
Motion Planning (In)feasibility Detection using a
Prior Roadmap via Path and Cut Search

Yoonchang Sung1 and Peter Stone1,2

1Department of Computer Science, The University of Texas at Austin, USA
Email: {yooncs8, pstone}@cs.utexas.edu

2Sony AI

Abstract—Motion planning seeks a collision-free path in a
configuration space (C-space), representing all possible robot
configurations in the environment. As it is challenging to con-
struct a C-space explicitly for a high-dimensional robot, we
generally build a graph structure called a roadmap, a discrete
approximation of a complex continuous C-space, to reason
about connectivity. Checking collision-free connectivity in the
roadmap requires expensive edge-evaluation computations, and
thus, reducing the number of evaluations has become a significant
research objective. However, in practice, we often face infeasible
problems: those in which there is no collision-free path in the
roadmap between the start and the goal locations. Existing studies
often overlook the possibility of infeasibility, becoming highly
inefficient by performing many edge evaluations.

In this work, we address this oversight in scenarios where
a prior roadmap is available; that is, the edges of the roadmap
contain the probability of being a collision-free edge learned from
past experience. To this end, we propose an algorithm called
iterative path and cut finding (IPC) that iteratively searches for
a path and a cut in a prior roadmap to detect infeasibility
while reducing expensive edge evaluations as much as possi-
ble. We further improve the efficiency of IPC by introducing
a second algorithm, iterative decomposition and path and cut
finding (IDPC), that leverages the fact that cut-finding algorithms
partition the roadmap into smaller subgraphs. We analyze the
theoretical properties of IPC and IDPC, such as completeness
and computational complexity, and evaluate their performance
in terms of completion time and the number of edge evaluations
in large-scale simulations.

I. INTRODUCTION

Motion planning [1] is a crucial functionality for au-
tonomous robots that enables them to move from one config-
uration to another without colliding with obstacles. The main
objective of most motion planing algorithms is efficiency, that
is, finding a solution as quickly as possible.

Most existing algorithms start from the assumption that a
successful motion plan exists, only terminating with failure
after exhaustively searching the plan space or exceeding a
time budget [2]–[9]. However, in practical settings, it may
not be uncommon for planning problems to be infeasible.
For example, it may be impossible to grasp an object due
to nearby objects blocking the way or the robot’s kinematic
limitations. The prospect of plan infeasibility is particularly
salient in task and motion planning [10], [11], where many
motion planning subproblems are considered. In this paper,
we address the problem of detecting infeasibility (while still
efficiently finding a solution when one exists), particularly in
scenarios where learning from past experience is available.

Fig. 1. Navigation task for a robot, where the blue and red circles represent
the start and goal, respectively. A roadmap example of 500 vertices is
represented by red and blue lines. Red edges collide with an obstacle, whereas
blue edges are collision-free. An edge’s collision status (and thus its color)
is initially unknown and can only be revealed by applying edge evaluation
by a motion planner. Given a roadmap with prior probabilities over edges’
existences (based on past experience), the objective is to determine, with as
few edge evaluations as possible, whether there is a collision-free path (a path
on all blue edges) from the start to the goal.

Specifically, we focus on Step 2 of a three-step learning-
based framework for obtaining motion plans (or determining
their non-existence) from past experience. In Step 1 of this
overall framework, a representative roadmap [12], [13] is
learned from available training problems. This roadmap is a
graph that approximately captures connectivity in the configu-
ration space (C-space [14]) as depicted in Figure 1. Roadmaps
are widely used in motion planning, such as sampling-based
motion planners [15]–[18] which construct a roadmap to
discretize a C-space and search-based planners [19] which
generate a grid map corresponding to a roadmap. In Step
2, when presented with a query problem, we attempt to find
a solution using the roadmap from Step 1, or alternatively
to determine that no solution exists (i.e., infeasibility in the
roadmap). In Step 3, if a solution has been found in Step 2, its
quality is refined. On the other hand, if no solution was found,
an attempt is made to prove infeasibility in the continuous
C-space. Alternatively, points can be added to the roadmap
from Step 1 to make it denser before repeating Step 2. In this
work, we specifically concentrate on Step 2 by assuming the
existence of a roadmap from Step 1, and we leave Step 3 for
future work.

Roadmaps are a useful data structure for accumulating
past planning results. Edges in a roadmap are hypothesized
to be collision-free paths between their endpoints. However,
they may not actually be collision-free in the real world; in

ar
X

iv
:2

30
5.

10
39

5v
2

 [
cs

.R
O

]
 1

8
M

ay
 2

02
3

practice, they must be evaluated by a motion planner to check
for collisions. We can exploit past experience to obtain the
probability of local connectivity between vertices in a roadmap
(i.e., their connecting edge being collision-free) and use the
roadmap as prior knowledge to solve a query problem.

