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Abstract

Stochastic rising rested bandit (SRRB) is a specific bandit setting where the arms’
expected rewards increase as they are pulled. They model scenarios in which the
performances of the different options grow as an effect of an underlying learning
process (e.g., online model selection). Even if the bandit literature provides specifi-
cally crafted algorithms based on upper-confidence bound approaches for such a
setting, no study about Thompson sampling-like algorithms has been performed.
Indeed, the specific trend and the strong regularity of the expected rewards given by
the SRRB setting suggest that specific instances may be tackled effectively using
classical Thompson sampling or some adapted versions. This work provides a
novel theoretical analysis of the regret that such algorithms suffer in SRRB. Our
results show that, under specific assumptions on the reward functions, even the
Thompson sampling-like algorithms achieve the no-regret property.

1 Introduction
In the ever-evolving landscape of decision-making under uncertainty, the field of Multi-Armed Bandits
(MAB) has witnessed a paradigm shift with the emergence of dynamic phenomena. Traditional
bandit models (e.g., the one presented by [12, 26]) consider static environments, assuming arms
with expected rewards that do not change during the learning process. However, many real-world
applications present a more intricate scenario where the rewards associated with each arm dynamically
evolve either over time or depending on the played actions. In particular, two significantly different
scenarios have been analyzed in the literature: restless and rested. While the restless MAB setting
assumes that the arms’ expected reward changes as an effect of nature, in the rested MAB setting [43],
the arm evolution is triggered by its pull. Many restless settings have been analyzed in the past,
including the abruptly changing ones [19] and the smoothly changing ones [46]. Conversely, only
recently, the rested setting has raised the attention of the bandit community [31].

This paper delves into this dynamic scenario, focusing specifically on the domain of stochastic
rising rested bandits [SRRB, 31]. The SRRB scenario reflects situations where the arms’ expected
rewards increase, encapsulating the essence of growing trends in various applications (e.g., learning
processes). Examples of such settings are represented by the so-called Combined Algorithm Selection
and Hyperparameter optimization (CASH, [45, 28]), whose goal is to identify the best learning
algorithm and the best hyperparameter configuration for a given machine learning task, one of the
most fundamental problems in Automatic Machine Learning (AutoML). This setting of the concave
rising bandit is also extremely useful when modeling satiation effects in recommendations, like the
ones studied by [15, 48], and in particular, concave learning curves have been shown to arise in
various laboratory environments (e.g., see [24, 5]) and is very natural and common in the context
of human learning (e.g., see the work by [41]). Similar problems arise when we want to select an
optimization algorithm among a predefined set to optimize a given function, a.k.a. online model
selection problem [31]. Such problems can be tackled effectively using an SRRB modeling approach.

So far, the research has focused on designing algorithms capable of adapting to and exploiting
these evolving trends, managing the delicate balance between exploration and exploitation. For
instance, the seminal work by [31] approached the problem by designing a sliding-window algorithm
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based on upper-confidence bounds for SRRB to provide a worst-case regret of the order of ÕpT
2
3 `

ΥpT qq, T being the learning horizon of the learning process and ΥpT q is a problem-dependent
quantity which characterizes the growth rate of the arm expected rewards.2 Similarly, [32] developed
algorithms to handle the problem of best-arm identification in the SRRB setting. However, to the
best of our knowledge, there has not been any analysis to show if Thompson sampling-like MAB
algorithms [25, 3] can provide good performance over specific instances of the SRRB scenario, and
which modifications should be introduced to better deal with a larger class of problems in the SRRB
setting. Indeed, while in generic non-stationary bandits, they have been proven to perform poorly [46],
the strong regularity provided by the classical SRRB assumptions (increasing and concave expected
reward function) suggest that, in specific cases, they might have sublinear regret.

Original Contributions. In this paper, we analyze the regret guarantees of a set of algorithms based
on the original idea of Thompson Sampling (TS) when applied to SRRBs, specifically we present:
• A regret analysis of the Beta-TS (Thompson Sampling with Beta priors) when it is applied to the

SRRB rested setting, providing a distribution-dependent regret bound based on the total-variation
distance between specifically defined Poisson-Binomial and Binomial distributions. Here, the proof
relies on completely novel techniques (Lemma 4.1) that can be of independent interest (Section 4).

• A natural extension of Thompson Sampling with Gaussian priors, γ-GTS, with near-optimal
instance-independent regret bounds for the general stationary subgaussian environments that allow
the analysis of the SRB setting in more general settings. This enables the retrieval of a theoretically
and empirically superior algorithm for the setting providing, in fact, under some weak assumptions,
sublinear instance-independent regret upper bounds (Section 5).

• A comparison of the proposed methods with the R-ed-UCB [31], designed for SRRB settings, over
two SRRB instances to highlight their advantages and disadvantages (Section 6);

• The application of a sliding window approach to the two above algorithms, resulting in Beta-SWTS
and γ-SWGTS, to cope with cases having limited learning horizon T (Section 7);

• Some numerical simulations to compare the performances in terms of regret of the proposed
algorithms w.r.t. the ones designed for the SRRB setting (Section 8).

The proofs of the results are reported in Appendix A.

2 Related Works
Restless Bandits. The seminal work by [6] proposed the UCB1 algorithm, based on the optimism
in the face of the uncertainty principle, and shows that it provides a OplogpT qq regret in stochastic
stationary MAB settings. Instead, TS was originally designed as a heuristics for sequential decision-
making [44], while only in the past decade has it been analysed theoretically by [25, 3]. These works
provided a finite time analysis for TS showing an asymptotic bound on the regret of order OplogpT qq

for stochastic stationary MAB. Even if they are order-optimal in the stationary case, it has been
shown in multiple cases that their effectiveness in other restless [19, 46] or adversarial settings [13]
they provide poor performances in terms of regret.

Lately, UCB1 and TS algorithms inspired the development of techniques to tackle the rising complexi-
ties of restless MAB settings. The main idea behind these newly designed algorithms is to forget
past observations, removing samples from the statistics of the arms reward. Two different approaches
are available to do that: passive and active. The former iteratively discards the information coming
from the far past, making decisions on the most recent samples coming from the arms pulled by
the algorithms. Examples of such a family of algorithms are DUCB [19], Discounted TS [34, 35],
SW-UCB [19], and SW-TS [46]. Instead, the latter class of algorithms uses change-detection tech-
niques [7] to decide when it is the case to discard old samples. This occurs when a sufficiently large
change affects the arms’ expected rewards. Among the active approaches we mention CUSUM-
UCB [29], REXP3 [8], GLR-klUCB [9], and BR-MAB [36]. The development of such algorithms
was required since applying the classical ones has proven to fail when the environment is restless (for
both abrupt and smoothly changing).

Rising Bandits. Rising Bandits are a specific instance of either the Rested Bandits or the Restless
Bandits in which the expected reward of an arm increases respectively according to the number of
times it has been pulled or according to the time a certain arm has been pulled. The problem of
SRRB in its deterministic flavor has been proposed by [20]. They designed algorithms with provably
optimal policy regret bounds, and, in the case in which the rewards are increasing and concave, they

2With the Õp¨q notation we disregard logarithmic factors w.r.t. the learning horizon T .
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give an algorithm whose policy regret is sublinear. Instead, the stochastic version of SRRB has been
studied from a regret minimization perspective by [31]. In this work, the authors provide worst-case
bounds for the regret of the order of ÕpT

2
3 `ΥpT qq, where ΥpT q is a problem-dependent quantity

which characterizes the growth rate of the arm expected rewards, for specifically designed algorithms
for the rested and restless cases, namely R-ed-UCB and R-less-UCB, respectively. Both algorithms
are based on the combination of specifically crafted upper confidence bounds to consider the increase
of the expected reward functions and the use of a sliding window over the available samples. Finally,
the SRRB has also been studied in a Best Arm Identification framework by [32], where the authors
propose the R-UCBE and R-SR algorithm, a UCB-inspired and successive elimination approaches,
respectively, that provide guarantees for the fixed budget version of the Best-Arm Identification of
SRRB. Finally, a specific instance of the non-stationary bandits closely related to SRRB is provided
by the rotting bandits [40, 27]. Unlike the SRRB setting, the expected payoff for a given arm
decreases over time. Even in this case, the authors propose specifically crafted algorithms to address
the peculiar structure of the problem and derive theoretical guarantees on the regret. Howeverfor
these algorithms there are no theoretical guarantees when applied in the SRRB setting(see [31]).

3 Problem Formulation
We consider an SRRB setting with stochastic rewards. Let K PN be the number of arms. Every
arm iPJKK :“t1, . . . ,Ku is associated with an expected reward µi :NÑR, where µipnq defines the
expected reward of arm i when pulled for the n-th time with nPN. As common in the rising bandit
literature, the expected reward function µipnq is non-decreasing and concave, as follows:3

Assumption 3.1 (Rising). For every arm iPJKK and number of pulls nPN, let γipnq :“µipn`1q´

µipnq be the increment function, it holds that:
Non-decreasing : γipnqě0, Concave : γipn`1q´γipnqď0. (1)

The learning process occurs over T PN rounds, where T is called the learning horizon. At every round
tPJT K, the agent pulls an arm It PJKK and observes a random reward Xt „νItpNIt,tq, where for
every arm iPJKK, we have that νipNi,tq is a probability distribution4 depending on the current number
of pulls up to round t Ni,t :“

řt
l“11tIl “ iu whose expected value is given by µipNi,tqPr0,1s. For

every arm iPJKK and round tPJT K, we define the average expected reward as:

µiptq :“
1

t

t
ÿ

l“1

µiplq. (2)

As previously shown by [20], the optimal policy constantly plays the arm with the maximum
average expected reward computed at the end of the learning horizon T . We denote with i˚pT q :“
argmaxiPJKKµipT q the (unique) optimal arm, that depends on the value of the horizon T .

Suboptimality Gaps. For analysis purposes, we introduce, for every suboptimal arm i‰ i˚pT q and
every number of pulls n,n1 PJT K, the following notions of suboptimality gaps of the expected reward
∆ipn,n

1q and average expected reward ∆ipn,n
1q, formally:

∆ipn,n
1q :“maxt0,µi˚pT qpnq´µipn

1qu, ∆ipn,n
1q :“maxt0,µi˚pT qpnq´µipn

1qu, (3)
respectively. Notice that we might have that for specific rounds, the gaps w.r.t. the optimal arm
µi˚pT qpnq´µipn

1q may be negative, however, at the end of the learning horizon T the assumption
that there is a unique optimal arm implies that µi˚pT qpT qąµipn

1q for all n1 PJT K. This property
allows defining, for every suboptimal arm i‰ i˚pT q, the minimum number of pulls of the optimal
arm needed so that the optimal arm average expected reward gap for arm i is positive, formally:

σipT q :“mintlPJT K :µi˚pT qplqąµipT qu, σpT q :“ max
i‰i˚pT q

σipT q. (4)

Regret. The goal of an algorithm A in an SRRB is to minimize the expected cumulative regret (see
also [20] and Theorem 4.1 in [31]):

RpA,T q :“T µi˚pT qpT q´E

«

T
ÿ

t“1

µItpNIt,tq

ff

, (5)

where the expectation is w.r.t. the randomness of the rewards and the possible randomness of A.

3For the generic integers a,bPN,aăb, we denote with JaK the set t1, . . . ,au and Ja,bK the set ta, . . . , bu.
4In the following, we will analyze algorithms for Bernoulli and subgaussian distributions.
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Algorithm 1 Beta-TS Algorithm
1: Input: Number of arms K, Time horizon T
2: Set αi,1 Ð1 for each iPJKK
3: Set βi,1 Ð1 for each iPJKK
4: Set νi,1 ÐBetapαi,1,βi,1q for each iP

JKK
5: for tPJT K do
6: Sample θi,t „νi,t for each iPJKK
7: Select It PargmaxiPJKK θi,t
8: Pull arm It
9: Collect reward Xt

10: Update νIt,t`1 ÐBetapαi,t `Xt,βi,t `

1´Xtq

11: Update νi,t`1 Ðνi,t for each
iPJKKztItu

12: end for

Algorithm 2 γ-GTS Algorithm
1: Input: Number of arms K, Time horizon T , exploration

parameter γ
2: Play every arm once and collect reward Xt

3: Set Ni,t Ð1, µ̂i,t ÐXt, µ̂i,t Ð µ̂i,t for each iPJKK
4: Set νi,t ÐN pµ̂i,t,

1
γ

q for each iPJKK
5: for tPJT K do
6: Sample θi,t „νi,t for each iPJKK
7: Select It PargmaxiPJKK θi,t
8: Pull arm It
9: Collect reward Xt

10: NIt,t ÐNIt,t `1, µ̂It,t Ð µ̂It,t `Xt, µ̂It,t
Ð

µ̂It,t

NIt,t

11: Update νIt,t`1 ÐN pµ̂It,t
, 1
γNIt,t

q

12: Update νi,t`1 Ðνi,t for each iPJKKztItu
13: end for

Environment Assumptions. In the following, we provide analyses of TS-like algorithms for the
SRRB class. However, we will provide more explicit regret guarantees under the following:

Assumption 3.2. There exists finite T˚ ă`8, s.t. it exists an arm i˚ PJKK for which for each
iPJKKzti˚u we have µi˚ pT˚qąµip`∞q.

0 2,000 4,000 6,000
0

0.5

1

n

µ
ip
n

q

Figure 1: Example of the reward corre-
sponding to the first 6,000 pulls for a
SRRB setting over 15 arms.

The intuition behind this assumption is that after T˚ a
single arm is optimal, and it remains optimal. In particular,
we have that for time horizons T ąT˚, the optimal arm
is fixed, i.e., the function i˚pT q becomes constant in T ,
precisely equal to i˚. This assumption also implies that the
gaps ∆ipT,T q are lower bounded as shown in Lemma A.2
(provided in the appendix); this will be crucial to derive in
what follows the instance-independent bounds. This is a
mild assumption since the environments that comply with
this condition arise naturally. For instance, the condition
also holds on those instances in which the rate of conver-
gence does not depend on the time horizon, e.g., the decay
rates in physics having µipnq“cip1´e´λinq, with ci ą0,
and λi ą0. Other examples in which the assumption holds
are the environments generated for the experiments in the
seminal paper by [31] and those by [32]. An example of
such a setting is provided in Figure 1. Moreover, Assumption 3.2 does not prevent the expected
reward of the arms from crossing each other but only for the mean average µi of the suboptimal arms
to be smaller than the optimal one µi˚ .

4 Analysis of Thompson Sampling with Beta priors (Beta-TS)
In this section, we provide the analysis of Beta-TS, i.e., Thompson Sampling instanced with Beta
priors for the SRRB setting. The corresponding pseudocode is presented in Algorithm 1. For this
algorithm, we will assume that the rewards are Bernoulli random variables.5

Assumption 4.1 (Bernoulli Rewards). For every nPJT K and iPJKK, the reward X „νipnq is
Bernoulli distributed.

Specifically, the Beta-TS algorithm initializes a beta distribution νi,1 “Betapαi,1,βi,1q with αi,1 “

βi,1 “1 for each of the arms iPJKK as prior. Then, for every round tPJT K it collects one sample
from each of the posterior distribution θi,t „νi,t and plays the arm with the highest sample value, i.e.,
It PargmaxiPJKK θi,t. Then, based on the collected sample Xt, it updates the posterior distribution
of the played arm νIt,t`1 “Betapαi,t `Xt,βi,t `1´Xtq.

5If the reward X is not Bernoulli but X lies in r0,1s, we can sample a Bernoulli random variables with
parameter X and use that sample for the update.
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Regret Analysis. Compared to the standard case, the Beta-TS analysis in the SRRB setting poses
additional challenges mainly because the samples collected from each of the arms are obtained from
Bernoulli distributions with different parameters µipnq since the arm expected reward changes as the
arm is pulled. Consequently, unlike standard Beta-TS in the classical MABs setting, the sum of the
rewards no longer represents a binomial distribution, but, due to the expected reward changes, the
resulting random variable is a Poisson-Binomial [47]. This implies from a technical perspective that
the standard analysis of Beta-TS [3] cannot be applied. Conversely, the following technical lemma
was derived to deal with the complex structure of the cumulative reward distribution. We report it
since it represents a significant technical novelty and can be of independent interest to the reader.

