Thompson Sampling-like Algorithms
for Stochastic Rising Rested Bandits

Marco Fiandri* Alberto Maria Metelli* Francesco Trovo*

Abstract

Stochastic rising rested bandit (SRRB) is a specific bandit setting where the arms’
expected rewards increase as they are pulled. They model scenarios in which the
performances of the different options grow as an effect of an underlying learning
process (e.g., online model selection). Even if the bandit literature provides specifi-
cally crafted algorithms based on upper-confidence bound approaches for such a
setting, no study about Thompson sampling-like algorithms has been performed.
Indeed, the specific trend and the strong regularity of the expected rewards given by
the SRRB setting suggest that specific instances may be tackled effectively using
classical Thompson sampling or some adapted versions. This work provides a
novel theoretical analysis of the regret that such algorithms suffer in SRRB. Our
results show that, under specific assumptions on the reward functions, even the
Thompson sampling-like algorithms achieve the no-regret property.

1 Introduction

In the ever-evolving landscape of decision-making under uncertainty, the field of Multi-Armed Bandits
(MAB) has witnessed a paradigm shift with the emergence of dynamic phenomena. Traditional
bandit models (e.g., the one presented by [12, 26]) consider static environments, assuming arms
with expected rewards that do not change during the learning process. However, many real-world
applications present a more intricate scenario where the rewards associated with each arm dynamically
evolve either over time or depending on the played actions. In particular, two significantly different
scenarios have been analyzed in the literature: restless and rested. While the restless MAB setting
assumes that the arms’ expected reward changes as an effect of nature, in the rested MAB setting [43],
the arm evolution is triggered by its pull. Many restless settings have been analyzed in the past,
including the abruptly changing ones [19] and the smoothly changing ones [46]. Conversely, only
recently, the rested setting has raised the attention of the bandit community [31].

This paper delves into this dynamic scenario, focusing specifically on the domain of stochastic
rising rested bandits [SRRB, 31]. The SRRB scenario reflects situations where the arms’ expected
rewards increase, encapsulating the essence of growing trends in various applications (e.g., learning
processes). Examples of such settings are represented by the so-called Combined Algorithm Selection
and Hyperparameter optimization (CASH, [45, 28]), whose goal is to identify the best learning
algorithm and the best hyperparameter configuration for a given machine learning task, one of the
most fundamental problems in Automatic Machine Learning (AutoML). This setting of the concave
rising bandit is also extremely useful when modeling satiation effects in recommendations, like the
ones studied by [15, 48], and in particular, concave learning curves have been shown to arise in
various laboratory environments (e.g., see [24, 5]) and is very natural and common in the context
of human learning (e.g., see the work by [41]). Similar problems arise when we want to select an
optimization algorithm among a predefined set to optimize a given function, a.k.a. online model
selection problem [31]. Such problems can be tackled effectively using an SRRB modeling approach.

So far, the research has focused on designing algorithms capable of adapting to and exploiting
these evolving trends, managing the delicate balance between exploration and exploitation. For
instance, the seminal work by [31] approached the problem by designing a sliding-window algorithm
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based on upper-confidence bounds for SRRB to provide a worst-case regret of the order of O(Tg +
Y(T)), T being the learning horizon of the learning process and Y (7') is a problem-dependent
quantity which characterizes the growth rate of the arm expected rewards.? Similarly, [32] developed
algorithms to handle the problem of best-arm identification in the SRRB setting. However, to the
best of our knowledge, there has not been any analysis to show if Thompson sampling-like MAB
algorithms [25, 3] can provide good performance over specific instances of the SRRB scenario, and
which modifications should be introduced to better deal with a larger class of problems in the SRRB
setting. Indeed, while in generic non-stationary bandits, they have been proven to perform poorly [46],
the strong regularity provided by the classical SRRB assumptions (increasing and concave expected
reward function) suggest that, in specific cases, they might have sublinear regret.

Original Contributions. In this paper, we analyze the regret guarantees of a set of algorithms based
on the original idea of Thompson Sampling (TS) when applied to SRRBs, specifically we present:

* A regret analysis of the Beta-TS (Thompson Sampling with Beta priors) when it is applied to the
SRRB rested setting, providing a distribution-dependent regret bound based on the total-variation
distance between specifically defined Poisson-Binomial and Binomial distributions. Here, the proof
relies on completely novel techniques (Lemma 4.1) that can be of independent interest (Section 4).

* A natural extension of Thompson Sampling with Gaussian priors, y-GTS, with near-optimal
instance-independent regret bounds for the general stationary subgaussian environments that allow
the analysis of the SRB setting in more general settings. This enables the retrieval of a theoretically
and empirically superior algorithm for the setting providing, in fact, under some weak assumptions,
sublinear instance-independent regret upper bounds (Section 5).

* A comparison of the proposed methods with the R-ed-UCB [31], designed for SRRB settings, over
two SRRB instances to highlight their advantages and disadvantages (Section 6);

* The application of a sliding window approach to the two above algorithms, resulting in Beta-SWTS
and y-SWGTS, to cope with cases having limited learning horizon 7" (Section 7);

* Some numerical simulations to compare the performances in terms of regret of the proposed
algorithms w.r.t. the ones designed for the SRRB setting (Section 8).

The proofs of the results are reported in Appendix A.

2 Related Works

Restless Bandits. The seminal work by [6] proposed the UCB1 algorithm, based on the optimism
in the face of the uncertainty principle, and shows that it provides a O (log(T')) regret in stochastic
stationary MAB settings. Instead, TS was originally designed as a heuristics for sequential decision-
making [44], while only in the past decade has it been analysed theoretically by [25, 3]. These works
provided a finite time analysis for TS showing an asymptotic bound on the regret of order O(log(T"))
for stochastic stationary MAB. Even if they are order-optimal in the stationary case, it has been
shown in multiple cases that their effectiveness in other restless [19, 46] or adversarial settings [13]
they provide poor performances in terms of regret.

Lately, UCB1 and TS algorithms inspired the development of techniques to tackle the rising complexi-
ties of restless MAB settings. The main idea behind these newly designed algorithms is to forget
past observations, removing samples from the statistics of the arms reward. Two different approaches
are available to do that: passive and active. The former iteratively discards the information coming
from the far past, making decisions on the most recent samples coming from the arms pulled by
the algorithms. Examples of such a family of algorithms are DUCB [19], Discounted TS [34, 35],
SW-UCB [19], and SW-TS [46]. Instead, the latter class of algorithms uses change-detection tech-
niques [7] to decide when it is the case to discard old samples. This occurs when a sufficiently large
change affects the arms’ expected rewards. Among the active approaches we mention CUSUM-
UCB [29], REXP3 [8], GLR-kKIUCB [9], and BR-MAB [36]. The development of such algorithms
was required since applying the classical ones has proven to fail when the environment is restless (for
both abrupt and smoothly changing).

Rising Bandits. Rising Bandits are a specific instance of either the Rested Bandits or the Restless
Bandits in which the expected reward of an arm increases respectively according to the number of
times it has been pulled or according to the time a certain arm has been pulled. The problem of
SRRB in its deterministic flavor has been proposed by [20]. They designed algorithms with provably
optimal policy regret bounds, and, in the case in which the rewards are increasing and concave, they

>With the O() notation we disregard logarithmic factors w.r.t. the learning horizon 7.



give an algorithm whose policy regret is sublinear. Instead, the stochastic version of SRRB has been
studied from a regret minimization perspective by [31]. In this work, the authors provide worst-case
bounds for the regret of the order of O(T'3 + Y (T')), where Y (T is a problem-dependent quantity
which characterizes the growth rate of the arm expected rewards, for specifically designed algorithms
for the rested and restless cases, namely R-ed-UCB and R-less-UCB, respectively. Both algorithms
are based on the combination of specifically crafted upper confidence bounds to consider the increase
of the expected reward functions and the use of a sliding window over the available samples. Finally,
the SRRB has also been studied in a Best Arm Identification framework by [32], where the authors
propose the R-UCBE and R-SR algorithm, a UCB-inspired and successive elimination approaches,
respectively, that provide guarantees for the fixed budget version of the Best-Arm Identification of
SRRB. Finally, a specific instance of the non-stationary bandits closely related to SRRB is provided
by the rotting bandits [40, 27]. Unlike the SRRB setting, the expected payoff for a given arm
decreases over time. Even in this case, the authors propose specifically crafted algorithms to address
the peculiar structure of the problem and derive theoretical guarantees on the regret. Howeverfor
these algorithms there are no theoretical guarantees when applied in the SRRB setting(see [31]).

3 Problem Formulation

We consider an SRRB setting with stochastic rewards. Let K €N be the number of arms. Every
arm i€ [K]:={1,..., K} is associated with an expected reward p; : N — R, where p;(n) defines the
expected reward of arm ¢ when pulled for the n-th time with neN. As common in the rising bandit
literature, the expected reward function y;(n) is non-decreasing and concave, as follows:?
Assumption 3.1 (Rising). For every arm i€ [ K] and number of pulls neN, let v;(n) = pu;(n+1) —
wi(n) be the increment function, it holds that:

Non-decreasing: 7;(n) =0, Concave: ~v;(n+1)—;(n)<0. (1

The learning process occurs over 7' N rounds, where 7' is called the learning horizon. At every round
te[T], the agent pulls an arm I, € [K] and observes a random reward X, ~ vy, (Ny, ;), where for
every arm i € [ K |, we have that v;(N; ;) is a probability distribution* depending on the current number
of pulls up to round t N; ;:= Zle 1{I; =4} whose expected value is given by p;(N; +)€[0,1]. For
every arm i€ [ K] and round t€ [T, we define the average expected reward as:

)= 3 ). @
=1

As previously shown by [20], the optimal policy constantly plays the arm with the maximum
average expected reward computed at the end of the learning horizon T'. We denote with ¢*(T') :=
argmaxcq f1;(1") the (unique) optimal arm, that depends on the value of the horizon T'.

Suboptimality Gaps. For analysis purposes, we introduce, for every suboptimal arm i #¢*(T") and
every number of pulls n,n’ € [T, the following notions of suboptimality gaps of the expected reward
A;(n,n’) and average expected reward A;(n,n’), formally:

Ai(n,n"):==max{0, t;s ) (n) — pi(n')}, Ai(n,n') =max{0, 7 ) (n) = 7;(n)}, (3)
respectively. Notice that we might have that for specific rounds, the gaps w.r.t. the optimal arm
() (n) —f1;(n') may be negative, however, at the end of the learning horizon 7" the assumption
that there is a unique optimal arm implies that fi;« ) (1) > Ti;(n') for all n’€[T]. This property
allows defining, for every suboptimal arm ¢ % ¢* (T"), the minimum number of pulls of the optimal
arm needed so that the optimal arm average expected reward gap for arm ¢ is positive, formally:

oi(T) :==min{le [T]: fs 1y (1) > 12;(T)}, a(T) ::i;g{g()%) o;(T). 4)

Regret. The goal of an algorithm 2l in an SRRB is to minimize the expected cumulative regret (see
also [20] and Theorem 4.1 in [31]):

T
R T):=T Fge(r)(T) —E [Z pr, (NIt,t)] ; )
t=1

where the expectation is w.r.t. the randomness of the rewards and the possible randomness of 2I.

3For the generic integers a,be N, a < b, we denote with [a] the set {1,...,a} and [a,b] the set {a,...,b}.
“In the following, we will analyze algorithms for Bernoulli and subgaussian distributions.



Algorithm 1 Beta-TS Algorithm Algorithm 2 ~-GTS Algorithm
- Input: Number of arms K, Time horizon T' 1: Input: Number of arms K, Time horizon T', exploration

. Set v;,1 <1 for each i€ [ K] parameter vy
- Set B3;.1 < 1 for each i€ [K] : Play every arm once and collect reward X

: Set v;,1 < Beta(a;,1,0:,1) for each i€ Set Nz‘,t‘_l’lzi,t‘_Xtvﬁi,t‘_ﬂi,t for each i€ [K]
[K] Set v; 1 <= N ({1 4 %) for each i€ [ K]

Lwl\):—*

D AR A

5: for te [T do ) : for te[T7] do

6: Sample 6;,; ~ v;,; for each i€ [ K] Sample 6; ¢ ~ v; ; for each i€ [K]

7:  Select I; €argmax;epx] i, Select I; € arg max;e[x] it

8: Pull arm I Pull arm I,

9:  Collect reward X Collect reward X,
10: }de)}ate)wt,Hp—Beta(ai,t + X, Bie+ . N Niy o+ 1, fug o, o+ X, fu, — ]l:fljftf

— t _ ’ ot
11:  Update vi¢p1< vy for each 11:  Update vy, 111 <—N(fiy, ,, T[llt_t )
ZE[[K]]\{It} 12: Update v; 141 < v;,¢ for eaChiE[[K]]\{It}
12: end for 13: end for

Environment Assumptions. In the following, we provide analyses of TS-like algorithms for the
SRRB class. However, we will provide more explicit regret guarantees under the following:

Assumption 3.2. There exists finite T* <+, s.t. it exists an arm i* € [K] for which for each
1e[K\{i*} we have [+« (T*) > 11;(+00).

The intuition behind this assumption is that after 7% a
single arm is optimal, and it remains optimal. In particular,
we have that for time horizons 7' > T*, the optimal arm
is fixed, i.e., the function ¢*(T") becomes constant in 7T,

precisely equal to ¢*. This assumption also implies that the g
gaps A;(T,T) are lower bounded as shown in Lemma A.2 3

(provided in the appendix); this will be crucial to derive in
what follows the instance-independent bounds. This is a
mild assumption since the environments that comply with 00 2.000 4.000 6.000
this condition arise naturally. For instance, the condition ’ ’ ’
also holds on those instances in which the rate of conver-
gence does not depend on the time horizon, e.g., the decay Figure 1: Example of the reward corre-
rates in physics having j;(n) = ¢;(1—e~%"), with ¢; >0, sponding to the first 6,000 pulls for a
and \; > 0. Other examples in which the assumption holds  SRRB setting over 15 arms.

are the environments generated for the experiments in the

seminal paper by [31] and those by [32]. An example of

such a setting is provided in Figure 1. Moreover, Assumption 3.2 does not prevent the expected
reward of the arms from crossing each other but only for the mean average 7i; of the suboptimal arms
to be smaller than the optimal one 7z, .

| |

n

4 Analysis of Thompson Sampling with Beta priors (Beta-TS)

In this section, we provide the analysis of Beta-TS, i.e., Thompson Sampling instanced with Beta
priors for the SRRB setting. The corresponding pseudocode is presented in Algorithm 1. For this
algorithm, we will assume that the rewards are Bernoulli random variables.’

Assumption 4.1 (Bernoulli Rewards). For every ne[T] and i€[K], the reward X ~v;(n) is
Bernoulli distributed.