One possible approach to obtaining connection probabilities
is to use the counting principle. Given training problems that
may be either feasible or infeasible, whose C-spaces vary
due to various numbers, shapes, and locations of obstacles,
we generate a single representative roadmap by attempting to
solve them with a given motion planner. Then, for each edge
in the roadmap, we count the number of problems that the
edge is confirmed collision-free out of the total number of
problems; we apply the same procedure for all edges to form
their existence probabilities. It is important to note that our
method also works in cases where there is no prior knowledge,
and in such cases, all edge connection probabilities are set to
0.5 (see Section IV-A).

Previous studies [20]–[22] have leveraged prior roadmaps
to find the shortest path between nodes. Their focus is on
reducing the number of edge evaluations since edge evalu-
ation is known to consume most of the computation time
in motion planning due to its expensive collision-checking
procedures [23]–[26]. However, their methods assume that
a prior roadmap always contains a solution, resulting in an
ineffective approach to dealing with infeasible problems. The
search space of previous work is mostly a space of paths or
edges; therefore, infeasible problems can only be determined
after evaluating all possible paths or combinations of edges.

To detect infeasibility from a prior roadmap, we propose a
different search strategy, namely iterative search over a path
space and a cut space. Our insight is that the search over
both spaces can identify whether a given problem is feasible
efficiently, whereas trying to find a path in an infeasible
problem or trying to find a cut in a feasible problem requires
exploring the entire search space.

Furthermore, the result of a single path search execution
can help guide the search for a cut and vice versa. We apply
edge evaluations to edges found by the path search and then
determine their ground-truth existence. Some edges may be
identified as non-existing (i.e., colliding with obstacles), which
can be leveraged by the cut search since a ground-truth cut
must contain one of those non-existing edges. Similarly, a
ground-truth path must include one of the existing edges
identified by the cut search.

Based on this observation, we design a complete search
algorithm that identifies feasibility of a given problem. We also
propose a divide-and-conquer algorithm that further improves
efficiency by exploiting an abstract graph data structure over
a roadmap.

Our algorithms can complement existing methods by acting
as preprocessors so that infeasible problems are identified as
quickly as possible. If a given problem is confirmed feasible,
we switch to existing approaches to find the shortest path.

In summary, we make three main contributions in this paper.
• We introduce two probabilistic roadmap-based algorithms

that perform path and cut searches to determine whether
a query problem is feasible efficiently.

• We analyze both algorithms’ completeness and computa-
tional complexity.

• We empirically verify the performance of our methods
through extensive simulations.

II. PROBLEM DESCRIPTION

Let G = (V,E, p) be a weighted graph representing a prior
roadmap learned from past experience.
• V is a vertex set. Each vertex v ∈ V corresponds to a

robot configuration in the C-space.
• E is an edge set whose element is denoted by e ∈ E.
• p : E → [0, 1] represents a Bernoulli probability of edge

existence over all edges. Edge existence implies that the
robot can traverse from one vertex to another without
colliding with obstacles. A ground-truth edge existence
can only be revealed by applying edge evaluation. p(e) =
1 indicates that the edge is known with certainty to exist,
whereas p(e) = 0 indicates that the edge is known not to
exist. 0 < p(e) < 1 indicates that the edge needs to be
evaluated to determine whether the path from vertex to
vertex is collision-free.

Start and goal configurations (vs and vg) are given at query
time, which can be connected to near vertices in G if edge
evaluation guarantees no collisions; this is a typical process
for multi-query planners, such as PRM [27]. For those two
new edges connecting vs and vg to G, p = 1. For notational
convenience, we treat the enlarged roadmap the same as G,
including vs and vg .

The objective of the feasibility detection problem is to
determine whether a collision-free path connecting vs and vg
exists in G (and if so, to identify such a path) while minimizing
the number of edge evaluations as much as possible.

III. ALGORITHMS

In this section, we propose an algorithm (IPC) that it-
eratively searches over the path and cut spaces to detect
feasibility. We then present another algorithm (IDPC) based on
IPC that effectively decomposes the search space to improve
efficiency further.

A. Iterative path and cut finding (IPC)

Since all we care about from G is connectivity between a
start and a goal vertex, we treat the edge-evaluation process as
a black box computation. Any information on the configuration
space in which G is embedded is irrelevant to the algorithm
design; our algorithms are agnostic to configuration values and
their dimension. We thus focus only on the graph structure of
G in designing algorithms.

Our idea is to leverage existing off-the-shelf path-finding
and cut-finding algorithms, both highly efficient due to the
long history of their individual developments. A path-finding
algorithm is used to certify connectivity in G, while a cut-
finding algorithm confirms disconnectivity. We obtain the most

probable path and cut as candidates from those algorithms and
apply edge evaluations to check their ground-truth existence.1

(a) Pathfinding result (path edges
colored in blue).

(b) Cut-finding result (cut edges
colored in red).

Fig. 2. Examples of pathfinding and cut-finding executions. The gray shape
represents an obstacle. In (a), IPC evaluates the existence of e1, e4, and e7
and learns that a cut must contain (at least) one of e4 and e7 since e4 and
e7 are found not to exist. In (b), IPC evaluates e1, e3, and e8 and learns
that a path must pass through (at least) one of e1 and e8 since e1 and e8 are
collision-free.

