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Abstract

Large language models (LLMs) have led to growing interest in using syn-1

thetic data for surveys. A growing body of empirical applications suggest2

a need to apply public opinion research (POR) best practices and standards3

to the evaluation of such data. To do so, we delineate synthetic data use4

cases by drawing parallels to survey practices. Next, we emphasize an5

argument-based approach to efficacy, in which a data generation process is6

evaluated based on specific arguments around fidelity, utility, and external-7

ity. Finally, we stress the need to critically review methodology, especially8

statistical conclusion validity (SCV), transparency, and reproducibility. This9

work-in-progress intends to facilitate conversations between computer sci-10

entists and survey practitioners by creating an evaluation framework. We11

intend project outputs to be a collection of open-access and living artifacts12

and invite others to collaborate.13

1 Introduction14

Generative AI (genAI) developments have led to interest in replacing or augmenting human15

survey responses with LLM-based “silicon samples.” This project creates a framework for16

(a) computer scientists to understand what is expected of LLMs for survey datasets and (b)17

survey practitioners to evaluate synthetic survey data.18

2 The rise of silicon samples and survey use cases19

Between October 2022 and June 2025, researchers published over 70 empirical research20

and didactic pieces on using LLM-generated synthetic survey data. While some offered21

supportive evidence (e.g., Aher et al. 2023; Argyle et al. 2023; Dillion et al. 2023), others22

demonstrated concerns that such data may produce smaller variance (Bisbee et al., 2024;23

Dominguez-Olmedo et al., 2024; Park et al., 2024; Sun et al., 2024), mis-/under-represent24

certain populations (Bisbee et al., 2024; Durmus et al., 2024; Sanders et al., 2023; Santurkar25

et al., 2023; von der Heyde et al., 2025), reflect stereotypes (Lee et al., 2024; Santurkar et al.,26

2023), fail to match human mental processes (Tjuatja et al., 2024; Wang et al., 2024), or distort27

multivariate relationships (Bisbee et al., 2024; Dominguez-Olmedo et al., 2024; Goli & Singh,28

2024; Sanders et al., 2023; von der Heyde et al., 2025).29

Despite concerns, survey practitioners are increasingly asked if and how to use or create30

synthetic survey data. We argue applications should be organized along typical survey31

research use cases: (1) level-oriented population estimates (e.g., prevalence of a particular32

opinion), (2) structure-oriented population estimates (e.g., relationships between an opinion33

and a behavior), (3) estimates of between-population differences, or (4) applications that34

use survey data to trend or model changes or make predictions and forecasts. Guided by35

these specific survey use cases, evaluations can better guide practical decision making.36

3 Evaluating arguments of fidelity, utility, and externality by use cases37

Building on professional standards for developing and using psychological instruments38

(AERA/APA/NCME, 2014; Kane 2013; SIOP, 2018), we suggest an argument-based ap-39
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proach to evaluate synthetic survey data. First, the intended use case must be stated to define40

the purported interpretation or use of synthetic data. Second, the evaluation argument41

states the standards upon which quality is judged.42

We propose three categories of standards: fidelity, utility, and externality. Fidelity considers43

how well synthetic survey data match the human-generated data they emulate. Common44

approaches to evaluate fidelity in public opinion research (POR) include comparing to gold45

standard benchmarks. Utility refers to synthetic survey data usefulness, given intended46

use AND survey cost. Survey practitioners often consider the tradeoff between cost and47

data quality when comparing design options. Finally, externality refers to good or bad48

unintended consequences from implementing a process. In POR, an example is the many49

free and publicly available survey datasets (e.g., American National Election Studies 2021).50

Considering both use cases and quality standards, we use the following proto statement as51

a template to construct evaluation arguments about synthetic survey data:52

Proto Statement 1 (PS1): Synthetic survey data produced by {a specific LLM-based data53

generation process} is {good / not good} for {a purported specific use case} because it {some criteria54

pertaining to fidelity, utility, or externality}.55

4 Methodological concerns in evaluating LLM-based synthetic data56

PS1 addresses the substantive nature of an evaluation, but methodological rigor should also57

be considered. When evaluating synthetic survey data, concerns have been raised pertaining58

to statistical conclusion validity (SCV, Cook & Campbell 1979), such as the improper use of59

inferential statistics (Chapman, 2024). Additionally, emerging evidence of diverging “think-60

ing processes” between silicon and human samples (Tjuatja et al., 2024; Wang et al., 2024)61

suggest comparison may be difficult due to a lack of measurement invariance (Meredith,62

1993). Additionally, the POR community is well-aware of transparency standards (e.g.,63

AAPOR, 2021) that require data collection processes to be documented. Transparency64

contributes to reproducibility, and we encourage a stronger emphasis on reproducibility.65

Given the constantly evolving nature of base LLMs and a lack of tractability of how these66

evolutions may impact synthetic data production quality, we suggest that evaluation stud-67

ies incorporate planned temporal replications. These methodological considerations are68

represented in a second proto statement:69

Proto Statement 2 (PS2): The evidence used to support Proto Statement 1 is {sound /70

unsound} because they {meet / fail to meet} {some criteria pertaining to statistical conclusion71

validity, transparency, or reproducibility}.72

5 Framework for evaluating synthetic survey data and sharing findings73

Together, PS1 and PS2 represent a proposed framework for evaluating synthetic survey data,74

which can be organized in a table as illustrated at https://bit.ly/449TYTx. Furthermore,75

this framework can guide the design and reporting of synthetic survey data evaluation76

studies by turning specific evaluation arguments into testable hypotheses and explicit77

quality metrics. Finally, the framework suggests that synthetic survey data evaluations78

are best carried out through collaboration between LLM scientists and public opinion79

researchers.80

6 Conclusion and a call to action81

We urge the NLPOR community to go “back to the basics” by grounding synthetic survey82

data evaluation on survey standards and human mental processes. The outputs of this83

project will be an open-access framework to evaluate LLM-generated synthetic survey data84

and a collaborative collection of evidence organized around it. We encourage others to85

contribute to this effort so, working together, we can provide insights on how synthetic86

survey data may advance survey science and business practices.87
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