the number of alternatives dominated by a∗ in rl. Now,
(Rna , d) is isometric to (R, ∥·∥2) via the map rl 7→ bl. Hence, d is c.p.d. and κb is a kernel.

Definition B.2 (Jaccard kernel).

κk
j (r1, r2) =

∣∣r−1
1 ([k]) ∩ r−1

2 ([k])
∣∣∣∣r−1

1 ([k]) ∪ r−1
2 ([k])

∣∣ , (4)

where r−1([k]) = {a ∈ A : r1(a) ≤ k} is the set of alternatives whose rank is better than or equal
to k.
Proposition B.2. The Jaccard kernel as defined in (4) is a kernel.
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Proof. It is already know that the Jaccard coefficients for sets is a kernel (Gärtner et al., 2006;
Bouchard et al., 2013). As the Jaccard kernel for rankings is equivalent to the Jaccard coefficient for
the k-best tiers of said rankings, the former is also a kernel.

Definition B.3 (Mallows kernel).
κν
m(r1, r2) = e−νnd , (5)

where nd =
∑

a1,a2∈A |sign (r1(a1)− r1(a2))− sign (r2(a1)− r2(a2))| is the number of discor-
dant pairs and ν ∈ R is the kernel bandwidth.
Proposition B.3. The Mallows kernel as defined in (5) is a kernel.

Proof. The number of discordant pairs nd is a distance on Rna
(Snell & Kemeny, 1962). Consider

now the mapping of a ranking into its adjacency matrix,

Φ : Rna
→ {0, 1}na×na

r 7→ (sign (r(i)− r(j)))
na

i,j=1 .

Then,
nd = ∥Φ(r1)− Φ(r2)∥1 = ∥Φ(r1)− Φ(r2)∥22

where ∥·∥p indicates the entry-wise matrix p-norm and the equality holds because the entries of
the matrices are either 0 or 1. As a consequence, (Rna

, nd) is isometric to (Rna×na , ∥·∥2) via Φ.
Hence, nd is c.p.d. and κm is a kernel.

B.2 DETAILS FOR SECTION 4.2

Proposition 4.1. The MMD takes values in
[
0,
√
2 · (κsup − κinf)

]
, where κsup = supx,y∈X κ(x, y)

and κinf = infx,y∈X κ(x, y).

Proof.

0 ≤ MMDκ (x,y)
2
=

1

n2

n∑
i,j=1

κ(xi, xj) +
1

m2

m∑
i,j=1

κ(yi, yj)−
2

mn

∑
i=1...n
j=1...m

κ(xi, yj) (6)

≤ 1

n2

n∑
i,j=1

κsup +
1

m2

n∑
i,j=1

κsup −
2

mn

∑
i=1...n
j=1...m

κinf

= 2(κsup − κinf)

B.3 DETAILS FOR SECTION 4.3

B.3.1 CHOICE OF α∗ , ε∗ , AND δ∗

Consider a research question Q = (A,C, Iatv, κ) and the corresponding ideal study with result
P. The algorithm introduced in Section 4.3 aims at finding the minimum n∗ such that, given two
independent empirical studies onQ, they achieve similar results. It has two hyperparameters, α∗ and
ε∗. α∗ ∈ [0, 1] is the generalizability that one wants to achieve from the study, i.e., the probability
that two independent realizations of the same ideal study will yield similar results. ε∗ ∈ R+ is a
similarity threshold: the results of two empirical studies x,y iid∼ P are similar if MMDκ(x,y) ≤ ε∗.
However, as it is, ε∗ is not interpretable. Instead, adapting the proof of Proposition 4.1, we can
bound the MMD by imposing a condition on the kernel, as we’ll now illustrate. The key remark is
that we are looking for a condition in the form

MMDκ (x,y) ≤ ε∗ =
√
2(κsup − δ′),

where δ′ ∈ [0, κsup] replaces the third summatory in (6). In other terms, we can interpret δ′ as the
minimum acceptable value for the average of the kernel, EP2 [κ(x, y)]. We now go a step further and
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compute δ′ (a condition on the kernel) from δ∗ ∈ [0, 1] (a condition on the rankings). The relation
between δ′ and δ∗ changes with the kernel, and so does the interpretation of δ∗. For the three kernels
we discuss in Section 4.1:

• Mallows kernel with ν = 1/(n2): δ
∗ is the fraction of discordant pairs, δ′ = e−δ∗ .

• Jaccard kernel: δ∗ is the intersection over union of the top k tiers, δ′ = 1− δ∗.
• Borda kernel with ν = 1/na: δ∗ is the difference in relative position of a∗ in the rankings,

normalized to the length of the rankings, δ′ = e−δ∗

B.3.2 PROOF OF PROPOSITION 4.2

Proposition 4.2. ∀α∗, there exist β0 ≥ 0 and β1 ≤ 0 s.t.

log(n) ≈ β1 log
(
εα

∗

n

)
+ β0 (2)

Proof. We provide a proof replacing the sample MMD with the distribution-free bound defined
in (Gretton et al., 2012).

Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y )−

(
2κsup

n

)
> ε

)
< exp

(
− nε2

4κsup

)
(1)
==⇒Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y ) > ε′

)
< exp

−n
(
ε′ −

(
2κsup

n

))2
4κsup


(2)
==⇒Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y ) > n− 1

2

(√
− log (1− α) 4κsup

)
+
√

2κsup

)
< 1− α

(3)
==⇒Pn ⊗ Pn

(
(Xj , Yj)

n
j=1 : MMD(X,Y ) ≤ n− 1

2

(√
− log (1− α) 4κsup

)
+
√

2κsup

)
≥ α

where:

(1) ε′ = ε+
√

2κsup/n.

(2) 1− α = exp

(
−n

(
ε′−

(
2κsup

n

))2

4κsup

)
and ε′ = n− 1

2

(√
− log (1− α) 4κsup +

√
2κsup

)
.

(3) Take the complementary event.

Now,

qαn = n− 1
2

(√
− log (1− α) 4κsup

)
+
√
2κsup

⇒n = (qαn)
−2

(√
−4κsup log (1− α) +

√
2κsup

)2

⇒ log(n) = −2 log(qαn) + 2 log

(√
−4κsup log (1− α) +

√
2κsup

)
.

concluding the proof.

Remark. Although theoretically sound, using the abovementioned bound instead of the sample
MMD leads to excessively conservative estimates for n∗, roughly one order of magnitude greater
than the empirical estimate.
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B.3.3 PSEUDOCODE FOR THE ALGORITHM

Algorithm 1 Compute n∗
N from preliminary study

Require: α∗ ▷ desired generalizability
Require: δ∗ ▷ similarity threshold on rankings
Require: Q ▷ research question, Q = (A,C, Iatv, κ)
Require: N ▷ size of preliminary study
Require: nmax ▷ maximum sample size to compute the MMD
Require: nrep ▷ number of repetitions to compute the MMD

procedure ESTIMATENSTAR(α∗, δ∗,Q, N, nmax, nrep)
ε∗ ← compute ε∗ from δ∗ ▷ cf. Appendix B.3
sample {cj}Nj=1

iid∼ C

nmax ← min {nmax, [N/2]} ▷ we need two disjoint samples of size nmax from {cj}Nj=1

for n = 1 . . . nmax do
mmds← empty list
for n = 1 . . . nrep do

sample without replacement (cj)
2nmax
j=1 ∼ {cj}

N
j=1

x← (cj)
nmax
j=1 ▷ split the disjoint samples

y← (cj)
2nmax
j=nmax

append MMD (x,y) to mmds
end for
εα

∗

n ← α∗-quantile of mmds
end for
fit a linear regression log(n) = β1 log

(
εα

∗

n

)
+ β0

n∗
N ← β1 log(ε

∗) + β0

return n∗
N

end procedure

procedure RUNEXPERIMENTS(α∗, δ∗,Q, nmax, nrep, step)
N ← step
while n∗ > N do

sample {cj}Nj=1

iid∼ C

n∗ ← ESTIMATENSTAR(α∗, δ∗,Q, N, nmax, nrep)
N ← N + step

end while
end procedure

C DETAILS FOR SECTION 5

C.1 PREDICTION OF n∗

This section investigates how well our method described in Section 4.3 can predict the correct num-
ber of experiments required to ensure generalizability, n∗. Recall that, for a desired generalizability
α∗ and a desired threshold ε∗ obtained as in Appendix B.3,

n∗ = min {n ∈ N0 : Gen (P; ε∗, n) ≥ α∗} .
To do so, we run the following simulation:

1. Uniformly generate 1000 rankings of 5 alternatives, these form the universe U .
2. Compute the generalizability of the sample for increasing n, and get n∗ satisfying C.1.
3. For N = 10, 20, 40, 80:

(a) Sample with replacement N rankings from U—simulate running N preliminary ex-
periments.
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Figure 5: Relative error of the prediction of n∗ from N preliminary experiments (n∗
N ), for two goals.

(b) Predict n∗
N from the N preliminary experiments (Section 4.3).

(c) Compute the relative error (n∗−n∗
N )/n∗.

4. Repeat the previous steps 50 times for the Jaccard and Mallows kernels.3

The outcome is shown in Figure 5 for the Jaccard (g2) and Mallows (g3) kernels. Our method is
able. in general, to get within 30% of the correct value of n∗ even from 10 preliminary experiments.

3We did not investigate the Borda kernel as, for synthetic data, there is no clear preferred alternative.
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