As such, we propose an algorithm to determine the fea-
sibility of a given problem through the path and cut search
in G without requiring too many edge evaluations, which
we call IPC. IPC iteratively applies path-finding and cut-
finding algorithms while the result of one informs the search
for another in the next iteration and terminates when either a
path or a cut is found. Figure 2 illustrates both scenarios.

Since G is a positively weighted graph, we use Dijkstra’s
algorithm to find the most probable candidate path, a finite
sequence of edges P = (ei)

n
i=1. To find the most probable

candidate cut, a finite edge set C = {ej}mj=1,2 we adopt the
Push–relabel algorithm [28] with its state-of-the-art efficiency.
We present the time complexity of existing cut-finding algo-
rithms in Table I.

Algorithms Complexity
Ford–Fulkerson algorithm [29] O(|V |2|E|)
Edmond–Karp algorithm [30] O(|V ||E|2)

Push–relabel algorithm [28] O(|V |2
√

|E|)

TABLE I
COMPLEXITIES OF MINIMUM CUT ALGORITHMS.

We initialize edge values over E using p. Both Dijkstra’s
and the Push–relabel algorithms reason over the sum of edge
values, whereas finding the most probable candidate path or
cut requires reasoning over the product of probabilities. To
correct this mismatch, our algorithms reason over logarithmic
p values. Moreover, a path-finding algorithm seeks high p
values, while a cut-finding algorithm prefers low p values.
In the end, we augment G with the weight and capacity
used for finding a candidate path and cut, respectively.3 We

1In the rest of the paper, we denote the output of a pathfinding or cut-
finding algorithm as a candidate path or cut, as their ground-truth existence
has not yet been confirmed, and a ground-truth path or cut as simply a path
or cut.

2Off-the-shelf minimum cut algorithms generally do not output a sequence
of edges but an edge set instead, since as illustrated in Figure 2 (b), edges in
a cut need not be adjacent.

3Weight and capacity are terminologies for edge values used in the path-
finding and cut-finding literature, respectively.

denote the augmented graph by G = (V,E, p, pw, pc), where
pw and pc are weight and capacity values over E such that
pw, pc : E → [0,∞). For 0 < p < 1, we compute pw and pc
as follows.

pw = log(1/p),

pc = log(1/(1− p)).
Deterministic edges with p values of 0 or 1 do not need

evaluations. To handle those edges, we set pw =∞ and pc = 0
when p = 0 and pw = 0 and pc =∞ when p = 1. The value
of ∞ is used to ensure that edges with this value will not be
chosen as a part of the candidate path or cut. By doing so, we
ensure that if a path exists, it must pass through (at least) one
of the edges identified as existing by cut finding and that if a
cut exists, it must contain (at least) one of the edges identified
as non-existing by pathfinding.

Algorithm 1: IPC
Input : G = (V,E, p, pw, pc), vs, vg
Output: C or P

1 while True do
2 P ←ExecutePathfinding (V,E, pw, vs, vg)
3 if EvaluateEdgeExistence (P) then
4 return P // A feasible problem.
5 end
6 pc ←ChooseCutEdge (P, pc)
7 C ←ExecuteCutFinding (V,E, pc, vs, vg)
8 if EvaluateEdgeExistence (C) then
9 return C // An infeasible problem.

10 end
11 pc ←ResetEdgeValues (P, pc)
12 end

The pseudo-code of IPC is included in Algorithm 1.
Dijkstra’s algorithm (line 2) and the Push–relabel algo-
rithm (line 7) are iteratively applied. In lines 3 and 8,
EvaluateEdgeExistence performs edge evaluations on
every edge in P or C and returns TRUE if a path or cut
is found. EvaluateEdgeExistence also updates pw and
pc values depending on whether corresponding edges are in-
collision (updating pw to ∞ and pc to 0) or collision-free
(updating pw to 0 and pc to ∞).

A candidate path P found may contain multiple collision
edges, and at least one of those edges must be a part of any cut
(if a cut exists). Then, the cut-finding algorithm searches for a
candidate cut that includes one of these edges. We observe
that choosing a center edge from the largest sequence of
consecutive collision edges performs well in practice. We set
pc for the chosen edge from P to be 0 while setting pc for
the rest of the edges from P to be ∞ (line 6), ensuring that a
candidate cut must contain the chosen edge to disconnect G.
After confirming that a candidate cut C found is not a cut, we
reset the pc values of the other collision edges from P back to
0 for the next iteration (line 11). One may also apply a similar
strategy to pathfinding by heuristically selecting one particular

edge from C. However, it is more complex because C consists
of an unordered set of edges that are not necessarily adjacent
(as can be seen in Figure 2 (b)). We leave full specification of
such optimization to future work; pathfinding in Algorithm 1
is applied over the entire graph.

Completeness: IPC is guaranteed to terminate by finding
either a path or a cut.