First, similarly to what has been provided by [3] in Definition 2.7, let us define pi,t, for a random
variable X whose number of successes is described by either a Poisson-Binomial or a Binomial
distribution, for any yi Pp0,1q, as:

pi,t :“PrpBetapS1,t `1,F1,t `1qąyi|Ft´1q , (6)
where S1,t, and F1,t “N1,t ´S1,t are the number of successes, and failures of X , respectively, and
Ft´1 is the filtration of the history up to time t´1. In our framework, 1

pi,t
is related to the expected

number of pulls of the suboptimal arm between two consecutive pulls of the best arm.
Lemma 4.1 (Technical Lemma). Let PBpµ

1
pjqq be a Poisson-Binomial distribution with individual

means µ
1
pjq“pµ1p1q, . . . ,µ1pjqq, and Binpj,xq be a binomial distribution with an arbitrary number

j of trials and probability of success xďµ1pjq. For any N1,t “j and yi Pp0,1q, it holds that:

ES1,t„PBpµ
1

pjqq

„

1

pi,t
|N1,t “j

ȷ

ďES1,t„Binpj,µ1pjqq

„

1

pi,t
|N1,t “j

ȷ

ďES1,t„Binpj,xq

„

1

pi,t
|N1,t “j

ȷ

.

The result is derived by showing the discrete log-convexity of the quantity 1{pi,t and relying on
order-statistics arguments to sort the expected value for different stochastic processes. This theorem
states how Er 1

pi,t
s in our nonstationary setting can be bounded by its value in a stationary setting. We

are now ready to formalize the regret upper bound for Beta-TS.
Theorem 4.2 (Beta-TS - Regret Bound). Let σPJσpT q,T K, with σpT q defined as in Equation 4.
Under Assumption 4.1, for every ϵPp0,1q, the Beta-TS algorithm suffers an expected cumulative
regret bounded as:

RpBeta-TS,T qďO

˜

ÿ

i‰i˚pT q

∆ipT,0q

´

p1`ϵq
logpT q

dpµipT q,µ1pσqq

`
1

ϵ2
`

σ´1
ÿ

j“1

1

p1´µ1pσqqj`1
δTVpPBpµ

1
pjqq,Binpj,µ1pσiqq

¯

¸

, (7)

where dpx,yq :“x log x
y `p1´xq log 1´x

1´y for x,yPr0,1s is the Kullback-Leibler divergence between
Bernoulli distributions, δTV pP,Qq :“supAPF |P pAq´QpAq| denotes the total variation divergence
between distributions P and Q, PBpµ

1
pjqq denotes the Poisson-Binomial distribution with individual

means µ
1
pjq“pµ1p1q, . . . ,µ1pjqq, and Binpj,xq denotes the binomial with j trials and parameter x.

First, we observe that the regret bound reduces to that of standard Beta-TS of [3] when facing
standard MABs. Indeed, in such a case, the Poisson-Binomial distribution reduces to the Binomial
distribution, and consequently, the TV term vanishes:

RpBeta-TS,T qďO

˜

ÿ

i‰i˚

∆i

ˆ

p1`ϵq logpT q

dpµi,µ1q
`

1

ϵ2

˙

¸

.

Conversely, for the general case, the rested nature of the problem induces the presence of an additional
term composed by the summation of the total variation distances δTVpPBpµ

1
pjqq,Binpj,µ1pσiqq. This

term originates from a change of measure argument used in the analysis. Finally, let us state a corollary
that shows that using Assumption 3.2, we have results on worst-case regret:
Corollary 4.3. Under Assumption 3.2, the Beta-TS algorithm suffers an expected cumulative regret:

RpBeta-TS,T qď

"

Op
a

KT logpT q`Kσp1´µ1pT qq´σq if T ďT˚

Op
a

KT logpT qq if T ąT˚
. (8)

Notice that the above results do not require the knowledge of T˚ by Beta-TS.
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5 Analysis of γ-Thompson Sampling with Gaussian priors (γ-GTS)

In this section, we provide an analysis of the γ-Thompson Sampling with Gaussian priors (γ-GTS)
algorithm, a modification of the classical TS with Gaussian priors, that provides instance-independent
optimal regret bounds for the subgaussian standard MABs. In this case, we assume that the reward
has subgaussian distribution with positive realizations.6 Formally:
Assumption 5.1 (Non-negative Subgaussian rewards). For every nPJT K and arm iPJKK, the reward
X „νipnq is non-negative almost surely, and σ2

var-subgaussian with finite mean.

The pseudocode for γ-GTS is presented in Algorithm 2. At first, the γ-GTS algorithm pulls each
arm once. Using the collected reward, it initializes the priors νi,t for all the arms, setting all the
variances equal to 1{γ. Then, for every round tPJT K, it collects one sample from each of the posterior
distribution θi,t „νi,t and plays the arm with the highest sample value, i.e., It PargmaxiPJKK θi,t.
Based on the collected sample Xt, it updates the posterior distribution of the played arm νIt,t`1.

Regret Analysis. The following theorem provides a bound on the γ-GTS algorithm regret.
Theorem 5.1 (γ-GTS - Regret Bound for Subgaussian SRB). Let σPJσpT q,T K with σpT q defined

as in Equation 4. Under Assumption 5.1, setting γďmin
!

1
4σ2

var
,1
)

, the γ-GTS algorithm suffers an
expected cumulative regret of:

Rpγ-GTS,T qďO

˜

ÿ

i‰i˚pT q

∆ipT,0q

´ logpT∆ipσ,T q2 `e6q

γ∆ipσ,T q2
`

σ2
var

∆ipσ,T q2
`

σ´1
ÿ

j“1

δTVpPj ,Qjpµ1pσqqq

erfcp

b

γj
2 pµ1pσqqq

¯

¸

,

where erfcp¨q is the complementary error function, Pj is the distribution of the sample mean of the
first j samples collected from arm 1, while Qjpyq is the distribution of the sample mean of j samples
collected from any σ2

var-subgaussian distribution with mean y.

Note that the structure of the regret resembles the one of the Beta-TS. Indeed, we have a summation of
total variation divergences, where the place of the binomial distribution is taken by Qj , a distribution
that is arbitrary as long as it is σ2

var-subgaussian. Such a distance (proportional to σ and the total
variation) between the real process and a stationary one that would suffer near-optimal regret encodes
the additional complexity of the problem w.r.t. the classical stochastic MAB problem. Even in this
case, we observe that also the regret bound of γ-GTS reduces to that of Thompson Sampling of [3]
when facing standard MABs:

Rpγ-GTS,T qďO

˜

ÿ

i‰i˚

ˆ

logpT∆2
i q

γ∆i
`

σ2
var

∆i

˙

¸

,

with γ“Opmintσ2
var,1uq. Note that our result is more general than the one by [3]. Indeed, it also

holds for arbitrary subgaussian rewards, while their results hold only if they have mean in r0,1s.
Finally, similarly to what has been provided for Beta-TS, relying on Assumption 3.2, we have:
Corollary 5.2. Under Assumption 3.2, the γ-GTS algorithm suffers an expected cumulative regret:

Rpγ-GTS,T qď

#

Op
a

KTγ´1 logpT q`Kσeγσµ1pσq
2

q if T ďT˚

Op
a

KTγ´1 logpT qq if T ąT˚
. (9)

Even in this case, the result is achieved by an algorithm not requiring the knowledge of T˚.

The following theorem provides an alternative way of setting the parameter γ if we have information
about the time horizon T . Notice that the theoretical result in this case does not even require the
expected reward to satisfy Assumption 3.2.
Theorem 5.3 (γ-GTS - Regret Bound for Subgaussian SRB γ-tuned). Let σPJσpT q,T K with σpT q

defined as in Equation 4, let furthermore σ„T β and γ„T´α. Under Assumption 5.1, for every
αěβ:

Rpγ-GTS,T qďO

˜

ÿ

i‰i˚pT q

∆ipT,0q

´Tα logpT∆ipσ,T q2 `e6q

∆ipσ,T q2
`

σ2
var

∆ipσ,T q2
`σ

¯

¸

. (10)

6For the sake of presentation, we assume to have positive realizations. W.l.o.g. one might also consider
realizations bounded from below by a given constant.
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Figure 2: Different environments for the SRRB problem.
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Figure 3: Visual representation
of σ1pT ;τq, a point in which
µi˚pT qpσ1pT ;τq, τqąµipT q.

Conversely, if Assumption 3.2, holds we have:

Corollary 5.4. Under assumption 3.2 γ-GTS with γ tuned suffer an instance independent regret
bound upper bounded by (for all T ):

Rpγ-GTS,T qďO
´

T
1`α
2

a

K logpT q`KTα
¯

. (11)

6 Comparison with the R-ed-UCB Algorithm
We now provide and analyze two SRRB instances to highlight the advantages and disadvantages of
the proposed algorithms when compared with the optimistic algorithm R-ed-UCB [31] designed for
SRRB settings. We recall the regret result provided by [31] for R-ed-UCB:

Theorem 6.1 (Theorem 4.4, [31]). R-ed-UCB with a suitable exploration index (see [31]) αą2, and
ϵPp0,1{2q suffers an expected regret for every qPr0,1s bounded as:

RpR-ed-UCB,T qďO

ˆ

K

ϵ
T

2
3 pα logT q

1
3 `

KT q

1´2ϵ
Υ

ˆ

Q

p1´2ϵq
T

K

U

, q

˙˙

, (12)

where ΥpM,qq :“
řM´1

l“1 maxiPJKKtγiplq
qu is a complexity index depending on the expected rewards.

First Instance. We start with an instance in which R-ed-UCB succeeds in delivering a sublinear regret,
while our algorithms may fail. We define the expected reward functions as follows: µ1pnq“1´e´λn

and µ2pnq“1´e´2λn, where λą0 is an arbitrary parameter (Figure 2a). Notice that 1 is the optimal
arm. Thus, this instance violates Assumption 3.2 since there is no possibility to define a T˚ ă`8

so that µ1pT˚qąµ2p`8q. Therefore, we cannot guarantee that our algorithms provide a sublinear
regret. Conversely, by using the definition of Υ, for qPr0,1s, we have:

Υ

ˆ

Q

p1´2ϵq
T

K

U

, q

˙

“

rp1´2ϵq T
K s

ÿ

n“1

max
yPt1,2u

te´yλn ´e´yλpn`1quq ď

ˆ

1`
2

q

˙

e´qλ,

which implies that Theorem 6.1 provides a regret of order OpT 2{3 `T q{qq for the R-ed-UCB
algorithm which is sublinear for every qă1 and, selecting q“1{ logT we obtain the best rate
OpT 2{3 ` logT q.

Second Instance. The second instance is designed so that our algorithms provide sublinear regret,
while R-ed-UCB fails. We define the expected reward functions as: µ1pnq“1´ 2λ´1

pt`1qλ
, and µ2pnq“

1
2 ´ 2λ´1

pt`1qλ
, where λPr0,1s is an arbitrary parameter (Figure 2b). Assumption 3.2 holds with T˚ “

1, since the optimal arm has larger expected reward µ1p1qąµ2pT q starting from the initial pull,
regardless of T . The Υ factor of this setting for every qPr0,1s is given by:

Υ

ˆ

Q

p1´2ϵq
T

K

U

, q

˙

“

rp1´2ϵq T
K s

ÿ

n“1

ˆ

2λ´1

pn`1qλ
´

2λ´1

pn`2qλ

˙q

ěO

$

’

&

’

%

λq if qpλ`1qą1

λ
1

λ`1 logT if qpλ`1q“1

λqT 1´qpλ`1q otherwise
.

We prove in Appendix D, that the optimal choice of q is 1{pλ`1q, according to Theorem 6.1, this
leads to a regret of order OpT 2{3 `pλT q

1
λ`1 q for R-ed-UCB. Thus, for instance, choosing λ“1{3,

R-ed-UCB attains a regret bound of order OpT 3{4q while our approaches succeed to achieve Op
?
T q

regret.
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7 Analysis of Sliding Window Thompson Sampling Approaches
The instance-dependent bounds provided above in Theorems 4.2 and 5.1 confirm that the classical
algorithms require a large number of pulls to converge to pulling the optimal arm at T . This is due to
the fact that if µi˚pT qpnq does not converge fast enough to µi˚pT qpT q they may suffer linear regret.
However, if the arms’ expected reward functions are regular enough and the time horizon is sufficient
(T ěT˚), as encoded Assumption 3.2, the natural exploration induced by TS can retrieve optimal
regret bounds for the problem. The main drawback of the previously presented approach is that
they use all the samples from the beginning of learning for estimating the average expected reward.
Intuition suggests that, as already seen with γ-GTS algorithm, in some cases, it might be convenient
to forget the past and focus on the most recent samples only. In this section, we make use of a sliding
window approach that was already employed by R-ed-UCB [31] for SRRBs.

Preliminaries. We extend the definitions of Section 3 to account for a sliding window. For every arm
iPJKK, round tPJT K, and window size τ PJtK, we define the windowed average expected reward as
µipt;τq :“ 1

τ

řt
l“t´τ`1µiplq. Furthermore, we define the minimum number of pulls needed so that

the optimal arm i˚pT q can be identified as optimal in a window of size τ :
σ1
ipT ;τq :“minttlPJT K :µi˚pT qpl;τqąµipT quYt`8uu, σ1pT ;τq :“ max

i‰i˚pT q
σ1
ipT ;τq. (13)

These definitions resemble those of Equation (4). However, the comparison here involves the
windowed average expected reward of the optimal arm µi˚pT qpl;τq compared against the expected
reward (not averaged) of the other arms at the end of the learning horizon µipT q. Thus, even for τ “T ,
we have a stronger requirement since σ1pT ;T qěσpT q. Furthermore, for some values of τ , a value
of the number of pulls l so that µi˚pT qpl;τqąµipT q might not exist. In such a case, we set σ1

ipT ;τq

(and thus σ1pT ;τq) to `8. Nevertheless, as visible in Figure 3, in some cases σ1pT ;τq!σpT q,
making the sliding window-based approaches convenient. Finally, we introduce a new definition of
suboptimality gaps: ∆1

ipT ;τq :“µi˚pT qpσ1pT ;τqq´µipT q for every arm iPJKK.

Algorithms. In this section, we analyze the sliding window versions of TS for Bernoulli, namely
Beta-SWTS, and Gaussian, namely γ-SW-GTS. Their pseudo-codes are reported in the Appendix. The
following results provide the regret upper bounds achieved by these algorithms as a function τ .
Theorem 7.1 (Beta-SWTS Regret Bound). Under Assumption 4.1, the Beta-SWTS algorithm suffers
an expected cumulative regret bounded as:

RpBeta-SWTS,T qďO

¨

˝

ÿ

i‰i˚pT q

∆ipT,0qp
T logpT q

τp∆1
ipT ;τqq3

`
σ1pT ;τq

p1´µ1pσ1pT ;τq, τqqτ`1
q

˛

‚. (14)

Theorem 7.2 (γ-SW-GTS Regret Bound). Under Assumption 5.1, setting γďmin
!

1
4σ2

var
,1
)

, the
γ-GTS algorithm suffers an expected cumulative regret of:

Rpγ-SWGTS,T qďO

¨

˝

ÿ

i‰i˚pT q

∆ipT,0qp
T logpT p∆1

ipT ;τqq2q

γτp∆1
ipT ;τqq2

`
T

τ
`

σ1pT ;τq

erfcp
a

γτ
2 pµ1pσ1pT ;τq, τqq

q

˛

‚.

(15)

Some comments are in order. First, the regret bounds are presented for a generic choice of the
window size τ . The optimal choice depends on the instance-dependent quantities σ1pT ;τq and
∆1

ipT ;τq. Second, if we compare these regret bounds with those of the corresponding non-windowed
versions, we observe that the last addendum derived from the change of distribution is of order
Opσq“OpσpT qq in Theorems 4.2 and 5.1 and becomes Opσ1pT ;τqq in Theorems 7.1 and 7.2. This
quantifies the advantage of the sliding window algorithms in the cases in which σ1pT ;τq!σpT q.
Finally, we remark that these regret bounds become vacuous when σ1pT ;τq“`8.

8 Numerical Simulations

To back up the theoretical findings, we numerically test the Bayesian algorithms we developed against
R-ed-UCB [31], which has been specifically designed for the rested setting.7 We tested in the same

7We also tested for those baseline algorithms those considered in the experimental section of [31]. For the
sake of presentation, we only report the figures with the full comparison in Appendix E.
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Figure 4: Results 15-arms settings: (a) Average regret over the learning horizon T ; (b) Regret for
γ-GTS for different values of γ; (c) Regret for Beta-SWTS for different values of α, with τ “Tα.

15-arms experiments of [31]. A visual representation of the expected rewards is provided in Figure 1.
The parameters selected for the experiments (that comply with the recommendation provided in the
papers proposing them) and the parameters defining the setting are provided in Appendix E. We
compare the algorithms in terms of empirical cumulative regret R̂p¨, tq averaged over 100 independent
runs with the corresponding 95% confidence intervals over a time horizon of T “50,000 rounds.

