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Abstract— Object-level global localization is highly sensitive
to semantic uncertainty from viewpoint variations in open-
set scenarios. To address this problem, we present MUST-
Loc, a multi-view, uncertainty-aware semantic token matching
framework. The key idea is to aggregate object-level tokens
through online updates in the mapping process to form
mean–variance descriptors, capturing viewpoint-induced vari-
ability while maintaining semantic consistency. At the localiza-
tion query, we compute uncertainty-aware semantic similarity,
which down-weights high-variance token dimensions to estab-
lish reliable correspondences under semantic ambiguity. Finally,
the camera pose is estimated by selecting the solution that maxi-
mizes the Wasserstein-based alignment score between observed
detections and projected landmark hypotheses. For rigorous
validation, we evaluate on challenging TUM RGB-D sequences
with occlusions, label noise, and diverse categories, showing
consistent improvements over baselines in association and pose
accuracy. Project page: https://leekh951.github.io/MUST-Loc.

I. INTRODUCTION

In open-world navigation, robots must operate reliably
despite unknown objects, complex environments, and am-
biguous observations. Recent advances have improved the
robustness of navigation systems. However, semantic am-
biguity and uncertainty inherent in human-centric environ-
ments remain significant challenges. In particular, object-
level global localization, a key component for robust auton-
omy, is highly sensitive to semantic uncertainty caused by
viewpoint variations in open-set scenarios [1].

To address this, recent methods [2, 3] have moved beyond
predicted labels by integrating embeddings from vision and
language model (VLM), which can recognize unknown or
previously undefined object classes. Nevertheless, similar to
graph-based methods that rely on semantic labels [4–8], these
approaches typically assign only a textual caption to each
landmark. This design fails to capture semantic variations
across multiple viewpoints. Therefore, there is a critical
need for object-matching approaches that aggregate semantic
features from multiple views into a probabilistically inter-
pretable descriptor, adaptable to arbitrary query observations.

In this paper, we propose MUST-Loc, a multi-view
uncertainty-aware semantic token matching method for
global localization. Our key idea is to incrementally compute
the mean and variance of semantic token vectors for object
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Fig. 1. Multi-view inconsistency. Object observations from different
viewpoints often produce inconsistent semantic tokens, leading to scattered
embeddings in the token space.

landmarks during mapping and to leverage these statisti-
cal descriptors to resolve semantic ambiguity during query
matching, as illustrated in Fig. 1.

Specifically, we design a similarity measure between
landmarks and query observations, where semantic variance
tokens act as gating weights to modulate distributional
similarity. This enables more accurate and robust object
correspondence for global localization.

Our main contributions are summarized as follows:
• Semantic Disambiguation: We show that aggregating

semantic tokens across multiple views mitigates ambi-
guity caused by viewpoint variations.

• Uncertainty-aware Matching: We introduce a similar-
ity measure that incorporates variance tokens to provide
probabilistic weighting in distributional comparisons.

• Robust Global Localization: On public dataset [9]
with clutter, occlusion, and label noise, our method
yields consistent gains in association and pose, enabling
robust global localization.

II. RELATED WORK

A. Data Association for Global Localization

Object-level data association for global localization largely
falls into two categories: label-based and VLM-based meth-
ods. Label-based approaches rely on predicted semantic
labels from pretrained detectors, but single-label dependence
often introduces ambiguity. To mitigate this, graph-based
extensions [4–8] incorporate contextual labels and topolog-
ical relations, which improve robustness under viewpoint
changes. However, these methods remain tied to graph struc-
tures and overlook object-inherent uncertainty. VLM-based
methods instead leverage embedding features to capture more
generalized vision–language relationships. For instance, Mat-
suzaki et al. [2] annotate map landmarks with natural
language and match them via conceptual similarity, while



Fig. 2. Overview of our method. Our method aggregates multi-
view semantic tokens from TAP [16], matches them via uncertainty-aware
similarity, and estimates the camera pose based on a Wasserstein alignment
score.

Matsuzaki et al. [3] combine CLIP [10] embeddings with
Semantic histogram [11] and perform clique-based graph
matching. Although effective, these approaches still struggle
in scenes with semantically similar objects and insufficiently
account for multi-view uncertainty. In contrast, our method
probabilistically models multi-view uncertainty of semantic
tokens directly aggregated from objects, achieving robust and
discriminative association without explicit graph structures.