Theorem 1: IPC is complete.
Proof: Note again that pathfinding and cut-finding appli-

cations reveal the ground-truth existence of edges. Thus, if
IPC can evaluate all edges in G before termination without
missing some edges or resulting in an infinite loop, the
feasibility of a given problem can be known. After edge
evaluation, the values of pw and pc will become either 0 or∞.
Those edges from pw and pc assigned to the value of ∞ will
not be chosen by pathfinding or cut finding; both algorithms
always explore new edges that have not yet been evaluated.
Since G has a finite number of edges, IPC will eventually
evaluate all edges in the worst case. When the ground-truth
existence of all edges is known, G must contain either a path
or a cut. Thus, one of them is guaranteed to be found.

The same guarantee also holds in the continuous C-space
when |V | → ∞, as a roadmap G is a discrete approximation.
Counterparts of a path and cut in the continuous C-space are
a one-dimensional curve and (d − 1)-dimensional hyperplane
when the ambient C-space is d-dimensional. If a connected
curve from a start and goal exists, all hyperplanes meeting the
curve must have at least one hole; otherwise, there cannot be
a connected curve.

If |V | is finite, the infeasibility proof provided by Theo-
rem 1 is valid only for the roadmap. Step 3 of the learning
framework introduced in Section I aims to convert cut edges
into (d− 1)-dimensional hyperplanes to ensure infeasibility in
the continuous C-space. The method [37] can be invoked in
this step to learn a separating hyperplane that disconnects the
start and goal.

Fig. 3. A comparison of single instance execution time taken by Dijkstra’s
and the Push–relabel algorithms as a function of |G|. The plot shows the
mean and 95% confidence interval from 10 runs.

Complexity: In IPC, the majority of computation occurs in
finding a candidate cut (i.e., O(|V |2

√
|E|) of Push–relabel).

Figure 3 shows the time comparison of Dijkstra’s and the
Push–relabel algorithms as the number of vertices and edges
in G increases. We observe that the time taken for cut finding
dominates that for pathfinding.

Motivated by this observation, we propose an improved al-
gorithm over IPC in the next subsection, which decomposes G
into smaller subgraphs so that the search space for cut finding
becomes smaller. Since pathfinding computation is relatively
cheap, we also present in Appendix D the performance of IPC
when increasing the number of pathfinding executions in each
iteration.

B. Iterative decomposition and path and cut finding (IDPC)

For the second algorithm, we exploit the fact that a candi-
date cut splits G into two separate induced subgraphs4 that
can be connected by some of the edges from the candidate
cut if they are found to be collision-free (see Figure 4) and
that the two induced subgraphs can be obtained for free
as a byproduct of executing the cut-finding algorithm. For
convenience, we refer to induced subgraphs as subgraphs.
We search for local candidate cuts from individual subgraphs
to determine their disconnectivity, further splitting them into
even smaller subgraphs. Meanwhile, we aggregate this local
information to determine global disconnectivity between the
start and goal. Consequently, the cut-finding algorithm runs
on a smaller graph instead of G. We call this version itera-
tive decomposition and path and cut finding (IDPC). Since
IDPC iteratively decomposes G into multiple subgraphs and
composes the results of local cut findings, it can be seen as a
divide-and-conquer approach.

Fig. 4. Description of a decomposed graph G and two separate induced
subgraphs (marked by a yellow shape) generated by a candidate cut computed
by the cut-finding algorithm. A candidate cut consists of {e1, ..., e6}, where
e1 and e6 are collision-free, and {e2, ..., e5} are collision edges as determined
by evaluating them. As a result, the two induced subgraphs are connected by
e1 and e6.

In IDPC, the search space for a path is G whereas that
for a cut is a set of connected components (i.e., subgraphs).
We denote the set of subgraphs by {Gk}gk=1, where Gk =
(V k, Ek, pk, pkw, p

k
c). Subgraph edges satisfy the two condi-

tions ∪gk=1{Ek} = E r ∪C and Ek ∩Ek′ = ∅, as illustrated
in Figure 5. The cut-finding algorithm identifies connecting
edges between subgraphs, and we only keep collision-free
connecting edges in IDPC, denoted by C. Notice that when
G is split into G1 and G2 by C, endpoint vertices of C in
G1 form subgoals for vs, that is, any candidate paths must

4An induced subgraph is a special case of a subgraph, which satisfies not
only that its vertices are a subset of vertices in G but also that it must contain
all edges that exist in G whose both endpoint vertices exist in the induced
subgraph.

Fig. 5. Description of subgraphs generated by applying cut findings from
the original graph. A yellow shape depicts each subgraph. Orange edges
connecting neighboring subgraphs represent C, confirmed as existing from
a candidate cut after edge evaluations. Collision edges from a candidate cut
will not be considered in further pathfindings or cut findings and, thus, are not
drawn in this figure. In this example, {Gk}4k=1 and orange edges together
form G, whose vertex set is ∪4

k=1V
k .

pass (at least) one of subgoals to reach vg . Similarly, endpoint
vertices of C in G2 form substarts for vg . As IDPC iteratively
applies cut findings, any arbitrary subgraph Gk will contain
substarts and subgoals unless completely disconnected from
neighboring subgraphs. Due to the different search spaces
for path and cut, the termination condition for declaring path
existence is the same as in IPC, but we need another method
for cut existence.