Results All the algorithms we presented outperform the baseline at the end of the time horizon T . In
particular, while Beta-TS, γ-SWGTS, and Beta-SWTS are providing a lower regret than R-ed-UCB
over the entire time horizon, while the γ-GTS is providing better results only for tą14,000. However,
there is statistical evidence for the superiority of our algorithms from that point on. Moreover, it
seems that all the algorithms except Beta-TS can significantly slow down the increase in terms of
regret in the rounds tą20,000. This is due to the fact that the other algorithms have been modified
to capture the properties of the setting, while Beta-TS is a general-purpose MAB algorithm.

We also run a sensitivity analysis on the γ parameter for γ-GTS and the sliding window τ for
Beta-SWTS. We provide the value of their average regret R̂p¨,T q at the end of the time horizon T ,
where the average has been taken over 100 runs of the algorithms on the same 15-arms setting.8

Results This environment is the same 15-arm rested bandit generated for the first experiment. In both
cases, the parameter providing the smallest regret is the one prescribed by the theoretical analysis,
i.e., γ„ logpT qT´ 1

2 “ for γ-GTS and τ “T
1
2 for SW-TS. The misspecification of the parameter leads

to an increase in the regret by a factor of at most 3 over the analysed values of the parameters,
especially for small values of the parameters. This suggests that the knowledge of the time horizon T
significantly impacts the final performances of the algorithms, and, if the information about the time
horizon is not known, one should set the parameter overestimating it.

9 Conclusions
In this paper, we investigated the properties of Thompson sampling-like algorithms for regret
minimization in the setting of SRBs. We analyzed the TS algorithms with Beta and Gaussian priors.
In both cases (Beta-TS and γ-GTS), we derived a general analysis that highlights the challenges
of the setting, showing that the logarithmic regret is increased by a term that depends on the total
variation distance between pairs of suitably defined distributions.We also analyzed what happens
upon realistic assumptions on the suboptimality gaps that allow us to obtain order-optimal instance-
independent regret guarantees. Furthermore, we derived regret bounds for the version of the two
above-mentioned algorithms that use a sliding window, i.e., Beta-SWTS and γ-SWGTS. Since, to the
best of our knowledge, the SRB setting currently lacks a lower bound analysis, future works should
focus on this unavoidable step to understand the SRB setting fully.

8We reported the 95% interval bars which are not clearly visible due to their limited dimension.
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A Proofs and Derivations

In this appendix, we provide the complete proofs and derivations we have omitted in the main paper.

A.1 Further Definitions

Given the existence of T˚ as defined in Assumption 3.2, it will be useful for the purpose of analysis
to define (assuming maxiPJKKt∆ip`∞,0qu exists finite):

c“
maxiPJKKt∆ip`∞,0qu

mini‰i˚pT 1q,T 1PJT˚´1Kt∆ipσ1,T 1q,∆ipT˚,`∞qu
, (16)

where σ1 PJσpT 1q,T 1K.

Lemma A.1 (Wald’s Identity for Rising Bandits). For every algorithm A and learning horizon T PN,
it holds that:

RpA,T qď

K
ÿ

i“2

∆ipT,0qErNi,T s, (17)

where ∆ipT,0q :“µ1pT q´µip0q.

Proof. We start with the usual definition of regret and proceed as follows:

RpA,T q“Tµ1 ´E

«

T
ÿ

t“1

µItpNIt,tq

ff

(18)

“E

«

T
ÿ

t“1

pµ1ptq´µItpNIt,tqq

ff

(19)

“E

«

T
ÿ

t“1

µ1ptq´

N1,T
ÿ

j“0

µ1pjq´

K
ÿ

i“2

Ni,T
ÿ

j“0

µipjq

ff

(20)

“E

»

–

T
ÿ

j“N1,T `1

µ1pjq´

K
ÿ

i“2

Ni,T
ÿ

j“0

µipjq

fi

fl (21)

ďE

«

K
ÿ

i“2

Ni,T
ÿ

j“0

pµ1pT q´µipjqq

ff

(22)

ď

K
ÿ

i“2

pµ1pT q´µip0qqE

«

Ni,T
ÿ

j“0

1

ff

. (23)

Lemma A.2. Assumption 3.2 entails the fact that ∆ipT,T q are lower bounded with:

c“
maxiPJKKt∆ip`∞,0qu

mini‰1,T 1PJT˚´1Kt∆ipT 1,T 1q,∆ipT˚,`∞qu
.

Proof. Let us assume now it the arms dynamics are such that it exists a finite time horizon T˚ defined
as:

µ1pT˚qąµip`∞q,@i‰1, (24)
where we used the fact that for T ąT˚ the arm identified by the theorem is the optimal arm (1“ i˚).
Informally, there is a finite time over which the best arm will not change anymore, we can devise
a finite grid of values for every T and every i of ∆ipT,T q, up to T˚, for T˚ we will consider
∆ipT

˚,∞q. Indeed we notice that ∆ipT
˚,∞q is smaller than any possible permutation (as the arms’

average is rising) for any horizon T ěT˚, i.e by definition @ ϵ, ηě0:
∆ipT

˚ `η,T˚ `ϵqě∆ipT
˚,T˚ `ϵqě∆ipT

˚,∞q, (25)
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so any constant that were to bound maxiPJKKt∆ip`∞,0qu

∆ipT˚,∞q
would also bound all the infinite val-

ues maxiPJKKt∆ip`∞,0qu

∆ipT˚`η,T˚`ϵq
. Then c is well defined, and it is possible to define it as (assuming

maxiPJKKt∆ip`∞,0qu exists finite):

c“
maxiPJKKt∆ip`∞,0qu

minti‰1,T 1PJT˚´1Kut∆ipT 1,T 1q,∆ipT˚,∞qu
, (26)

A.2 Proofs of Section 4

Lemma 4.1 (Technical Lemma). Let PBpµ
1
pjqq be a Poisson-Binomial distribution with individual

means µ
1
pjq“pµ1p1q, . . . ,µ1pjqq, and Binpj,xq be a binomial distribution with an arbitrary number

j of trials and probability of success xďµ1pjq. For any N1,t “j and yi Pp0,1q, it holds that:

ES1,t„PBpµ
1

pjqq

„

1

pi,t
|N1,t “j

ȷ

ďES1,t„Binpj,µ1pjqq

„

1

pi,t
|N1,t “j

ȷ

ďES1,t„Binpj,xq

„

1

pi,t
|N1,t “j

ȷ

.

Proof. Let N1,t “j, S1,t “s. Then, As shown by Agrawal et al. [2], pi,t can be written as:
pi,t “Ppθ1,t ąyiq“FB

j`1,yi
psq.

For ease of notation, let us denote X 1 „PBpµ
1
pjqq and X „Binpj,xq. We are now interested in

finding if it does exist a number of trials j such that:

p˚˚q“E

«

1

FB
j`1,yi

pX 1q

ff

ďE

«

1

FB
j`1,yi

pXq

ff

“p˚q. (27)

We notice that the PMF of a binomial distribution is discrete log-concave (see Lemma C.12), so that
let Y be a binomial random variable, we will have:

pY pi`1q2 ěpY piqpY pi`2q, (28)
so by Lemma C.13 used with α“1 and r“8, and q being the probability mass function of the
binomial distribution (more in-depth qpxq“pp´xq in Lemma C.13) we find that the CDF of the
binomial is discrete log-concave on Z too (indeed the theorems cited above state that if the probability
mass function of an integer-valued random variable is discrete log-concave as a function on Z, then
the corresponding CDF (FB in our notation) is also discrete log-concave as a function on Z) and so
by definition, omitting superscripts and subscripts, 1{F is discrete log-convex (same inequality of 28
with different sign) on the set S :“t0, . . . j`1u of all atoms of the distribution. So, 1{F is strictly
discrete convex on S. Indeed by proving the discrete log-convexity of 1

F we have proved that:
ˆ

1

F px`1q

˙2

ď
1

F px`2q

1

F pxq
, (29)

by applying the logarithm, we obtain the following:

2log

ˆ

1

F px`1q

˙

ď log

ˆ

1

F px`2q

1

F pxq

˙

, (30)

then, since the logarithm is monotonic, increasing:
ˆ

1

F px`1q

˙

ď

ˆ

1

F px`2q

˙
1
2
ˆ

1

F pxq

˙
1
2

. (31)

Using the AM-GM inequality, we obtain:
ˆ

1

F px`1q

˙

ă
1

2

ˆ

1

F px`2q

˙

`
1

2

ˆ

1

F pxq

˙

(32)

2

ˆ

1

F px`1q

˙

ă

ˆ

1

F px`2q

˙

`

ˆ

1

F pxq

˙

, (33)

where the inequality is strict since 1
F px`2q

ă 1
F pxq

for xPt0, . . . , j´1u, and, therefore, 1
F px`2q

‰ 1
F pxq

.
Using Lemma C.11 we obtain that @ j, being the number of trials for both the Poisson-Binomial and
the Binomial process, the expected value of the term of our interest for a Poisson-Binomial process

with a certain average of the probabilities of the success at each trial, namely µ1pjq“

řj
l“1µ1plq

j , is
always smaller than the one of a Binomial process where each Bernoulli trial has probability of
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success equal to µ1pjq. More formally:

EPB(µ
1

pjq)

„

1

Fj`1,y

ȷ

ďEBin(j,µ1pjq)

„

1

Fj`1,y

ȷ

. (34)

To show that p˚qďp˚˚q for any j such that µ1pjqěx we need to prove that the expected value of 1
F

considered for a Binomial process with mean µ1pjq is smaller than the expected value of 1
F for a

Binomial Process with mean x.

We apply Lemma C.3 stating that for a non-negative random variable (like ours 1{FB
j`1,yi

), the
expected value can be computed as:

E

«

1

FB
j`1,yi

ff

“

ż `8

0

P

˜

1

FB
j`1,yi

ąy

¸

dy. (35)

Let X2 „Binpj,µ1pjqq. Thus, we have:

P

˜

1

FB
j`1,yi

ąy

¸

“PpX2 “0q`PpX2 “1q` . . .`P

¨

˝X2 “

˜

1

FB
j`1,yi

¸´1

pyq´1

˛

‚ (36)

“P

¨

˚

˚

˚

˚

˝

X2 ă

˜

1

FB
j`1,yi

¸´1

pyq

looooooooomooooooooon

“:kjpyq

˛

‹

‹

‹

‹

‚

, (37)

and the same goes for X „Binpj,xq:

P

˜

1

FB
j`1,yi

ąy

¸

“PpX “0q`PpX “1q` . . .`P

¨

˝X “

˜

1

FB
j`1,yi

¸´1

pyq´1

˛

‚ (38)

“P

¨

˚

˚

˚

˚

˝

X ă

˜

1

FB
j`1,yi

¸´1

pyq

looooooooomooooooooon

“:kjpyq

˛

‹

‹

‹

‹

‚

, (39)

where the inverse is formally defined as follows:
˜

1

FB
j`1,yi

¸´1

pyq :“min

#

sPt0, . . . , ju :yě
1

FB
j`1,yi

psq

+

. (40)

Thus, the above condition in Equation (27) becomes:
ż `8

0

PpX2 ăkjpyqqdyď

ż `8

0

PpX ăkjpyqqdy. (41)

A sufficient condition to ensure that the condition in Equation (41) is that:
PpX2 ěmqěPpX ěmq,@m. (42)

Where the latter condition follows by:
ż `8

0

PpX2 ăkjpyqqdyď

ż `8

0

PpX ăkjpyqqdy (43)
ż `8

0

p1´PpX2 ěkjpyqqqdyď

ż `8

0

p1´PpX ěkjpyqqqdy (44)
ż `8

0

PpX2 ěkjpyqqdyě

ż `8

0

PpX ěkjpyqqdy (45)
ż `8

0

`

PpX2 ěkjpyqq´PpX ěkjpyqq
˘

dyě0, (46)

that is guaranteed by condition (42). Let us recall the concept of stochastic order( [10, 11, 30]) that is
often useful in comparing random variables. For two random variables U and V , we say that U is
greater than V in the usual stochastic order, and we denote it with U ěstV , when PpU ěmqěPpV ě
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mq,@m. Thus, if we have that X2 ěstX we would have that also Equation (42) holds too. It has
been shown by [10] (Lemma C.7) that the condition for that to happen when X2 and X are binomial
distribution with mean µ2 and µ is that µ2 ěµ. By doing that we showed that for any j such that
µ1pjqěx:

EPB(µ
1

pjq)

„

1

Fj`1,y

ȷ

ďEBin(j,µ1pjq)

„

1

Fj`1,y

ȷ

ďEBin(j,x)

„

1

Fj`1,y

ȷ

, (47)

concludes the proof.

Theorem 4.2 (Beta-TS - Regret Bound). Let σPJσpT q,T K, with σpT q defined as in Equation 4.
Under Assumption 4.1, for every ϵPp0,1q, the Beta-TS algorithm suffers an expected cumulative
regret bounded as:

RpBeta-TS,T qďO

˜

ÿ

i‰i˚pT q

∆ipT,0q

´

p1`ϵq
logpT q

dpµipT q,µ1pσqq

`
1

ϵ2
`

σ´1
ÿ

j“1

1

p1´µ1pσqqj`1
δTVpPBpµ

1
pjqq,Binpj,µ1pσiqq

¯

¸

, (7)

where dpx,yq :“x log x
y `p1´xq log 1´x

1´y for x,yPr0,1s is the Kullback-Leibler divergence between
Bernoulli distributions, δTV pP,Qq :“supAPF |P pAq´QpAq| denotes the total variation divergence
between distributions P and Q, PBpµ

1
pjqq denotes the Poisson-Binomial distribution with individual

means µ
1
pjq“pµ1p1q, . . . ,µ1pjqq, and Binpj,xq denotes the binomial with j trials and parameter x.

Proof. For every suboptimal arm iPJ2,KK, let us define the thresholds xi and yi s.t. µipT qăxi ă

yi ăµ1pσq. Thanks to the above thresholds, we can define the following events for every tPJT K:

• Eµ
i ptq as the event for which µ̂i,t ďxi;

• Eθ
i,t as the event for which θi,t ďyi, where θi,t denotes a sample generated for arm i from

the posterior distribution at time t, i.e., BetapSi,t `1,Fi,t `1q, being Si,t and Fi,t the
number of successes and failures up to round t for arm i (note that Ni,t “Si,t `Fi,t and
µ̂i,t “Si,t{Ni,t).

Moreover, let us denote with Eµ
i ptqA and Eθ

i ptqA the complementary event Eµ
i ptq and Eθ

i ptq, respec-
tively. Using Lemma A.1, we can rewrite the regret as:

RpBeta-TS,T qď

K
ÿ

i“2

∆ipT,0qErNi,T s“

K
ÿ

i“2

∆ipT,0q

T
ÿ

t“1

PpIt “ iq. (48)

Let us focus on decomposing the probability term in the regret as follows:
T
ÿ

t“1

PpIt “ iq“

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq

looooooooooomooooooooooon

“:PA

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqAq

looooooooooooooomooooooooooooooon

“:PB

(49)

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq

looooooooooooooomooooooooooooooon

“:PC

. (50)

The three terms correspond to the case of:

• (i) having a poor estimation of the mean for arm i (i.e., PA);

• (ii) having a good estimation of the mean and having sampled a large value for the arm i
posterior sample (i.e., PB);

• (iii) having a good estimate for the mean of the reward and having sampled a small value for
the posterior sample of arm i (i.e., PC).

Let us analyze each term separately.
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Term A Let τk PJT K denote the round at which we pull the arm i for the k-th time (we are omitting
the dependence on the arm index i to avoid heaving the notation). In what follows, we let the sum
run to times that can be greater than T . We have:

PA “

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq (51)

ďE

«

T
ÿ

k“1

τk`1
ÿ

t“τk`1

1tIt “ iu1
␣

Eµ
i ptqA

(

ff

(52)

ďE

»

—

—

—

—

–

T´1
ÿ

k“0

1
␣

Eµ
i pτk `1qA

(

τk`1
ÿ

t“τk`1

1tIt “ iu

loooooooomoooooooon

“1

fi

ffi

ffi

ffi

ffi

fl

(53)

“E

«

T´1
ÿ

k“0

1
␣

Eµ
i pτk `1qAq

(

ff

(54)

ď1`E

«

T´1
ÿ

k“1

1
␣

Eµ
i pτk `1qA

(

ff

“1`

T´1
ÿ

k“1

PpEµ
i pτk `1qAq

loooooooomoooooooon

“:PD

, (55)

where Equation (53) follows from observing that the indicator function is 1 in a single round in the
inner summation. Let us notice that thanks to the definition of the event Eµ

i pτk `1q, the term PD

corresponds to the probability that µ̂i,τk ąxi after exactly k pulls (which is not a random variable).
Thus, using Lemma C.1 with λ“xi ´µipkq and recalling that Erµ̂i,τk s“µipkq, we have:

PD “Ppµ̂i,τk ąxiq“Ppµ̂i,τk ąµipkq´µipkq`xiq (56)
ďexpp´k dpxi,µipkqqqďexpp´k dpxi,µipT qqq , (57)

where dpa,bq“a ln a
b `p1´aq ln 1´a

1´b is the Kullback-Leiber distance between two Bernoulli vari-
ables with expected value a and b, and the last inequality follows from the fact that xi ąµipT q. This
implies that:

PA ď1`

T´1
ÿ

k“1

expp´k dpxi,µipT qqqď1`
1

dpxi,µipT qq
, (58)

where the last inequality follows from bounding the summation with the corresponding integral.