B. Vision-Language Models

Transformer [12]-based foundation models have advanced
vision-language reasoning by pretraining on large-scale im-
age text pairs. Among them, CLIP [10] enables open-
vocabulary scene understanding and has been applied to
navigation [13] and place recognition [14, 15]. Nevertheless,
its embeddings derived from cropped bounding boxes often
include background, reducing discriminability and consis-
tency across viewpoints. Tokenize Anything via Prompting
(TAP) [16], by contrast, extracts embeddings directly from
object masks, suppressing background noise and providing
more consistent, uncertainty-aware features across views.
Leveraging these strengths, we adopt TAP to enhance se-
mantic robustness and discriminability in object-level global
localization.

III. MUST-LOC

A. Overview

As illustrated in Fig. 2, the method comprises multi-
view semantic token aggregation, uncertainty-aware data
association, and pose estimation. For each landmark oj ,
tokens from sequential views are aggregated to update
mean–variance descriptors (µj ,σ

2
j ), capturing viewpoint-

dependent variability while preserving semantic consistency.
Given detections di, Uncertainty-aware Semantic Similarity
(USS) is computed between each di and candidate landmarks
oj , selecting correspondences (di, oj) ∈ P robust to semantic
ambiguity. Finally, the camera pose T is estimated from P by
maximizing a Wasserstein alignment score between observed
detections and projected landmark hypotheses.

B. Uncertainty-aware Semantic Descriptor

1) TAP-based Tokenization: For each object, we employ
the semantic token from TAP [16]. This token encapsulates
region-level visual features and a semantically aligned dis-
tribution:

vi = TAP(I,Bi), (1)

Fig. 3. Multi-view Semantic Token Aggregation (M-STA). Our method
incrementally updates mean and variance tokens to obtain semantically
consistent and uncertainty-aware object descriptors.

where TAP( · , · ) denotes a promptable region-level tok-
enizer that segments the region specified by Bi and produces
a semantic token. I and Bi denote the query RGB image
and the bounding box, respectively. As TAP prompts, the
bounding boxes are inferred under open-set conditions using
GroundingDINO [17].

2) Multi-view Semantic Token Aggregation: Human-made
objects exhibit large variations in observed shape across
viewpoints, yet their core semantic attributes remain invari-
ant. For example, a cup consistently retains its fundamental
property as a container for liquids regardless of the viewing
angle. However, a robot observing an object from a single
viewpoint often fails to capture its complete semantic char-
acteristics, motivating the integration of multi-view evidence
into a unified descriptor.

As illustrated in Fig. 3, we introduce Multi-view Semantic
Token Aggregation (M-STA). In the mapping process, we
incrementally update the mean and variance of object tokens
using Welford’s online algorithm:

µj,t = µj,t−1 +
vj,t − µj,t−1

t
, (2)

M j,t = M j,t−1 + (vj,t − µj,t−1)⊙ (vj,t − µj,t), (3)

σ2
j,t =

M j,t

t− 1
, (4)

where µj,t and σ2
j,t denote the running mean and variance

vector after t observations, M j,t is the accumulated sum of
squared deviations used to compute the variance, and ⊙ is
the Hadamard product.

The mean token encodes the consensus of semantic in-
formation, while the variance token quantifies uncertainty
across views. By explicitly modeling both, M-STA generates
object descriptors that are semantically robust and account
for uncertainty across views.

C. Uncertainty-aware Semantic Similarity

Semantic similarity between query observations and map
landmarks can be severely distorted when feature dimensions
exhibit high uncertainty. To address this, we design a similar-
ity measure, referred to as USS, that explicitly incorporates
variance information. Building on the multi-view aggregated
mean µj and variance σ2

j tokens, we define an uncertainty-
aware similarity measure S with the query object token vi



as follows:

S(vi,µj) =
v⊤
i Λjµj√

v⊤
i Λjvi

√
µ⊤

j Λjµj

, (5)

where the diagonal weight matrix Λj is defined from the
element-wise uncertainty of the mean token vector µj :

Λj = diag(e−λσ2
j ), (6)

with diag( · ) constructing a diagonal matrix from a vector
argument, and λ is a scaling hyperparameter that serves to
exponentially down-weight dimensions with higher variance.