Fig. 6. Depiction of an abstract graph G̃ generated from the example in
Figure 5. Gray vertices and edges are not a part of G̃ anymore. Blue vertices
and red vertices correspond to substarts and subgoals, respectively. Green
edges show the candidate connections between substarts and subgoals within
the same subgraph. Orange edges represent C, comprising the confirmed
connections between subgraphs. Blue edges show the candidate connections
among substarts or subgoals in the same subgraph. In G1, δ(ṽ1) = vs and
∆(ṽ1 or ṽ2 or ṽ3) = 1. τ(ṽ1) = SUBSTART and τ(ṽ2 or ṽ3) = SUBGOAL.

For this purpose, we introduce an abstract graph G̃, an
undirected unweighted graph used for finding a cut in G from
a set of cuts in {Gk}gk=1. G̃ ignores the detailed structure
within Gk but captures the connectivity among {Gk}gk=1

through C and the pairwise relationships among substarts
and subgoals (Figure 6). G̃ must contain correspondence
information concerning {Gk}gk=1; thus, we define G̃ as a tuple
of (Ṽ , Ẽ, c, δ,∆, τ) as follows.
• Ṽ is an abstract vertex set, where ṽ ∈ Ṽ , corresponding

to substarts and subgoals induced by C and vs and vg in
G. Ṽ satisfies that Ṽ ⊆ V . In practice, |Ṽ | � |V |.

• Ẽ is an abstract edge set, where ẽ ∈ Ẽ. Each ẽ makes one
of three types of connections: (1) candidate connections

between substarts and subgoals in the same Gk; (2) con-
firmed connections between substarts of Gk and subgoals
of Gk′ enabled by C; (3) candidate connections among
substarts or subgoals in the same Gk. Candidate connec-
tions are those whose ground-truth connectivity has yet to
be discovered. If any of the above candidate connections
are identified by cut finding to be disconnected in Gk,
we do not maintain ẽ.

• c : Ẽ → {TRUE, FALSE} is a Boolean function, which
maps ẽ to TRUE if a path between endpoint vertices of ẽ
has been identified in Gk or FALSE otherwise, implying
that a path may still exist.

• δ : ṽ → v maps ṽ in Ṽ to v in V from which ṽ is
induced.

• ∆ : ṽ → k maps ṽ to an index k of Gk to which δ(ṽ)
belongs.

• τ : ṽ → {SUBSTART, SUBGOAL} is a Boolean function,
which classifies the type of ṽ into either SUBSTART or
SUBGOAL. ∃ṽ = δ

−1
(vs) : τ(ṽ) = SUBSTART, and ∃ṽ =

δ
−1

(vg) : τ(ṽ) = SUBGOAL.

Although Ṽ ⊆ V , G̃ is not a subgraph of G because Ẽ 6⊆
E. The reason for introducing the third type of abstract edge
(i.e., blue edges in Figure 6) is to cover the cases where the
only feasible path visits the same subgraph multiple times by
coming in and going out from a neighboring subgraph; without
considering this case, IDPC is not complete.

Algorithm 2: IDPC
Input : G = (V,E, p, pw, pc), vs, vg
Output: C or P

1 g = 1 // Gk=1 = G.

2 G̃←InitializeAbstractGraph (Gk=1)
3 while True do
4 P ←ExecutePathfinding (V,E, pw, vs, vg)
5 if EvaluateEdgeExistence (P) then
6 return P // A feasible problem.
7 end
8 {Gk}gk=1, G̃, subgraph_ids←

ReflectPathEvaluation ({Gk}gk=1, G̃, P)
9 k∗ ←ChooseSubgraph ({Gk}gk=1, P ,

subgraph_ids)
10 pk

∗

c ←ChooseCutEdge (P, pk
∗

c)
11 substarts, subgoals←

ClusterSubstartsAndSubgoals (Gk∗ , G̃)
12 Ck∗ ←ExecuteCutFinding

(V k∗ , Ek∗ , pk
∗

c , vk
∗

s , vk
∗

g ,substarts, subgoals)

13 pk
∗

c ←ResetEdgeValues (P, pk
∗

c)

14 {Gk∗ , Gk=g+1}, G̃
←SubgraphPartition (Gk∗ , Ck∗ , G̃)

15 if CheckCutExistence (G̃) then
16 return C // An infeasible problem.
17 end
18 end

With this new data structure, we now describe the pseudo-
code of IDPC in Algorithm 2. The backbone of IDPC is
similar to IPC, but it additionally includes {Gk}gk=1 and G̃
to reduce the search space for expensive cut finding. As ini-
tialization (lines 1 and 2), IDPC starts with a single subgraph
equal to G and G̃ consisting of two vertices (i.e., ṽ1 = δ

−1
(vs)

and ṽ2 = δ
−1

(vg)) and a single edge ẽ1 connecting them. We
also set c(ẽ1) = FALSE.