Specifically, the Beta-TS algorithm initializes a beta distribution v; 1 =Beta(ay; 1, 5;,1) with a; 1 =
Bi,1 =1 for each of the arms i€ [ K] as prior. Then, for every round te [T'] it collects one sample
from each of the posterior distribution 6; ; ~ v; ; and plays the arm with the highest sample value, i.e.,
I earg mMaX,e[x] 0; ¢+. Then, based on the collected sample X, it updates the posterior distribution

of the played arm vy, ;11 =Beta(a; ¢ + Xy, B +1—Xy).

>If the reward X is not Bernoulli but X lies in [0, 1], we can sample a Bernoulli random variables with
parameter X and use that sample for the update.



Regret Analysis. Compared to the standard case, the Beta-TS analysis in the SRRB setting poses
additional challenges mainly because the samples collected from each of the arms are obtained from
Bernoulli distributions with different parameters ;(n) since the arm expected reward changes as the
arm is pulled. Consequently, unlike standard Beta-TS in the classical MABs setting, the sum of the
rewards no longer represents a binomial distribution, but, due to the expected reward changes, the
resulting random variable is a Poisson-Binomial [47]. This implies from a technical perspective that
the standard analysis of Beta-TS [3] cannot be applied. Conversely, the following technical lemma
was derived to deal with the complex structure of the cumulative reward distribution. We report it
since it represents a significant technical novelty and can be of independent interest to the reader.

First, similarly to what has been provided by [3] in Definition 2.7, let us define p; ;, for a random
variable X whose number of successes is described by either a Poisson-Binomial or a Binomial
distribution, for any y; € (0,1), as

pi:=Pr(Beta(S1:+1,F ¢ +1)>y;| Fi1), (6)
where S ¢, and F ;= Ny ; —S1 ¢ are the number of successes, and failures of X, respectively, and
Fi—1 is the filtration of the history up to time ¢ — 1. In our framework, —— is related to the expected

number of pulls of the suboptimal arm between two consecutive pulls of the best arm.

Lemma 4.1 (Technical Lemma). Let PB(y, (j)) be a Poisson-Binomial distribution with individual
means (., () =(p1(1),...,p1(4)), and Bin(j, ) be a binomial distribution with an arbitrary number
J of trials and probability of success x <fiy (j). For any N1 ¢=j and y;€(0,1), it holds that:

. 1 . 1 .
| N1t =j] <Es, ,~Bin(i 1, () [p_ t | N1, =J] <Es, ,~Bin(j) [p- t |N1, ZJ] .

1
Es, c~PB(1, (7)) [p_

7,t

The result is derived by showing the discrete log-convexity of the quantity 1/p; ; and relying on
order-statistics arguments to sort the expected value for different stochastic processes. This theorem
states how IE[ ] in our nonstationary setting can be bounded by its value in a stationary setting. We

are now ready to formalize the regret upper bound for Beta-TS.

Theorem 4.2 (Beta-TS - Regret Bound). Let o€[o(T),T], with o(T) defined as in Equation 4.
Under Assumption 4.1, for every e€ (0,1), the Beta-TS algorithm suffers an expected cumulative
regret bounded as:

)
R(Beta-TS,T) <O<Z#;T)A (7,0) ( )d(Ml(T)aﬁﬂU))

++Zlu1

where d(x,y) :=zlog T + (1 —z) log 1=% - for x,y€[0,1] is the Kullback-Leibler divergence between

Bernoulli dzsmbunons orv(P,Q) = sup Acr |[P(A)—Q(A)| denotes the total variation divergence
between distributions P and Q, PB(y, (j)) denotes the Poisson-Binomial distribution with individual

means p (j)=(p1(1),....p1(j)), and Bin(j,z) denotes the binomial with j trials and parameter .

j+1 5TV(PB(M1(J))’Bln(.jaul(a-l))>> ) (7)

First, we observe that the regret bound reduces to that of standard Beta-TS of [3] when facing
standard MABs. Indeed, in such a case, the Poisson-Binomial distribution reduces to the Binomial
distribution, and consequently, the TV term vanishes:

R(Beta-TS,T) <O ( Z A <(1+6)10g(T) + 12)> .
itk d(:“'i ) :ul) €
Conversely, for the general case, the rested nature of the problem induces the presence of an additional
term composed by the summation of the total variation distances drv (PB(p, (7)), Bin(j, 721 (0;)). This
term originates from a change of measure argument used in the analysis. Finally, let us state a corollary
that shows that using Assumption 3.2, we have results on worst-case regret:

Corollary 4.3. Under Assumption 3.2, the Beta-TS algorithm suffers an expected cumulative regret:

O(/KTlog(T)+Ko(1—1,(T))~°) if T<T*
R(Beta-TS,T)s{O( KT loa(T)) ! e (8)

Notice that the above results do not require the knowledge of T* by Beta-TS.



S Analysis of v-Thompson Sampling with Gaussian priors (7-GTS)

In this section, we provide an analysis of the y-Thompson Sampling with Gaussian priors (7-GTS)
algorithm, a modification of the classical TS with Gaussian priors, that provides instance-independent
optimal regret bounds for the subgaussian standard MABs. In this case, we assume that the reward
has subgaussian distribution with positive realizations.® Formally:

Assumption 5.1 (Non-negative Subgaussian rewards). For every ne[T]| and arm i€ [K], the reward
X ~v;(n) is non-negative almost surely, and o2, -subgaussian with finite mean.

The pseudocode for y-GTS is presented in Algorithm 2. At first, the y-GTS algorithm pulls each
arm once. Using the collected reward, it initializes the priors v;; for all the arms, setting all the
variances equal to 1/~. Then, for every round ¢ € [T'], it collects one sample from each of the posterior
distribution ¢; + ~ v; + and plays the arm with the highest sample value, i.e., I;earg mMaX;e[k] 0;+.
Based on the collected sample X, it updates the posterior distribution of the played arm vz, 44 1.
Regret Analysis. The following theorem provides a bound on the y-GTS algorithm regret.
Theorem 5.1 (7-GTS - Regret Bound for Subgaussian SRB) Let o€ [o(T),T] with o(T) defined
as in Equation 4. Under Assumption 5.1, setting v <min Fv , the v-GTS algorithm suffers an

expected cumulative regret of:

log(TA;(0,T)*+¢%) o2, % rv(Py, Q7 (0))) )
R(v-6T5,T)<O A(T,0) —L +— n 7
" <m2<> S T R = erfc(ﬁwa))))

where erfc(-) is the complementary error function, P; is the distribution of the sample mean of the
first j samples collected from arm 1, while Q;(y) is the distribution of the sample mean of j samples
collected from any o2, -subgaussian distribution with mean y.

Note that the structure of the regret resembles the one of the Beta-TS. Indeed, we have a summation of
total variation divergences, where the place of the binomial distribution is taken by Q;, a distribution
that is arbitrary as long as it is 02, -subgaussian. Such a distance (proportional to ¢ and the total
variation) between the real process and a stationary one that would suffer near-optimal regret encodes
the additional complexity of the problem w.r.t. the classical stochastic MAB problem. Even in this
case, we observe that also the regret bound of v-GTS reduces to that of Thompson Sampling of [3]
when facing standard MABs:

2 2
R(v—GTS,T)gO( 3 (bgi?i)ykr))’

i£¥

with =0 (min{c?2,,1}). Note that our result is more general than the one by [3]. Indeed, it also
holds for arbitrary subgaussian rewards, while their results hold only if they have mean in [0, 1].
Finally, similarly to what has been provided for Beta-TS, relying on Assumption 3.2, we have:

Corollary 5.2. Under Assumption 3.2, the ~v-GTS algorithm suffers an expected cumulative regret:

O(/KT~y Tog(T) + Koe?F1 () jf T<T*
R(V'GTS’TK{O( KT~ log(T)) iFT>T* ©

Even in this case, the result is achieved by an algorithm not requiring the knowledge of T*.

The following theorem provides an alternative way of setting the parameter «y if we have information
about the time horizon 7T'. Notice that the theoretical result in this case does not even require the
expected reward to satisfy Assumption 3.2.

Theorem 5.3 (7-GTS - Regret Bound for Subgaussian SRB v-tuned). Let o€ [o(T),T] with o(T)
defined as in Equation 4, let furthermore o ~T? and v~T~%. Under Assumption 5.1, for every
az=p:

Tlog(TA;(0,T)?+¢5) o2
R(vy-618,T)<0O A(T,0) — + =4 . 10
(ry <z#;(T) ( Az (OaT)Q Ai (Uv T)Q a> ( )

SFor the sake of presentation, we assume to have positive realizations. W.L.o.g. one might also consider
realizations bounded from below by a given constant.



(a) (b) Figure 3: Visual representation
of ¢/(T;7), a point in which
Figure 2: Different environments for the SRRB problem. Hise (1) (o' (T;7),7) > i (T).

Conversely, if Assumption 3.2, holds we have:

Corollary 5.4. Under assumption 3.2 ~-GTS with ~y tuned suffer an instance independent regret
bound upper bounded by (for all T'):

R(v-€TS,T) <O (TL Klog(T)+KTO‘). (11)

6 Comparison with the R-ed-UCB Algorithm

We now provide and analyze two SRRB instances to highlight the advantages and disadvantages of
the proposed algorithms when compared with the optimistic algorithm R-ed-UCB [31] designed for
SRRB settings. We recall the regret result provided by [31] for R-ed-UCB:

Theorem 6.1 (Theorem 4.4, [31]). R-ed-UCB with a suitable exploration index (see [31]) a> 2, and
€€ (0,1/2) suffers an expected regret for every q€[0,1] bounded as:

K_» . KT¢ T
R(R—ed—UCB,T)<O<eTS(alogT)fH—l 5 T([u—ze)K],q)), (12)

— 4€

where Y (M, q):= Zf\ifl maxe[x]{7i (1)} is a complexity index depending on the expected rewards.

First Instance. We start with an instance in which R-ed-UCB succeeds in delivering a sublinear regret,
while our algorithms may fail. We define the expected reward functions as follows: y; (n)=1—e™*"
and p12(n) =1—e~2*", where A > 0 is an arbitrary parameter (Figure 2a). Notice that 1 is the optimal
arm. Thus, this instance violates Assumption 3.2 since there is no possibility to define a T* < +o0
so that fi; (T*) > Ti,(+o0). Therefore, we cannot guarantee that our algorithms provide a sublinear
regret. Conversely, by using the definition of T, for g€ [0, 1], we have:

T [(1—26) %] 9
T [ 1-92 7-|’ _ —yAn _ —yi(n+1) q< 142 7q)\7
([0-20gcla)= % gt emomies (147
which implies that Theorem 6.1 provides a regret of order O(T%34+T49/q) for the R-ed-UCB
algorithm which is sublinear for every ¢<1 and, selecting ¢=1/log7T we obtain the best rate
O(T?3 +1ogT).

Second Instance. The second instance is designed so that our algorithms provide sublinear regret,
while R-ed-UCB fails. We define the expected reward functions as: pq(n)=1— %, and po(n) =
% — (f%)lk, where A€ [0,1] is an arbitrary parameter (Figure 2b). Assumption 3.2 holds with T* =
1, since the optimal arm has larger expected reward pu1 (1) >7i,(7') starting from the initial pull,
regardless of T'. The Y factor of this setting for every g€ [0,1] is given by:

AT if g +1)>1

T [(1—2¢) %] 9A-1 gA-1 \ 4
T([1-20)=].q) = - > 11 i =1.
([( E)Kw,q) ) ((n+1))‘ (n+2)k> O{\logT ifgA+1)=1
n=1 AT1=a4(A+1)  otherwise

We prove in Appendix D, that the optimal choice of ¢ is 1/(\+ 1), according to Theorem 6.1, this
leads to a regret of order O(T2/% + (\T) A%1) for R-ed-UCB. Thus, for instance, choosing A=1/3,

R-ed-UCB attains a regret bound of order O(7"/4) while our approaches succeed to achieve O(+/T)
regret.




7 Analysis of Sliding Window Thompson Sampling Approaches

The instance-dependent bounds provided above in Theorems 4.2 and 5.1 confirm that the classical
algorithms require a large number of pulls to converge to pulling the optimal arm at 7". This is due to
the fact that if 7z« 1) (n) does not converge fast enough to 7, (T) (T') they may suffer linear regret.
However, if the arms’ expected reward functions are regular enough and the time horizon is sufficient
(T'=T%*), as encoded Assumption 3.2, the natural exploration induced by TS can retrieve optimal
regret bounds for the problem. The main drawback of the previously presented approach is that
they use all the samples from the beginning of learning for estimating the average expected reward.
Intuition suggests that, as already seen with y-GTS algorithm, in some cases, it might be convenient
to forget the past and focus on the most recent samples only. In this section, we make use of a sliding
window approach that was already employed by R-ed-UCB [31] for SRRBs.

Preliminaries. We extend the definitions of Section 3 to account for a sliding window. For every arm
i€[K], round t€[T7], and window size 7€ [[t], we define the windowed average expected reward as
()= %Zfz ¢—r+1 Mi(1). Furthermore, we define the minimum number of pulls needed so that
the optimal arm ¢*(T") can be identified as optimal in a window of size 7:

oi(Tyr)=min{{le [T]: Ty () (1;7) > pai(T)} 0 {+0}}, o' (Ts7) ¢=i;§3(>;)02(T;T)- (13)
These definitions resemble those of Equation (4). However, the comparison here involves the
windowed average expected reward of the optimal arm 7z« 1 (I;7) compared against the expected
reward (not averaged) of the other arms at the end of the learning horizon p;(7"). Thus, even for 7 =T,
we have a stronger requirement since o’(T;T) = o (T'). Furthermore, for some values of 7, a value
of the number of pulls [ so that fi;s « (1;7) > i (T') might not exist. In such a case, we set o7 (7' 7)
(and thus o’(T;7)) to +c0. Nevertheless, as visible in Figure 3, in some cases o' (T;7) « o(T),
making the sliding window-based approaches convenient. Finally, we introduce a new definition of
suboptimality gaps: Aj(T';7) =T () (0 (T57)) — pi(T) for every arm ie [K].
Algorithms. In this section, we analyze the sliding window versions of TS for Bernoulli, namely
Beta-SWTS, and Gaussian, namely y-SW-GTS. Their pseudo-codes are reported in the Appendix. The
following results provide the regret upper bounds achieved by these algorithms as a function 7.

