
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEVERAGING KV SIMILARITY FOR ONLINE STRUC-
TURED PRUNING IN LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Pruning has emerged as a promising direction for accelerating large language
model (LLM) inference, yet existing approaches often suffer from instability be-
cause they rely on offline calibration data that may not generalize across inputs.
In this work, we introduce Token Filtering, a lightweight online structured prun-
ing technique that makes pruning decisions directly during inference without any
calibration data. The key idea is to measure token redundancy via joint key–value
similarity and skip redundant attention computations, thereby reducing inference
cost while preserving critical information. To further enhance stability, we design
a variance-aware fusion strategy that adaptively weights key and value similarity
across heads, ensuring that informative tokens are retained even under high prun-
ing ratios. This design introduces no additional memory overhead and provides a
more reliable criterion for token importance. Extensive experiments on LLaMA-
2 (7B/13B), LLaMA-3 (8B), and Mistral (7B) demonstrate that Token Filtering
consistently outperforms prior structured pruning methods, preserving accuracy
on commonsense reasoning benchmarks and maintaining strong performance on
challenging tasks such as MMLU, even with 50% pruning.

1 INTRODUCTION

Large Language Models (LLMs) (Vaswani et al., 2017; Touvron et al., 2023) have achieved remark-
able success across a wide range of tasks, including natural language understanding, reasoning, and
generation, and they now serve as the foundation for many state-of-the-art AI applications (OpenAI,
2023). However, their deployment in real-world scenarios remains challenging due to the models’
highly complex architectures and massive parameter counts, which result in substantial inference
latency and considerable resource consumption.

Pruning is a widely studied technique for accelerating neural networks. Unstructured pruning (Fran-
tar & Alistarh, 2023) adaptively removes individual weights and achieves high compression with
modest accuracy loss, but practical speedups often require specialized hardware. Structured pruning
(Ma et al., 2023) removes larger components such as attention heads or modules, which is more
hardware-friendly but typically causes non-trivial accuracy degradation.

While effective in certain settings, most pruning methods are applied offline using a calibration
dataset, which can lead to overfitting and reduced generalization to downstream tasks (Williams &
Aletras, 2023). To overcome these limitations, online pruning has emerged as a promising alterna-
tive, making pruning decisions dynamically during inference based on real inputs. Unlike offline
approaches, it cannot rely on global profiling with calibration data and must instead operate adap-
tively on local features at runtime. This design presents new challenges: the absence of global
saliency information and the need for extremely lightweight decision mechanisms, since any addi-
tional computation directly increases inference latency.

Recently, token pruning has emerged as a complementary strategy that directly reduces the sequence
length by discarding tokens deemed less informative during inference. By shortening the effective
context, token pruning alleviates the quadratic complexity of self-attention and yields substantial
reductions in FLOPs and latency. Learned Token Pruning (LTP) (Kim et al., 2022) adaptively drops
tokens based on learned attention thresholds, while Zero-TPrune (Wang et al., 2024) leverages at-
tention graphs of pre-trained models to enable zero-shot pruning without retraining. More recently,
LazyLLM (Fu et al., 2024) applied token pruning to large language models and achieved over 2×

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

speedup in long-context inference, but such methods still rely on computing attention scores to esti-
mate token importance, which reduces the potential benefits of pruning by adding extra computation.

In this work, we propose Token Filtering, an online dynamic structured pruning technique that
directly reduces inference cost by filtering out redundant tokens in real time and skipping their
attention computations. Unlike prior token pruning methods that rely on attention scores to estimate
token importance, our approach leverages key–value similarity as a lightweight redundancy signal,
thereby avoiding the overhead of score computation. The key idea is that tokens highly similar to
past context are unlikely to contribute novel information and can thus be pruned without harming
accuracy. To quantify this redundancy, Token Filtering uses both key similarity and value similarity,
defined as the cosine similarity between the current key or value and the mean representation of
all previous tokens. In multi-head attention, where different heads capture diverse perspectives, we
compute similarity for each head individually and then average them to preserve diversity. To further
improve stability, we incorporate a variance-aware fusion strategy: even when the mean similarity is
high, a large variance across heads may indicate that some heads still encode important information.
We therefore assign greater weight to the feature (key or value) with lower variance and combine
them to produce a final similarity score. This similarity-based filtering enables Token Filtering to
maintain accuracy under high pruning ratios while eliminating redundant attention operations, all
without requiring global profiling or calibration data.

To reduce overhead, we propose a tail-focused pruning strategy. When attention operations are
skipped through similarity-based decisions, latency can be significantly reduced; however, when
skipping does not occur, the decision-making cost remains as pure overhead. Thus, to ensure suffi-
cient latency gains, it is more effective to apply our method selectively to layers with higher pruning
likelihood rather than uniformly across the entire model. Based on empirical observations, we find
that later layers, where attention scores are more concentrated on a few tokens, exhibit a higher
probability of being pruned. Finally, to maintain the target pruning ratio for each layer, we intro-
duce dynamically adjusted layer-wise thresholds, which are updated based on the current skip ratio.
Together, these innovations establish Token Filtering as an effective approach for accelerating LLM
inference while preserving accuracy on challenging benchmarks such as commonsense reasoning
and MMLU (Hendrycks et al., 2020)