The process of searching for a candidate path P is the same
as IPC (lines 4-7). The result of edge evaluations over P is
used to update {Gk}gk=1, assigning the values of pkw and pkc to
either 0 or∞, depending on the collision status (line 8). If any
portion of P is a collision-free subpath (i.e., a collision-free
path from a substart to a subgoal in a subgraph), IDPC sets the
values of c for the corresponding abstract edges in G̃ to TRUE.
In line 9, IDPC chooses one subgraph Gk∗ out of {Gk}gk=1

to apply the cut-finding algorithm. In our experiments, we use
a heuristic criterion to choose a subgraph that includes the
largest number of collision edges in P . IDPC uses the same
method as in IPC for selecting a particular edge used for a
candidate cut within Gk∗ (line 10).

Fig. 7. Description of the clustering process for cut finding. Gray vertices
(vk
∗

s and vk
∗

g) and edges represent dummy. Blue vertices are substarts, and
red vertices are subgoals. Note that vk

∗
2 and vk

∗
4 are not connected to dummy

vertices because they are connected by a collision-free path colored in blue.
The set of red edges is an example of a candidate cut that can disconnect
vk
∗

g from vk
∗

s while not intersecting the blue path.

Unlike G which has a single start and a single goal,
Gk∗ may have multiple substarts and subgoals, making cut-
finding algorithms inapplicable, since they can only accept
one pair. Also, for the candidate connections between pairs of
substart and subgoal (i.e., the first type of abstract edges), it is
desirable if a single cut-finding execution identifies as many
disconnections between pairs as possible rather than focusing
on a single pair. Notice that the more disconnections between
pairs are identified, the more balanced partition will likely
be made in Gk∗ compared to a partition obtained by trying
to confirm the disconnection between a single pair. Neither
method violates completeness, but the latter will likely incur
more cut-finding executions, decreasing efficiency.

To handle the inapplicability issue and to encourage bal-
anced cuts, we cluster substarts and subgoals in Gk∗ with
dummy start and goal vertices (vk

∗

s and vk
∗

g), as shown in
Figure 7, and use dummy vertices as input to cut finding
(line 11). By setting the values of pk

∗

c of edges connecting
to dummy vertices to ∞, we assure that a candidate cut can

only be found within Gk∗ . One important point is that IDPC
does not connect dummy vertices to a pair of substart and
subgoal whose corresponding abstract edge in G̃ satisfies that
c(ẽ) = TRUE. In Figure 7, a collision-free path colored in
blue from vk

∗

2 to vk
∗

4 shows such a case; no cuts can separate
vk
∗

4 from vk
∗

2 , and thus, we leave them out of candidate-cut
consideration. IDPC searches for a candidate cut Ck∗ within
Gk∗ in line 12 and applies the same edge value reset process
as in IPC in line 13. IDPC then removes dummy vertices and
edges from Gk∗ .

(a) Before the subgraph partition. (b) After the subgraph partition.

Fig. 8. Depiction of the subgraph partition process. The meaning of colors
used for vertices and edges is the same as in Figure 6. The candidate cut
applied in this example is Ck∗ = {ek∗1 , ek

∗
2 , ek

∗
3 } (i.e., dotted lines in (a)),

where ek
∗

1 is in-collision while ek
∗

2 and ek
∗

3 are collision-free.

In line 14, IDPC splits Gk∗ into Gk∗ and Gg+1, followed
by updating G̃ accordingly. Figure 8 illustrates the subgraph
partition process, where a candidate cut found is Ck∗ =
{ek∗1 , ek

∗

2 , ek
∗

3 }. After splitting Gk∗ into two, IDPC applies
edge evaluations to Ck∗ and leaves collision-free edges. To
update G̃, IDPC executes the following three steps. First,
IDPC removes the first type of abstract edges (i.e., green
edges in Figure 8 (a)) and some of the third type of abstract
edges (i.e., blue edges in Figure 8 (a)) if Ck∗ splits endpoint
vertices into different partitions. Second, IDPC adds new
abstract vertices from collision-free edges that exist in Ck∗ .
Third, IDPC adds three types of new abstract edges (i.e.,
green and orange edges and blue edges among newly added
abstract vertices in Figure 8 (b)). Function values of δ, ∆, and
τ are assigned for the new abstract vertices and edges. For c,
the second type of edges (i.e., orange edges in Figure 8) is
initialized with TRUE as their connectivity has already been
confirmed, but the other two types are initialized to FALSE.

Remember that the point of introducing G̃ is to check for
global disconnectivity from a set of cuts discovered from
previous iterations (lines 15-17). Since G̃ is an undirected
unweighted graph, IDPC employs breadth-first search to G̃ to
check the connectivity between abstract vertices corresponding
to a start and a goal. Therefore, the termination condition for
cut finding is the detection of disconnectivity in G̃.
IDPC iterates the while loop until it finds either a path or

a cut. Notice that all the computations regarding cut finding
are now local. In Appendix E, we include the pseudo-code for
the remaining functions in Algorithm 2. In Appendix F, we
show a pictorial example of how IDPC operates on a small
toy roadmap.