Theorem 7.1 (Beta-SWTS Regret Bound). Under Assumption 4.1, the Beta-SWTS algorithm suffers
an expected cumulative regret bounded as:

Tlog(T) 0/(T;:) . ae

R(peta-STST)SO | Q) MOy * T Ter) )T

i#i% (T)

Theorem 7.2 (v-SW-GTS Regret Bound). Under Assumption 5.1, setting vémin{ﬁ, 1}, the

~-GTS algorithm suffers an expected cumulative regret of:

] ‘ Tlog(T(AY(T;7))?) | T o' (T;7)
Rlo-sW1ST)<O | QMO SR/ 7 ¥ el (o @), 7))

15)

Some comments are in order. First, the regret bounds are presented for a generic choice of the
window size 7. The optimal choice depends on the instance-dependent quantities ¢’(7T’;7) and
AL(T;T). Second, if we compare these regret bounds with those of the corresponding non-windowed
versions, we observe that the last addendum derived from the change of distribution is of order
O(0)=0(0(T)) in Theorems 4.2 and 5.1 and becomes O(¢’(T;7)) in Theorems 7.1 and 7.2. This
quantifies the advantage of the sliding window algorithms in the cases in which ¢'(T;7) < o(T).
Finally, we remark that these regret bounds become vacuous when o’ (T;7) = +00.

8 Numerical Simulations

To back up the theoretical findings, we numerically test the Bayesian algorithms we developed against
R-ed-UCB [31], which has been specifically designed for the rested setting.” We tested in the same

"We also tested for those baseline algorithms those considered in the experimental section of [31]. For the
sake of presentation, we only report the figures with the full comparison in Appendix E.
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Figure 4: Results 15-arms settings: (a) Average regret over the learning horizon T'; (b) Regret for
~-GTS for different values of ; (c) Regret for Beta-SWTS for different values of o, with 7=T".

15-arms experiments of [31]. A visual representation of the expected rewards is provided in Figure 1.
The parameters selected for the experiments (that comply with the recommendation provided in the
papers proposing them) and the parameters defining the setting are provided in Appendix E. We
compare the algorithms in terms of empirical cumulative regret ]:2(, t) averaged over 100 independent
runs with the corresponding 95% confidence intervals over a time horizon of T'= 50, 000 rounds.

Results All the algorithms we presented outperform the baseline at the end of the time horizon T'. In
particular, while Beta-TS, v-SWGTS, and Beta-SWTS are providing a lower regret than R-ed-UCB
over the entire time horizon, while the y-GTS is providing better results only for ¢ > 14,000. However,
there is statistical evidence for the superiority of our algorithms from that point on. Moreover, it
seems that all the algorithms except Beta-TS can significantly slow down the increase in terms of
regret in the rounds ¢ > 20, 000. This is due to the fact that the other algorithms have been modified
to capture the properties of the setting, while Beta-TS is a general-purpose MAB algorithm.

We also run a sensitivity analysis on the ~ parameter for v-GTS and the sliding window 7 for
Beta-SWTS. We provide the value of their average regret R(-,T) at the end of the time horizon T,
where the average has been taken over 100 runs of the algorithms on the same 15-arms setting.®

Results This environment is the same 15-arm rested bandit generated for the first experiment. In both
cases, the parameter providing the smallest regret is the one prescribed by the theoretical analysis,

ie., vy~ log(T)T*% = for v-GTS and 7 = Tz for SW-TS. The misspecification of the parameter leads
to an increase in the regret by a factor of at most 3 over the analysed values of the parameters,
especially for small values of the parameters. This suggests that the knowledge of the time horizon T'
significantly impacts the final performances of the algorithms, and, if the information about the time
horizon is not known, one should set the parameter overestimating it.

9 Conclusions

In this paper, we investigated the properties of Thompson sampling-like algorithms for regret
minimization in the setting of SRBs. We analyzed the TS algorithms with Beta and Gaussian priors.
In both cases (Beta-TS and y-GTS), we derived a general analysis that highlights the challenges
of the setting, showing that the logarithmic regret is increased by a term that depends on the total
variation distance between pairs of suitably defined distributions.We also analyzed what happens
upon realistic assumptions on the suboptimality gaps that allow us to obtain order-optimal instance-
independent regret guarantees. Furthermore, we derived regret bounds for the version of the two
above-mentioned algorithms that use a sliding window, i.e., Beta-SWTS and y-SWGTS. Since, to the
best of our knowledge, the SRB setting currently lacks a lower bound analysis, future works should
focus on this unavoidable step to understand the SRB setting fully.

$We reported the 95% interval bars which are not clearly visible due to their limited dimension.



References

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55. US Government printing office, 1968.

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Proceedings of the Conference on learning theory (COLT), pages 39—1, 2012.

[3] Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. Journal
of the ACM, 64(5):1-24, 2017.

[4] R. Allesiardo, Raphaél Feraud, and Odalric-Ambrym Maillard. The non-stationary stochastic
multi-armed bandit problem. International Journal of Data Science and Analytics, 3, 06 2017.

[5] John R Anderson and Lael J Schooler. Reflections of the environment in memory. Psychological
science, 2(6):396-408, 1991.

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47:235-256, 2002.

[7] Michele Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and application,
volume 104. prentice Hall Englewood Cliffs, 1993.

[8] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic multi-armed-bandit problem with

non-stationary rewards. Advances in neural information processing systems (NeurIPS), 27,
2014.

[9] Lilian Besson and Emilie Kaufmann. The generalized likelihood ratio test meets klucb: an
improved algorithm for piece-wise non-stationary bandits. HAL, 2019(0), 2019.

[10] Philip J. Boland, Harshinder Singh, and Bojan Cukic. Stochastic orders in partition and random
testing of software. Journal of Applied Probability, 39(3):555-565, 2002.

[11] Philip J. Boland, Harshinder Singh, and Bojan Cukic. The stochastic precedence ordering with
applications in sampling and testing. Journal of Applied Probability, 41(1):73-82, 2004.

[12] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1-122, 2012.

[13] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[14] Seok-Ho Chang, Pamela C. Cosman, and Laurence B. Milstein. Chernoff-type bounds for the
gaussian error function. IEEE Transactions on Communications, 59(11):2939-2944, 2011.

[15] Giulia Clerici, Pierre Laforgue, and Nicolo Cesa-Bianchi. Linear bandits with memory: from
rotting to rising. arXiv preprint arXiv:2302.08345, 2023.

[16] Richard Combes and Alexandre Proutiere. Unimodal bandits: Regret lower bounds and optimal
algorithms. In Proceedings of the International Conference on Machine Learning (ICML),
pages 521-529, 2014.

[17] Werner Ehm. Binomial approximation to the poisson binomial distribution. Statistics and
Probability Letters, 11(1):7-16, 1991.

[18] Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and
beyond. In Proceedings of the Conference On Learning Theory (COLT), pages 359-376, 2011.

[19] Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In Proceedings of the international conference on Algorithmic Learning Theory

(ALT), pages 174-188, 2011.

[20] Hoda Heidari, Michael J Kearns, and Aaron Roth. Tight policy regret bounds for improving and
decaying bandits. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 1562-1570, 2016.

10



[21] Theodore P Hill and Christian Houdré. Advances in Stochastic Inequalities, volume 234.
American Mathematical Society, 1999.

[22] S.G Hoggar. Chromatic polynomials and logarithmic concavity. Journal of Combinatorial
Theory, Series B, 16(3):248-254, 1974.

[23] Oliver Johnson and Christina Goldschmidt. Preservation of log-concavity on summation.
ESAIM: Probability and Statistics, 10:206-215, April 2006.

[24] Boyan Jovanovic and Yaw Nyarko. A bayesian learning model fitted to a variety of empirical
learning curves. Brookings Papers on Economic Activity. Microeconomics, 1995:247-305,
1995.

[25] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In Proceedings of the international conference on Algorithmic
Learning Theory (ALT), pages 199-213, 2012.

[26] Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

[27] Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. Advances in neural information
processing systems (NeurIPS), 30, 2017.

[28] Yang Li, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. Efficient automatic
cash via rising bandits. In Proceedings of the Conference on Artificial Intelligence (AAAI),
volume 34, pages 4763-4771, 2020.

[29] Fang Liu, Joohyun Lee, and Ness Shroff. A change-detection based framework for piecewise-
stationary multi-armed bandit problem. In Proceedings of the Conference on Artificial Intelli-
gence (AAAI), volume 32, 2018.

[30] Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of majorization
and its applications. Springer Series in Statistics, 2011.

[31] Alberto Maria Metelli, Francesco Trovo, Matteo Pirola, and Marcello Restelli. Stochastic rising
bandits. In Proceedings of the International Conference on Machine Learning (ICML), pages
15421-15457, 2022.

[32] Marco Mussi, Alessandro Montenegro, Francesco Trovo, Marcello Restelli, and Alberto Maria
Metelli. Best arm identification for stochastic rising bandits. In Proceedings of the International
Conference on Machine Learning (ICML), 2024.

[33] S-D Poisson. English translation of poisson’s" recherches sur la probabilit\’e des jugements en
mati\ere criminelle et en mati\ere civile"/" researches into the probabilities of judgements in
criminal and civil cases". arXiv preprint arXiv:1902.02782, 2019.

[34] Han Qi, Yue Wang, and Li Zhu. Discounted thompson sampling for non-stationary bandit
problems. arXiv preprint arXiv:2305.10718, 2023.

[35] Vishnu Raj and Sheetal Kalyani. Taming non-stationary bandits: A bayesian approach. arXiv
preprint arXiv:1707.09727, 2017.

[36] Gerlando Re, Fabio Chiusano, Francesco Trovo, Diego Carrera, Giacomo Boracchi, and Mar-
cello Restelli. Exploiting history data for nonstationary multi-armed bandit. In Proceedings of
the European Conference on Machine Learning (ECML), pages 51-66, 2021.

[37] Philippe Rigollet and Jan-Christian Hiitter. High-dimensional statistics. arXiv preprint
arXiv:2310.19244, 2023.

[38] Bero Roos. Binomial approximation to the poisson binomial distribution: The krawtchouk
expansion. Theory of Probability & Its Applications, 45(2):258-272, 2001.

[39] S. M. Samuels. On the number of successes in independent trials. The Annals of Mathematical
Statistics, 36(4):1272—-1278, 1965.

11



[40] Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, and Michal Valko.
Rotting bandits are no harder than stochastic ones. In The International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 25642572, 2019.

[41] Lisa K Son and Rajiv Sethi. Metacognitive control and optimal learning. Cognitive Science,
30(4):759-774, 2006.

[42] Wenpin Tang and Fengmin Tang. The Poisson Binomial Distribution—Old and New. Statistical
Science, 38(1):108 — 119, 2023.

[43] Cem Tekin and Mingyan Liu. Online learning of rested and restless bandits. IEEE Transactions
on Information Theory, 58(8):5588-5611, 2012.

[44] William R. Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

[45] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In Proceedings of the
ACM international conference on Knowledge discovery and data mining (SIGKDD), pages
847-855, 2013.

[46] Francesco Trovo, Stefano Paladino, Marcello Restelli, and Nicola Gatti. Sliding-window
thompson sampling for non-stationary settings. Journal of Artificial Intelligence Research,
68:311-364, 2020.

[47] Y. H. Wang. On the number of successes in independent trials. Statistica Sinica, 3(2):295-312,
1993.

[48] Jingxu Xu, Yuhang Wu, Yingfei Wang, Chu Wang, and Zeyu Zheng. Online experiments with
diminishing marginal effects. Available at SSRN 4640583, 2023.

12



A Proofs and Derivations

In this appendix, we provide the complete proofs and derivations we have omitted in the main paper.

A.1 Further Definitions

Given the existence of T* as defined in Assumption 3.2, it will be useful for the purpose of analysis
to define (assuming max;ex{Ai(+00,0)} exists finite):
maXie[K] {Ai(-FO0,0)}

C=— - — ’ (16)
ming i (pr) reprs—1] 184 (07, T"), Ay (T*, +00) }

where o’ € [o(T"),T'].

Lemma A.1 (Wald’s Identity for Rising Bandits). For every algorithm A and learning horizon T €N,
it holds that:

K
RRALT)<Y. A, il (17)

=2
where A;(T,0) := p1 (T) — p;(0).

Proof. We start with the usual definition of regret and proceed as follows:

T
R, T)=Th, —E [2 r, (Nlt,t)l (18)
t=1
rr
=E Z(Ill(t)ﬂlt(Nlt,t))] (19)
Lt=1
[ T Ni,1 K Nir
=E| Y m 2 pa(i) =D > i ] (20)
Lt=1 7=0 =2 j=0
T K NirT
=E| ) BN 21
_j=N1,T+ i=2 j=0
[ K NiT
<E|D. D (m ] (22)
Li=2 j=0
K N;, 1T
<Z<MI<T>—;%<0>>E[ 1]. 23)
i=2 j=0
L]

Lemma A.2. Assumption 3.2 entails the fact that A;(T,T) are lower bounded with:
maX;e[K] {A¢(+OO, 0)}

c= — — .
min; .y preprs—1{ (T, T7), Ai(T*, +00) }

Proof. Let us assume now it the arms dynamics are such that it exists a finite time horizon 7* defined
as:

11 (T*) > (+00), Vi#1, (24)
where we used the fact that for 7'> T the arm identified by the theorem is the optimal arm (1 =3*).
Informally, there is a finite time over which the best arm will not change anymore, we can devise
a finite grid of values for every T and every i of A;(T,T), up to T*, for T* we will consider
A;(T*,00). Indeed we notice that A;(T*, 00) is smaller than any possible permutation (as the arms’
average is rising) for any horizon 7' >T™, i.e by definition V ¢, n>0:

Aj(T*+0,T* + €)= A (T*, T* +¢) = Ay (T*,00), (25)
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maxier]{Ai(+00,0)}
A (T*,00)

Then c is well defined, and it is possible to define it as (assuming

so any constant that were to bound would also bound all the infinite val-

max;epr]{Ai(+00,0)}
A (T* 41, T%4€)
max;ex]{Ai(+00,0)} exists finite):

ues

e maxie[[K]]{Ai(—i—oo,O)} (26)
ming 1 preprx—1p{A:(T7,T7), Ay (T*,00)}

O

A.2 Proofs of Section 4

Lemma 4.1 (Technical Lemma). Let PB(p, (j)) be a Poisson-Binomial distribution with individual

means i (j)=(p1(1),...,11(4)), and Bin(j,
J of trials and probability of success x <fi,(j). For any N1 ,=j and y;€(0,1), it holds that:

1 ) 1 . 1 .
: | N1t _J] <Es, ,~Bin(i 1, () [ 4 |N1,¢ _]] <Es, ,~Bin(jz) [lNl,t _J] .
DPit it Diy

3

x) be a binomial distribution with an arbitrary number

Es, ,~PB(u, () [

Proof. Let Ny ;=j, S1,+=s. Then, As shown by Agrawal et al. [2], p; ; can be written as:

Pie=P(01:>yi) = Fﬁl,yi (s).
For ease of notation, let us denote X’ ~PB(y, (j)) and X ~Bin(j,z). We are now interested in
finding if it does exist a number of trials j such that:

1 1
(**)=ElFﬁr1,yi(X/)1 gEle}il,yi(X)] :(*) (27)

We notice that the PMF of a binomial distribution is discrete log-concave (see Lemma C.12), so that
let Y be a binomial random variable, we will have:

py (i+1)*=py (i)py (i +2), (28)
so by Lemma C.13 used with =1 and r =00, and ¢ being the probability mass function of the
binomial distribution (more in-depth g(x) =p(—2x) in Lemma C.13) we find that the CDF of the
binomial is discrete log-concave on Z too (indeed the theorems cited above state that if the probability
mass function of an integer-valued random variable is discrete log-concave as a function on Z, then
the corresponding CDF (F'Z in our notation) is also discrete log-concave as a function on Z) and so
by definition, omitting superscripts and subscripts, 1/F is discrete log-convex (same inequality of 28
with different sign) on the set S:={0,...5+ 1} of all atoms of the distribution. So, 1/F is strictly
discrete convex on S. Indeed by proving the discrete log-convexity of % we have proved that:

2
1 1
< , 29)
F(z+1) F(z+2) F(x)
by applying the logarithm, we obtain the following:

1 1 1
21 — | <l —_— , 30
() <o (Fe 7 0

then, since the logarithm is monotonic, increasing:

(F(;Ll))<<F(x1+2)>é (F(lx)f' GD

Using the AM-GM inequality, we obtain:

(rem) <2 (rorm) 72 () .