Term B Let us focus on the summands of the term PB of the regret. To this end, let pFt´1qtPJT K be
the canonical filtration. We have:

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1qďPpθi,t ąyi|µ̂i,t ďxi,Ft´1q (59)
“PpBetapµ̂i,tNi,t `1,p1´ µ̂i,tqNi,t `1qąyi|µ̂i,t ďxiq (60)
ďPpBetapxiNi,t `1,p1´xiqNi,t `1qąyiq (61)

ďFB
Ni,t,yi

`

xiNi,t

˘

ďexpp´Ni,tdpxi,yiqq , (62)
where the last inequality follows from the generalized Chernoff-Hoeffding bounds (Lemma C.1) and
the Beta-Binomial identity (Fact 3 of [3]). Equation (60) was derived by exploiting the fact that on
the event Eµ

i ptq a sample from BetapxiNi,t `1,p1´xiqNi,t `1q is likely to be as large as a sample
from Betapµ̂i,tNi,tptq`1,p1´ µ̂i,tqNi,t `1q, reported formally in Fact C.6. Therefore, for t such
that Ni,t ąLipT q, where Liptq :“

logT
dpxi,yiq

we have:

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1qď
1

T
. (63)

Let τ be the largest round until Ni,t ďLipT q, then:

PB “

T
ÿ

t“1

P
`

It “ i,Eµ
i ptq,Eθ

i ptqA
˘

ď

T
ÿ

t“1

P
`

It “ i,Eθ
i ptqA|Eµ

i ptq
˘

(64)

“E
”

T
ÿ

t“1

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1q

ı

(65)
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“E
”

τ
ÿ

t“1

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1q`

T
ÿ

t“τ`1

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1q

ı

(66)

ďE
”

τ
ÿ

t“1

PrpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1q

ı

`E

«

T
ÿ

t“τ`1

1

T

ff

(67)

ďE
”

τ
ÿ

t“1

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1q

ı

`1 (68)

“E
”

τ
ÿ

t“1

1pIt “ iq
ı

`1 (69)

ďLipT q`1. (70)

Term C For this term, we shall use Lemma 1 by [3]. Let us define pi,t “Ppθ1,t ąyi|Ft´1q. We
have:

PpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qď
1´pi,t
pi,t

PpIt “1,Eµ
i ptq,Eθ

i ptq|Ft´1q. (71)

Thus, we can rewrite the term PC as follows:

PC “

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq (72)

“

T
ÿ

t“1

ErPpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qs (73)

ď

T
ÿ

t“1

E
„

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ˇ

ˇ

ˇ

ˇ

Ft´1

ȷȷ

(74)

ď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ȷ

. (75)

(76)
Let τk denote the time step at which arm 1 is played for the k-th time (notice we allow the sum to run
trough times bigger than the learning horizon T ), and let τ0 “0:

PC ď

T´1
ÿ

k“0

E
„

1´pi,τk`1

pi,τk`1

τk`1
ÿ

t“τk`1

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ȷ

(77)

ď

T´1
ÿ

k“0

E
„

1´pi,τk`1

pi,τk`1

ȷ

, (78)

where the inequality in Equation (78) uses the fact that pi,t is fixed, given Ft´1. Then, we observe
that pi,t “Ppθ1,t ąyi|Ft´1q changes only when the distribution of θ1,t changes, that is, only on the
time step after each play of the first arm. Thus, pi,t is the same at all time steps tPtτk `1, . . . , τk`1u,
for every k. Finally, bounding the probability of selecting the optimal arm by 1 we have:

PC ď

T´1
ÿ

k“0

E
„

1

pi,τk`1
´1

ȷ

. (79)

Let N1,t “j, S1,t “s. Then,

pi,t “Ppθ1,t ąyiq“FB
j`1,yi

psq

due to the relation that links the Beta and the Binomial distributions (Fact 3 of [3]). Let τj `1
denote the time step after the j-th play of the optimal arm. Then, N1,τj`1 “j. We do notice a
sensible difference with respect to the stationary case. Indeed, the number of successes after j trial
is not distributed anymore as a binomial distribution. Instead, it can be described by a Poisson-
Binomial distribution PBpµ

1
pjqq where the vector µ

1
pjq“pµ1p1q, . . . ,µ1pjqq, and µ1pmq represents

the probability of success of the best arm at the m-th trial. The probability of having s successful

18



trials out of a total of j trials can be written as follows [47, 33]:
fj,µ

1
pjqpsq“

ÿ

APFs

ź

mPA

µ1pmq
ź

m1PAc

p1´µ1pm1qq, (80)

where Fs is the set of all subsets of s integers that can be selected from JjK. Fs by definition will
contain j!

pj´sq!s! elements, the sum over which is infeasible to compute in practice unless the number
of trials j is small. A useful property of f is that it is invariant to the order of the elements in µ

1
pjq.

Moreover, we define density function of the binomial of j trials and mean µ1pjq, i.e., Binpj,µ1pjqq,
as:

fj,µ1pjqpsq“

ˆ

j

s

˙

µ1pjqsp1´µ1pjqqj´s. (81)

By applying the change of measure argument of Lemma C.2, we have:

E

«

1

FB
j`1,yi

ff

“

j
ÿ

s“0

fj,µ
1

pjqpsq

FB
j`1,yi

psq
looooooomooooooon

p˚˚q

ď

ˆ

1

p1´yiqj`1
´1

˙

δTV

´

PBpµ
1
pjqq,Binpj,µ1pσqq

¯

`

`

j
ÿ

s“0

fj,µ1pσqpsq

FB
j`1,yi

psq
looooooomooooooon

p˚q

, (82)

where δTV pP,Qq :“supAPF
ˇ

ˇP pAq´QpAq
ˇ

ˇ is the total variation between the probability measures
P and Q (assuming they are defined over a measurable space pΩ,Fq, having observed that, using the
notation of Lemma C.2:

b“ max
sPJ0,jK

1

FB
j`1,yi

psq
“

1

FB
j`1,yi

p0q
“

1

PpBinpj`1,yiq“0q
“

1

p1´yiqj`1
, (83)

a“ min
sPJ0,jK

1

FB
j`1,yi

psq
“

1

FB
j`1,yi

pjq
“

1

PpBinpj`1,yiqďjq
ě

1

PpBinpj`1,yiqďj`1q
“1. (84)

For ease of notation, let us denote X 1 „PBpµ
1
pjqq and X „Binpj,µpσqq. We are now interested in

finding if it does exist a minimum number of trials j PJ0,T K such that:

p˚˚q“E

«

1

FB
j`1,yi

pX 1q

ff

ďE

«

1

FB
j`1,yi

pXq

ff

“p˚q. (85)

Thus, using Lemma 4.1, we conclude that:

E
„

1

Fj`1,y

ȷ

ď

$

&

%

´

1
p1´yiqj`1 ´1

¯

δTVpPBpµ
1
pjqq,Binpj,µ1pσqqq`

řj
s“0

fj,µ1pσqpsq

F
j`1,yB

i
psq

if 0ďjăσ
řj

s“0

fj,µ1pσqpsq

Fj`1,yi
psq

if jěσ

(86)
Where the total variation terms can be bounded by Lemma C.4 (imposing s“0) and Lemma C.5 in
the auxiliary lemmas. From Lemma 2.9 by [3], we have that:

j
ÿ

s“0

fj,µ1pσiqpsq

Fj`1,yi
psq

´1ď

$

&

%

3
∆1

i
if jă 8

∆1
i

Θ

ˆ

e´
∆

12
i j

2 ` e´Dij

pj`1q∆12
i

` 1

e∆
12
i

j
4 ´1

˙

if jě 8
∆1

i

, (87)

where ∆1
i “µ1pσq´yi and Di “yi log

yi

µ1pσq
`p1´yiq log

1´yi

1´µ1pσq
. Thus, summing over all js and

using the big-Oh notation to hide all functions of the µi’s and ∆1
is, we obtain:

T´1
ÿ

j“0

˜

j
ÿ

s“0

fj,µ1pσqpsq

Fj`1,yi
psq

´1

¸

ď
24

∆12
i

`
ÿ

jě 8
∆1

i

Θ

ˆ

e´
∆

12
i j

2 `
e´Dij

pj`1q∆12
i

`
1

e∆
12
i

j
4 ´1

˙

(88)

ď
24

∆12
i

`Θ

ˆ

2

∆12
i

`
1

∆12
i Di

`
1

∆14
i

˙

“Op1q. (89)

which, summing all the contributions to the regret, provides the final result.
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Corollary 4.3. Under Assumption 3.2, the Beta-TS algorithm suffers an expected cumulative regret:

RpBeta-TS,T qď

"

Op
a

KT logpT q`Kσp1´µ1pT qq´σq if T ďT˚

Op
a

KT logpT qq if T ąT˚
. (8)

Proof. If the arms dynamics is such that exists a finite time horizon T˚ defined as:
µ1pT˚qąµip`∞q, @i‰1, (90)

i.e., there exists a finite time over which the best arm will not change anymore, we can devise a
finite grid of values for every T and every i of ∆ipσpT q,T q (we have taken σpT q for the sake of
argument, notice that for every T we could choose any σPJσpT q,T K) up to T˚, for T˚ we will
consider ∆ipT

˚,∞q. Then, it is possible to define a constant c as in (16). Indeed, notice that for all
T ěT˚, taking in what we have proved earlier σ“T˚ for every time horizon T ěT˚, the sum of the
total variation distances becomes a constant with respect to the time horizon T and substituting in the
result for the online regret we obtain for T ěT˚, ∆ipT

˚,T q with ∆ipT
˚,∞q:

RpBeta-TS,T qďO

˜

K
ÿ

i“2

∆ipT,0q

´

p1`ϵq
logpT q

dpµip∞q,µ1pT˚qq
`

p˚q
hkkkkkkikkkkkkj

1

dpxi,µip∞qq
`

`

T˚
´1

ÿ

j“1

δTVpPBpµ
1
pjqq,Binpj,µ1pT˚qq

p1´µ1pT˚qqj`1

¯

looooooooooooooooooooooomooooooooooooooooooooooon

p˚˚q

¸

,

(91)
Notice that for all T ěT˚ we have that both p˚q and p˚˚q are constant with T . So, neglecting these
terms, we obtain:

RpBeta-TS,T qďO

˜

K
ÿ

i“2

∆ipT,0q

´

p1`ϵq
logpT q

dpµip∞q,µ1pT˚qq

¯

¸

(92)

Using Pinsker’s inequality and by definition of c, we obtain:

RpBeta-TS,T qďO

˜

K
ÿ

i“2

c∆ipT
˚,∞q

´

p1`ϵq
logpT q

2pµip∞q´µ1pT˚qq2

¯

¸

(93)

from which we can retrieve the classical instance-independent bound for Thompson Sampling. Let’s
now consider T ďT˚. Rewriting all then we obtain (neglecting the constants):

RpBeta-TS,T qďO

˜

K
ÿ

i“2

∆ipT,0q

´ logpT q

dpxi,yiq
`

p˚q
hkkkkkkikkkkkkj

1

dpxi,µipT qq
`

`

σpT q´1
ÿ

j“1

δTVpPBpµ
1
pjqq,Binpj,µ1pσpT qqq

p1´µ1pσpT qqqj`1

¯

¸

, (94)

p˚q can be bounded by a constant as by assumption we have a lower bound for the distances. So we
can write thanks to the definition of c in (16), and using again Pinsker’s inequality:

RpBeta-TS,T qďO

˜

K
ÿ

i“2

c∆ipσpT q,T q

´ logpT q

∆ipσpT q,T q2
`

σpT q´1
ÿ

j“1

δTVpPBpµ
1
pjqq,Binpj,µ1pσpT qqq

p1´µ1pσpT qqqj`1

¯

¸

,

(95)

By loosely bounding the total variation by 1 we can write neglecting the constants:

RpBeta-TS,T qďO

˜

K
ÿ

i“2

∆ipσpT q,T q

´ logpT q

∆ipσpT q,T q2
`σpT q

ˆ

1

1´µ1pσpT qq

˙σpT q
¯

¸

, (96)

Similarly to what has been done in [2], by analyzing the two cases:

∆ipσpT q,T qě

c

K
logpT q

T
, (97)
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∆ipσpT q,T qď

c

K
logpT q

T
, (98)

we retrieve the final result.
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A.3 Proofs of Section 5

Theorem 5.1 (γ-GTS - Regret Bound for Subgaussian SRB). Let σPJσpT q,T K with σpT q defined

as in Equation 4. Under Assumption 5.1, setting γďmin
!

1
4σ2

var
,1
)

, the γ-GTS algorithm suffers an
expected cumulative regret of:

Rpγ-GTS,T qďO

˜

ÿ

i‰i˚pT q

∆ipT,0q

´ logpT∆ipσ,T q2 `e6q

γ∆ipσ,T q2
`

σ2
var

∆ipσ,T q2
`

σ´1
ÿ

j“1

δTVpPj ,Qjpµ1pσqqq

erfcp

b

γj
2 pµ1pσqqq

¯

¸

,

where erfcp¨q is the complementary error function, Pj is the distribution of the sample mean of the
first j samples collected from arm 1, while Qjpyq is the distribution of the sample mean of j samples
collected from any σ2

var-subgaussian distribution with mean y.

Proof. For every suboptimal arm iPJ2,KK, let us define the thresholds xi and yi s.t. µipT qăxi ă

yi ăµ1pσq. Thanks to the above thresholds, we can define the following events for every tPJT K:

• Eµ
i ptq as the event for which µ̂i,t ďxi;

• Eθ
i,t as the event for which θi,t ďyi, where θi,t denotes a sample generated for arm i from

the posterior distribution at time t, i.e., N pµ̂i,t,
1

γNit,t
q, being Nit,t of trials at time t for

arm it.

Moreover, let us denote with Eµ
i ptqA and Eθ

i ptqA the complementary event Eµ
i ptq and Eθ

i ptq, respec-
tively. Using Lemma A.1, we can rewrite the regret as:

Rpγ-GTS,T qď

K
ÿ

i“2

∆ipT,0qErNi,T s“

K
ÿ

i“2

∆ipT,0q

T
ÿ

t“1

PpIt “ iq. (99)

Let us focus on decomposing the probability term in the regret as follows:
T
ÿ

t“1

PpIt “ iq“

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq

looooooooooomooooooooooon

“:PA

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqAq

looooooooooooooomooooooooooooooon

“:PB

(100)

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq

looooooooooooooomooooooooooooooon

“:PC

. (101)

The three terms correspond to the case of:

• (i) having a poor estimation of the mean for arm i (i.e., PA);

• (ii) having a good estimation of the mean and having sampled a large value for the arm i
posterior sample (i.e., PB);

• (iii) having a good estimate for the mean of the reward and having sampled a small value for
the posterior sample of arm i (i.e., PC).

Let us analyze each term separately. We will neglect the error due to the round robin that will sum up
to a constant w.r.t the time.

Term A Let τk PJT K denote the round at which we pull the arm i for the k-th time (we are omitting
the dependence on the arm index i to avoid heaving the notation). In what follows, we let the sum
run to times that can be greater than T . We have:

PA “

T
ÿ

t“K`1

PpIt “ i,Eµ
i ptqAq (102)

ďE

«

T
ÿ

k“1

τk`1
ÿ

t“τk`1

1tIt “ iu1
␣

Eµ
i ptqA

(

ff

(103)
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ďE

»

—

—

—

—

–

T´1
ÿ

k“1

1
␣

Eµ
i pτk `1qA

(

τk`1
ÿ

t“τk`1

1tIt “ iu

loooooooomoooooooon

“1

fi

ffi

ffi

ffi

ffi

fl

(104)

“E

«

T´1
ÿ

k“1

1
␣

Eµ
i pτk `1qAq

(

ff

(105)

ď1`E

«

T´1
ÿ

k“1

1
␣

Eµ
i pτk `1qA

(

ff

“1`

T´1
ÿ

k“1

PpEµ
i pτk `1qAq

loooooooomoooooooon

“:PD

, (106)

where Equation (104) follows from observing that the indicator function is 1 in a single round in the
inner summation. Let us notice that thanks to the definition of the event Eµ

i pτk `1q, the term PD

corresponds to the probability that µ̂i,τk
ąxi after exactly k pulls (which is not a random variable).