2 RELATED WORK

Pruning. Network pruning is an effective model compression technique. Pruning methods can
be broadly categorized into two types: unstructured pruning and structured pruning (Cheng et al.,
2024). Unstructured pruning (Yang et al., 2022; Frantar et al., 2022; Diao et al., 2023) focuses on
individual weights, whereas structured pruning (Ma et al., 2023; Le et al., 2025; Ling et al., 2024; An
et al., 2024) removes relatively larger structures such as channels, heads, or layers. For unstructured
pruning, SparseGPT (Frantar & Alistarh, 2023) addresses the layer-wise pruning problem by em-
ploying the Optimal Brain Surgeon (OBS) approach to approximate the Hessian and thus determine
saliency. BESA (Xu et al., 2024) applies different pruning ratios per layer, adapting the sparsity al-
location across the network. For structured pruning, SlimGPT (Ling et al., 2024) gradually increases
the pruning ratio while removing attention heads. FLAP (An et al., 2024) leverages a fluctuation-
based pruning metric to adaptively search for a suitable global compression ratio. These methods
typically rely on an offline pruning process with a calibration dataset, and since pruning is performed
without considering the input at runtime, they often suffer from significant accuracy degradation.
More recently, Probe Pruning (Le et al., 2025) demonstrates that probing a small portion of each
batch can effectively identify crucial weights, enabling online and dynamic pruning. However, it
still requires a calibration dataset to construct historical states, limiting its general applicability. In
contrast, our approach performs pruning entirely online, jointly considering both tokens and layers,
and achieves this without any calibration dataset, thereby minimizing performance degradation.

Similarity. Computation reuse has been studied across different contexts. Mercury (Janfaza et al.,
2023) caches intermediate results and reuses them for similar inputs, which requires allocating ad-
ditional memory storage. In large language models, Prompt Cache (Gim et al., 2024) accelerates
inference by storing frequently used prompts, while Key-Diff (Park et al., 2025) compresses the
KV cache by exploiting cosine similarity between keys. These approaches primarily target mem-
ory reuse or KV-cache-specific optimizations. In contrast, we leverage similarity to skip attention

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Layer Norm

Attention Layer

Layer Norm

Token 
Filtering

MLP Layer

High similarity score
(skip attention layer)

Low similarity score

Compute cosine similarity

+

Token Filtering Layer

Key Value

Anchor Key Anchor Value

Key Similarity Value Similarity

1

4

2

Similarity Score3

Figure 1: Technique of Token Filtering. ① Tokens first pass through the Token Filtering layer before
entering the attention layer. ② Cosine similarity is computed between the key/value and the anchor
key/value, where the anchor key/value represents the average of previous keys and values. ③ The
key similarity and value similarity are added to obtain the similarity score. ④ If the similarity score
is high, the attention layer is skipped.

computations at runtime directly, enabling structured pruning throughout the decoding process. This
shift in similarity-based reuse from a cache-oriented paradigm to a compute-oriented pruning mech-
anism offers broader applicability and stronger efficiency gains.

3 METHOD

This section introduces Token Filtering, our method for layer-wise and token-wise online structured
pruning in LLMs. The goal is to reduce the substantial inference cost of LLMs while maintain-
ing accuracy at high sparsity levels. Our method has two key components: (i) a lightweight KV-
similarity–based selection that jointly considers key and value to identify highly redundant tokens
and prune them in real time; (ii) Tail-focused pruning with layer-wise thresholds for minimizing
latency overhead. An overview of the proposed pruning technique is illustrated in Figure 1.

3.1 KV SIMILARITY AND ATTENTION SCORE

Figure 2: Visualization of inverse KV similarity and attention weights for a representative head
(Layer 37, Head 5). For clarity, we plot the inverse cosine similarity so that higher values correspond
to lower similarity. Peaks in inverse similarity generally coincide with peaks in attention weights,
illustrating that tokens with lower similarity tend to receive higher attention.

As discussed above, Token Filtering performs online pruning during runtime to improve inference
speed while preserving accuracy. Offline pruning can exploit metrics obtained from end-to-end
profiling, such as attention scores or the cosine similarity between inputs and outputs, to determine
which components to prune. In contrast, online pruning must operate during inference, which makes

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Token Filtering Layer Guided Skip Decision
Require: layer index i, input keys K, input values V

per-layer anchors ANCHORK[i], ANCHORV[i], thresholds τ [i]
running variances σ2

k[i], σ
2
v [i]

Require: global: target skip ratio ρ⋆, current skip ratio ρ, step size η

function SKIPDECISION(i,K,V)
ANCHORK[i]← mean(K) ▷ anchor key = mean of previous keys
ANCHORV[i]← mean(V) ▷ anchor value = mean of previous values
klast ← K[:,−1, :]
vlast ← V[:,−1, :]
(sk, σ

2
k[i])← (mean, var)(cosine sim(ANCHORK[i],klast))

(sv, σ
2
v [i])← (mean, var)(cosine sim(ANCHORV[i],vlast))

α← 1/σ2
v[i]

1/σ2
k[i]+1/σ2

v[i]
▷ variance-based weighting

sKV ← α sk + (1− α) sv ▷ final similarity score
τ [i]← τ [i] + η(ρ⋆ − ρ) ▷ threshold adaptation
Skip layer if sKV > τ [i]

end function

it infeasible to rely on such global statistics. Therefore, a new criterion is required, and we draw
inspiration from input similarity to guide pruning decisions.

The relationship between keys and attention scores has been discussed in many prior studies. KeyD-
iff (Park et al., 2025) demonstrated a correlation between the cosine similarity among keys and their
corresponding attention scores. In particular, the anchor key, defined as the mean of all previous
keys, serves as a reference. Keys with high cosine similarity to the anchor key are considered redun-
dant and less important, which allows them to be evicted from the KV cache. However, attention
pruning is more aggressive than KV cache eviction, and relying solely on key similarity to assess
token importance can be unstable.