2<lem)<<Fuim)+<FaDa (33)

. . . . . 1 1 . 1 1

wh.ere the inequality is strict §1nce Far2) < Yae) for x€{0,.. 5 j—1}, and, theref.ore, FrD) ;é )
Using Lemma C.11 we obtain that V j, being the number of trials for both the Poisson-Binomial and
the Binomial process, the expected value of the term of our interest for a Poisson-Binomial process
with a certain average of the probabilities of the success at each trial, namely 7, (j) = M, is
always smaller than the one of a Binomial process where each Bernoulli trial has probability of
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success equal to i, (). More formally:
1 1
Epnge () | 5—— | <Esinz, (i) | =——— |- (34)
PB(EI(J)) |:Fj+1,y:| Bin(j.ze, (5)) |:Fj+1,y:|
To show that (x) < (xx) for any j such that 7z, (j) >z we need to prove that the expected value of +

considered for a Binomial process with mean i (j) is smaller than the expected value of % for a
Binomial Process with mean x.

We apply Lemma C.3 stating that for a non-negative random variable (like ours 1/ Fj]il,yi)’ the
expected value can be computed as:

L ()
E :J P >y | dy. (3%
Fﬁ-l,yi 0 FJﬁLyi
Let X” ~Bin(j, 71, (j)). Thus, we have:
-1
1 1
IF’(FB >y>=IP’(X”=0)+IP’(X”=1)+...+]P’ X"=<FB ) (y)—1 (36)
J+1yi J+Lyi
) ~1
=P X”<<FB ) () |, 37
J+1y:
=:k;(y)

and the same goes for X ~ Bin(j,z):

-1
1 1
IP(FB >y) :P(X:O)+P(X:1)+...+IP X—<FB> (y)—l (38)
J+1,y: J+1,y:

-1
1
=P X<<FB > ) | (39)
J+1l.y;
=:k;(y)
where the inverse is formally defined as follows:
-1
) )=mind se {0, iyE (40)
_— Y):=minA s sy J Y = .
Fﬁ-l,yi Fﬁl,yi (s)
Thus, the above condition in Equation (27) becomes:
+00 +0
| e <nnans [ poc<nan (1)
0 0
A sufficient condition to ensure that the condition in Equation (41) is that:
P(X"=m)=P(X >m),VYm. (42)
Where the latter condition follows by:
+00 +o0
| peer <k ndy= [ pec<is @y @3)
0 0
+00 +00
| a-rerzmwmas [ 0=k @)
0 0
400 +00
| rerz k@i | ek (45)
0 0
4+
| (ear=kw) - rx=kw)a=o (46)
0

that is guaranteed by condition (42). Let us recall the concept of stochastic order( [10, 11, 30]) that is
often useful in comparing random variables. For two random variables U and V', we say that U is
greater than V' in the usual stochastic order, and we denote it with U >4V, when P(U =m) =2P(V >
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m),¥m. Thus, if we have that X” >4 X we would have that also Equation (42) holds too. It has
been shown by [10] (Lemma C.7) that the condition for that to happen when X" and X are binomial
distribution with mean 1" and p is that " > p. By doing that we showed that for any j such that

)=z
Eon 0| | < [ e — 1)
PB(1, (7)) Fj+1,y Bin(j.t, (5)) j+1,u X BBin(j, x) Fj+1,y y

concludes the proof. O

Theorem 4.2 (Beta-TS - Regret Bound). Letr o €[o(T),T], with o(T) defined as in Equation 4.
Under Assumption 4.1, for every e€(0,1), the Beta-TS algorithm suffers an expected cumulative
regret bounded as:

R(Beta-T5,T) <O<#;T)A (r.o)((1+ VI D7)
1 0-71 1 . . Pp—
tat Z WéTV(PB(Hl(J))aBm(]’M (‘%’))))7 N

where d(x,y) =xlog £ +(1—x) log 1=2 , for x,ye [0,1] is the Kullback-Leibler divergence between

Bernoulli dlstrlbutzons orv(P,Q): —supAE]_- |P(A)—Q(A)| denotes the total variation divergence
between distributions P and Q PB( ,(J)) denotes the Poisson-Binomial distribution with individual

means )= (p1(1), 1 and Bin denotes the binomial with j trials and parameter x.
()= (pa (1), p jx J p

Proof. For every suboptimal arm i € [2, K], let us define the thresholds z; and y; s.t. 71, (T) <z; <
yi <1 (o). Thanks to the above thresholds, we can define the following events for every te [T7]:

 E!'(t) as the event for which fi; ; <x;;

. E(’t as the event for which 0; ; <y;, where 0; ; denotes a sample generated for arm ¢ from

the posterior distribution at time ¢, i.e., Beta(Sm +1,F;++1), being S;; and F;; the
number of successes and failures up to round ¢ for arm ¢ (note that N; , = S; ; + F; ; and

fuit =Sit/Nit).

Moreover, let us denote with E¥'(¢)¢ and E? (t)° the complementary event E!(t) and E? (), respec-
tively. Using Lemma A.1, we can rewrite the regret as:

R(Beta-TS,T) <ZA (T,0)E ZA (T,0) Z P(I; =1). (48)
=2
Let us focus on decomposing the probability term in the regret as follows.
T
DIP(I=i)= 21@ Ii=i,B"( +21P’ I,=i,B"(t), B ()" (49)
=1 =1 t=1
=?FA =:Pp

+ Y P(I =i, B (t), EL (). (50)

1=

1

o
Il

=:Pc
The three terms correspond to the case of:
* (i) having a poor estimation of the mean for arm ¢ (i.e., P4);

* (ii) having a good estimation of the mean and having sampled a large value for the arm ¢
posterior sample (i.e., Pp);

* (iii) having a good estimate for the mean of the reward and having sampled a small value for
the posterior sample of arm ¢ (i.e., P¢).

Let us analyze each term separately.

16



Term A Let 7 € [T] denote the round at which we pull the arm ¢ for the k-th time (we are omitting
the dependence on the arm index % to avoid heaving the notation). In what follows, we let the sum
run to times that can be greater than 7'. We have:

T
PA:EIP’(It:z',E;‘(t)C) (51)
<E Z 2 L{I, =i} 1{E!(t) }] (52)
| k=1t=7,+1
T—1 Tk+1
<E Z]I{E;L(Tk-l—l)c} Z 1{I, =4} (53)
k=0 t:ﬂc-‘rli1
T—1
=E En{Ef(TkH)C)}] (54)
| k=0
T—1
<1+E L{E!( (e +1)° ]1+ P(E! (1 + 1)), (55)
Lzl { kZlT

where Equation (53) follows from observing that the indicator function is 1 in a single round in the
inner summation. Let us notice that thanks to the definition of the event E!' (7 + 1), the term Pp
corresponds to the probability that fi; ,, > x; after exactly &k pulls (which is not a random variable).
Thus, using Lemma C.1 with A=x; —[i; (k) and recalling that E[fi; -, | =%, (k), we have:
Pp =P(fii,r, >xi) =P(jLi r, > 1;(k) — 1; (k) + ;) (56)
sexp (—k d(zi, 7, (k))) <exp (=k d(zi,75;(T))) (57)
where d(a,b) =aln ¢ + (1—a)In =% is the Kullback-Leiber distance between two Bernoulli vari-
ables with expected value a and b, and the last inequality follows from the fact that ; > p;(T"). This
implies that:

T—1
1
Pa<1l+ ) exp(—kd(z,m(T)) <1+ ——e, (58)
k.; d(zi,1;(T))

where the last inequality follows from bounding the summation with the corresponding integral.

Term B Let us focus on the summands of the term Pp of the regret. To this end, let (Ft_l)te[[Tﬂ be
the canonical filtration. We have:

P(I; =i, E] (t)°| B (), Fr1) <P(0; 0 > yilfts e <w:,Fi_1) (59)
=P (Beta(f1;, Nt +1,(1—fti¢)Nig +1) >yl e <x;)  (60)

P(Beta(zzN,erl,(l Iz)N77f“l’1)>yl) (61)

<FNi,t,y7v (2iNi¢) <exp(—Njd(xi,y:)), (62)

where the last inequality follows from the generalized Chernoff-Hoeffding bounds (Lemma C.1) and
the Beta-Binomial identity (Fact 3 of [3]). Equation (60) was derived by exploiting the fact that on
the event E¥'(t) a sample from Beta (x; N; ; + 1, (1 —x;)N; ¢ + 1) is likely to be as large as a sample
from Beta(fi; +N;+(t)+1,(1—f1;+)N; ++ 1), reported formally in Fact C.6. Therefore, for ¢ such

that N; ;> L;(T), where L;(t) := dé;?g_) we have:

1
P(I; =i, EY (t)°| B (t),Fi_1) < T (63)
Let 7 be the largest round until N; ; < L;(T'), then'
T
Pp=YP(I,=i,E!'(t), E!(t) ZIP (L=, E{ (t)°|EF (1)) (64)
t=1 t=1
T
[ZP L=i, Bt |Ef(t),Ft_1)] (65)
t=1
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T T

—E| MBI =i, B ()| (1), Feor) + Y P(It=i,Ef(t)C|Ef(t),IFt_1)] (66)
Tt=1 t=7+1
T T

<E ZPr(It=i,Ef<t)C|E£‘(t)7Ft_1>]+1El > 1] (67)
“t=1 t:T+1T

<E| Y P, =i,Ef(t)C|E;‘(t),Ft_1)] +1 (68)
“t=1

=E[Z]l([t—z)]+1 (69)
t=1

<Li(T)+1 (70)

Term C For this term, we shall use Lemma 1 by [3]. Let us define p; ; =P(0; ;> y;|Fi—1). We
have:

1—piy

P(I; =i, E(t), B (t)|Fy_1) < 5 P(I;=1,E"(t), B! (t)|F;_1). (71)
i,t
Thus, we can rewrite the term P¢ as follows:
T
Po= ) P(I;=i,E(t),E(t)) (72)
t=1
T
= Y E[P(l; =i, E'(t), B! (t)[Fy1)] (73)
t=1
T 1—p.
< ZE[E[p”]l(ft—LEf(t),Ef(t)) 1Ft1” (74)
i1 Diy
T 1—pi
<)Y E Y1, =1, B (t), B (t ] (75)
B[ SR, B2 B )

(76)
Let 71 denote the time step at which arm 1 is played for the k-th time (notice we allow the sum to run
trough times bigger than the learning horizon 7'), and let 79 = 0:

Tl or_p o, e ,
Po< 3, B[ L 1= 1B (0,5 an
k=0 Pime+l o
o 1= P
< ]E[”“], (78)
=0 Dir+1

where the inequality in Equation (78) uses the fact that p; , is fixed, given IF,_;. Then, we observe
that p; , =P(81 > y;|F;—1) changes only when the distribution of ¢, ; changes, that is, only on the

time step after each play of the first arm. Thus, p; , is the same at all time steps t€ {7, +1,...,Tk+1},
for every k. Finally, bounding the probability of selecting the optimal arm by 1 we have:
T—1
1
PC<ZE[ —1]. (79)
im0 LPime+1

Let Ny ;=j,S1,+=s. Then,
pit=P(O1>yi)=Fl},,.(s)

due to the relation that links the Beta and the Binomial distributions (Fact 3 of [3]). Let 7; +1
denote the time step after the j-th play of the optimal arm. Then, N ;11 =7j. We do notice a
sensible difference with respect to the stationary case. Indeed, the number of successes after j trial
is not distributed anymore as a binomial distribution. Instead, it can be described by a Poisson-
Binomial distribution PB(y, (5)) where the vector p ()= (p1(1),...,p1(j)), and p11(m) represents
the probability of success of the best arm at the m-th trial. The probability of having s successful
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trials out of a total of j trials can be written as follows [47, 33]:
fut (i) (s 2 1_[ pra(m H L—p(m')), (80)
AeF; meA m/eAe
where [ is the set of all subsets of s integers that can be selected from [[j]]. F§ by definition will
contain W elements, the sum over which is infeasible to compute in practice unless the number
of trials j is small. A useful property of f is that it is invariant to the order of the elements in My ().