This formulation explicitly integrates uncertainty into the
similarity computation, enabling robustness against noisy or
ambiguous features. Based on this robust similarity, we select
the top-1 landmark oj for each query detection di to construct
the set of correspondences P .

D. Global Localization

A stochastic iterative approach is executed for N itera-
tions. At each iteration, we randomly sample a previously
unselected set of three unique correspondences, Psamp, from
P . Given the Psamp that satisfies the required conditions,
a candidate camera pose T̃ is estimated by solving the
Perspective-3-Point (P3P) problem. For each (di, oj) ∈ P ,
the dual quadric of oj is transformed by T̃ to generate
a projected prior bounding box Bj . Both query bounding
box Bi and the corresponding Bj are modeled as Gaussian
distributions, denoted as Di = G(µi,Σi) and Dj(T̃ ) =
G(µj ,Σj), respectively. The degree of alignment between
the Di and Dj is measured by the normalized Wasserstein
distance proposed by [18] as follows:

Wn

(
Di, Dj(T̃ )

)
= exp

−

√
W 2

2

(
Di, Dj(T̃ )

)
C

 , (7)

where W 2
2 (Di, Dj) is the 2nd order Wasserstein distance

between two Gaussians, and C is a scale factor. This iterative
process produces a set of N candidate poses, denoted as
T = {T̃ (k)}Nk=1. Finally, the camera pose T is estimated by
maximizing the Wasserstein alignment score as follows:

T = argmax
T̃∈T

1

|P|
∑

(di,oj)∈P

Wn

(
Di, Dj(T̃ )

)
. (8)

IV. EXPERIMENTAL RESULTS

A. Setup

To evaluate the proposed methodology, we adopt the TUM
RGB-D public benchmarks [9]. Specifically, we employ
the ‘Fr2 dishes’ sequence to assess discriminative capability
among visually similar objects. Furthermore, to examine
generalization under complex object arrangements, we uti-
lize the ‘Fr2 desk’ and ‘Fr2 person’ sequences. Notably,
‘Fr2 person’ shares the same underlying object layout as
‘Fr2 desk’ but incorporates dynamic factors such as human
presence and object relocation, thereby providing a more
challenging evaluation scenario.

TABLE I
DATA ASSOCIATION AND POSE ESTIMATION PERFORMANCE

Dataset Method Data Association SRsucc [%]↑ TE [m]↓
F1↑ MOTA↑ @0.5m @1m @2m

Fr2 dishes GOReloc 0.993 0.758 59.96 64.81 90.83 0.6847
Ours 0.998 0.996 98.99 99.07 99.40 0.0865

Fr2 desk GOReloc 0.866 0.694 52.34 68.49 78.99 1.0436
Ours 0.888 0.769 96.37 97.11 99.17 0.1774

Fr2 person GOReloc 0.738 0.428 27.71 41.11 53.57 1.9972
Ours 0.933 0.853 82.01 87.82 90.40 0.5762

TABLE II
SCENE INVARIANCE ANALYSIS IN CROSS-SESSION SCENARIO

Dataset Method SRall [%]↑ SF↑
@0.5m @1m @2m @5m

Fr2 person
ORB-SLAM2 8.68 8.68 8.68 8.68 353
GOReloc 21.76 32.28 42.07 75.14 3194
Ours 72.66 77.80 80.08 87.63 3603

We evaluate data association using the F1 score and
MOTA [19]. For pose estimation, we report the mean
translation error (TE) alongside two success-rate metrics:
SRsucc, the proportion of success frames (SF) with TE below
thresholds of {0.5, 1, 2, 5}m, and SRall, the success rate over
the entire sequence.

As primary baselines, we adopt the semantic graph–based
method GOReloc [8] and, to assess scene invariance, ORB-
SLAM2 using feature points [20].

B. Data association and Pose Estimation

Table I presents the performance comparison between
baseline and the proposed approach on multi-object data
association and pose estimation under ambiguous, complex
scenarios with substantial scene variations. Table II reports
scene invariance analysis on cross-session sequences with
dynamic elements.

1) Evaluation under Object Ambiguity Scenarios: In the
‘Fr2 dishes’ sequence of Table I, the baseline exhibits low
MOTA, which we attribute to semantic ambiguities among
objects. In particular, while our method shows consistently
high SRsucc values with variations within 1%, the baseline
shows lower robustness under stricter error thresholds. The
results suggest that our method more effectively accounts for
semantic uncertainty, whereas the baseline relies on graph
structures constructed from closed-set labels.