Thus, using Lemma C.10 and recalling that Erµ̂i,τk
s“µipkq, we have:

PD “Ppµ̂i,τk
ąxiq“Ppµ̂i,τk

ąµipkq´µipkq`xiq (107)

ďexp

ˆ

´k
pxi ´µipkqq2

2σ2
var

˙

ďexp

ˆ

´k
pxi ´µipT qq2

2σ2
var

˙

, (108)

This implies that:

PA ď1`

T´1
ÿ

k“1

exp

ˆ

´k
pxi ´µipT qq2

2σ2
var

˙

ď1`
2σ2

var

pxi ´µipT qq2
, (109)

where the last inequality follows by bounding the summation with the corresponding integral.

Term B Defining LipT q“
288logpT∆ipσ,T q

2
`e6q

γ∆ipσ,T q2
, we decompose each summand into two parts:

PB “

T
ÿ

t“K`1

P
`

It “ i,Eµ
i ptq,Eθ

i ptqA
˘

(110)

“

T
ÿ

t“K`1

P
`

It “ i,kiptqďLipT q,Eµ
i ptq,Eθ

i ptqA
˘

`P
`

It “ i,kiptqąLipT q,Eµ
i ptq,Eθ

i ptqA
˘

.

(111)
The first term is bounded by LipT q. For the second term:

T
ÿ

t“K`1

P
`

iptq“ i,kiptqąLipT q,Eθ
i ptqA,Eµ

i ptq
˘

ď

ďE

«

T
ÿ

t“K`1

P
´

iptq“ i,Eθ
i ptq

A
|kiptqąLipT q,Eµ

i ptq,Ft´1

¯

ff

(112)

ďE

«

T
ÿ

t“K`1

P
`

θiptqąyi |kiptqąLipT q, µ̂iptqďxi,Ft´1

˘

ff

. (113)

Now, θiptq is a N
´

µ̂iptq,
1

γkiptq

¯

distributed Gaussian random variable. An N
`

m,σ2
˘

distributed

r.v. (i.e., a Gaussian random variable with mean m and variance σ2 ) is stochastically dominated
by N

`

m1,σ2
˘

distributed r.v. if m1 ěm. Therefore, given µ̂iptqďxi, the distribution of θiptq is

stochastically dominated by N
´

µ̂iptq,
1

γkiptq

¯

. That is,

P
`

θiptqąyi |kiptqąLipT q, µ̂iptqďxi,Ft´1

˘

ďP
ˆ

N
ˆ

xi,
1

γkiptq

˙

ąyi

∣∣∣∣ Ft´1,kiptqąLipT q

˙

.
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Here, we a slight abuse of notation we say that P
`

N
`

m,σ2
˘

ąyi
˘

represents the probability that a
random variable distributed as N

`

m,σ2
˘

takes value greater than yi. We have:

P
`

θiptqąyi |kiptqąLipT q, µ̂iptqďxi,Ft´1

˘

ďP
ˆ

N
ˆ

xi,
1

γkiptq

˙

ąyi

∣∣∣∣ Ft´1,kiptqąLipT q

˙

.

(114)
Using Lemma C.9 we have:

P
ˆ

N
ˆ

xi,
1

γkiptq

˙

ąyi

˙

ď
1

2
e´

pγkiptqqpyi´xiq2

2 (115)

ď
1

2
e´

pγLipT qqpyi´xiq2

2 , (116)

which is smaller than 1
T∆ipσ,T q2

because LipT qě
2lnpT∆ipσ,T q

2q
γpyi´xiq2

. Substituting, we get,

Ppθiptqąyi |kiptqąLipT q, µ̂iptqďxi,Ft´1qď
1

T∆ipσ,T q2
. (117)

Summing over t“1, . . . ,T , we get a bound of 1
∆ipσ,T q2

.

Term C For this term, we shall use Lemma 1 by [3]. Let us define pi,t “Ppθ1,t ąyi|Ft´1q. We
have:

PpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qď
1´pi,t
pi,t

PpIt “1,Eµ
i ptq,Eθ

i ptq|Ft´1q. (118)

Thus, we can rewrite the term PC as follows:

PC “

T
ÿ

t“K`1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq (119)

“

T
ÿ

t“K`1

ErPpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qs (120)

ď

T
ÿ

t“K`1

E
„

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ˇ

ˇ

ˇ

ˇ

Ft´1

ȷȷ

(121)

ď

T
ÿ

t“K`1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ȷ

. (122)

(123)
Let τk denote the time step at which arm 1 is played for the k-th time (notice we allow the sum to run
trough times bigger than the learning horizon T ), and let τ0 “0:

PC ď

T´1
ÿ

k“1

E
„

1´pi,τk`1

pi,τk`1

τk`1
ÿ

t“τk`1

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ȷ

(124)

ď

T´1
ÿ

k“1

E
„

1´pi,τk`1

pi,τk`1

ȷ

, (125)

where the inequality in Equation (125) uses the fact that pi,t is fixed, given Ft´1. Then, we observe
that pi,t “Ppθ1,t ąyi|Ft´1q changes only when the distribution of θ1,t changes, that is, only on the
time step after each play of the first arm. Thus, pi,t is the same at all time steps tPtτk `1, . . . , τk`1u,
for every k. Finally, bounding the probability of selecting the optimal arm by 1 we have:

PC ď

T´1
ÿ

k“1

E
„

1

pi,τk`1
´1

ȷ

. (126)

Now in order to face this term, let’s consider the arbitrary j´ th trial, @ j thanks to Lemma C.2 we
can bound the difference between the real process and an analogous (same number of trials) virtual
process with mean µ1pσq (where by stationary we mean that all the trials of the virtual process will
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have a fixed mean):

Eµ1pjq

„

1

pi,τj`1

ȷ

loooooooomoooooooon

p˚q

ď
2δTV pPj ,Qjpµ1pσiqqq

erfcp

b

γj
2 µ1pσiqq

`Eµ1pσq

„

1

pi,τj`1

ȷ

looooooooomooooooooon

p˚˚q

. (127)

where δTV pP,Qq :“supAPF
ˇ

ˇP pAq´QpAq
ˇ

ˇ is the total variation between the probability measures
P and Q (assuming they are defined over a measurable space pΩ,Fq, having observed that, using the
notation of Lemma C.2 (as the environment can’t produce rewards smaller than zero):

b“max
s

1

P
´

N
´

s, 1
γkiptq

¯

ąyi

¯ ď
1

P
´

N
´

0, 1
γkiptq

¯

ěµ1pσq

¯ “
2

erfcp

b

γj
2 µ1pσqq

, (128)

a“1. (129)
For example, as both binomial and poisson-binomial process are subgaussian, when we have a
poisson-binomial process the analogous one shall be a binomial with fixed mean, µ1pσq and σ2

var will
be 1

4 , in general for bounded random variables between ra,bs, i.e the samples can be sampled only

within ra,bs, we will have in what follows σ2
var “

pb´aq
2

4 , then for this process the analogous will be
a stationary process in which the samples can be sampled within interval ra,bs centered in µ1pσq

considered for the same number of trials (like for the example can be the sum of uniform random
variables). When the interval changes at every trials, without loss of generality in what follows we
can take σ2

var as the maximum of these variances, i.e. the maximum variance a sample can have in
the setting. For random variables explicitly written in term of a mean and a variance term (like the
Gaussian) holds the same. Our interest is to find if there is a minimum number of trials j such that
we will have p˚qěp˚˚q without any adding term. Given Fτj , let Θj denote a N

´

µ̂1 pτj `1q , 1
γj

¯

distributed Gaussian random variable. Let Gj be the geometric random variable denoting the number
of consecutive independent trials until and including the trial where a sample of Θj becomes greater
than yi. Then observe that pi,τj`1 “Pr

`

Θj ąyi |Fτj

˘

and

E
„

1

pi,τj`1

ȷ

“E
“

E
“

Gj |Fτj

‰‰

“E rGjs (130)

We compute first the expected value for the real process. We will consider first j such that µ1pjqě

µ1pσq , we will bound the expected value of Gj by a constant for all j defined as earlier. Consider any
integer rě1. Let z“

?
lnr and let random variable MAX r denote the maximum of r independent

samples of Θj . We abbreviate µ̂1 pτj `1q to µ̂1 and we will abbreviate µ1pjq as µ1 and ∆ipj,T q as
∆i in the following. Then for any integer rě1:

PpGj ďrqěPpMAXr ąyiq (131)

ěP
ˆ

MAXr ą µ̂1 `
z

?
γj

ěyi

˙

(132)

“E
„

E
„

1

ˆ

MAXr ą µ̂1 `
z

?
γj

ěyi

˙∣∣∣∣ Fτj

ȷȷ

(133)

“E
„

1

ˆ

µ̂1 `
z

?
γj

ěyi

˙

P
ˆ

MAXr ą µ̂1 `
z

?
γj

∣∣∣∣ Fτj

˙ȷ

(134)

For any instantiation Fτj of Fτj , since Θj is Gaussian N
´

µ̂1,
1
γj

¯

distributed r.v., this gives using
C.8:

P
ˆ

MAXr ą µ̂1 `
z

?
γj

∣∣∣∣ Fτj “Fτj

˙

ě1´

ˆ

1´
1

?
2π

z

pz2 `1q
e´z2

{2

˙r

(135)

“1´

˜

1´
1

?
2π

?
lnr

plnr`1q

1
?
r

¸r

(136)

ě1´e
´ r?

4πr lnr . (137)
For rěe12:

P
ˆ

MAXr ą µ̂1 `
z

?
γj

∣∣∣∣ Fτj “Fτj

˙

ě1´
1

r2
. (138)
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Substituting we obtain:

PpGj ďrqěE
„

1

ˆ

µ̂1 `
z

?
γj

ěyi

˙ˆ

1´
1

r2

˙ȷ

(139)

“

ˆ

1´
1

r2

˙

P
ˆ

µ̂1 `
z

?
γj

ěyi

˙

. (140)

Applying Lemma C.10 to the second term, we can write:

P
ˆ

µ̂1 `
z

?
γj

ěµ1

˙

ě1´e
´ z2

2γσ2
var ě1´

1

r2
, (141)

being γď 1
4σ2

var
. Using, yi ďµ1, this gives

P
ˆ

µ̂1 `
z

?
γj

ěyi

˙

ě1´
1

r2
. (142)

Substituting all back we obtain:

E rGjs“

8
ÿ

r“0

PpGj ěrq (143)

“1`

8
ÿ

r“1

PpGj ěrq (144)

ď1`e12 `
ÿ

rě1

ˆ

1

r2
`

1

r2

˙

(145)

ď1`e12 `2`2. (146)

This shows a constant bound of E
”

1
pi,τj`1

´1
ı

“E rGjs´1ďe12 `5 for all jěσ. We derive a

bound for large j. Consider jąLipT q (and still jěσ). Given any rě1, define Gj ,MAXr, and
z“

?
lnr as defined earlier. Then,
PpGj ďrqěPpMAXr ąyiq (147)

ěP
ˆ

MAXr ą µ̂1 `
z

?
γj

´
∆i

6
ěyi

˙

(148)

“E
„

E
„

1

ˆ

MAXr ą µ̂1 `
z

?
γj

´
∆i

6
ěyi

˙
∣∣∣∣ Fτj

ȷȷ

(149)

“E
„

1

ˆ

µ̂1 `
z

?
γj

`
∆i

6
ěµ1

˙

P
ˆ

MAXr ą µ̂1 `
z

?
γj

´
∆i

6

∣∣∣∣ Fτj

˙ȷ

. (150)

where we used that yi “µ1 ´ ∆i

3 . Now, since jěLipT q“
288lnpT∆2

i `e6q
γ∆2

i
,

2

a

2lnpT∆2
i `e6q

?
γj

ď
∆i

6
. (151)

Therefore, for rď
`

T∆2
i `e6

˘2
,

z
?
γj

´
∆i

6
“

a

lnprq
?
γj

´
∆i

6
ď´

∆i

12
. (152)

Then, since Θj is N
´

µ̂1 pτj `1q , 1
γj

¯

distributed random variable, using the upper bound in Lemma
C.9, we obtain for any instantiation Fτj of history Fτj ,

P
ˆ

Θj ą µ̂1 pτj `1q´
∆i

12

∣∣∣∣ Fτj “Fτj

˙

ě1´
1

2
e´γj

∆2
i

288 ě1´
1

2pT∆2
i `e6q

. (153)

being jěLipT q. This implies:

P
ˆ

MAXr ą µ̂1 pτj `1q`
z

?
γj

´
∆i

6

∣∣∣∣ Fτj “Fτj

˙

ě1´
1

2r pT∆2
i `e6q

r . (154)
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Also, for any těτj `1, we have k1ptqěj, and using Lemma C.10, we get:

P
ˆ

µ̂1ptq`
z

?
γj

´
∆i

6
ěyi

˙

ěP
ˆ

µ̂1ptqěµ1 ´
∆i

6

˙

ě1´e´k1ptq∆2
i {72σ2

var ě1´
1

pT∆2
i `e6q

16 .

(155)

Let T 1 “
`

T∆2
i `e6

˘2
. Therefore, for 1ďrďT 1, we have:

PpGj ďrqě1´
1

2r pT 1q
r{2

´
1

pT 1q
8 . (156)

When rěT 1 ěe12, we obtain:

PpGj ďrqě1´
1

r2
´

1

r2
. (157)

Combining all the bounds we have derived:

E rGjsď

8
ÿ

r“0

PpGj ěrq (158)

ď1`

T 1
ÿ

r“1

PpGj ěrq`

8
ÿ

r“T 1

PpGj ěrq (159)

ď1`

T 1
ÿ

r“1

1
`

2
?
T 1
˘r `

1

pT 1q
7 `

8
ÿ

r“T 1

1

r2
`

1

r1.5
(160)

ď1`
1

?
T 1

`
1

pT 1q
7 `

2

T 1
`

3
?
T 1

(161)

ď1`
5

T∆2
i `e6

. (162)

So we have proved that:

E
„

1

pi,τj`1

ȷ

ď

$

’

’

&

’

’

%

2δTV pPjpµ1pjqq,Pjpµ1pσqqq

erfcp
?

γj
2 µ1pσiqq

`Eµ1pσq

”

1
pi,τj`1

ı

. if 0ďjăσ

pe12 `5q if jěσ
5

T∆ipj,T q2
if jěLipT,jq and jěσ

(163)

Notice that LipT,jq“
288logpT∆ipj,T q

2
`e6q

γ∆
2
i pj,T q

is decreasing w.r.t. ∆ipj,T q, so we can write:

E
„

1

pi,τj`1

ȷ

ď

$

’

’

&

’

’

%

2δTV pPjpµ1pjqq,Pjpµ1pσqqq

erfcp
?

γj
2 µ1pσqq

`Eµ1pσq

”

1
pi,τj`1

ı

. if 0ďjăσ

pe12 `5q if jěσ
5

T∆ipj,T q2
if jě

288logpT∆
2
i pσ,T q`e6q

γ∆
2
i pj,T q

and jěσ

(164)
By definition, we have:

E
„

1

pi,τj`1

ȷ

ď

$

’

’

&

’

’

%

2δTV pPjpµ1pjqq,Pjpµ1pσqqq

erfcp
?

γj
2 µ1pσqq

`Eµ1pσq

”

1
pi,τj`1

ı

. if 0ďjăσ

pe12 `5q if jěσ
5

T∆ipσ,T q2
if jě

288logpT∆
2
i pσ,T q`e6q

γ∆
2
i pσ,T q

and jěσ

(165)
We can end up in two scenarios:

First Case It may happen that σě
288logpT∆

2
i pσ,T q`e6q

γ∆
2
i pσ,T q

, then, in this case, we already are in a

situation in which we will sum T ´σ times the term 5
T∆ipσ,T q2

.
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Second Case The second case is the scenario in which we have σi ď
288logpT∆

2
i pσ,T q`e6q

γ∆
2
i pσ,T q

. In

this situation we will sum 288logpT∆
2
i pσ,T q`e6q

γ∆
2
i pσ,T q

´σ times the constant bound pe12 `5q and T ´

288logpT∆
2
i pσ,T q`e6q

γ∆
2
i pσ,T q

times the term 5
T∆ipσ,T q2

.