Moreover, we define density function of the binomial of j trials and mean 1, (j), i.e., Bin(j, ,ul( ),
as:

j — (:\S — (\\J—S
B = (1) miya-may 1)
By applying the change of measure argument of Lemma C.2, we have:

E[F; ] ZJJ;B ”()<< e 1o (PB (s, () BinGi (o) +

J+Lyi J+1, y7( ) (1—y;)i+t

()
I
4 2 ] f]gl(o)(s) (82)

S0 ()
—_—
(%)
where 67y (P, Q) :=sup 4 |P(A) — Q(A)| is the total variation between the probability measures

P and @ (assuming they are defined over a measurable space (€2, F), having observed that, using the

notation of Lemma C.2:
1 1 1 1

b= max = — (83)
sef0,5] FB 1y (s) Fﬁlyyb(O) P(Bm( +1,y:)=0) (1—y;)i*+!
1 1 1 1
a= min > =1. (84)

selos)l FPy, (s) FE,, (5) P(Bin(j+1,y:)<j)  P(Bin(j+1,5:)<j+1)
For ease of notation, let us denote X’ ~PB(y (j)) and X ~Bin(j,7i(c)). We are now interested in
finding if it does exist a minimum number of trials j € [0, 7] such that:

(**)_ElFB 1(X/)1<ElFB ! (X)]_(*) (85)

J+1y: J+1,y:

Thus, using Lemma 4.1, we conclude that:

e[ ] (st —1) v (PR, 1), BinGi i (o)) + S 22 if0< <0

J Fiz ()

F;
J+ly
5=0 Fji1,.4,(s)

ifjzo
(86)
Where the total variation terms can be bounded by Lemma C.4 (imposing s =0) and Lemma C.5 in
the auxiliary lemmas. From Lemma 2.9 by [3], we have that:
3 e 8
, 3 if j <=
o Lime(s) A A
D

—1< A'2; ;
= i J —D;j oo ’
E. [e) -t e i 1 8
s=0 T ITLyi (s) (e : G+DAPZ A/_Zjl) if j > Al

where Al =T, (0) —y; and D; =y;log = (U) +(1—y;)log — - ( 5- Thus, summing over all js and

87)

using the big-Oh notation to hide all functlons of the y;’s and A' s, we obtain:

L fig 2, —D;j
thl(o)(s) 24 a2 e 1
DAL F S < qmt L O(e T+ v -
<S=O J+1,y: (5) ) A/Q ¢ (j_’_l)A;Q A2 1 ( )

3=0 R et
24 2 1 1
which, summing all the contributions to the regret, provides the final result. O
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Corollary 4.3. Under Assumption 3.2, the Beta-TS algorithm suffers an expected cumulative regret:

O(v/KTlog(T) + Ko(1-5,(T))™°)  if T<T*
R(Beta-TS,T)s{O( KT loa(T)) ! e 8)

Proof. If the arms dynamics is such that exists a finite time horizon 7* defined as:

ﬁl(T*)>ﬂi(+oo)v Visﬁl, (90)
i.e., there exists a finite time over which the best arm will not change anymore, we can devise a
finite grid of values for every T and every i of A;(o(T),T) (we have taken o (T) for the sake of
argument, notice that for every 7' we could choose any o€ [[o(T),T]) up to T*, for T* we will
consider A;(T*,00). Then, it is possible to define a constant ¢ as in (16). Indeed, notice that for all
T >T*, taking in what we have proved earlier o =T for every time horizon 7' > T*, the sum of the
total variation distances becomes a constant with respect to the time horizon 7" and substituting in the
result for the online regret we obtain for T'>T%*, A;(T*,T) with A;(T*,00):

()

K log(T) 1
R@“&T&”<O(Zy¥gmﬂﬂ+dauw§uxww+du”uw»+

TS o1v(PB(p, (7)), Bin(j, 7, (T%))
> (17, (T%))7+] )>

(3)

j=1

oD
Notice that for all T'>T* we have that both () and (xx) are constant with T". So, neglecting these
terms, we obtain:

K
log(T)
R(Beta-TS,T) <O A;(T,0)( (1+€)—— — (92)
| ) (; @0 %wwmmwﬁ>
Using Pinsker’s inequality and by definition of ¢, we obtain:
K
~ log(T")
R(Beta-TS, 7)< O A (T*,00)( (14 €)= — (93)

( ) (; (r09)(( Mw@%m@ﬂg>

from which we can retrieve the classical instance-independent bound for Thompson Sampling. Let’s
now consider T'< T*. Rewriting all then we obtain (neglecting the constants):

(%)

K log(T) 1
R(Beta—T&T)éO(Z Az‘(TvO)(d(f i) t d(z;,5;(T)) +
i=2 o e

o(T)—1 . .
. JTV(PB(:“l(]))vBln(]vﬂl(U(T))))>7 04

(170, (o(1)))7+!

(*) can be bounded by a constant as by assumption we have a lower bound for the distances. So we
can write thanks to the definition of ¢ in (16), and using again Pinsker’s inequality:

o(T)—1 j in(4, 7, (o
R(Beta—TS,T)gO(icAi(o(T),T)(IOg(T) orv(PB (g, (7)), Bin(j, 7, ( (T))))>’

=2

Jj=1

Ai(o(T), T 4 (1=7 (a(T)))7*

(95)
By loosely bounding the total variation by 1 we can write neglecting the constants:
R(Beta-TS,T) <O iﬁ( (T) T)( log(T) (T)< ! )U(T)) (96)
eta-1o, < i\O s = < 5 O T = )
= Ai(o(T),T)? 1=, (o(T))
Similarly to what has been done in [2], by analyzing the two cases:

Ri(o(T),T) =1 K 1°g:ﬁT), 97)
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(o)1) <K EE), %)

P

we retrieve the final result. O
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A.3 Proofs of Section 5

Theorem 5.1 (v-GTS - Regret Bound for Subgaussian SRB). Let o€[o(T),T] with o(T) defined

as in Equation 4. Under Assumption 5.1, setting v <min 1}, the y-GTS algorithm suffers an

1
40’\%17' ’
expected cumulative regret of:

log(TA;(0,T)*+¢%) . o2, % r(Py, Q7 (0))) )
R(y-618,T)<0O A(T,0) — = ,
o (z#;T) < 7Ai(o,T)? " Ai(o,T)? ’ j=1 erfc(\/@(%(a))) )

where erfc(-) is the complementary error function, P; is the distribution of the sample mean of the
first j samples collected from arm 1, while Q;(y) is the distribution of the sample mean of j samples
collected from any o2, -subgaussian distribution with mean y.

Proof. For every suboptimal arm i€ [2, K], let us define the thresholds z; and y; s.t. 11, (T) < z; <
y; <711 (o). Thanks to the above thresholds, we can define the following events for every t€ [T7]:

* E!(t) as the event for which fi; ; <a;;

. Eet as the event for which 6; ; <y;, where 6, ; denotes a sample generated for arm ¢ from
the posterior distribution at time ¢, i.e., N'(f; 5 ) being N;, ; of trials at time ¢ for
arm %;.

Moreover, let us denote with E*(¢)¢ and E?(¢)° the complementary event £ (t) and E? (t), respec-
tively. Using Lemma A.1, we can rewrite the regret as:

T
R(y GTST<ZA (T,0)E ZA TOZ (99)

=2 =2 =

Let us focus on decomposing the probability term in the regret as follows.
DIP(L=i)= Zr@ Ii=i,E"( +Zrh I=i,E"(t), B ()" (100)
= t=1
=:Py =:Pp
T

+ Y P(I =i, B (1), EL (1)) (101)

The three terms correspond to the case of:

* (i) having a poor estimation of the mean for arm ¢ (i.e., P4);

* (ii) having a good estimation of the mean and having sampled a large value for the arm ¢
posterior sample (i.e., Pp);

* (iii) having a good estimate for the mean of the reward and having sampled a small value for
the posterior sample of arm i (i.e., Po).

Let us analyze each term separately. We will neglect the error due to the round robin that will sum up
to a constant w.r.t the time.

Term A Let 7, € [T] denote the round at which we pull the arm ¢ for the k-th time (we are omitting
the dependence on the arm index ¢ to avoid heaving the notation). In what follows, we let the sum
run to times that can be greater than 7. We have:

T
Pa= Y. P(I,=i,E' 1)) (102)
t=K+1
<E Z D {L =i} 1{E )"} (103)
k=1t=7+1
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T—-1 Tk+1
<E| DY 1{Ef(m+1)'} D) 1{L =i} (104)
k=1 t=7r+1
|y —
=1
T-1
-E| ). ]l{EZH(Tk—&-l)C)}} (105)
L k=1
T—-1
<1+]E[Z]1{E“ (i +1)° ]—1+Z P(E" (1 +1)°), (106)
k=1 k 1T

where Equation (104) follows from observing that the indicator function is 1 in a single round in the
inner summation. Let us notice that thanks to the definition of the event E!' (7 + 1), the term Pp

corresponds to the probability that ﬁiﬂ > x; after exactly k pulls (which is not a random variable).
Thus, using Lemma C.10 and recalling that E[fi, ,, ] =7, (k), we have:

Pp=P(f1; 7, > i) =P(f1; -, >0 (k) = 7; (k) + ;) (107)
(zi —7i;(k))? (zi —7,(T))°
<exp <k20v2ar <exp —kTVQW , (108)
This implies that:
T—1 _
(2 —,(T))? 207,
Py<1+ ) exp <—k:’ <14+ ——— (109)
];1 2 v2ar ( _/'I”L(T))2

where the last inequality follows by bounding the summation with the corresponding integral.

A (0T)2+e .
Term B Defining L;(T) = 228106 2i(0.T) +e) '\ decompose each summand into two parts:

VA (0.T)?
T
Pg= Z P (I, =i, B (t), B! (1)) (110)
t=K+1

i P (I, =i,ki(t)<Li(T),B'(t), B (¢)°) + P (I, =4,k;(t) > Li(T), B (), B (1)"°).
t=K+1

(111)
The first term is bounded by L;(T"). For the second term:
T
D1 P (i) =i, ki(t) > Li(T), B (t)°, B (1)) <
t=K+1
A c
]E[ 3 ]P’(i(t):i,Ef(t) |ki(t)>Li(T),E§‘(t)7IE‘t1)] (112)
t=K+1
T
<]El Z P(ei(t)>yz‘|kz‘(t)>Li(T)vﬂi(t)<l‘i,Ft—1)]- (113)
t=K+1

Now, 0;(t) isa N (ﬁz(t), ﬁ(t)) distributed Gaussian random variable. An N (m,c?) distributed

r.v. (i.e., a Gaussian random variable with mean m and Varignce 0?) is stochastically dominated
by N (m/,0?) distributed r.v. if m/>m. Therefore, given fi;(t) <;, the distribution of 6;(¢) is

stochastically dominated by A/ <ﬁz( ) 77 t)> That is,

P (0:(6) > i | ki (1) > Lo(T), is(t) <21, Fyy) <P (N (wj(t)) -

Ft_l,k‘i(t) > LZ(T)> .

23



Here, we a slight abuse of notation we say that P (A" (m,0?) > y; ) represents the probability that a
random variable distributed as A/ (m, 02) takes value greater than y;. We have:

(114)
Using Lemma C.9 we have:
1 1 (ks®)(wi—=4)?
P b | >y | <ze” 2 115
(¥ (esmm) ) <2 13
1 YL (T)) (s —wq)?
<§€7( - T)2( ) , (116)
S 1 ‘ 2In(TA;(0,7)?) L.
which is smaller than TA(T? because L;(T) > o Substituting, we get,
1
P91t>1klt>LlT,Alt<£L’l,f, < —. 117
(0.0)> i ) > LT, () <0 i) S g )

_ 1

Summing over t=1,...,7T, we get a bound of VCTOER

Term C For this term, we shall use Lemma 1 by [3]. Let us define p; ; =P(61 ¢ > y;|Fi—1). We
have:

P(I; =i, B (t), E? (t)|[Fi_1) < ! pp“f P(I;=1,E(t), E?(t)|[Fi_1). (118)
it
Thus, we can rewrite the term P¢ as follows:
T
Po= Y P(L;=i,BL(),EL (1)) (119)
t=K+1
T
= > E[P(I;=i,El'(t), B! (t)|F:—1)] (120)
t=K+1
d 1—pis
< 3} B[/l -1, B0, B )Fo | (121)
=K a1 Dit
= 1—pis
< ). E[ ’]I(Itzl,Ef(t),Ef(t))]. (122)
t=K+1 Pit
(123)

Let 75, denote the time step at which arm 1 is played for the k-th time (notice we allow the sum to run
trough times bigger than the learning horizon 7"), and let 75 = 0:

T—1 Th41

]-_ 7, T

PC<ZE[p’ S ll(It:LEé‘(t),E?(t))] (124)
k=1 Di,m+1 t=1r+1

= 1—pi,m+1
< QB (125)

— Pir+1

k=1 ’

where the inequality in Equation (125) uses the fact that p; ; is fixed, given F;_;. Then, we observe
that p; , =P (01 ;> y;|F;_1) changes only when the distribution of 6, ; changes, that is, only on the

time step after each play of the first arm. Thus, p; ; is the same at all time steps te {75 +1,...,Tk41},
for every k. Finally, bounding the probability of selecting the optimal arm by 1 we have:
T—1
1
chZE[ —1]. (126)
o1 LPime+1

Now in order to face this term, let’s consider the arbitrary j —th trial, V j thanks to Lemma C.2 we
can bound the difference between the real process and an analogous (same number of trials) virtual
process with mean fi; (o) (where by stationary we mean that all the trials of the virtual process will
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have a fixed mean):

1 20rv (P, Q; (7 (04))) 1
e [p ]< o Em @) | o : (127)
soemttS erfe(y/H i (03) britl

(%) (%)
where 07y (P, Q) :==Ssup 4c » |P (A)— Q(A)| is the total variation between the probability measures
P and @) (assuming they are defined over a measurable space (€2, F), having observed that, using the

notation of Lemma C.2 (as the environment can’t produce rewards smaller than zero):

1 1 2
b=max < = , (128)

s 1 = 1 — i
P(N (s 52m)>0) PV (0.585) 2(0)  erfe(y/¥7,(0))
a=1. (129)
For example, as both binomial and poisson-binomial process are subgaussian, when we have a
poisson-binomial process the analogous one shall be a binomial with fixed mean, fi, (o) and o2, will

be i, in general for bounded random variables between [a, b], i.e the samples can be sampled only

within [a,b], we will have in what follows 02, = (bif)Q , then for this process the analogous will be
a stationary process in which the samples can be sampled within interval [a,b] centered in i, (o)
considered for the same number of trials (like for the example can be the sum of uniform random
variables). When the interval changes at every trials, without loss of generality in what follows we
can take o2, as the maximum of these variances, i.e. the maximum variance a sample can have in
the setting. For random variables explicitly written in term of a mean and a variance term (like the

Gaussian) holds the same. Our interest is to find if there is a minimum number of trials j such that

we will have () > (++) without any adding term. Given [ , let ©; denote a N/ <ﬁ1 (rj+1), %)
distributed Gaussian random variable. Let G'; be the geometric random variable denoting the number
of consecutive independent trials until and including the trial where a sample of ©; becomes greater
than y;. Then observe that p; -, +1 =Pr (®j >y |IFT],) and

]E[ ! ]—E[E[Gj|FTj]]—IE[Gj] (130)
Pi,rj+1

We compute first the expected value for the real process. We will consider first j such that 7z; (j) >
7i1 (o) , we will bound the expected value of G; by a constant for all j defined as earlier. Consider any
integer r>1. Let 2 = \/E and let random variable MAX ,. denote the maximum of 7 independent
samples of ©;. We abbreviate i, (1; + 1) to fi; and we will abbreviate 7z, (§) as p1 and A, (5,T) as
A; in the following. Then for any integer r > 1:

P(Gj<r)=P(MAX, >y;) (131)
— z
>P( MAX, >/ +‘>y7;> (132)
< V7
— z
—E|E|1(MAX, >} +.>yi)‘IFTj” (133)
B[ (uaxo 7o 5