C. Analysis

We analyze the completeness guarantee and time complexity
of IDPC. The following theorem shows that the abstract graph
G̃ and subgraphs {Gk}gk=1 still capture all possible paths and
cuts by construction to preserve completeness. Therefore, like
IPC, IDPC always finds a path if a given problem is feasible
or a cut otherwise.

Theorem 2: IDPC is complete.
Proof: The proof is included in Appendix A.

To analyze the time complexity of IDPC, we consider four
variables: V , E, Ṽ , and Ẽ, where V and E are used for
{Gk}gk=1, whereas Ṽ and Ẽ are used for G̃. Note that in
the worst case, where every vertex in G forms an individual
subgraph, |V | ≈ |Ṽ | and |E| ≈ |Ẽ|. However, this case rarely
occurs in practice, and generally, |V | � |Ṽ | and |E| � |Ẽ|.

Components Complexity
ExecutePathfinding (i.e., Dijkstra) O(|E| + |V | log |V |)

ReflectPathEvaluation O(|Ṽ ||E|)
ChooseSubgraph O(|E|)

ClusterSubstartsAndSubgoals O(|Ṽ |2)

ExecuteCutFinding (i.e., Push–relabel) O(|V |2
√

|E|)
SubgraphPartition O(|Ṽ ||V |)

TABLE II
COMPLEXITIES OF MAJOR COMPONENTS IN ALGORITHM 2.

Table II shows the complexity of major computations in
Algorithm 2, which can be derived from the pseudo-code in
Appendix E. Like in IPC, the cut finding by Push–relabel
dominates the overall computation. However, the cut-finding
computation now applies to a subgraph whose size is |V k|
and |Ek|, not the entire graph G as in the case of IPC,
thus improving its efficiency. We achieve this improvement by
embracing additional computations (as shown in Table II). To
verify that those computations are relatively inconsequential,
in Appendix B, we analyze the time taken by major compo-
nents of IDPC as a function of graph size.

IV. EVALUATION

In this section, we validate our methods by the following
set of evaluations. First, we show the comparison analysis
against baselines in two-dimensional C space in terms of
the completion time and the number of edge evaluations.
Second, we conduct more realistic simulations where a C-
space is high-dimensional. We report additional evaluations
in the appendix, including an analysis of the computational
overhead of IDPC compared to IPC (Appendix B), how
underlying graph topologies affect performance (Appendix C),
and the performance evaluation when increasing the number
of pathfinding executions at each iteration (Appendix D).

All experiments are conducted on an Intel Core i7-8665U
CPU at 1.90 GHz with 16 GB of RAM. We adopt Dijk-
stra’s and the Push–relabel algorithms implemented in Net-
workX [31]. All plots in this section show the mean and 95%
confidence interval obtained from multiple runs.

A. Comparison with baselines

We evaluate algorithms in terms of the number of edge
evaluations and the time taken to detect feasibility. We do
not include the edge evaluation time in the total computation
time because it may differ depending on the local planning
method, collision-checking algorithm used, robot shape, and
how much approximation of the mesh shape is considered.

We compare against three baselines: (1) applying pathfind-
ing only (i.e., Dijkstra’s), (2) applying cut finding only (i.e.,
Push–relabel), and (3) the breadth-first search (BFS) based
method. The first two baselines are used to show the con-
sequence of neglecting to consider either the feasibility or
infeasibility of a given problem. In particular, most existing
methods in the literature that rely on the roadmap [20]–[22]
are represented by the first baseline since infeasibility is often
overlooked. Other learning-based methods that are not based
on the roadmap (referred to in Section V) are omitted, as they
do not fit into the proposed learning framework in Section I
and typically do not provide infeasibility proofs.

BFS can serves as another baseline as it is guaranteed
to visit all edges in a graph. However, because BFS does
not reason about global disconnectivity as it searches in an
edge space, and a roadmap is generally not a tree graph but
contains many cycles, we need to modify BFS so that it can
detect infeasibility. We create an additional graph containing
only collision-free edges, incrementally constructed as BFS
performs edge evaluations. After BFS (i.e., outer loop) reaches
a goal, at every iteration of BFS, we apply another BFS
(i.e., inner loop) to this new graph to determine whether a
path exists from a start to a goal. If not, the outer-loop BFS
continues, and we apply the same procedure. Infeasibility is
declared if a path is not found after the outer-loop BFS search
is exhausted.

Figure 9 shows four domains we use for comparison.
All domains are in two-dimensional C-space and yield both
feasible and infeasible problems (i.e., without and with orange
obstacles). We use PRM to generate a roadmap G, but we also
show the results of other roadmap types in Appendix C. We
generate ten problems for feasible and infeasible scenarios,
respectively, in each domain: ten roadmaps using different
random seeds. For the values of p in G, we add random noise
to the ground-truth values so that p ∼ U(0.3, 0.4) for collision
edges and p ∼ U(0.6, 0.7) for collision-free edges, where U
represents a uniform distribution.