Notice that what we have found is the same bound we would find doing the exact same passages for
Eµ1pσiq

”

1
pi,τj`1

ı

for jěσ, furthermore the inequality for Eµ1pσiq

”

1
pi,τj`1

ı

holds true for any j by
definition, i.e. it’s easy to show that:

Eµ1pσq

„

1

pi,τj`1

ȷ

ď

#

pe12 `5q @j
1

T∆ipσq2
if jě

288logpT∆
2
i pσ,T q`e6q

γ∆
2
i pσ,T q

(166)

So that summing all the terms:

PC ď

T´1
ÿ

k“0

E
„

1

pi,τk`1
´1

ȷ

ďpe12 `5q
288logpT∆

2

i pσ,T q`e6q

γ∆
2

i pσ,T q
`

`
5

∆
2

i pσ,T q
`

σ´1
ÿ

j“1

2δTVpPjpµ1pjqq,Pjpµ1pσqq

erfcp

b

γj
2 pµ1pσqqq

. (167)

Summing all the other term follows the statement. Notice furthermore that as a corollary we’ve
proven in this way the optimality of γ-GTS for the generic subgaussian stationary environment.

Corollary 5.2. Under Assumption 3.2, the γ-GTS algorithm suffers an expected cumulative regret:

Rpγ-GTS,T qď

#

Op
a

KTγ´1 logpT q`Kσeγσµ1pσq
2

q if T ďT˚

Op
a

KTγ´1 logpT qq if T ąT˚
. (9)

Proof. If the arms’ dynamics is such that exists a finite time horizon T˚ defined as:
µ1pT˚qąµip`∞q, @i‰1, (168)

i.e., informally, there’s a finite time over which the best arm won’t change anymore, we can devise a
finite grid of values for every T and every i of ∆ipσpT q,T q (we have taken σpT q for the sake if the
argument, notice however that for every T we could choose any σPJσpT q,T K) up to T˚, for T˚ we
will consider ∆ipT

˚,∞q. Then it is possible to define a constant c as in 16. In fact notice that for all
T ěT˚, taking in what we’ve proved earlier σ“T˚ for every time horizon T ěT˚, the sum of the
total variation distances becomes a constant with respect to the time and substituting in all the terms
for T ěT˚, ∆ipT

˚,T q with ∆ipT
˚,∞q, we obtain (neglecting the constant terms with respect to the

time), since all the terms are increasing for decreasing ∆ipσpT q,T q, we find:

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

∆ipT,0q

´

C1
logpT∆ipT

˚,T q2 `e6q

γ∆ipT˚,T q2
`

18σ2
var `6

∆ipT˚,T q2

¯

¸

, (169)

Then, by definition:

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

∆ipT,0q

´

C1
logpT∆ipT

˚,∞q2 `e6q

γ∆ipT˚,∞q2
`

18σ2
var `6

∆ipT˚,∞q2

¯

¸

. (170)

Notice that also the second term in the above inequality is time-independent for T ěT˚. Using the
definition of c (Equation (16)), we can rewrite the regret as follows:

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

c∆ipσpT˚q,∞q

´

C1
logpT∆ipT

˚,∞q2 `e6q

γ∆ipT˚,∞q2

¯

¸

. (171)

Disregarding the constant terms w.r.t. time T :

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

∆ipT
˚,∞q

´ logpT∆ipT
˚,∞q2 `e6q

∆ipT˚,∞q2

¯

¸

, (172)

that is equivalent to the bound provided for the classical instance-independent regret bound by [2] for
the stationary sunbgaussian bandit.
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Now consider T ďT˚, we can write, using the definition of c in Equation (26):

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

c∆ipσpT q,T q

´

C1
logpT∆ipσpT q,∞q2 `e6q

γ∆ipσpT q,T q2
`

`
18σ2

var `6

∆ipσpT q,T q2
`

σpT q´1
ÿ

j“1

2δTVpPj ,Qjpµ1pσpT qqq

erfcp

b

γj
2 pµ1pσpT qqqq

¯

¸

, (173)

We notice that thanks to the definition of c in 16, 18σ2
var`6

∆ipσpT q,T q2
is bounded with a constant term with

respect to the time horizon T . Then, we have:

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

c∆ipσpT q,T q

´

C1
logpT∆ipσpT q,∞q2 `e6q

γ∆ipσpT q,T q2
`

σpT q´1
ÿ

j“1

2δTVpPj ,Qjpµ1pσpT qqq

erfcp

b

γj
2 pµ1pσpT qqqq

¯

¸

,

(174)
[14] proved that the complementary error function for xě0 can be bounded lower-bounded as:

ercfpxqě

c

e

π
e´2x2

(175)

so by loosely bounding the total variation distances with 1 we get:

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

c∆ipσpT q,T q

´

C1
logpT∆ipσpT q,T q2 `e6q

γ∆ipσpT q,T q2
`C2σpT qeγσpT qµ1pσpT qq

2
¯

¸

,

(176)
so that:

Rpγ-GTS,T qďO

˜

K
ÿ

i“2

c∆ipσpT q,T q

´ logpT∆ipσpT q,T q2 `e6q

γ∆ipσpT q,T q2
`σpT qeγσpT qµ1pσpT qq

2
¯

¸

,

(177)
considering then the two cases:

∆ipσpT q,T qďe

c

K
1

γT
, (178)

∆ipσpT q,T qěe

c

K
1

γT
. (179)

Substituting the above cases in Equation (177), concludes the proof, noticing that as Assumption
5.1 holds true for any number off pulls it does exist a time independent constant M such that
∆ipσpT q,T qăM .

Theorem 5.3 (γ-GTS - Regret Bound for Subgaussian SRB γ-tuned). Let σPJσpT q,T K with σpT q

defined as in Equation 4, let furthermore σ„T β and γ„T´α. Under Assumption 5.1, for every
αěβ:

Rpγ-GTS,T qďO

˜

ÿ

i‰i˚pT q

∆ipT,0q

´Tα logpT∆ipσ,T q2 `e6q

∆ipσ,T q2
`

σ2
var

∆ipσ,T q2
`σ

¯

¸

. (10)

Proof. The proof follows from the proof of Theorem 5.1 setting γ“T´α, with α within the bounds
given in the statement, noticing that as by Assumption 5.1 the rewards can be bounded by a time
independent constant M and so also 1

erfcpMq
.

Corollary 5.4. Under assumption 3.2 γ-GTS with γ tuned suffer an instance independent regret
bound upper bounded by (for all T ):

Rpγ-GTS,T qďO
´

T
1`α
2

a

K logpT q`KTα
¯

. (11)

Proof. The corollary follows by substituing γ“T´α in Corollary 5.2 and considering the worst case
scenario.
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Algorithm 3 Beta-SWTS Algorithm
1: Input: Number of arms K, Time horizon

T , time window τ
2: Set Xi,t,τ Ð0 for each iPJKK
3: Set αi,1 Ð1`Xi,t,τ and βi,1 Ð1`p1´

Xi,t,τ q for each iPJKK
4: Set νi,1 ÐBetapαi,1,βi,1q for each iP

JKK
5: for tPJT K do
6: Sample θi,t,τ „νi,t for each iPJKK
7: Select It PargmaxiPJKK θi,t,τ
8: Pull arm It
9: Collect reward Xt

10: Update Xi,t,τ and Ti,t,τ , respectively the
sum of collected rewards within t and
t´τ `1 for arm i and the number arm i
has been pulled within t and t´τ `1

11: Update for each iPJKK νi,t`1 Ð

Betap1`Xi,t,τ ,1`pTi,t,τ ´Xi,t,τ qq

12: end for

Algorithm 4 γ-SWGTS Algorithm
1: Input: Number of arms K, Time horizon T , exploration

parameter γ, time window τ
2: Play every arm once and collect reward Xt

3: Set Ti,t,τ Ð1, µ̂i,t,τ ÐXt, µ̂i,t,τ Ð µ̂i,t,τ for each iP

JKK
4: Set νi,t ÐN pµ̂i,t,τ ,

1
γ

q for each iPJKK
5: for tPJT K do
6: Sample θi,t,τ „νi,t for each iPJKK
7: Select It PargmaxiPJKK θi,t,τ
8: Pull arm It
9: Collect reward Xt

10: Update the sum of the collected rewards within t and
t´τ `1, namely µ̂i,t,τ , Ti,t,τ the number of pulls
within t and t´τ `1, and µ̂i,t,τ “

µ̂i,t,τ

Ti,t,τ

11: Update νi,t`1 ÐN pµ̂i,t,τ ,
1

γTi,t,τ
q for each iPJKK

12: Every τ times play every arm once to ensure Ti,t,τ ą0
13: end for

B Proofs of Section 7

In this section, we report the proof of the sliding window approach version of the algorithms
we proposed. We also present the pseudocode for the Beta-SWTS and γ-SWGTS algorithms in
Algorithm 3 and 4, respectively.

Theorem 7.1 (Beta-SWTS Regret Bound). Under Assumption 4.1, the Beta-SWTS algorithm suffers
an expected cumulative regret bounded as:

RpBeta-SWTS,T qďO

¨

˝

ÿ

i‰i˚pT q

∆ipT,0qp
T logpT q

τp∆1
ipT ;τqq3

`
σ1pT ;τq

p1´µ1pσ1pT ;τq, τqqτ`1
q

˛

‚. (14)

Proof. For ease of notation we set σ1pT ;τq“σ1pτq,µ1pσ1pT ;τq;τq“µ1pσ1pτqq and ∆ipT,τq1 “∆i.
For every suboptimal arm iPt2,Ku, let us define the thresholds xi and yi s.t. µipT qăxi ăyi ă

µ1pσ1pτqq. Thanks to the above thresholds, we can define the following events for every tPT :

• Eµ
i ptq as the event for which µ̂i,t,τ ďxi;

• Eθ
i,t as the event for which θi,t,τ ďyi, where θi,t,τ denotes a sample generated for arm i

from the posterior distribution at time t from the sample collected in the last τ pulls, i.e.,
BetapSi,t,τ `1,Fi,t,τ `1q, being Si,t,τ and Fi,t,τ the number of successes and failures from
t´τ up to round t for arm i (note that Ti,t,τ “Si,t,τ `Fi,t,τ and µ̂i,t,τ “Si,t,τ {Ti,t,τ ).

In the current framework we will define pi,t as follows:
pi,t “Prpθ1,t,τ ěyi |Ft´1q.

Moreover, let us denote with Eµ
i ptqA and Eθ

i ptqA the complementary event Eµ
i ptq and Eθ

i ptq, respec-
tively. Let us decompose the probability term in the regret as follows:

T
ÿ

t“1

PpIt “ iq“

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq

looooooooooomooooooooooon

“:PA

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqAq

looooooooooooooomooooooooooooooon

“:PB

(180)

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq

looooooooooooooomooooooooooooooon

“:PC

. (181)

The three terms correspond to the case of:
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• (i) having a poor estimation of the mean for arm i (i.e., PA);

• (ii) having a good estimation of the mean and having sampled a large value for the arm i
posterior sample (i.e., PB);

• (iii) having a good estimate for the mean of the reward and having sampled a small value for
the posterior sample of arm i (i.e., PC).

Let us analyze each term separately.

Term A We have:

PA “

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq (182)

ďE

«

T
ÿ

t“1

1
␣

It “ i,Eµ
i ptqA

(

ff

(183)

ďE

«

T
ÿ

t“1

1

"

It “ i,Eµ
i ptqA,Ti,t,τ ď

lnpT q

pxi ´µipT q2

*

ff

`

`E

«

T
ÿ

t“1

1

"

It “ i,Eµ
i ptqA,Ti,t,τ ě

lnpT q

pxi ´µipT qqq2

*

ff

(184)

ď
T lnpT q

τpxi ´µipT qq2
`

T
ÿ

t“1

Pr

ˆ

Eµ
i ptqA |Ti,t,τ ě

lnpT q

pxi ´µipT qq2

˙

(185)

ď
T lnpT q

τpxi ´µipT qq2
`

T
ÿ

t“1

1

T
, (186)

where we used the Chernoff-Hoeffding bound for the second term in Equation (185) and Lemma C.14
for the first term.

Term B Let us focus on the summands of the term PB of the regret. To this end, let pFt´1qtPJT K be
the canonical filtration. We have:

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1qďPpθi,t,τ ąyi|µ̂i,t,τ ďxi,Ft´1q (187)
“PpBetapµ̂i,t,τTi,t,τ `1,p1´ µ̂i,t,τ qTi,t,τ `1qąyi|µ̂i,t,τ ďxiq

(188)
ďPpBetapxiTi,t,τ `1,p1´xiqTi,t,τ `1qąyiq (189)

ďFB
Ti,t,τ ,yi

`

xiTi,t,τ

˘

ďexpp´Ti,t,τdpxi,yiqq , (190)
where the last inequality follows from the generalized Chernoff-Hoeffding bounds (Lemma C.1)
and the Beta-Binomial identity (Fact 3 of [3]). Equation (188) was derived by exploiting the fact
that on the event Eµ

i ptq a sample from BetapxiTi,t,τ `1,p1´xiqTi,t,τ `1q is likely to be as large
as a sample from Betapµ̂i,tTi,t,τ ptq`1,p1´ µ̂i,t,τ qTi,t,τ `1q, reported formally in Lemma C.6.
Therefore, for t such that Ti,t,τ ąLipT q, where LipT q :“ logT

dpxi,yiq
we have:

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1qď
1

T
. (191)

We decompose PB in two events, when Ti,t,τ ďLipT q and when Ti,t,τ ěLipT q , then:

PB “

T
ÿ

t“1

P
`

It “ i,Eµ
i ptq,Eθ

i ptqA
˘

ď

T
ÿ

t“1

P
`

It “ i,Eθ
i ptqA|Eµ

i ptq
˘

(192)

“E
”

T
ÿ

t“1

PpIt “ i,Eθ
i ptqA|Eµ

i ptq,Ft´1q

ı

(193)
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“E

«

E
”

T
ÿ

t“1

1pIt “ i,Eθ
i ptqA,Ti,t,τ ďLipT q|Eµ

i ptq,Ft´1q`

T
ÿ

t“1

1pIt “ i,Eθ
i ptqA,Ti,t,τ ěLipT q|Eµ

i ptq,Ft´1q

ı

ff

(194)

ďLipT q
T

τ
`E

«

T
ÿ

t“1

1

T

ff

(195)

ďLipT q
T

τ
`1, (196)

where for the first term in Equation (195) we used Lemma C.14.