— z — z
~E|1(% +.>yz~)P(MAXT>ﬂ +‘F)} (134)
[ ( YA Y VA

For any instantiation F-, of ', since ©; is Gaussian N/ ([Ll, %) distributed r.v., this gives using

C.8:
=~ < 1 z 2 "
P{ MAX, >+ —|F. =F, |21—-(1—-—-———-¢ 7 /2> 135
( f m’ ’ ) < Vor (22+1) (135)
=1— ]__L&i (136)
A2or (Inr+1) /7
21—6_\/ﬁ. (137)
For r >e!2:

IP’(MAX,>/)1+ (138)

z 1
| )2
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Substituting we obtain:

}P’(Gjér)Z]E[]l (ﬂﬁ\/%?yi) (1—:2” (139)
1 — z
=(1—72>P<u1+m>yi>. (140)

Applying Lemma C.10 to the second term, we can write:

— z _ 22 1
Pl +—2 >l—e 2% 21— —, 141
(‘“ e ’“‘1> ‘ ” (14
being v < 12 Using, y; < 1, this gives
P74y ) >1— (142)
. el ey A
Substituting all back we obtain:
[e¢]
E[G;]= Y P(G;=7) (143)
r=0
o
=1+ Y P(G;=7) (144)
r=1
12 1 1
<1+e®+ ) 5+ (145)
2T
r=1
<l+el?4242. (146)
This shows a constant bound of E [p 1>+1 —1] =E[G,]—1<e'?+5 for all j=0. We derive a

bound for large j. Consider j>L;(T) (and still j>o). Given any r>1, define G;, MAX,., and
z=+/Inr as defined earlier. Then,

P (G, <r)>P(MAX, >y;) (147)
_ A;
>]P’(MAXT>/11+\/%—6>ZJ¢> (148)
=]E[]E[]1 (MAXT>/¢1+M6>%>‘FTJH (149)
= i = z A;
n 2 66
where we used that y; = 11 — 5*. Now, since j > L;(T) = %,
2In (T A2 + €6 A;
n(TA; +ef) == (151)
Therefore, for r < (TAZ + ¢%) 2,
¥4 Al IH(T) Ai A,
E S _Si S 152
Vo6 Wy 6 1 (152

Then, since ©; is N (ﬁl (rj+1), %) distributed random variable, using the upper bound in Lemma
C.9, we obtain for any instantiation F’-; of history F_,

P(O;>0( -+1)—ﬁ F. =F >1—le—7j%é>1_; (153)
3= H1\Tj 1] T F Ty T 2(TAZ+ €5
being j = L;(T). This implies:
z A 1
P MAX, >/ (ri+1)+ — " F, =F )>1-—— 154
i iy L) e S
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Also, for any ¢ > 7; + 1, we have k; (t) =7, and using Lemma C.10, we get:
— A — A 2 o 2 1
P( () +—=—-— >y'> >P <ﬂ (t)=p— ) >1—e MMM —
( YV 67T 1 6 (TA? 1 ¢0)10
(155)
Let T = (TA? + 66)2. Therefore, for 1 <r <7, we have:
1 1
P(Gj<r)=1—- - . (156)
=y Ty
When r =T’ >e'2, we obtain:
1 1
P(Gj<7')>1—r—2—r—2. (157)
Combining all the bounds we have derived:
0
E[G;]< ) P(G;=7) (158)
r=0
T’ o0
<1+ ) P(Gj=r)+ Y, P(G=r) (159)
r=1 r=T"
T’ o0
1 1 1 1
<KI+ ) ——+—=+ —+ = (160)
I
1 2 3
<1+ +—=+=+ 161
VT ()T VT (on
5
<1+ ———:. 162
* TA? + 6 (162)
So we have proved that:
287y (B (7 (1)) (71 (0)) | o [ 1 ] i ;
1 wtey/ B () @) i | T0ST<0
E ’ <4 (e'2+5) ifj>o (163)
7,7 +1 5 e . .
TaGT? ifj=Li(T,j)and j=o
Notice that L; (T, j) = 28810%%%’&(7?;)2“6) is decreasing w.r.t. A;(j,T), so we can write:
FAWE
200y (P; (71 (4))P; (1 () | 1o 1 : .
1 et/ T @) ) [pivwl] - f0<y<o
IEJ[ ]< (el2+5) ifji>o
Pi,rj+1 5 o 28810g(TZ? (0,T)+¢€%) .
TA;(5,T)2 ifj= WZ?('J,,T) and j=o
(164)
By definition, we have:
207y (B (7, (G),P5 (1 (9)) | 1o [ 1 ] : :
1 ety Faro) @ [ ] HOSI<O
IE[ ]s (e'?+5) ifj>o
Pi,rj+1 2 6
)T 5 .~ . 288log(T A (0,T)+e") .
TA(0,T)2 ifj= Ao T) and j =0
(165)

We can end up in two scenarios:

28810g(TZ?(0’,T)+€6)
’ny (e,T)
situation in which we will sum 71" — ¢ times the term

First Case It may happen that o>
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, then, in this case, we already are in a



288 log(TZ? (0,T)+€5)

—7 . In
vA; (0, T)

Second Case The second case is the scenario in which we have o; <

288log(TA; (5,T)+¢°)
V4, (o, T)

this situation we will sum — o times the constant bound (e'? +5) and T —

288log(TA; (5,T)+€°)
R (oT) times the term 7T X (0T)

Notice that what we have found is the same bound we would find doing the exact same passages for
Ez, (o)) [?] for j = o, furthermore the inequality for Ez () [ F— ] holds true for any j by
definition, i.e. it’s easy to show that:

. [ 1 } {(e12 +5) V) o
(o) | — < 1 o . 288log(TA2(0,T)+¢%) (166)
! pl,Tj +1 TZi(o.)z lf‘] = 'yZ?(O’,T)

So that summing all the terms:

288log(TA. (0, T) + %) N

A, (0,T)

5 = 201y (P (71, (5)),P; (71 (o))
5 | . (167)
K@T) 5 erfe(y/% (7 (0)

Summing all the other term follows the statement. Notice furthermore that as a corollary we’ve
proven in this way the optimality of v-GTS for the generic subgaussian stationary environment. [

res gl

1] <(e*?+5)

p? Tre+1

+

Corollary 5.2. Under Assumption 3.2, the v -GTS algorithm suffers an expected cumulative regret:

O(/KTy Tog(T) + Koe (@) jfT<T*
-GTS,T) < .
R(y-615.1) {0( KT~1log(T)) if T >T* ©)

Proof. 1f the arms’ dynamics is such that exists a finite time horizon 7* defined as:

1 (T%) > [ (+00), Vi1, (168)
i.e., informally, there’s a finite time over which the best arm won’t change anymore, we can devise a
finite grid of values for every T and every i of A;(o(T),T) (we have taken o(T') for the sake if the
argument, notice however that for every T' we could choose any o € [o(T"),T]) up to T*, for T* we
will consider A;(T*, 00). Then it is possible to define a constant c as in 16. In fact notice that for all
T >T*, taking in what we’ve proved earlier o =T™* for every time horizon T'>T*, the sum of the
total variation distances becomes a constant with respect to the time and substituting in all the terms
for T=T%*, A;(T*,T) with A;(T*,00), we obtain (neglecting the constant terms with respect to the
time), since all the terms are increasing for decreasing A;(co(T),T'), we find:

K _
log(TA;(T*,T)?+€5)  1802,46
R(y-GTS,T) <O A(T,0)(C i 4 8% 7 169
(7 ) (; ( )< 1 ’YAi(T*aT)2 Az(T*,T) ) ( )
Then, by definition:
log(TZi(T*7oo)2+e6) 1802 +6
R GTS T <O — 4 var ) 170

Notice that also the second term in the above inequality is time-independent for 7' > T*. Using the
definition of ¢ (Equation (16)), we can rewrite the regret as follows:

1% _
log(TA;(T*,00)2 +€%)
R(vy-GTS,T) <O A (a(T*), C — . 171
om0 eaiotr oo IREEL)).
Disregarding the constant terms w.r.t. time 7"
K _
log(TA;(T*,00)2 + €%)
R(y-GTS,T) <O A (T, — : , 172
(v ) (; (7*,00) ST ) (172)

that is equivalent to the bound provided for the classical instance-independent regret bound by [2] for
the stationary sunbgaussian bandit.
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Now consider T'<T™*, we can write, using the definition of ¢ in Equation (26):

s _
_ log(TA;(o(T),00)? +€%)
R(y-GTS, T)<O cAi(o(T), T C —
(7-6T8.7) (2 (o)1) (= s

1802, +6 i 261y (Py,Q; (7 (0(T)))
e - ).

i(a(T),T) j=1 el‘fc(\/Tjj(ﬂl(U(T))))
We notice that thanks to the definition of ¢ in 16, M is bounded with a constant term with

Ai(a(T),T)?
respect to the time horizon 7'. Then, we have:

K log(TBi(o(T),00)2 +¢%) 73" 20wy (B, Q; (71, (o(T)))
R(’Y—GTS,T)<O<;cAi(J(T)7T)(C’1 NEGE I iy ywl(a(T))))) 7

(174)
[14] proved that the complementary error function for = > 0 can be bounded lower-bounded as:

ercf(z) > \/?6—2%2 (175)
Vs

so by loosely bounding the total variation distances with 1 we get:

K J—
< log(TAi(o(T),T)* +¢°) T)fi, (o(T))>
R(y-GTS, T)<O cA;(o(T), T (C —! +C U(T)e"’”( 81 (o(T)) ,
(Z (= Zemr ’ )
(176)
so that:
K J—
x log(TA;(o(T),T)* +¢°) T)f, (o(T))?
R(y-GTS, T)<O cAi(a(T),T) — +0’(T)€'W( )i (o (T))
(ZZ:Q ( YA (o(T),T)? )
(177)
considering then the two cases:
Ai(a(T),T)<e KLT’ (178)
v
Ri(o(T),T)>e K%T. (179)

Substituting the above cases in Equation (177), concludes the proof, noticing that as Assumption
5.1 holds true for any number off pulls it does exist a time independent constant M/ such that
Ai(o(T), T)<M. O

Theorem 5.3 (7-GTS - Regret Bound for Subgaussian SRB ~-tuned). Let o €[o(T),T] with o(T)
defined as in Equation 4, let furthermore o ~T? and v~T~%. Under Assumption 5.1, for every
azpf:

Tlog(Thi(0,T)*+¢%) o2, )
R(v-6TS,T)<O A(T,0 + — + . (10)
G ) <#;T) )< Ai(o,T)2 Ai(0,T)2 U)

Proof. The proof follows from the proof of Theorem 5.1 setting v =7""%, with o within the bounds
given in the statement, noticing that as by Assumption 5.1 the rewards can be bounded by a time
independent constant M and so also W O

Corollary 5.4. Under assumption 3.2 ~v-GTS with ~ tuned suffer an instance independent regret
bound upper bounded by (for all T):

R(y-6TS,T) <o( %%\ /Klog(T +KT"‘) (11)

Proof. The corollary follows by substituing v="7T"% in Corollary 5.2 and considering the worst case
scenario. O
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Algorithm 3 Beta-SWTS Algorithm Algorithm 4 ~-SWGTS Algorithm

1: Input: Number of arms K, Time horizon . Input: Number of arms K, Time horizon T, exploration

T, time window 7 parameter v, time window 7
2: Set Xi,¢,- <0 for each i€ [K] 2: Play every arm once and collect reward X
3: Set a1 <—1+Xi,t,7- and 3,11+ (1— 3 Set Typr 1, fiigr e Xe, ﬁ . fii.r for each i€
Xi,-) foreach i€ [ K] [K] . " bt ®
4: E;(t}] v;1 < Beta(au,1,8i,1) for each ie & Setvey N (fe, i 1) for each i< [K]
5: for te 1] do 5: for te[T] do
6:  Sample 6; ¢ ~v; + for each i€ [K] 6:  Sample 6; ¢, ~vi,¢ for each i€ [K]
7: Select ]teargmaxie[[K]] ei,t,r 7: Select Iteargmaxie[[;q] Gi,t,T
8:  Pullarm I 8:  Pullarm I,
9:  Collect reward X 9:  Collect reward X;
10:  Update X; ¢ - and T} ; -, respectively the 10:  Update the sum of the collected rewards within ¢ and
sum of collected rewards within ¢ and t—7+1, namely fi;¢ -, Tz t,- the number of pulls
t— 7+ 1 for arm ¢ and the number arm ¢ within t and t — 7+ 1, and Bt r %

has been pulled within t and t —7+1 . _
11:  Update for each i€[K] viiq1<— 1: - Update vi e <N (R o 57 vT t, 7) for each ie [ K]

Beta(1+ Xitr, 1+ (Titr — Xitr)) 12:  Every 7 times play every arm once to ensure 75 ¢+~ >0
12: end for 13: end for

B Proofs of Section 7

In this section, we report the proof of the sliding window approach version of the algorithms
we proposed. We also present the pseudocode for the Beta-SWTS and y-SWGTS algorithms in
Algorithm 3 and 4, respectively.

Theorem 7.1 (Beta-SWTS Regret Bound). Under Assumption 4.1, the Beta-SWTS algorithm suffers
an expected cumulative regret bounded as:

Z A(T,0)( Tlog(T) N o' (T;7)

filfeta-STS1)<0 @ e

(14)
i£i% (T)

Proof. For ease of notation we set o’ (T';7) =0’ (1), 711 (o' (T;7);7) =T, (o' (7)) and A; (T, 7) = A;.
For every suboptimal arm i€ {2, K}, let us define the thresholds z; and y; s.t. p;(T) <z; <y; <
Ti; (o’ (7)). Thanks to the above thresholds, we can define the following events for every teT":

* E!(t) as the event for which /i; ¢ » <w;;

. Eat as the event for which 6, ; » <y;, where 0; ; ; denotes a sample generated for arm ¢
from the posterior distribution at time ¢ from the sample collected in the last 7 pulls, i.e.,
Beta(S; . +1,F; ;. +1), being S; ; - and F;; » the number of successes and failures from
t—7 up to round ¢ for arm ¢ (note that T ; » =S, 1.7 + Fy .7 and 45 1.7 = Sit +/Tit.7)-

In the current framework we will define p; ; as follows:
Pit =Pr(01 4=y |Fro1).

Moreover, let us denote with E*(¢)® and E? ()" the complementary event E*'(¢) and E? (t), respec-
tively. Let us decompose the probability term in the regret as follows:

DIP(L=i)= ZIED Ii=i, E*( +ZIP Ii=i,E"(t),E2(t)°) (180)
t=1 t=1 t=1
=:Py =:Pp
T
+ Y P(I=i, BX(t), EL (1) (181)
t=1
=:Pc

The three terms correspond to the case of:
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* (i) having a poor estimation of the mean for arm ¢ (i.e., P4);

* (ii) having a good estimation of the mean and having sampled a large value for the arm ¢
posterior sample (i.e., Pp);

* (iii) having a good estimate for the mean of the reward and having sampled a small value for
the posterior sample of arm i (i.e., Po).