Therefore, we also incorporate values into the pruning criterion. Although keys and values are
generated from the same token, additional factors, such as positional embeddings applied only to
keys, cause them to encode different information. By jointly considering key similarity and value
similarity, we obtain a more stable and reliable measure of token importance. Figure 2 illustrates
the relationship between the variance-aware KV similarity, introduced in the following subsection,
and the attention scores. For clarity of visualization, we plot the inverse KV similarity. We observe
an inverse relationship, where tokens with higher similarity tend to receive lower attention scores.
This indicates that similarity can serve as a reliable predictor of less important tokens, allowing us
to anticipate redundant attention computations without explicitly performing them.

3.2 TOKEN FILTERING

By leveraging key and value similarity, we can prune redundant tokens before performing the at-
tention operation. To maximize this benefit, we insert an additional Token Filtering layer into each
Transformer block, placing it before the attention layer. The Token Filtering layer computes the key
and value similarity and provides a skip path that bypasses the attention computation. The overall
procedure of the Token Filtering layer is summarized in Algorithm 1.

In the Token Filtering layer, we define KV similarity as the importance score used to decide whether
a token should be pruned. Specifically, KV similarity is computed as a weighted combination of
key similarity and value similarity. Key and value similarity are defined as the cosine similarity
between the anchor key or value and the current token’s key or value. In multi-head attention, keys
and values differ across heads. If we first average keys and values across the head dimension and
then compute cosine similarity, the computational cost can be reduced, but this approach discards
head-specific information and prevents the estimation of variance across heads. To preserve head-
level information, we instead compute cosine similarity for each head individually and then take the
average to obtain the final key and value similarities.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The anchor key is defined as the mean of all previous keys. However, computing head-wise cosine
similarity introduces additional overhead. To mitigate this cost, we replace the exact average with
an efficient incremental averaging strategy, where a fixed smoothing factor α is used to retain the
influence of recent tokens:

Anchor← α · Anchor + (1− α) · kcurrent,

where α is close to one (e.g., α = 0.9). Using a fixed factor emphasizes more recent inputs and
avoids the dominance of older tokens, effectively capturing a recent window of key information.
The same update rule is applied to anchor values.

Since we compute similarity for each head individually, we can also obtain the variance of similarity
across heads. In multi-head attention, each head represents a different perspective, meaning that the
keys and values of different heads correspond to distinct interpretations of the same token. Thus,
head-wise similarity can be regarded as measuring token redundancy from multiple viewpoints.
Leveraging variance allows us to avoid the pitfalls of averaging: even if the mean similarity is high,
a significant variance may indicate that some heads capture non-redundant, and therefore necessary,
information. Consequently, when combining key and value similarities, we assign greater weight
to the side with lower variance, reflecting higher consistency across heads. Formally, let sk and sv
denote the cosine similarities of key and value, and let σ2

k and σ2
v be their running variances. The

final similarity score is given by:

α =
σ−2
v

σ−2
k + σ−2

v

, (1)

SKV = α sk + (1− α) sv. (2)

Here, α is adaptively determined for each head, so that the more stable feature (lower variance)
contributes more to the final similarity score. This variance-aware weighting yields a more robust
criterion for token pruning than relying solely on key similarity.

3.3 TAIL-FOCUSED PRUNING WITH LAYER-WISE THRESHOLD

The goal of Token Filtering is to achieve acceleration comparable to offline pruning, despite oper-
ating in an online setting. Unlike offline pruning, which behaves like a dense model at inference,
online pruning inevitably exposes the computational overhead required for pruning decisions. To
address this, we perform the additional pruning computations only in layers with a high likelihood
of being pruned, rather than applying them uniformly across all layers. Many previous studies have
investigated which layers are less critical and can be pruned with minimal impact on model perfor-
mance. For example, (Gao et al., 2025) estimates the pruning sensitivity of each layer and performs
non-uniform pruning accordingly. Similarly, (Lu et al., 2024) empirically investigates various layer
pruning strategies and adopts a heuristic of removing the final 25% of layers.

Based on prior studies and our empirical observation, we adopt a tail-focused online structured prun-
ing strategy. Instead of pruning every layer uniformly, we prune only the later layers. Concretely, to
meet a global pruning budget Pglobal (e.g., 25%), we select the last Y fraction of layers (e.g., Y=0.5)
and prune them more aggressively so that the per-selected-layer target becomes:

Ptail =
Pglobal

Y
. (3)

Each selected layer l maintains its own learnable threshold Tl. At each decoding iteration, we
compute a key-similarity score al; if al > Tl, we skip the attention of that layer for the current
tokens (FFN is still executed). Let Sl be the observed current skip ratio of layer l (running estimate),
which denotes the proportion of times this layer has been skipped so far during inference. We update
tl online via proportional feedback to match Ptail:

Tl ← Tl + α(Sl − Ptail). (4)

where α > 0 is a small learning rate. Layers outside the tail set are not pruned (no skipping). These
concentrates pruning where layers are typically less sensitive, while keeping the global skip budget
close to Pglobal.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Zero-shot evaluation of LLaMA-2-13B on perplexity (PPL, ↓) and commonsense reasoning
benchmarks. The “Avg.” column reports the average accuracy across the seven tasks. The bolded
results indicate the best result within each pruning ratio group.