2) Evaluation under Object Complexity Scenarios: In the
‘Fr2 desk’ and ‘Fr2 person’ sequences, which are dominated
by severe occlusions and partial detections, our approach
consistently achieved improvements. We hypothesize that
this robustness stems from modeling semantic descriptors
within object masks and explicitly accounting for multi-
view uncertainty, even in challenging scenes. Notably, in the
‘Fr2 person’ sequence with dynamic elements, the baseline
degraded to below 0.5 MOTA and under 50% SRsucc at the
1 m threshold, exposing its limitation in filtering outliers
caused by semantic label noise.



Fig. 4. The qualitative results of data association and pose estimation. (a) In each example, the left shows the query frame and the right shows the
rendered landmark. Correct matches are drawn in green, while incorrect matches are shown in red. (b) The color bar illustrates the scale of translation
error. Successful pose estimates appear as scatter points, color-coded by their error magnitude, and failed estimates are displayed as continuous gray lines.

Furthermore, as reported in Table II, both GOReloc and
our method outperformed the feature point–based ORB-
SLAM2 in terms of SRall. This suggests improved scene
invariance of semantic object–based approaches. In particu-
lar, our method shows substantial semantic discriminability,
supporting robust and accurate pose estimation across the
majority of frames.

3) Qualitative Evaluation: Fig. 4 qualitatively illustrates
the effectiveness of the proposed approach in both data
association and pose estimation. The results indicate that
our method can effectively discriminate between visually
similar objects and under complex object arrangements.
This advantage can be attributed to our leveraging of the
rich cues encoded in region-level semantic tokens and the
incorporation of semantic variance tokens as informative
priors.

C. Ablation Study

Table III reports the quantitative results across different
foundation models and similarity modules. Within the M-
STA framework, employing TAP tokens as semantic vec-
tors allows the proposed USS to consistently achieve com-
petitive performance across all sequences. This difference
arises from feature extraction: unlike CLIP, which encodes
both object and background, TAP extracts features solely
from the masked object region. This leads to more dis-
tinct, background-free object descriptors. In particular, on
‘Fr2 person’, USS attains slightly lower F1 and MOTA but
shows higher pose estimation performance. This is consistent
with cross-session settings, where different object arrange-
ments naturally reduce association metrics under dynamic
factors. As illustrated in Fig. 4(a), our TAP-based method
with the proposed USS demonstrates a significantly im-
proved discriminative capability compared to the baseline
and the cosine-similarity variant of our method.

TABLE III
ABLATION STUDY ON MODULES AND FOUNDATION MODELS

Dataset Model Module Data Association SRsucc [%]↑
F1↑ MOTA↑ @0.5m @1m @2m

Fr2 dishes
CLIP Cos 0.991 0.979 96.38 97.79 98.79

USS 0.981 0.952 93.20 95.95 99.84

TAP Cos 0.996 0.993 98.50 98.75 99.21
USS 0.998 0.996 98.99 99.07 99.40

Fr2 desk
CLIP Cos 0.871 0.732 90.21 93.24 97.29

USS 0.861 0.714 88.11 91.37 96.24

TAP Cos 0.882 0.758 94.72 96.74 99.04
USS 0.887 0.768 96.47 97.20 99.17

Fr2 person
CLIP Cos 0.882 0.742 67.62 72.59 77.40

USS 0.879 0.738 65.00 70.25 73.69

TAP Cos 0.938 0.863 81.24 86.29 87.98
USS 0.933 0.854 81.96 87.84 90.31

V. CONCLUSION

In this work, we introduced MUST-Loc, a multi-view
uncertainty-aware semantic token matching framework for
global localization. Our method incrementally aggregates
mean and variance tokens from multiple views and leverages
the USS to establish reliable correspondences under semantic
ambiguity, while estimating the camera pose by maximizing
a Wasserstein alignment score between observations and pro-
jected landmarks. Experiments demonstrate that our method
maintains robust localization performance under occlusions,
noisy labels, and large-scale category diversity.

In future work, we will extend this framework to open-
world localization by leveraging graph-based structures to
handle cross-time variations, emphasizing robustness under
temporal variations in object layouts.
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