Let us analyze each term separately.

Term A We have:

T
Py= ) P(I;=i,EX(t)") (182)

t

]E[i]l{[tz EM(t) }] (183)
2

t=1

<E| ) 1{L=i,E' ), 1”<(,1_n®}1+

= pi(T)?
+E L_Zln{lt—z EF 1) Ti,t,@%” (184)
TIn(T v (B ‘ In(T)
ST ZP (Bt 0 120> 2 ) (15
T
(D) _, D 1 (186)

Sr(wi— (1)) AT
where we used the Chernoff-Hoeffding bound for the second term in Equation (185) and Lemma C.14
for the first term.

Term B Let us focus on the summands of the term Pp of the regret. To this end, let (Ft—1>t€[[T]] be
the canonical filtration. We have:

P(I; =i, B ()| B (t),Fs 1) <P(0is 7> yilftie.r <wi,Fiy) (187)
=PBeta(f; ¢ Titr+1,(1— it )i r+1)>yi|fuisr <)

(188)

éIP’(Beta(x,;Ti’t,T+1,(1fxi)T¢,t77+1)>y¢) (189)

<FR, . (@T-) <exp(=Ty i d(zi,:)), (190)

where the last inequality follows from the generalized Chernoff-Hoeffding bounds (Lemma C.1)
and the Beta-Binomial identity (Fact 3 of [3]). Equation (188) was derived by exploiting the fact
that on the event E!(¢) a sample from Beta (2;T; + - +1,(1 —x;)T; + - + 1) is likely to be as large
as a sample from Beta(fi; Ti - (t) +1,(1—fi;4.-)Ti .+ +1), reported formally in Lemma C.6.
Therefore, for ¢ such that T; ; » > L;(T), where L;(T):= 721~ we have:

d(zi,yi)
1
}P(It:z‘,Ef(t)E|E5(t),IFt_1)gT. (191)
We decompose Pp in two events, when T;+-<L;(T)and when T} ; - = L;(T) , then:
T
Pp=> P (I;=i,E!t),E!(t ZIP I,=i,E!(t)*|EL(t)) (192)
t=1 t=1

1=

:E[

P(It:i,Ef(t)ClEf(t),Ft_l)] (193)

t=1
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T T
=ElE[2n<It=z‘,Ef<tﬁ it <Lo(T)[B(8),Fomy) + Y 1L =4, EL (4 T > <>|E<>,Ft_1>]]

(194)
T L1
<Li(T)T+El2 T] (195)
t=1
<Li(T)§+17 (196)

where for the first term in Equation (195) we used Lemma C.14.

Term C For this term, we use Lemma 1 by [3]. Let us define p; s =P (61 ¢, >y;|F:—1). We have:

. 1—p;,
P(I, =i, E'(t), B} (£)|F1-1) < pp LP(I =1, B (t), B (t)[Fy1). (197)
7,
Thus, we can rewrite the term P¢ as follows:
T
Po=YP(I,=i, B (t),E (1)) (198)
t=1
T
= Y E[P(L, =i, B (t), B (t)[Fi-1)] (199)
t=1
T 1—n,
< ZE[E[pz’t]l(It—l,Ez”(t),Ef(t)) Ftl]] (200)
ic1 Diy
T 1—pi
<Y E| —2L10(1, =1, EX(t), B (¢ } (201)
% P B0 B )

(202)
We rewrite the last inequality as the sum of two contributions: when the total pulls of the best arm at
time ¢ 71 ¢ >o'(7) and when Ty ¢+ <o'(7). This way, we obtain the following:

PC<Z [1 Pity It_1E()Ef(t),Tl,tga'(T))]+

A
oo
# B[P (=1, B0 B 0. T ()| 203)
=1 it

B

We further decompose the term A in other terms:
c1

T la
1—p; In(T
A< Y| L | 11 B0 B0 T < () T < oot ||

= Dit ! ' T (Eq (o' (1) -
(A1)
Cc2
L [1-p 8In(T)
+ ]E[ — ity I—lE“ EY(), Ty <0 (1), Ty r 2 o —— ] (204)
2 OO T < )T > o) 2

(A2)
ASE[XY]|=E[XE[Y | X]], we can bound the term A1 as follows:

Al_ZE[ [ S Pitg ((31)” (205)

pz,t
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T
orv (Pye1, Quct) 1—piy
<NE|1(C1 By (oo ’
Z‘ (1*ﬁ1(0’(7)))”1+ BN

()
Now consider an arbitrary instantiation 77 , . of 71, (i.e., an arbitrary number of pulls of the
optimal arm within the time window 7) in which C1 holds true, we can rewrite () as:

n(a)] . (206)

(+)=E [p?’t’t | 1(01)] =Er, |E [p_pt’t 11(C1), Tyg.r _T{M] . (207)

()
We can bound (*’) using Lemma 4 by Agrawal et al. [2]:

T t, T
()= 12 i, e @)

5=0 FTl,t,1—+1vyi(s)

AS; lle t, 'r ’
<
= _ APT] . e~ PTlt,r 1 . ' 8In(T) 209
Ole ’ +4 tq—Alz2+ A2 1t7 lfA/<T1tT\ A2
e T 1
We notice that the worst case scenario we can have is for T’ A, so that every possible instantiation
in which condition C1 holds true the expectation value of 122t can be upper bounded by substituting
in the latter inequalities the worst case scenario for 77 , - we obtam a term which is independent from
the pulls:
1
(+)<O ( > , (209)
(71 (o' (7)) —v1)
so that the inequality for A1 can be rewritten as:
T
Tn(T)
@) 1(C1)(*) <(’)<‘> , (210)
(Z (i (0" (1)~ 11)?
where we have exploited the fact that for Lemma C.14 we have:
8T In(T
2101< _ 8TIn(T) . @11
T(f (o' (7)) — i)
Finally, we obtain:
a'(7) TIn(T) )
A1<0 ( _ - , @12)
(A=m (o' (7) - 7(m (o (7)) —v:)?
Where the last inequality is a consequence of the fact that both inequalities hold:
o'(7)
2 1(C1)< ) (213)
= 8T In(T)
(11 (0" (7)) —y:)?
Let us upper bound A2:
T —
1-pi
A2=Y"E ]1((32)11*:[““1(62)” (214)
-1 L Diy
orv (Pyc2, Qc2) [
<> E|1(C2) — +Ez (o (+ \]1(62) . (215)
& (==t -
| (%)
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Let us consider an arbitrary instantiation 77 , . of T} ; , in which C2 holds true, i.e., an arbitrary
number of pulls of the optimal arm within the time window 7. We have:

(#x)=E [p"t | ]1(02)] =Er, |E [p’t |1(C2), T4, =11, T] , (216)
Pit T Pigt "
(")
where we bound the term (=) using Lemma 4 by Agrawal et al. [2]:

/
Tl,t,f

/ (o (T S
()= 3 fry, (o) (9)

Ss=0 FT{1t17+1;yi(8)

APt e PTies 1 8In(T
<O|e =" +e, = + = forT], > ul ) (217)
11 - A eAPET w

We see that the worst case scenario when C2 holds true is when T}, _ = 8127@, so considering the

worst case scenario for the case C2 holds true we can bound the expected value for % for every
possible realization of C2 independently from 77 - s

1 1
(**KO(T_J <O<T>, (218)

o'(7)
A2<0 , 219

(e e
where the latter inequality is a consequence of the fact that:

so that:

T
Yl <d'(r). (220)
t=1

Let us bound term B. We decompose this term in two contributions:

T
1—pi
B—ZE[p’tll(ft—1,E£‘(t)7E?(t>,T1,t>o’(T>)], (221)
o1 Pit
so that, similarly to what we have done earlier, we have:
cv’
1—pis 14 8In(T)
B=) E|—=1| L,=1E!t),E{(t),T1:=0' (1), Th 1< ——— | | +
) R L K e
Bl
c2’
+ 3 E[lpi’tn I=1,E"(t),E'(t), Ty =0 (1), T S 8@ ] (222)
=L L y 4 y L1t Z0 T ) L1t r 2 7= .
) Pit ! ’ ' ! (111 (0" (7)) —y3)?
B

Let us deal with B1 first. We have:

T
B1=YE 1(61’)E[W|1(01’)] . (223)

t=1 Dit

()
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Let us analyse () first.

1-p;
()<Bry,., [B| LA CY) T =T | (224)
T Dit w

()

Lemma 4.1 applied to (), states that a bound for a Bin(77 , ., 1(0”'(7))), i.e., binomial process
with parameters 77 , . and y1 (0”(7)) holds also for (xx), since such a Poisson-binomial has a mean
equal or larger than 1, (o/(7))). It follows, applying Lemma 4 by [2] to (x*), we have that:

=<0 (=)

Therefore we have by Lemma C.14:

I . Tn(T)
2, 1er)<o (Twl(o'm)yi)?) | (229

Finally, we obtain that:

Tn(T

Bl<0< _T'n(T) 3), (226)
(1 (o' (7)) —v1)

where the above inequality follows from Lemma C.14.

Let us analyse B2:

T
B2=YE 1(62’)E[1;W|1(cz’)] . (227)
t=1 it

(+')
Similarly to what has been done for term B1, applying Lemma 4.1 to (*’), we have that that term can
be bounded by the same bound we would have for a process governed by a Binomial distribution
Bin(-, 71 (¢'(7))). Thus, applying Lemma 4 by [2] to such a distribution :

(<O (;) ;

and, finally:
B2<0O(1). (228)
Choosing z; = u; (T') + Agi and y; =71, (0’ (7)) — Agi and summing all the term concludes the proof.
O
Theorem 7.2 (7-SW-GTS Regret Bound). Under Assumption 5.1, setting 'yémin{ﬁ;, 1}, the
v -GTS algorithm suffers an expected cumulative regret of:
Tlog(T(A/(T;1))? T T,
Riy-svers, 1) <0 | Va0 HEITND T, T )
\&0 VAT 7 enfe(yZ (0 (Ti) )
(15)

Proof. For ease of notation we set o} (1;7) =o0.(7), 1, (0}(T;7);7) =Ty (0}(7)) and A, =A,. For
every suboptimal arm i€ {2, K}, let us define the thresholds z; and y; s.t. p; (T) <x; <y; <Tiy (o} (7)).
Thanks to the above thresholds, we can define the following events for every teT"

* E!(t) as the event for which /i, ; - <x;;

. Eﬁ . as the event for which 0, ; - <y;, where 0, ; » denotes a sample generated for arm ¢

from the posterior distribution at time ¢ , i.e., N (ﬁiﬁw, , being Tj, ; of trials at time

1
YLy t,r )
t in the temporal window 7 for arm ;.
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In such a framework p; ; is defined as p; ; = Pr(61 ; » =>y; | F;_1) Moreover, let us denote with E ()"
and E!(t)* the complementary event E!*(t) and EY (t), respectively. Let us focus on decomposing
the probability term in the regret as follows:

T T
ZP I,=i) <Z B (6))+ Y P(L=i, B (1), B (1)°)
t=1 t=1 t=1
=:Pa :?;DB
N T
+ 3 P(L, =i, B (t), E () + - . (229)
t=1 q,_/
- Term due to the round robin every T times
—:Pc
Let us analyze each term separately.
Term A We have:
T
Py= Y P(I,=i,E!t)") (230)
t=1
<E Z 141, =i,Ef(t)C}1 (231)
[ t=1
[ In(TA2 +¢)
<E 1{1,=i, B* ()", T; mg—
P { (i1 (T))?
[T
In(TA?
+E Zn{1t=i,Ef(t)C,Ti,t,T>W} (232)
(i~ ua(T))
Tln(TA? = In(TA?
<n(l+e)2+ZPr<E“() |Tlt7_/n(l+e)2) (233)
(@ — (1)) & Y(@i —pi(T))
TIn(TA2 +¢) <« 1
< L + , (234)
7 (i — i (T))? t; TA?
Where we used Lemma C.14 and Lemma C.10 as we did in the proof of Theorem 5.1.
Term B  Defining L;(T) = %AQAQH) we decompose each summand into two parts:
Pg= ZIP’ I,=i,E"(t),E! (1)) (235)

T
Z (I;=i,Ti 4 <Li(T), B (t), BY (1)) + P (I, =i, T4 » > Li(T), B (t), B2 (1)").

(236)
The first term is bounded by L;(T )f using Lemma C.14. Instead, regarding the second term:
Z P (i(t) =i, Tie,r > Li(1), B (t)°, EX(t)) (237)
t=1
a c
<E [Z P (i(t) — i, BO(t) | Thpr > Li(T),E;.*(t),IFH)} (238)
t=1
T —
<E lz P (ai,t,'r >Yi ‘ Ti,t,r > Ll (T)vﬂi,t,'r <xi7Ft1)1 . (239)
t=1

In this setting, 0; ; - is a Gaussian random variable distributed as N/ (ﬁi’m, ’YT%) We recall that

an N (m, 02) distributed r.v. (i.e., a Gaussian random variable with mean m and variance o2 ) is
stochastically dominated by N (m’ , 02) distributed r.v. if m’ > m. Therefore, given ﬁi,m <z, the
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distribution of 6; ; , is stochastically dominated by N (aci, ’YT%) Formally:

_ 1
P (0360 >yi | Tit.r > Li(T), by g <20, Fy 1) <P (N <33¢7 T> >Yi
7} Y i,t,T

Fy 1, Tt > Li(T)) .

(240)
Using Lemma C.9 we have:
1 1 _ OTisr)(wi==i)?
i,t,T
1 (L) (vi—=4)?
3¢ 2 (242)
which is smaller than ﬁ because L;(T) > 38( 2 Substituting into Equation (240), we get:
_ 1
P (Gi,t,‘r >Yi |Ti,t,T > Li (T)nui,t,T < l‘ia]Ft71> < TAQ . (243)

Summing over ¢ follows that Pg <O (%LZ(T) + é) .