Prune% Method PPL ↓ BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
0% Dense 10.98 80.92 80.52 79.36 71.98 79.63 49.15 45.00 69.51

20%

SlimGPT w/o 13.80 80.37 78.45 77.07 71.51 75.84 45.14 43.60 67.43
FLAP 14.13 77.21 77.95 78.06 71.32 76.44 45.27 42.00 66.89

PP 12.52 76.29 79.55 76.53 68.57 76.85 44.57 42.00 66.33
Token Filtering 13.37 80.18 78.62 77.78 72.22 78.96 48.04 45.00 68.69

25%

SlimGPT w/o 15.10 78.78 77.91 75.65 70.64 73.06 44.11 43.00 66.16
FLAP 15.49 75.81 75.61 74.74 69.59 73.83 43.57 41.00 64.88

PP 13.32 73.82 78.47 75.82 67.78 75.42 42.95 42.40 65.24
Token Filtering 14.69 80.09 78.56 77.82 71.03 77.57 47.95 44.20 68.17

33%

SlimGPT w/o 18.11 76.27 76.44 72.76 70.80 70.83 41.21 41.00 64.19
FLAP 17.79 74.37 74.42 70.45 68.17 70.22 42.29 39.20 62.73

PP 15.83 70.30 76.74 71.67 63.65 71.08 39.96 42.60 62.29
Token Filtering 16.39 79.79 77.15 76.07 71.35 77.44 47.35 44.00 67.65

50%

SlimGPT w/o 32.67 66.06 73.61 61.76 65.82 60.44 34.39 38.00 57.15
FLAP 29.45 74.31 70.49 58.39 62.96 61.67 36.83 37.20 57.41

PP 28.86 62.17 69.22 49.88 55.07 59.26 29.63 36.20 51.93
Token Filtering 29.22 79.76 77.04 74.56 71.03 71.72 45.22 42.00 65.90

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Setup. We conduct all experiments on a single NVIDIA A100 GPU with 80GB of memory. All
LLM models and datasets are obtained from the Hugging Face Transformers library (Wolf et al.,
2020). Zero-shot evaluations on commonsense reasoning benchmarks and the MMLU benchmark
are performed using the lm-eval-harness framework (Gao et al., 2021). For all baseline methods, we
used the official implementations released by the original authors.

Models. Our evaluation primarily targets a diverse set of LLMs to demonstrate the generality and
robustness of our approach. Specifically, we experiment with models from the LLaMA family,
including LLaMA-2 7B/13B (Touvron et al., 2023) and LLaMA-3 8B (Meta AI, 2024), as well as
the Mistral-7B (Jiang et al., 2023) and Phi-4-14B (Abdin et al., 2024) models. By covering various
model families and a wide range of parameter scales, we show that our methodology consistently
yields improvements and is not restricted to a specific model type or size.

Benchmarks. To evaluate the effectiveness of Token Filtering, we measure both perplexity and ac-
curacy following prior pruning studies. For language modeling performance, we report perplexity
on the WikiText2 (Merity et al., 2016) validation set with sequence length truncated to 128. For com-
monsense reasoning capabilities, we conduct zero-shot evaluations on seven standard benchmarks:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande
(Sakaguchi et al., 2021), ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), and
OpenBookQA (Mihaylov et al., 2018). Additionally, we evaluate on MMLU, a knowledge-intensive
benchmark that encompasses 57 subjects requiring domain-specific reasoning.

Baselines. We evaluate the following established methods: (i) SlimGPT (Ling et al., 2024), an
inference-time pruning method based on the Optimal Brain Surgeon (OBS) framework that pro-
gressively prunes attention heads. (ii) FLAP (An et al., 2024), a retraining-free structured pruning
framework that uses input feature fluctuations on a calibration set to search for global compression
structures. (iii) Probe Pruning (PP) (Le et al., 2025), an online dynamic pruning method that probes
a small subset of tokens to guide batch-wise channel pruning during inference.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot evaluation of various models on text generation (perplexity, ↓) and common-
sense reasoning (accuracy, ↑). A dash (−) indicates that the baseline method could not be applied
successfully to the corresponding model.

Method Pruning Ratio
Text Generation ↓ Commonsense Reasoning ↑

LLaMA-2-7B LLaMA-3-8B Mistral-7B Phi-4-14B LLaMA-2-7B LLaMA-3-8B Mistral-7B Phi-4-14B
Dense 0% 12.18 14.13 11.90 16.20 66.88 70.39 71.40 72.66

20%

SlimGPT w/o 16.36 32.79 20.39 191.31 64.27 62.76 55.51 47.61
FLAP 16.32 23.25 16.08 - 63.10 55.75 57.72 -

PP 15.31 20.56 - - 63.34 58.66 - -
Token Filtering 16.65 19.46 15.52 20.52 63.61 67.94 65.82 70.52

50%

SlimGPT w/o 40.83 85.32 43.68 512.32 51.45 47.68 43.20 32.53
FLAP 43.11 63.33 42.02 - 46.97 42.61 44.57 -

PP 39.40 104.01 - - 50.59 41.54 - -
Token Filtering 54.59 74.62 48.08 72.89 53.13 59.31 50.37 59.87

Table 3: MMLU zero-shot performance of LLaMA-2-7B/13B. Here, “social” denotes the social
sciences category. Probe Pruning (PP) is excluded since its official implementation does not support
MMLU evaluation.

Method Pruning Ratio
LLaMA-2-7B LLaMA-2-13B

Humanities Social STEM Other Avg Humanities Social STEM Other Avg
0% Dense 39.21 45.99 33.17 45.41 40.81 47.89 61.03 42.44 59.29 52.07

20%
SlimGPT 30.47 30.48 26.07 34.37 30.35 43.38 54.01 39.30 52.98 46.92

FLAP 28.01 33.67 30.23 31.89 30.61 42.77 53.92 40.46 47.66 45.79
Token Filtering 36.03 41.18 32.25 42.68 37.78 47.06 59.86 41.80 58.22 51.15

50%
SlimGPT 23.44 22.23 21.33 23.82 22.96 31.56 30.39 27.56 31.57 30.41

FLAP 24.21 21.71 21.25 23.98 22.95 34.29 31.84 28.57 30.14 30.81
Token Filtering 33.84 38.45 30.63 39.17 35.31 44.23 53.23 38.63 52.08 46.68