Term C For this term, we use Lemma 1 by [3]. Let us define pi,t “Ppθ1,t,τ ąyi|Ft´1q. We have:

PpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qď
1´pi,t
pi,t

PpIt “1,Eµ
i ptq,Eθ

i ptq|Ft´1q. (197)

Thus, we can rewrite the term PC as follows:

PC “

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq (198)

“

T
ÿ

t“1

ErPpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qs (199)

ď

T
ÿ

t“1

E
„

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ˇ

ˇ

ˇ

ˇ

Ft´1

ȷȷ

(200)

ď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ȷ

. (201)

(202)
We rewrite the last inequality as the sum of two contributions: when the total pulls of the best arm at
time t T1,t ąσ1pτq and when T1,t ďσ1pτq. This way, we obtain the following:

PC ď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptq,T1,t ďσ1pτqq

ȷ

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

A

`

`

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptq,T1,t ěσ1pτqq

ȷ

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

B

. (203)

We further decompose the term A in other terms:

Aď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1

¨

˚

˚

˝

C1
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

It “1,Eµ
i ptq,Eθ

i ptq,T1,t ďσ1pτq,T1,t,τ ď
8lnpT q

pµ1pσ1pτqq´yiq2

˛

‹

‹

‚

ȷ

loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

pA1q

`

T
ÿ

t“1

E
„

1´pi,t
pi,t

1

¨

˚

˚

˝

C2
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

It “1,Eµ
i ptq,Eθ

i ptq,T1,t ďσ1pτq,T1,t,τ ě
8lnpT q

pµ1pσ1pτqq´yiq2

˛

‹

‹

‚

ȷ

loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

pA2q

. (204)

As E rXY s“E rXE rY |Xss, we can bound the term A1 as follows:

A1“

T
ÿ

t“1

E
„

1pC1qE
„

1´pi,t
pi,t

|1pC1q

ȷȷ

(205)
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ď

T
ÿ

t“1

E

»

—

—

—

–

1pC1q

¨

˚

˚

˚

˝

δTV pPt|C1,Qt|C1q

p1´µ1pσ1pτqqqτ`1
`Eµ1pσ1pτqq

„

1´pi,t
pi,t

|1pC1q

ȷ

loooooooooooooooomoooooooooooooooon

p˚q

˛

‹

‹

‹

‚

fi

ffi

ffi

ffi

fl

. (206)

Now consider an arbitrary instantiation T 1
1,t,τ of T1,t,τ (i.e., an arbitrary number of pulls of the

optimal arm within the time window τ ) in which C1 holds true, we can rewrite p˚q as:

p˚q“E
„

1´pi,t
pi,t

|1pC1q

ȷ

“ET 1
1,t,τ

»

—

—

—

–

E
„

1´pi,t
pi,t

|1pC1q,T1,t,τ “T 1
1,t,τ

ȷ

loooooooooooooooooooomoooooooooooooooooooon

p˚1q

fi

ffi

ffi

ffi

fl

. (207)

We can bound p˚1q using Lemma 4 by Agrawal et al. [2]:

p˚1q“

T 1
1,t,τ
ÿ

s“0

fT 1
1,t,τ ,µ1pσ1pτqqpsq

FT 1
1,t,τ `1,yi

psq
´1

ď

$

’

’

’

&

’

’

’

%

3
∆1

i
if T 1

1,t,τ ă 8
∆1

i

O

˜

e´
∆12

i T 1
1,t,τ
2 ` e

´DT 1
1,t,τ

T 1
1,t,τ∆

12
i

` 1

e∆
12
i

T 1
1,t,τ
4 ´1

¸

if 8
∆1 ďT 1

1,t,τ ď
8lnpT q

∆12
i

. (208)

We notice that the worst case scenario we can have is for T 1
i,t,τ ď 8

∆1
i

so that every possible instantiation

in which condition C1 holds true the expectation value of 1´pi,t

pi,t
can be upper bounded by substituting

in the latter inequalities the worst case scenario for T 1
i,t,τ we obtain a term which is independent from

the pulls:

p˚qďO
ˆ

1

pµ1pσ1pτqq´yiq

˙

, (209)

so that the inequality for A1 can be rewritten as:

O

˜

T
ÿ

t“1

1pC1qp˚q

¸

ďO
ˆ

T lnpT q

pµ1pσ1pτqq´yiq3

˙

, (210)

where we have exploited the fact that for Lemma C.14 we have:
T
ÿ

t“1

1pC1qď
8T lnpT q

τpµ1pσ1pτqq´yiq2
. (211)

Finally, we obtain:

A1ďO
ˆ

σ1pτq

p1´µ1pσ1pτqqqτ`1
`

T lnpT q

τpµ1pσ1pτqq´yiq3

˙

, (212)

Where the last inequality is a consequence of the fact that both inequalities hold:

T
ÿ

t“1

1pC1qď

$

’

&

’

%

σ1pτq

8T lnpT q

τpµ1pσ1pτqq´yiq2

. (213)

Let us upper bound A2:

A2“

T
ÿ

t“1

E
„

1pC2qE
„

1´pi,t
pi,t

|1pC2q

ȷȷ

(214)

ď

T
ÿ

t“1

E

»

—

—

—

–

1pC2q

¨

˚

˚

˚

˝

δTV pPt|C2,Qt|C2q

p1´µ1pσ1pτqqqτ`1
`Eµ1pσ1pτqq

„

1´pi,t
pi,t

|1pC2q

ȷ

loooooooooooooooomoooooooooooooooon

p˚˚q

˛

‹

‹

‹

‚

fi

ffi

ffi

ffi

fl

. (215)
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Let us consider an arbitrary instantiation T 1
1,t,τ of T1,t,τ in which C2 holds true, i.e., an arbitrary

number of pulls of the optimal arm within the time window τ . We have:

p˚˚q“E
„

1´pi,t
pi,t

|1pC2q

ȷ

“ET 1
1,t,τ

»

—

—

—

–

E
„

1´pi,t
pi,t

|1pC2q,T1,t,τ “T 1
1,t,τ

ȷ

loooooooooooooooooooomoooooooooooooooooooon

p˚˚1q

fi

ffi

ffi

ffi

fl

, (216)

where we bound the term p˚˚1q using Lemma 4 by Agrawal et al. [2]:

p˚˚1q“

T 1
1,t,τ
ÿ

s“0

fT 1
1,t,τ ,µ1pσ1pτqqpsq

FT 1
1,t,τ `1,yi

psq
´1

ďO

˜

e´
∆12

i T 1
1,t,τ
2 `

e´DT 1
1,t,τ

T 1
1,t,τ∆

12
i

`
1

e∆
12
i

T 1
1,t,τ
4 ´1

¸

for T 1
1,t,τ ě

8lnpT q

∆12
i

. (217)

We see that the worst case scenario when C2 holds true is when T 1
i,t,τ “

8lnpT q

∆12
i

, so considering the

worst case scenario for the case C2 holds true we can bound the expected value for 1´pi,t

pi,t
for every

possible realization of C2 independently from T 1
1,t,τ as:

p˚˚qďO
ˆ

1

T ´1

˙

ďO
ˆ

1

T

˙

, (218)

so that:

A2ďO
ˆ

σ1pτq

p1´µ1pσ1pτqqqτ`1

˙

, (219)

where the latter inequality is a consequence of the fact that:
T
ÿ

t“1

1pC2qďσ1pτq. (220)

Let us bound term B. We decompose this term in two contributions:

B“

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptq,T1,t ěσ1pτqq

ȷ

, (221)

so that, similarly to what we have done earlier, we have:

B“

T
ÿ

t“1

E
„

1´pi,t
pi,t

1

¨

˚

˚

˚

˝

C11

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

It “1,Eµ
i ptq,Eθ

i ptq,T1,t ěσ1pτq,T1,t,τ ď
8lnpT q

pµ1pσ1pτqq´yiq2

˛

‹

‹

‹

‚

ȷ

loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

B1

`

`

T
ÿ

t“1

E
„

1´pi,t
pi,t

1

¨

˚

˚

˚

˝

C21

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

It “1,Eµ
i ptq,Eθ

i ptq,T1,t ěσ1pτq,T1,t,τ ě
8lnpT q

pµ1pσ1pτqq´yiq2

˛

‹

‹

‹

‚

ȷ

loooooooooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooooooooon

B2

. (222)

Let us deal with B1 first. We have:

B1“

T
ÿ

t“1

E

»

—

—

—

–

1pC11qE
„

1´pi,t
pi,t

|1pC11q

ȷ

looooooooooomooooooooooon

p˚q

fi

ffi

ffi

ffi

fl

. (223)
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Let us analyse p˚q first.

p˚qďET 1
1,t,τ

»

—

—

—

–

E
„

1´pi,t
pi,t

|1pC11q,T1,t,τ “T 1
1,t,τ

ȷ

looooooooooooooooooomooooooooooooooooooon

p˚˚q

fi

ffi

ffi

ffi

fl

(224)

Lemma 4.1 applied to p˚˚q, states that a bound for a BinpT 1
1,t,τ ,µ1pσ1pτqqq, i.e., binomial process

with parameters T 1
1,t,τ and µ1pσ1pτqq holds also for p˚˚q, since such a Poisson-binomial has a mean

equal or larger than µ1pσ1pτqq). It follows, applying Lemma 4 by [2] to p˚˚q, we have that:

p˚˚qďO
ˆ

1

pµ1pσ1pτqq´yiq

˙

.

Therefore we have by Lemma C.14:
T
ÿ

t“1

1pC11qďO
ˆ

T lnpT q

τpµ1pσ1pτqq´yiq2

˙

. (225)

Finally, we obtain that:

B1ďO
ˆ

T lnpT q

τpµ1pσ1pτqq´yiq3

˙

, (226)

where the above inequality follows from Lemma C.14.

Let us analyse B2:

B2“

T
ÿ

t“1

E

»

—

—

—

–

1pC21qE
„

1´pi,t
pi,t

|1pC21q

ȷ

looooooooooomooooooooooon

p˚1q

fi

ffi

ffi

ffi

fl

. (227)

Similarly to what has been done for term B1, applying Lemma 4.1 to p˚1q, we have that that term can
be bounded by the same bound we would have for a process governed by a Binomial distribution
Binp¨,µ1pσ1pτqqq. Thus, applying Lemma 4 by [2] to such a distribution :

p˚1qďO
ˆ

1

T

˙

,

and, finally:
B2ďOp1q. (228)

Choosing xi “µipT q` ∆i

3 and yi “µ1pσ1pτqq´ ∆i

3 and summing all the term concludes the proof.

Theorem 7.2 (γ-SW-GTS Regret Bound). Under Assumption 5.1, setting γďmin
!

1
4σ2

var
,1
)

, the
γ-GTS algorithm suffers an expected cumulative regret of:

Rpγ-SWGTS,T qďO

¨

˝

ÿ

i‰i˚pT q

∆ipT,0qp
T logpT p∆1

ipT ;τqq2q

γτp∆1
ipT ;τqq2

`
T

τ
`

σ1pT ;τq

erfcp
a

γτ
2 pµ1pσ1pT ;τq, τqq

q

˛

‚.

(15)

Proof. For ease of notation we set σ1
ipT ;τq“σ1

ipτq,µ1pσ1
ipT ;τq;τq“µ1pσ1

ipτqq and ∆1
i “∆i. For

every suboptimal arm iPt2,Ku, let us define the thresholds xi and yi s.t. µipT qăxi ăyi ăµ1pσ1
ipτqq.

Thanks to the above thresholds, we can define the following events for every tPT :

• Eµ
i ptq as the event for which µ̂i,t,τ ďxi;

• Eθ
i,t as the event for which θi,t,τ ďyi, where θi,t,τ denotes a sample generated for arm i

from the posterior distribution at time t , i.e., N pµ̂i,t,τ ,
1

γTit,t,τ
q, being Tit,t of trials at time

t in the temporal window τ for arm it.
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In such a framework pi,t is defined as pi,t “Prpθ1,t,τ ěyi |Ft´1q Moreover, let us denote with Eµ
i ptqA

and Eθ
i ptqA the complementary event Eµ

i ptq and Eθ
i ptq, respectively. Let us focus on decomposing

the probability term in the regret as follows:
T
ÿ

t“1

PpIt “ iqď

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq

looooooooooomooooooooooon

“:PA

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqAq

looooooooooooooomooooooooooooooon

“:PB

`

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq

looooooooooooooomooooooooooooooon

“:PC

`
T

τ
loomoon

Term due to the round robin every τ times

. (229)

Let us analyze each term separately.

Term A We have:

PA “

T
ÿ

t“1

PpIt “ i,Eµ
i ptqAq (230)

ďE

«

T
ÿ

t“1

1
␣

It “ i,Eµ
i ptqA

(

ff

(231)

ďE

«

T
ÿ

t“1

1

"

It “ i,Eµ
i ptqA,Ti,t,τ ď

lnpT∆2
i `eq

γpxi ´µipT qq2

*

ff

`

`E

«

T
ÿ

t“1

1

"

It “ i,Eµ
i ptqA,Ti,t,τ ě

lnpT∆2
i `eq

γpxi ´µipT qq2

*

ff

(232)

ď
T lnpT∆2

i `eq

γτpxi ´µipT qq2
`

T
ÿ

t“1

Pr

ˆ

Eµ
i ptqA |Ti,t,τ ě

lnpT∆2
i `eq

γpxi ´µipT qq2

˙

(233)

ď
T lnpT∆2

i `eq

γτpxi ´µipT qq2
`

T
ÿ

t“1

1

T∆2
i

, (234)

Where we used Lemma C.14 and Lemma C.10 as we did in the proof of Theorem 5.1.

Term B Defining LipT q“
288logpT∆2

i `e6q

γ∆2
i

, we decompose each summand into two parts:

PB “

T
ÿ

t“1

P
`

It “ i,Eµ
i ptq,Eθ

i ptqA
˘

(235)

“

T
ÿ

t“1

P
`

It “ i,Ti,t,τ ďLipT q,Eµ
i ptq,Eθ

i ptqA
˘

`P
`

It “ i,Ti,t,τ ąLipT q,Eµ
i ptq,Eθ

i ptqA
˘

.

(236)
The first term is bounded by LipT qT

τ using Lemma C.14. Instead, regarding the second term:
T
ÿ

t“1

P
`

iptq“ i,Ti,t,τ ąLipτq,Eθ
i ptqA,Eµ

i ptq
˘

(237)

ďE

«

T
ÿ

t“1

P
´

iptq“ i,Eθ
i ptq

A
|Ti,t,τ ąLipT q,Eµ

i ptq,Ft´1

¯

ff

(238)

ďE

«

T
ÿ

t“1

P
`

θi,t,τ ąyi |Ti,t,τ ąLipT q, µ̂i,t,τ ďxi,Ft´1

˘

ff

. (239)

In this setting, θi,t,τ is a Gaussian random variable distributed as N
´

µ̂i,t,τ ,
1

γTi,t,τ

¯

. We recall that

an N
`

m,σ2
˘

distributed r.v. (i.e., a Gaussian random variable with mean m and variance σ2 ) is
stochastically dominated by N

`

m1,σ2
˘

distributed r.v. if m1 ěm. Therefore, given µ̂i,t,τ ďxi, the
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distribution of θi,t,τ is stochastically dominated by N
´

xi,
1

γTi,t,τ

¯

. Formally:

P
`

θi,t,τ ąyi |Ti,t,τ ąLipT q, µ̂i,t,τ ďxi,Ft´1

˘

ďP
ˆ

N
ˆ

xi,
1

γTi,t,τ

˙

ąyi

∣∣∣∣ Ft´1,Ti,t,τ ąLipT q

˙

.

(240)

Using Lemma C.9 we have:

P
ˆ

N
ˆ

xi,
1

γTi,t,τ

˙

ąyi

˙

ď
1

2
e´

pγTi,t,τ qpyi´xiq2

2 (241)

ď
1

2
e´

pγLipT qqpyi´xiq2

2 (242)

which is smaller than 1
T∆2

i
because LipT qě

2lnpT∆2
i q

γpyi´xiq2
. Substituting into Equation (240), we get:

P
`

θi,t,τ ąyi |Ti,t,τ ąLipT q, µ̂i,t,τ ďxi,Ft´1

˘

ď
1

T∆2
i

. (243)

Summing over t follows that PB ďO
´

T
τ LipT q` 1

∆2
i

¯

.

Term C For this term, we use Lemma 1 by [3]. Let us define pi,t :“Ppθ1,t,τ ąyi|Ft´1q. We have:

PpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qď
1´pi,t
pi,t

PpIt “1,Eµ
i ptq,Eθ

i ptq|Ft´1q. (244)

Thus, we can rewrite the term PC as follows:

PC “

T
ÿ

t“1

PpIt “ i,Eµ
i ptq,Eθ

i ptqq (245)

“

T
ÿ

t“1

ErPpIt “ i,Eµ
i ptq,Eθ

i ptq|Ft´1qs (246)

ď

T
ÿ

t“1

E
„

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ˇ

ˇ

ˇ

ˇ

Ft´1

ȷȷ

(247)

ď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptqq

ȷ

. (248)

We decompose Equation (248) into two contributions:

PC ď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptq,T1,t ďσ1pτqq

ȷ

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

B1

`

`

T
ÿ

t“1

E
„

1´pi,t
pi,t

1pIt “1,Eµ
i ptq,Eθ

i ptq,T1,t ěσ1pτqq

ȷ

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

A1

. (249)

Analyzing term A1:

A1ď

T
ÿ

t“1

E
„

1´pi,t
pi,t

1

¨

˚

˝

C1
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

It “1,Eµ
i ptq,Eθ

i ptq,T1,t,τ ďLipT q,T1,t ěσ1pτq

˛

‹

‚

ȷ

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

A

`

`

T
ÿ

t“1

E
„

1´pi,t
pi,t

1

¨

˚

˝

C2
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

It “1,Eµ
i ptq,Eθ

i ptq,T1,t,τ ěLipT q,T1,t ěσ1pτq

˛

‹

‚

ȷ

loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

B

(250)
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Let us tackle the term A by exploiting the fact that ErXY s“ErXErY |Xss. This way, we can
rewrite it as:

A“

T
ÿ

t“1

E

»

—

—

—

–

1pC1qE
„

1´pi,t
pi,t

|1pC1q

ȷ

loooooooooomoooooooooon

p˚q

fi

ffi

ffi

ffi

fl

. (251)

In the following, we show that whenever condition C1 holds p˚q is bounded by a constant. Let Θj

denote a N
´

µ̂1,j ,
1
γj

¯

distributed Gaussian random variable, where µ̂1,j is the sample mean of the
optimal arm’s rewards played j times within a time window τ . Let Gj be a geometric random variable
denoting the number of consecutive independent trials up to j included where a sample of Θj is
greater than yi. We will show that for any realization of the number of pulls within a time window τ
such that condition C1 holds, the expected value of Gj is bounded by a constant for all j.