Term C For this term, we use Lemma 1 by [3]. Let us define p; ; :=P(61,;,- > y;|Fi—1). We have:

1—pi
P(I; =i, B (t), E? (t)|F;_1) < Pit P(I;=1,E"(t), B! (t)|F:_1). (244)
DPit
Thus, we can rewrite the term Pg as follows:
Po=Y\P(I,=i,E'(t), E{ (1)) (245)
t=1
T
= Y E[P(I;=i,El'(t), B] (t)[F;1)] (246)
t=1
T 1—0,
< (B L (=1, B0, B ) Foa | 47)
i-1 Dit
T 1—p;
<YE| —2L1(L =1, EX(t), B (¢ ] (248)
) [ LA (1,21, 0) B 1)

We decompose Equation (248) into two contributions:
1—pi,
chz [ —Pitg I;=1,E!(t), Ef(t),Tl,t<a’(T))}+
t=1 DPit
Bl
T 1_p
+>) IE[pp“n(It =1,E"(t), EY(t), Ty, >o’(r))] . (249)
t=1 it
Al
Analyzing term Al:
c1
1—p;,
A1<2E[ Py | 1 =1, B (), B2 (1), Ty e < Li(T), T >0 (7) }+
t=1 Dit
A
c2
Toriop
+ZE[ — 2 | I =1,E"(t),ES (), Ty 47 = Li(T), Ty = 0" (1) ] (250)
t=1 Dit
B
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Let us tackle the term A by exploiting the fact that E[XY]|=E[XE[Y | X]]. This way, we can
rewrite it as:

T
A= E 1(01)E[1_W|1(01)] . (251)
i-1 Pig

(%)

In the following, we show that whenever condition C1 holds () is bounded by a constant. Let ©,

denote a (ﬁl 39 %) distributed Gaussian random variable, where ﬁl, ; is the sample mean of the
optimal arm’s rewards played j times within a time window 7. Let G; be a geometric random variable
denoting the number of consecutive independent trials up to j included where a sample of ©; is
greater than y;. We will show that for any realization of the number of pulls within a time window 7
such that condition C1 holds, the expected value of G; is bounded by a constant for all j.

Consider an arbitrary realization of T ;.= that satisfies condition C1. Observe that p; ;=
Pr(©;>y;|F.,) and:
1 1 .
B o) | <8 [£] - 100 Ty =i || By [BIE(G) 1F,]]) - B [BLG1.
’ (252)

Notice that the term E [G;] in Equation (252) is the same as the one we had in Equation (130) to
derive bounds for the y-GTS algortihtm. Relying on the same mathematical steps we bound it as
follows:

E[G;]<e'?+5.

This shows a constant bound independent from j of E [ﬁ — 1] for any j such that condition C1
holds. Then, using Lemma C.14, A can be rewritten as:

T
A< (e +5)E lz 11(01)] (253)
t=1
288T In(TA? +¢5)
12 7
<(e'?+5) A2 : (254)

Let us tackle B by exploiting the fact that E[ XY | =E[XE[Y | X]]:

Dit

T
B=YE ]1(02)IE[W|]1(02)] . (255)
t=1

(ses)
We derive a bound for (=) for large j as imposed by condition C2. Consider then an arbitrary case in
which T; ;  =j > L;(T) (as dictated by C2), we have:

1 1 ,
E [p-t | ]1((32)] =E; []E [pt [ 1(C2), Th 1, —J” =Ejp., [E[E[GFr ]]] =By, [E[G5]].
i, 2,
(256)

Notice that the term E [G,] in the last equation is the same that bounded in Theorem 5.1 for the regret
of 7-GTS. Therefore, using the same proof line it is bounded by E[G,] < ﬁ.
For term B1, we made the same passages that we did for Equations (251) and (255), adding the
drv () term, yielding to:

(T 2887 In(TA? +€) 1

B1<O o (Ti7) Y (o2 52T AT) 1 sy
erfe(y/ 5 (7 (0" (T 7),7)) TA; A

and summing up the terms concludes the proof. O
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C Auxiliary Lemmas

In this section, we report some results that already exist in the bandit literature and have been used to
demonstrate our results.

Lemma C.1 (Generalized Chernoff-Hoeffding bound from [3]). Let X,,...,X,, be independent
Bernoulli random variables with E[X;] = p;, consider the random variable X = 137" | X;, with
u=E[X]. Forany 0<X<1—p we have:

P(X=p+N) <exp(—nd(p+A,un),
and for any 0 <A< p

P(X<p—\)<exp(—nd(p—A,u)),

where da.0)=aln +(1-0)In b5

Lemma C.2 (Change of Measure Argument from [26]). Ler (2, F) be a measurable space, and
P,Q:F—]0,1]. Let a<b and X — [a,b] be a F-measurable random variable, we have:

) dP(w f X (@) dQ(w)| < (b—a)5 7y (P,Q). (258)

Lemma C.3 ([26], proposition 2.8). For a nonnegative random variable X, the expected value E[ X |
can be computed as:

o0
=J Pr(X >y)dy.
0

Lemma C.4 ([38], Theorem 2). Let us define p_:= (H1y- s pin), SE(0,...,n) and pe(0,1). We
have that the total variation distance between two variables PB(p ) and Bs(n, p) is:

=14/0())

o (1-

Ci(s)0(p,p,) 2 =" fo(pp,)<1
orv(PB(p, ), Bs(n,m) < et *”)SH Uoviine,) o)<t
Cals)n(pp,) F* (1 /20 ) exp(2n(pep,)) - otherwise

(259)
( ’ ) n
where (1,1 )= s, (e )—272(,“ i (s )% (s p,) =200 (= )",

1
xf(€4r1)Z " (2“)4°XP(24<s+1))2 B
Cl( ) CQ(S) T \/;(s+1)4 :

Lemma C.5 ([17], Theorem 1, Lemma 2). Using the quantities defined in the Lemma C.4,

a —u" n+1
(?2%) min{1,nfi(1—@)} <drv(PB(p ), Bin(n,@))) < 1 (ljw l)u((ll —/L))

n
Zn/=1 My
n

Yo, 1)
(260)
where T is the mean of the components of the means’ vector W, le L=

Lemma C.6 (Beta-Binomial identity). For all positive integers o, €N, the following equality holds:
FYle(y)=1-F2 4, ,(a—1), (261)
where F abféa(y) is the cumulative distribution function of a beta with parameters « and (3, and

F O]i_ B-1y (a—1) is the cumulative distribution function of a binomial variable with «+ 8 — 1 trials

having each probability y.
Lemma C.7 ([10], Theorem 1 (iii)). Let Y ~ Bin(n,\) and X =Y. X; where the X; ~ Bin(n;, \;)

are independent random variables for 1 = .,k then:
X>g Ylfand only if \ <Xg, (262)
X <, Yifand only if A >Xcg7 (263)

where X >4 Y means that X is greater than'Y in the stochastic order, i.e. Pr(X =2m)=Pr(Y =
m) Ym, and:

. 1
Ag=<HA2“) : (264)
=1
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k W
Aeg=1— (H(1—Ai)m> ) (265)

i=1

Lemma C.8 ([1] Formula 7.1.13). Let Z be a Gaussian random variable with mean 1 and standard

deviation o, then:
1 T z2
P Z>pu+z0)>———¢€ 2 266
(Z>p+zo) Cre (266)

Lemma C.9 ([1]). Let Z be a Gaussian r.v. with mean m and standard deviation o, then:

1 1
me_722/Q<P(|Z—m\>ZU)<56_22/2. (267)

Lemma C.10 ([37] Corollary 1.7). Let X1,...,X,, be n independent random variables such that
X; ~ SUBG(c?), then for any a€R", we have

n 2
}P’L_ZlaiXi>t] <exp (_%r;a@) ; (268)
and
n 2
P L;aiXi <—t1 <exp (_W> (269)
Of special interest is the case where a; =1/n for all i we get that the average X = % >y X, satisfies
P(X>t)< e_% and P(X <—t)< e‘%

Lemma C.11 ([39],[42], Theorem 2.1 (2)). Let X ~PB(p1,...,pn), and X ~Bin(n,p), for any
convex function g:[n] —R in the sense that g(k+2) —2g(k+1)+g(k) >0, 0<k<n—2, we have

Eg(X)<Eg(X), (270)
where the equality holds if and only if py = - - - = p,, of the poisson-binomial distribution are all equal
to p of the binomial.

Fact C.1 (Bretagnolle-Hubner inequality). The Bretagnolle-Huber inequality states:
1
orv(P,Q)<+/1—exp(—Dki(P|Q))<1- 5 €XP (=Dkr(P[Q)) (271)

Lemma C.12 ([23] Definition 1.2, [22] ). A random variable V taking values in Z is discrete
log-concave if its probability mass function py (i) = P(V =1) forms a log-concave sequence. That is,
V is log-concave if for all 1 > 1:

pv(i)*Zpy (i—1pv(i+1) (272)
Any Bernoulli random variable (that is, only taking values in {0,1}) is discrete log-concave. Further,
any binomial distribution is discrete log-concave. In fact any random variable S = Z?:l X, where
X, are independent (not necessarily identical) Bernoulli variables, is discrete log-concave. Notice
then that by definition p%(L) is discrete log-convex

Lemma C.13 ([21], Theorem 2 p.152, Remark 13 p.153, Remark 1 p.150). Let 1 <a<r <o and
let ¢: 7 — [0,00] be r-concave (Definition 1 p.150 [21], furthermore we highlight that for Remark
1 p.150 [21] to be co-concave is equivalent to be discrete log-concave). Then Jq is (r—a)-
concave, we assume r — o= 00 when r = o0 and r > o. Where the a-fractional (tail) sum of a function
q:7Z— [0,00] is defined for every a> 0 by the formula:

S (a+k—1

J%q(n)= (
q(n) kZ::O i

so that for a binomial pdf ppin, being ppi, discrete log-concave (see C.12), follows that J“ppi, is
co-concave on Z for a = 1.

Lemma C.14 ([16], Lemma D.1). Let AcN, and T€N fixed. Define a(n)= :L:_i_T 1(te A). Then
for all TeN and seN we have the inequality:
T
1(neA,a(n)<s)<s[T/7]. (274)

n=1

)q(n +k), (273)
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D Detailed Computations for the Instances of Section 6

First Instance. Let us upper bound the complexity index:
[(1—2¢) %1

T ([(1 —26)[1;—‘,(]) = Z max {e—y/\n_e—yk(n+1)}q

- ve{l2}
A [(1_26)%] A A 1
S B gl ety
[(1-2¢) %1
< I mmleey

[(1-2¢) %1
—e 12\ Z e A"
n=2

+00 )
e~ dn < (1 + > e,
q

where we used e~ ¥ — e~ ¥A (1) < MAX pefn,n+1] 2y (1 — e~Y2%) =yAe ¥ " and bounded the sum-
mation with the integral.

<e M4 QAJ

n=1

Second Instance. Let us lower bound the complexity index:

B U(lkhﬁ’q) :mim ((iif)x - (712121»)[1

n=1

N [(l—i)fd oAy \?
- (n+2)21 ) 7

n=1

A—1 A—1 . 5 A—1 A—1
where we used (nﬂﬁ — (3+72)* > Milyefn,ni1] o (1 — (§+1)A) _ (n2+2))‘)\+1 . For q(A+1)>1, we

proceed as follows:’

[(1—2¢) & 9A-1y
(n+2)>M1

Instead, for ¢(A+ 1) =1, we bound the summation with the integral:

[(1—2¢) &1 2q()\71)>\q q (1—2¢) & Qq()\fl)Aq
2~ ;J —— |dn
( n+2 ) n=1 n+2

n=1

q
) >924(A=1)3—q(A+1) ya _ O(X9).

n=1

]

=211\ g ((1 — ze)% - g) =0(\1ogT).

Finally, for ¢(A+ 1) <1, we still bound the summation with the integral:

[(1%)}2] ﬂ ‘1>J(1—26);T< ﬂ qdn
(n+2)21) =) _, (n+2)A1

n=1
2q()\—1)>\q T 1—g(A+1)
>——1|{(1-20= — 317G+ ) —g(nartmaHD),

T—g(A+1) <(( 6)K) ( )

Now, recalling that the instance-dependent component of the regret of Theorem 6.1 is in the order of
7Y ([(1 —2¢) %] , q) , we have for the three cases the optimal choice of ¢ that minimizes the regret:

1 11
q(/\+1)>1:>qi)\—+1:>0</\ st )

“We use big-O notation to highlight the dependences on A — 0 and 7" — +c0.
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q()\+1)=1:q:%+1 :O(AﬁTﬁlogT);

1 T
q(/\+1)<1:>qu:>O</\ T )

Thus, we have that the bound of the instance-dependent component of the regret is at least O (T%H ) .
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E Numerical Simulations Parameters and Reproducibility Details

E.1 Parameters
The choices of the parameters are those suggested by the authors:

* Rexp3: Vyr=K as we’ve considered bounded rewards within zero and the maxi-
mum global variation possible is equal to the number of arms of the bandit; v=

min {1, /225 Ar = | (K log K)Y3 (T V)| (181

* KL-UCB: ¢ =3 as required by the theoretical results on the regret provided by [18];

* Serd: according to what suggested by [4] we selected §=1/T ¢= 2=, and ¢=

KT>
N .
TKlog(KT)’

* SW-UCB: as suggested by [18] we selected the sliding-window 7=4+/T"logT" and the
constant £ =0.6;

* SW-KL-UCB as suggested by Garivier & Moulines ([19] 2011) we selected the sliding-
window 7 =g~ %/5;

* SW-TS: as suggested by [46] for the smoothly changing environment we set 5 =1/2 and
sliding-window 7=T"1"% =/T.

* R-ed-UCB: the window is set as h; ; = |eN; ;1| as suggested by the authors ([31]), e€ (0, %),
being IV; ;1 the numbers of plays of the i —th arm up to time ¢.

E.2 Environment

To evaluate the algorithms in the rested setting with K =15 arms over a time horizon of 7"= 50, 000
rounds. The payoff functions ;(-) have been chosen in these families:

Fop={f(n)| f(n)=c(1—e ")}, (275)
Foay = { )1 7= (18 (7))}, 76)

where a,c, pe (0,1] and be R are parameters, whose values have been selected randomly. The
complete settings and function selection method, in compliance with what has been presented by [31],
have been provided in the attached code.

E.3 Experimental Infrastructure

In this section, we provide additional information for the full reproducibility of the experiments
provided in the main paper.

The code has been run on an AMD Ryzen 7 4800H CPU with 16 GiB of system memory. The
operating system was Windows 11, and the experiments have been run on Python 3.8. The libraries
used in the experiments, with the corresponding versions, were:

* matplotlib==3.3.4

e tikzplotlib==0.10.1

* numpy==1.20.1

On this architecture, the average execution time of each algorithm takes an average of ~ 30 sec for a
time horizon of T"= 50, 000.

E.4 15-arms Numerical Simulation Results

The results of the numerical simulation presented in Section 8 are reported in Figure 5. The results
show how the methods that have been designed for the restless case are performing worse than the
one we presented in our paper. The only exception is the Beta-SWTS that we showed to have also
nice theoretical properties in the SRRB setting. Overall, the comparison with such methods do not
invalidate the conclusions we drew in the main paper.
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Figure 5: Regret in the 15-arm environment.
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