4.2 MAIN RESULT

4.2.1 ACCURACY AND PERPLEXITY RESULTS

In this experimental evaluation, we report the zero-shot performance of pruned models without
any fine-tuning on both text generation and commonsense reasoning tasks. Table 1 presents the
detailed perplexity and accuracy results of the LLaMA-2-13B model under various pruning ratios.
Compared to other approaches, Token Filtering achieves superior performance across most subtasks.
Under a pruning ratio of 20%, Token Filtering shows only marginal gains, with a perplexity higher
than the best existing result (13.37 vs. 12.52) but an accuracy improvement of +1.23 points (68.69
vs. 67.43). However, as the pruning ratio increases, the advantage of Token Filtering becomes
evident. At 50% pruning, Token Filtering achieves a comparable perplexity (29.22 vs. 28.86) and a
substantial accuracy gain of +8.49 points (65.90 vs. 57.41) over the best baseline.

Table 2 reports zero-shot evaluation results on multiple LLM families under different pruning ratios.
Overall, Token Filtering achieves comparable perplexity while delivering superior accuracy across
most settings. On Mistral-7B and LLaMA-3-8B, baseline methods exhibit rapid performance degra-
dation even at low pruning ratios, whereas Token Filtering maintains strong performance under the
same conditions. For the latest Phi-4-14B model, most prior methods either fail to run or suffer from
severe model collapse, while our approach sustains a reasonable level of performance. On smaller
7B-scale models, all pruning techniques—including ours—show substantial accuracy drops under
high pruning ratios, reflecting the limited redundancy of compact models. More detailed results and
breakdowns across subtasks are provided in the Appendix.

In contrast to prior studies, which reported that aggressively pruned large models (e.g., LLaMA-
13B at 50% sparsity) may underperform lightly pruned smaller counterparts (e.g., LLaMA-7B at
20% sparsity) due to limited recovery under low-cost fine-tuning, our method demonstrates stronger
robustness. Specifically, our 50% pruned LLaMA-2-13B achieves zero-shot accuracy comparable
to the dense LLaMA-2-7B (65.90 vs. 66.88), indicating that our approach effectively preserves the
representational capacity of large models even under high pruning ratios. This result highlights the
advantage of our online pruning strategy, which can sustain high pruning levels without sacrificing

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Latency and memory reduction (%) of Token Filtering under a 50% pruning ratio across
different batch sizes on LLaMA-2-13B

Table 4: Attention share in total latency at different batch sizes.
Batch size Total latency (s) Attention latency (s) Attention share (%)

8 1.9 1.3 68%
128 24.1 23.3 97%

task performance, thereby offering more favorable efficiency–accuracy trade-offs than conventional
offline pruning approaches.

We further evaluate the pruned models on MMLU, a challenging benchmark that assesses broad
multi-domain knowledge and reasoning capabilities. As shown in Table 3, Token Filtering consis-
tently outperforms prior structured pruning methods by a large margin. For LLaMA-2-7B at a 20%
pruning ratio, Token Filtering achieves an average accuracy of 37.78%, substantially higher than
SlimGPT (30.35%) and FLAP (30.61%). At a 50% pruning ratio, the gap becomes even more pro-
nounced: Token Filtering attains 35.31%, compared to only 22.96% for SlimGPT and 22.95% for
FLAP. A similar trend holds for the larger LLaMA-2-14B model, where Token Filtering maintains
51.15% accuracy at 20% pruning and 46.68% at 50%, while competing methods collapse to below
47% and 31%, respectively. These results highlight the robustness of Token Filtering on complex
reasoning tasks, demonstrating its ability to preserve knowledge-intensive performance even under
aggressive pruning.

4.2.2 EFFICIENCY EVALUATION

Figure 3 presents the end-to-end latency and memory reduction achieved by Token Filtering under
a 50% pruning ratio across different batch sizes. The results are obtained on the LLaMA-2-13B
model with an output limit of 512 tokens, averaging over 10 runs. As shown in Figure 3, our method
reduces both latency and memory across different batch sizes. Notably, the reduction becomes more
pronounced as the batch size increases: at a batch size of 128, latency is reduced by 46.6% and
memory usage by 33.6%.

Interestingly, our measurements show that the latency of the MLP and normalization layers remains
nearly constant, regardless of the batch size. In contrast, the latency of the attention layer increases
sharply with larger batches. As shown in Table 4, at batch size 128, attention accounts for 23
seconds out of the 24-second total latency (≈97%). This behavior stems from the inherently non-
parallelizable nature of attention operations and explains the batch-dependent variation in latency
reductions observed in Figure 3. Since Token Filtering directly prunes attention layers, it achieves
nearly half the latency reduction at large batch sizes, where attention dominates the runtime.

4.3 EXTENDED ANALYSIS

4.3.1 PRUNING FOCUS: TAIL, HEAD, AND UNIFORM

Table 5 compares uniform, head-focused, and tail-focused pruning strategies under both 20% and
50% pruning ratios. The results clearly show that tail-focused pruning consistently outperforms the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparison of pruning focus strategies (uniform, head-focused, and tail-focused) on
LLaMA-2-13B. Results are reported for perplexity (PPL, ↓) and seven commonsense reasoning
benchmarks.

Prune% Method PPL↓ BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
0% Dense 10.98 80.92 80.52 79.36 71.98 79.63 49.15 45.00 69.51

20%
Uniform 43.19 68.07 69.91 56.40 60.30 62.46 41.38 38.20 56.67

Head-focused 179.02 57.68 57.78 37.60 55.09 43.81 30.55 32.40 44.99
Tail-focused 13.37 80.18 78.62 77.78 72.22 78.96 48.04 45.00 68.69

50%
Uniform 429.44 51.83 52.39 29.82 51.70 35.10 25.34 31.00 39.60

Head-focused 6717.69 37.83 50.82 26.55 47.67 26.52 28.24 25.80 34.78
Tail-focused 29.22 79.76 77.04 74.56 71.03 71.72 45.22 42.00 65.90

Table 6: Comparison of importance criteria (key-only, value-only, and KV) on LLaMA-2-7B and
LLaMA-2-13B under a 33% pruning ratio. Results are reported for perplexity (PPL, ↓), common-
sense reasoning accuracy, and MMLU accuracy.