Consider an arbitrary realization of T1,t,τ “j that satisfies condition C1. Observe that pi,t “

Pr
`

Θj ąyi |Fτj

˘

and:

E
„

1

pi,t
|1pC1q

ȷ

“Ej

„

E
„

1

pi,t
|1pC1q,T1,t,τ “j

ȷȷ

“Ej|C1

“

E
“

E
“

Gj |Fτj

‰‰‰

“Ej|C1
rE rGjss .

(252)
Notice that the term E rGjs in Equation (252) is the same as the one we had in Equation (130) to
derive bounds for the γ-GTS algortihtm. Relying on the same mathematical steps we bound it as
follows:

E rGjsďe12 `5.

This shows a constant bound independent from j of E
”

1
pi,t

´1
ı

for any j such that condition C1
holds. Then, using Lemma C.14, A can be rewritten as:

Aďpe12 `5qE

«

T
ÿ

t“1

1pC1q

ff

(253)

ďpe12 `5q
288T lnpT∆2

i `e6q

γτ∆2
i

. (254)

Let us tackle B by exploiting the fact that ErXY s“ErXErY |Xss:

B“

T
ÿ

t“1

E

»

—

—

—

–

1pC2qE
„

1´pi,t
pi,t

|1pC2q

ȷ

loooooooooomoooooooooon

p˚˚q

fi

ffi

ffi

ffi

fl

. (255)

We derive a bound for p˚˚q for large j as imposed by condition C2. Consider then an arbitrary case in
which Ti,t,τ “jěLipT q (as dictated by C2), we have:

E
„

1

pi,t
|1pC2q

ȷ

“Ej

„

E
„

1

pi,t
|1pC2q,T1,t,τ “j

ȷȷ

“Ej|C2

“

E
“

E
“

Gj |Fτj

‰‰‰

“Ej|C2
rE rGjss .

(256)

Notice that the term E rGjs in the last equation is the same that bounded in Theorem 5.1 for the regret
of γ-GTS. Therefore, using the same proof line it is bounded by E rGjsď 1

T∆2
i

.

For term B1, we made the same passages that we did for Equations (251) and (255), adding the
δTV p¨, ¨q term, yielding to:

B1ďO

˜

σ1pT ;τq

erfcp
a

γτ
2 pµ1pσ1pT ;τq, τqq

q`pe12 `5q
288T lnpT∆2

i `e6q

γτ∆2
i

`
1

∆2
i

¸

, (257)

and summing up the terms concludes the proof.
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C Auxiliary Lemmas

In this section, we report some results that already exist in the bandit literature and have been used to
demonstrate our results.

Lemma C.1 (Generalized Chernoff-Hoeffding bound from [3]). Let X1, . . . ,Xn be independent
Bernoulli random variables with ErXis“pi, consider the random variable X “ 1

n

řn
i“1Xi, with

µ“ErXs. For any 0ăλă1´µ we have:
PpX ěµ`λqďexp

`

´ndpµ`λ,µq
˘

,

and for any 0ăλăµ
PpX ďµ´λqďexp

`

´ndpµ´λ,µq
˘

,

where dpa,bq :“a ln a
b `p1´aq ln 1´a

1´b .

Lemma C.2 (Change of Measure Argument from [26]). Let pΩ,Fq be a measurable space, and
P,Q :F Ñr0,1s. Let aăb and X Ñra,bs be a F-measurable random variable, we have:

ˇ

ˇ

ˇ

ˇ

ż

Ω

XpωqdP pωq ´

ż

Ω

XpωqdQpωq

ˇ

ˇ

ˇ

ˇ

ďpb´aqδTV pP,Qq. (258)

Lemma C.3 ([26], proposition 2.8). For a nonnegative random variable X , the expected value ErXs

can be computed as:

ErXs“

ż 8

0

PrpX ąyqdy.

Lemma C.4 ([38], Theorem 2). Let us define µ
n
:“pµ1, . . . ,µnq, sPp0, . . . ,nq and µPp0,1q. We

have that the total variation distance between two variables PBpµ
n

q and Bspn,µq is:

δTV pPBpµ
n

q,Bspn,µqqď

$

’

&

’

%

C1psqθpµ,µ
n

q
s`1
2

p1´ s
s`1

?
θpµ,µ

n
qq

p1´
?

θpµ,µ
n

qq2
if θpµ,µ

n
qă1

C2psqηpµ,µ
n

q
s`1
2 p1`

b

2ηpµ,µ
n

qqexpp2ηpµ,µ
n

qq otherwise
,

(259)
where θpµ,µ

n
q :“

ηpµ,µ
n

q

2nµp1´µq
, ηpµ,µ

n
q :“2γ2pµ,µ

n
q`γ1pµ,µ

n
q2, γkpµ,µ

n
q :“

řn
n1“1pµ´µn1 qk,

C1psq :“
?
eps`1q

1
4

2 , C2psq :“
p2πq

1
4 expp 1

24ps`1q
q2

s´1
2

?
s!ps`1q

1
4

.

Lemma C.5 ([17], Theorem 1, Lemma 2). Using the quantities defined in the Lemma C.4,
θpµ,µ

n
q

124
mint1,nµp1´µquďδTV pPBpµ

n
q,Binpn,µqqqď

1´µn`1 ´p1´µqn`1

pn`1qµp1´µq
γ2pµ,µ

n
q

(260)
where µ is the mean of the components of the means’ vector µ

n
, i.e. µ“

řn
n1“1

µn1

n

Lemma C.6 (Beta-Binomial identity). For all positive integers α,β PN, the following equality holds:
F beta
α,β pyq“1´FB

α`β´1,ypα´1q, (261)

where F beta
α,β pyq is the cumulative distribution function of a beta with parameters α and β, and

FB
α`β´1,ypα´1q is the cumulative distribution function of a binomial variable with α`β´1 trials

having each probability y.

Lemma C.7 ([10], Theorem 1 (iii)). Let Y „Binpn,λq and X “
ř

Xi where the Xi „Binpni,λiq

are independent random variables for i“1, . . . ,k then:
X ěstY if and only if λďλg, (262)

X ďstY if and only if λěλcg, (263)
where X ěstY means that X is greater than Y in the stochastic order, i.e. PrpX ěmqěPrpY ě

mq @m, and:

λg “

˜

k
ź

i“1

λni
i

¸

1
n

, (264)
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λcg “1´

˜

k
ź

i“1

p1´λiq
ni

¸

1
n

. (265)

Lemma C.8 ([1] Formula 7.1.13). Let Z be a Gaussian random variable with mean µ and standard
deviation σ, then:

PpZąµ`xσqě
1

?
2π

x

x2 `1
e´ x2

2 (266)

Lemma C.9 ([1]). Let Z be a Gaussian r.v. with mean m and standard deviation σ, then:
1

4
?
π
e´7z2

{2 ăPp|Z´m|ązσqď
1

2
e´z2

{2. (267)

Lemma C.10 ([37] Corollary 1.7). Let X1, . . . ,Xn be n independent random variables such that
Xi „ SUBG(σ2), then for any aPRn, we have

P

«

n
ÿ

i“1

aiXi ą t

ff

ďexp

ˆ

´
t2

2σ2|a|22

˙

, (268)

and

P

«

n
ÿ

i“1

aiXi ă´t

ff

ďexp

ˆ

´
t2

2σ2|a|22

˙

(269)

Of special interest is the case where ai “1{n for all i we get that the average X̄ “ 1
n

řn
i“1Xi, satisfies

PpX̄ ą tqďe´ nt2

2σ2 and PpX̄ ă´tqďe´ nt2

2σ2

Lemma C.11 ([39],[42], Theorem 2.1 (2)). Let X „PBpp1, . . . ,pnq, and X̄ „Binpn, p̄q, for any
convex function g : rnsÑR in the sense that gpk`2q´2gpk`1q`gpkqą0, 0ďkďn´2, we have

EgpXqďEgpX̄q, (270)

where the equality holds if and only if p1 “¨¨ ¨“pn of the poisson-binomial distribution are all equal
to p̄ of the binomial.

Fact C.1 (Bretagnolle-Hubner inequality). The Bretagnolle-Huber inequality states:

δTVpP,Qqď
a

1´expp´DKLpP }Qqqď1´
1

2
expp´DKLpP }Qqq (271)

Lemma C.12 ([23] Definition 1.2, [22] ). A random variable V taking values in Z` is discrete
log-concave if its probability mass function pV piq“P pV “ iq forms a log-concave sequence. That is,
V is log-concave if for all iě1:

pV piq2 ěpV pi´1qpV pi`1q (272)
Any Bernoulli random variable (that is, only taking values in t0,1u) is discrete log-concave. Further,
any binomial distribution is discrete log-concave. In fact any random variable S“

řn
i“1Xi, where

Xi are independent (not necessarily identical) Bernoulli variables, is discrete log-concave. Notice
then that by definition 1

pV piq is discrete log-convex

Lemma C.13 ([21], Theorem 2 p.152, Remark 13 p.153, Remark 1 p.150). Let 1ďαărď8 and
let q :ZÑr0,8s be r-concave (Definition 1 p.150 [21], furthermore we highlight that for Remark
1 p.150 [21] to be 8-concave is equivalent to be discrete log-concave). Then J αq is pr´αq-
concave, we assume r´α“8 when r“8 and rąα. Where the α-fractional (tail) sum of a function
q :ZÑr0,8s is defined for every αą0 by the formula:

J αqpnq“

8
ÿ

k“0

ˆ

α`k´1

k

˙

qpn`kq, (273)

so that for a binomial pdf pbin, being pbin discrete log-concave (see C.12), follows that J αpbin is
8-concave on Z for αě1.

Lemma C.14 ([16], Lemma D.1). Let AĂN, and τ PN fixed. Define apnq“
řn´1

t“n´τ 1ptPAq. Then
for all T PN and sPN we have the inequality:

T
ÿ

n“1

1pnPA,apnqďsqďsrT {τ s. (274)
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D Detailed Computations for the Instances of Section 6

First Instance. Let us upper bound the complexity index:

Υ

ˆ

Q

p1´2ϵq
T

K

U

, q

˙

“

rp1´2ϵq T
K s

ÿ

n“1

max
yPt1,2u

te´yλn ´e´yλpn`1quq

ďe´qλ `

rp1´2ϵq T
K s

ÿ

n“2

max
yPt1,2u

te´yλn ´e´yλpn`1quq

ďe´qλ `

rp1´2ϵq T
K s

ÿ

n“2

max
yPt1,2u

tyλe´yλnuq

“e´qλ `2λ

rp1´2ϵq T
K s

ÿ

n“2

λe´qλn

ďe´qλ `2λ

ż `8

n“1

e´qλndnď

ˆ

1`
2

q

˙

e´qλ,

where we used e´yλn ´e´yλpn`1q ďmaxxPrn,n`1s
B

Bx p1´e´yλxq“yλe´yλn and bounded the sum-
mation with the integral.

Second Instance. Let us lower bound the complexity index:

Υ

ˆ

Q

p1´2ϵq
T

K

U

, q

˙

“

rp1´2ϵq T
K s

ÿ

n“1

ˆ

2λ´1

pn`1qλ
´

2λ´1

pn`2qλ

˙q

ě

rp1´2ϵq T
K s

ÿ

n“1

ˆ

2λ´1λ

pn`2qλ`1

˙q

,

where we used 2λ´1

pn`1qλ
´ 2λ´1

pn`2qλ
ěminxPrn,n`1s

B
Bx

´

1´ 2λ´1

px`1qλ

¯

“ 2λ´1λ
pn`2qλ`1 . For qpλ`1qą1, we

proceed as follows:9

rp1´2ϵq T
K s

ÿ

n“1

ˆ

2λ´1λ

pn`2qλ`1

˙q

ě2qpλ´1q3´qpλ`1qλq “Opλqq.

Instead, for qpλ`1q“1, we bound the summation with the integral:
rp1´2ϵq T

K s
ÿ

n“1

ˆ

2qpλ´1qλq

n`2

˙q

ě

ż p1´2ϵq T
K

n“1

ˆ

2qpλ´1qλq

n`2

˙

dn

ě2qpλ´1qλq log

ˆ

p1´2ϵq
T

K
´

2

3

˙

“Opλq logT q.

Finally, for qpλ`1qă1, we still bound the summation with the integral:
rp1´2ϵq T

K s
ÿ

n“1

ˆ

2λ´1λ

pn`2qλ`1

˙q

ě

ż p1´2ϵq T
K

n“1

ˆ

2λ´1λ

pn`2qλ`1

˙q

dn

ě
2qpλ´1qλq

1´qpλ`1q

˜

ˆ

p1´2ϵq
T

K

˙1´qpλ`1q

´31´qpλ`1q

¸

“OpλqT 1´qpλ`1qq.

Now, recalling that the instance-dependent component of the regret of Theorem 6.1 is in the order of
T qΥ

´Q

p1´2ϵq T
K

U

, q
¯

, we have for the three cases the optimal choice of q that minimizes the regret:

qpλ`1qą1 ùñ qÓ
1

λ`1
ùñ O

´

λ
1

λ`1T
1

λ`1

¯

;

9We use big-O notation to highlight the dependences on λÑ0 and T Ñ`8.
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qpλ`1q“1 ùñ q“
1

λ`1
ùñ O

´

λ
1

λ`1T
λ

λ`1 logT
¯

;

qpλ`1qă1 ùñ qÒ
1

λ`1
ùñ O

´

λ
1

λ`1T
1

λ`1

¯

.

Thus, we have that the bound of the instance-dependent component of the regret is at least O
´

T
1

λ`1

¯

.
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E Numerical Simulations Parameters and Reproducibility Details

E.1 Parameters

The choices of the parameters are those suggested by the authors:

• Rexp3: VT “K as we’ve considered bounded rewards within zero and the maxi-
mum global variation possible is equal to the number of arms of the bandit; γ“

min
!

1,
b

K logK
pe´1q∆T

)

,∆T “

Q

pK logKq1{3 pT {VT q
2{3

U

([8]);

• KL-UCB: c“3 as required by the theoretical results on the regret provided by [18];
• Ser4: according to what suggested by [4] we selected δ“1{T,ϵ“ 1

KT , and ϕ“
b

N
TK logpKT q

;

• SW-UCB: as suggested by [18] we selected the sliding-window τ “4
?
T logT and the

constant ξ“0.6;
• SW-KL-UCB as suggested by Garivier & Moulines ([19] 2011) we selected the sliding-

window τ “σ´4{5;
• SW-TS: as suggested by [46] for the smoothly changing environment we set β“1{2 and

sliding-window τ “T 1´β “
?
T .

• R-ed-UCB: the window is set as hi,t “ tϵNi,t´1u as suggested by the authors ([31]), ϵPp0, 12 q,
being Ni,t´1 the numbers of plays of the i´ th arm up to time t.

E.2 Environment

To evaluate the algorithms in the rested setting with K“15 arms over a time horizon of T “50,000
rounds. The payoff functions µip¨q have been chosen in these families:

Fexp “
␣

fpnq | fpnq“c
`

1´e´an
˘(

, (275)

Fpoly “

"

fpnq | fpnq“c

ˆ

1´b
´

n`b1{ρ
¯´ρ

˙*

, (276)

where a,c,ρPp0,1s and bP Rě0 are parameters, whose values have been selected randomly. The
complete settings and function selection method, in compliance with what has been presented by [31],
have been provided in the attached code.

E.3 Experimental Infrastructure

In this section, we provide additional information for the full reproducibility of the experiments
provided in the main paper.

The code has been run on an AMD Ryzen 7 4800H CPU with 16 GiB of system memory. The
operating system was Windows 11, and the experiments have been run on Python 3.8. The libraries
used in the experiments, with the corresponding versions, were:

• matplotlib==3.3.4
• tikzplotlib==0.10.1
• numpy==1.20.1

On this architecture, the average execution time of each algorithm takes an average of «30 sec for a
time horizon of T “50,000.

E.4 15-arms Numerical Simulation Results

The results of the numerical simulation presented in Section 8 are reported in Figure 5. The results
show how the methods that have been designed for the restless case are performing worse than the
one we presented in our paper. The only exception is the Beta-SWTS that we showed to have also
nice theoretical properties in the SRRB setting. Overall, the comparison with such methods do not
invalidate the conclusions we drew in the main paper.
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Figure 5: Regret in the 15-arm environment.
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