Method Pruning Ratio
LLaMA-2-7B LLaMA-2-13B

PPL↓ Commonsense Reasoning MMLU PPL↓ Commonsense Reasoning MMLU

33%
Key-only 24.13 58.98 35.11 16.39 67.06 50.14

Value-only 24.85 59.54 35.08 16.65 67.64 48.56
KV 24.22 59.15 35.51 16.39 67.65 49.48

other approaches in both perplexity and accuracy. At 20% pruning, tail-focused Token Filtering
achieves a perplexity of 13.37 and an average accuracy of 68.69, significantly better than uniform
pruning (PPL 43.19, Avg 56.67) and head-focused pruning (PPL 179.02, Avg 44.99). A similar trend
is observed at 50% pruning, where tail-focused pruning maintains competitive accuracy (65.90) with
substantially lower perplexity (29.22) compared to the uniform (PPL 429.44, Avg 39.60) and head-
focused (PPL 6717.69, Avg 34.78) variants. These results demonstrate that pruning later layers
is more effective, as it reduces redundancy while minimizing accuracy degradation, making tail-
focused pruning the most reliable strategy across different pruning ratios.

4.3.2 SIMILARITY: KEY, VALUE, AND KV

Table 6 compares pruning criteria based on key similarity, value similarity, and their combination
(KV) under a 33% pruning ratio. The results indicate that perplexity and commonsense reasoning
accuracy remain broadly comparable across the three variants, suggesting that either keys or values
alone are sufficient for relatively simple reasoning tasks. However, on the more challenging MMLU
benchmark, KV consistently achieves the highest performance, reaching 35.51 on LLaMA-2-7B
and 49.48 on LLaMA-2-13B, outperforming both key-only and value-only pruning. This finding
suggests that while commonsense reasoning tasks may not strongly depend on the integration of key
and value information, complex knowledge-intensive evaluations such as MMLU benefit from the
added robustness of combining both features.

5 CONCLUSION

In this work, we propose Token Filtering, a fully online, dynamic, structured pruning technique for
large language models. To address the challenges of online structured pruning, we leveraged joint
key–value similarity as a lightweight importance criterion and introduced a tail-focused mechanism
to mitigate performance degradation. Extensive experiments demonstrate that Token Filtering can
effectively compress diverse models at various pruning ratios without requiring any calibration data
or fine-tuning, while consistently preserving accuracy.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin et al. Phi-4 technical report. arXiv preprint arXiv:2412.08905, 2024.

Yongqi An et al. Fluctuation-based adaptive structured pruning for large language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7432–7439, 2020.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 2924–2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Enmao Diao, Ganghua Wang, Jiawei Zhan, Yuhong Yang, Jie Ding, and Vahid Tarokh. Pruning
deep neural networks from a sparsity perspective. In International Conference on Learning Rep-
resentations (ICLR), 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning (ICML), pp. 10323–10337. PMLR,
2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Na-
jibi. Lazyllm: Dynamic token pruning for efficient long-context llm inference. arXiv preprint
arXiv:2407.14057, 2024.

Chang Gao et al. Maximum redundancy pruning: A principle-driven layerwise sparsity allocation
for llms. arXiv preprint arXiv:2503.18377, 2025.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Lau-
rence Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A frame-
work for few-shot language model evaluation. https://github.com/EleutherAI/
lm-evaluation-harness, 2021. Version v0.0.1, Sept 2021.

In Gim et al. Prompt cache: Modular attention reuse for low-latency inference. In Proceedings of
Machine Learning and Systems (MLSys), volume 6, pp. 325–338, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Vahid Janfaza et al. Mercury: Accelerating dnn training by exploiting input similarity. In 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD), pp. 784–794. ACM, 2022. doi:
10.1145/3534678.3539260.

10

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qi Le et al. Probe pruning: Accelerating llms through dynamic pruning via model-probing. arXiv
preprint arXiv:2502.15618, 2025.

Gui Ling, Ziyang Wang, and Qingwen Liu. Slimgpt: Layer-wise structured pruning for large lan-
guage models. In Advances in Neural Information Processing Systems (NeurIPS), volume 37, pp.
107112–107137, 2024.

Yao Lu et al. Reassessing layer pruning in llms: New insights and methods. arXiv preprint
arXiv:2411.15558, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Meta AI. Llama-3. https://llama.meta.com/llama3/, 2024. Accessed: 2024-05-15.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Junyoung Park et al. Keydiff: Key similarity-based kv cache eviction for long-context llm inference
in resource-constrained environments. arXiv preprint arXiv:2504.15364, 2025.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 30, 2017.

Hongjie Wang, Bhishma Dedhia, and Niraj K. Jha. Zero-tprune: Zero-shot token pruning through
leveraging of the attention graph in pre-trained transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2024.

Miles Williams and Nikolaos Aletras. On the impact of calibration data in post-training quantization
and pruning. arXiv preprint arXiv:2311.09755, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, 2020. URL https://www.aclweb.org/anthology/2020.emnlp-demos.
6.

Peng Xu et al. Besa: Pruning large language models with blockwise parameter-efficient sparsity
allocation. arXiv preprint arXiv:2402.16880, 2024.

Wenjing Yang, Ganghua Wang, Jie Ding, and Yuhong Yang. A theoretical understanding of neural
network compression from sparse linear approximation. arXiv preprint arXiv:2206.05604, 2022.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

11

https://llama.meta.com/llama3/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A MORE DETAILED EVALUATION RESULTS

In this section, we present the detailed results of the evaluation for each task. Table 7, 8, 9, and 10
present the detailed perplexity and accuracy results under various pruning ratios. Table 11, 12, and
13 present the evaluation results for MMLU.

Table 7: Zero-shot evaluation of LLaMA-2-7B on perplexity (PPL, ↓) and commonsense reasoning
benchmarks. The “Avg.” column reports the average accuracy across the seven tasks. The bolded
results indicate the best result within each pruning ratio group.

Prune% Method PPL ↓ BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
0% Dense 12.18 77.77 78.67 75.98 68.82 76.35 46.16 44.40 66.88

20%

SlimGPT w/o 16.36 73.88 77.80 72.93 68.03 73.82 41.81 41.60 64.27
FLAP 16.32 75.09 74.59 70.38 68.69 71.34 42.20 39.40 63.10

PP 15.31 70.88 76.61 73.18 66.11 73.56 41.67 41.40 63.34
Token Filtering 16.65 73.82 75.90 72.27 66.77 72.73 42.75 41.00 63.61

50%

SlimGPT w/o 40.83 59.72 70.53 53.71 59.55 50.37 32.48 33.80 51.45
FLAP 43.11 55.44 62.24 46.09 59.38 41.75 31.88 32.00 46.97

PP 39.40 56.45 70.59 60.55 51.58 59.55 29.97 35.40 50.59
Token Filtering 54.59 64.46 66.81 61.03 64.72 46.93 34.13 33.80 53.13

Table 8: Zero-shot evaluation of LLaMA-3-8B on perplexity (PPL, ↓) and commonsense reasoning
benchmarks. The “Avg.” column reports the average accuracy across the seven tasks. The bolded
results indicate the best result within each pruning ratio group.

Prune% Method PPL ↓ BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
0% Dense 14.13 81.10 80.69 79.13 73.16 80.13 53.49 45.00 70.39

20%

SlimGPT w/o 32.79 74.31 77.86 66.33 66.06 73.15 41.98 39.60 62.76
FLAP 23.25 69.14 71.49 54.44 63.69 59.85 34.22 37.40 55.75

PP 20.56 64.68 77.45 65.55 61.51 65.36 39.28 36.80 58.66
Key-Sim 19.46 80.40 77.37 74.21 73.80 76.85 50.17 42.80 67.94

50%

SlimGPT w/o 85.32 59.83 70.12 58.21 58.14 42.57 25.31 31.60 47.68
FLAP 63.33 57.06 58.76 36.24 54.54 38.22 24.23 29.20 42.61

PP 104.01 50.03 69.52 29.00 53.01 36.57 23.91 28.80 41.54
Key-Sim 74.62 80.28 70.13 63.37 71.03 55.56 38.82 36.00 59.31

Table 9: Zero-shot evaluation of Mistral-7B on perplexity (PPL, ↓) and commonsense reasoning
benchmarks. The “Avg.” column reports the average accuracy across the seven tasks. The bolded
results indicate the best result within each pruning ratio group. A dash (−) indicates that the baseline
method could not be applied successfully to the corresponding model.

Prune% Method PPL ↓ BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
0% Dense 11.90 83.64 82.26 81.05 73.80 80.93 53.92 44.20 71.40

20%

SlimGPT w/o 20.39 65.81 71.76 64.67 64.40 52.95 34.39 34.60 55.51
FLAP 16.08 68.59 68.99 58.06 65.19 67.00 37.63 38.60 57.72

PP - - - - - - - - -
Key-Sim 15.52 74.98 76.61 76.64 69.30 76.14 45.73 41.40 65.82

50%

SlimGPT w/o 53.68 55.87 64.13 44.45 52.21 30.96 23.64 31.20 43.20
FLAP 49.12 55.24 59.11 40.52 56.16 44.81 24.77 31.40 44.57

PP - - - - - - - - -
Key-Sim 48.08 43.15 68.99 61.19 63.69 49.28 34.30 32.00 50.37

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 10: Zero-shot evaluation of Phi-4-14B on perplexity (PPL, ↓) and commonsense reasoning
benchmarks. The “Avg.” column reports the average accuracy across the seven tasks. The bolded
results indicate the best result within each pruning ratio group. A dash (−) indicates that the baseline
method could not be applied successfully to the corresponding model.

Prune% Method PPL ↓ BoolQ PIQA HellaS WinoG ARC-e ARC-c OBQA Avg.
0% Dense 16.20 86.09 81.27 82.08 76.72 81.31 56.14 45.20 72.66

20%

SlimGPT w/o 191.31 62.20 66.54 47.52 58.96 37.96 27.30 32.80 47.61
FLAP - - - - - - - - -

PP - - - - - - - - -
Key-Sim 20.52 83.00 79.43 79.72 73.24 79.21 54.27 44.80 70.52

50%

SlimGPT w/o 512.32 33.25 50.16 25.15 44.86 24.61 23.26 26.40 32.53
FLAP - - - - - - - - -

PP - - - - - - - - -
Key-Sim 72.89 69.79 74.92 68.52 66.85 58.21 43.17 37.60 59.87

Table 11: MMLU zero-shot performance of LLaMA-3-8B. Here, “social” denotes the social sci-
ences category. Probe Pruning (PP) is excluded since its official implementation does not support
MMLU evaluation.

Method Pruning Ratio
LLaMA-3-8B

Humanities Social STEM Other Avg
0% Dense 39.21 45.99 33.17 45.41 40.81

20%
SlimGPT w/o 43.51 54.63 40.88 52.91 47.44

FLAP 42.81 54.32 41.42 47.69 45.99
Token Filtering 45.65 56.42 43.20 59.80 50.59

50%
SlimGPT w/o 22.68 21.57 20.32 21.41 21.01

FLAP 24.28 21.44 20.57 22.14 22.32
Token Filtering 27.55 26.91 24.99 32.19 27.86

Table 12: MMLU zero-shot performance of Mistral-7B. Here, “social” denotes the social sciences
category. Probe Pruning (PP) is excluded since its official implementation does not support MMLU
evaluation.

Method Pruning Ratio
Mistral-7B

Humanities Social STEM Other Avg
0% Dense 39.21 45.99 33.17 45.41 40.81

20%
SlimGPT w/o 24.14 21.32 21.50 23.72 22.84

FLAP 30.09 29.57 27.05 32.63 29.86
Token Filtering 46.21 62.82 45.32 61.64 53.06

50%
SlimGPT w/o 21.55 20.51 20.55 21.93 21.22

FLAP 24.35 21.70 22.23 23.94 23.20
Token Filtering 24.27 22.23 22.01 23.85 23.22

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 13: MMLU zero-shot performance of Phi-4-14B. Here, “social” denotes the social sciences
category. Probe Pruning (PP) is excluded since its official implementation does not support MMLU
evaluation. A dash (−) indicates that the baseline method could not be applied successfully to the
corresponding model.

Method Pruning Ratio
Phi-4-14B

Humanities Social STEM Other Avg
0% Dense 39.21 45.99 33.17 45.41 40.81

20%
SlimGPT w/o 24.65 22.06 22.35 24.26 23.48

FLAP - - - - -
Key-Sim 63.40 82.09 63.34 76.86 70.46

50%
SlimGPT w/o 24.18 21.70 21.34 23.97 22.95

FLAP - - - - -
Key-Sim 29.69 34.68 31.43 38.20 33.06

B GENERATIONS FROM PRUNED MODEL

To qualitatively examine the effect of pruning, we compared sentences generated by the LLaMA-2-
13B model in its dense form and after applying 20% pruning.To qualitatively examine the effect of
pruning, we compared sentences generated by the LLaMA-13B model in its dense form and after
applying 20% pruning. Table 14 presents the generations produced by LLaMA-2-13B in both the
dense and 20% pruned settings.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Model Generated Sentences

LLaMA-2-13B
(baseline)

In the future, artificial intelligence will be used to make decisions about our lives,
from what we should buy and how we should spend our time, to what medical treat-
ments we need. But there’s a problem: it isn’t very good at doing that. We’re still
learning how to do it right, so how can we improve? A new study published in Na-
ture Communications suggests that AI could be able to solve some of its problems by
using human intelligence as an input into the software. The researchers, led by the
University of Oxford’s Andrew Norton, analysed more than 10 million tweets from
the US Twitter account @AI Economist and found that the most common uses for
AI were predicting the prices of goods on eBay, predicting stock market performance
and predicting whether or not you have a disease. In all three cases, they were able to
achieve better results with a ...

Once upon a time, there was a little cat who loved to hide. She lived in a small house
with her family, and they were all very happy together. One day, the little cat decided
to explore the world outside of her home. She ventured out into the big wide world
and found many new friends. Some of them were friendly, while others weren’t so
nice. But no matter what happened, the brave little cat always managed to find her
way back home safely! This story is about a young girl named Little Cat, who loves
to explore and play with her siblings. One day, she decides to go on an adventure by
herself. Along the way, she meets some interesting people and animals that teach her
important lessons about life. The moral of this story is that it’s never too late to start
something new or take risks if you want to grow as a person. The “i love little cat” is
a children’s book written by the ...

LLaMA-2-13B
(20% pruned)

In the future, artificial intelligence will be able to perform tasks in almost all areas of
life. The technology is already being used today in many different ways – for exam-
ple, by Google’s translation service or Amazon’s voice assistant Alexa. In this post
we explore why and how machine learning, the technical term for artificial intelli-
gence, has established itself in so many applications. Where did the idea for AI come
from? The idea that machines can think like humans was first expressed by the Greek
mathematician Archimedes around 250 BC. He believed that if a machine could per-
form any mental task that a human could, then it would prove that mankind was not
unique in the universe. More than two thousand years later, Charles Babbage built
his “Difference Engine” as an early attempt at creating a mechanical calculator in the
19th century. However, his design was plagued with design ...

Once upon a time, there was a little cat who wanted to be a big dog. He loved dogs
and would try to act like one every chance he got. One day, he heard about a farm
in the country where you could buy and sell animals—all kinds of animals! The
thought of meeting so many different creatures made his tail wag with excitement.
After hearing this news, he began thinking about how he could become a dog. The
first thing he needed to do was find someone who could help him. So off he went
looking for an animal doctor or veterinarian (or vet). As he roamed around town, he
came across two very friendly people: Dr. Johnson and Nurse Betty! They were both
very kind and happy to see him; they even offered him some delicious treats! But
when they asked if he had come because he felt ill or injured, he admitted that wasn’t
why he’d stopped ...

Table 14: Example generations from LLaMA-13B in the dense setting and with 20% pruning.

15


	Introduction
	Related Work
	Method
	KV similarity and attention score
	Token Filtering
	Tail-focused pruning with layer-wise threshold

	EXPERIMENT
	Experimental Settings
	Main Result
	Accuracy and Perplexity Results
	Efficiency Evaluation

	Extended Analysis
	Pruning Focus: Tail, Head, and Uniform
	Similarity: Key, Value, and KV


	Conclusion
	More Detailed Evaluation Results
	Generations from pruned model