Figure 10 shows the difference in the performance change
compared to IDPC as the graph size increases. We set the
performance of IDPC as a standard performance and gather
statistics of the differences between all algorithms (i.e., IPC
and baselines) and IDPC. In the plots of Figure 10, the
results above the red line (i.e., IDPC’s performance) are worse
than IDPC, whereas the results below the red line are better.
Specifically, the results that do not overlap with each other
(as well as with the red line) can be considered statistically
significantly different. We say that one method outperforms
another when this is the case.

Fig. 9. Depiction of four environments used for comparison. Green and yellow polygons are obstacles. Infeasible and feasible problems are created with
and without yellow obstacles, respectively. Blue squares are the start and red squares are the goal. Examples of a PRM roadmap consisting of 500 vertices
and 2000 edges are shown in black.

Fig. 10. Plots of the comparison analysis results. The top and bottom rows show the differences in completion time and the differences in the number of
edge evaluations, respectively, compared to IDPC. The first, second, and third columns show feasible, infeasible, and a mixture of feasible and infeasible
problem cases.

It can be seen that the pathfinding-only baseline outperforms
both IPC and IDPC for feasible problems but performs
worse when infeasible problems exist. The cut-finding-only
baseline consistently performs worse than IPC and IDPC
in all cases due to its heavy cut-finding computations, al-
though its performance improves for infeasible problems. The
BFS-based baseline has the shortest completion time but the
largest number of edge evaluations among all methods. Like
pathfinding only, this baseline exhibits weakness for infeasible
problems; in the worst case, even if the neighboring edges of
the goal comprise a cut, the BFS-based baseline still evaluates
all edges.

IDPC outperforms IPC in terms of completion time in all
cases although both require a similar number of edge evalua-
tions. This result validates our motivation for proposing IDPC.
Empirically, the number of evaluations required for IDPC

is smaller than that for IPC marginally but not statistically
significant. IPC still performs reasonably well compared to
the baselines; although it overlaps with the pathfinding-only
baseline regarding completion time, it outperforms pathfinding
only by far in terms of the number of evaluations.

We conduct an additional evaluation where a different
calibration level of a prior roadmap is given. That is, we
change how close the p values in the prior roadmap are to
the ground-truth values. In Figure 11, we show the results
for three calibration levels of a roadmap when a mixture of
feasible and infeasible problems is given: (1) perfect prior,
that is, p = 1 for collision-free edges, and p = 0 for collision
edges; (2) noisy prior, the same p values used in Figure 10;
and (3) no prior, that is, all p values are 0.5.

In Figure 11, we observe that our methods degrade as a prior
roadmap becomes noisier; a noisy prior incurs many unnec-

essary cut findings, increasing completion time. Alternatively,
our methods clearly perform the best with a perfect prior. We
further observe that IDPC shows strong robustness to noise
compared to IPC. We conjecture that the decomposition of a
search space in IDPC helps avoid searching in unnecessary
regions of the space, which is a particular strength of IDPC.

Fig. 11. Plots comparing the results for three calibration levels of a prior
roadmap. The tip of the bar graphs represents the mean, and the error bars
represent 95% confidence intervals.

B. Performance on higher-dimensional C-space

To this point, all experiments have been conducted in two-
dimensional C-spaces for ease of visualization. Here, we
investigate more realistic scenarios where a C-space is high-
dimensional: the navigation task in Figure 1, having a 3-
dimensional C-space, and the manipulation task in Figure 12,
having a 7-dimensional C-space. We obtain a prior roadmap as
follows. We inject random Gaussian noise into the location of
obstacles to generate multiple problem instances. We run PRM
to get a roadmap and compute the edge-existence probability
for all edges from the generated problem instances. We then
selectively create ten feasible and ten infeasible new problems
as query problems.

Fig. 12. Description of the manipulation task. The blue and red manipulators
represent the start and the goal, respectively. The gray polygons are obstacles.

Figure 13 shows the results for both navigation and ma-
nipulation tasks. A similar trend in Section IV-A can be
seen here (see the third column of Figure 10). As previously,
IDPC performs the best in all cases other than the BFS-based
baseline’s completion time. As explained in Section III-A, this

Fig. 13. Plots comparing the results for navigation and manipulation tasks.
For the navigation task, PRM generates a roadmap consisting of 5000 vertices
with 20000 edges. The roadmap includes 10000 vertices with 60000 edges
for the manipulation task.

result indicates that our algorithms’ performance is robust to
the dimensionality of the C-space and is only affected by the
structure and size of the prior roadmap and the ground-truth
existence of its edges.

V. RELATED WORK

Infeasibility detection in motion planning: Sampling-
based planners are semi-decidable, meaning that they will
eventually find a feasible path when one exists but does not
know how to terminate when no path exists [32]. Several
methods have been proposed in the literature to deal with this
issue, which can be classified into three approaches: (1) direct
infeasibility detection, (2) designing a stopping strategy, and
(3) learning to predict infeasibility.

The approach of direct infeasibility detection focuses on
detecting whether a goal is disconnected from a start rather
than finding a path. The work [2], [3], [8] proposes discon-
nection proofs and applies their method to a query problem
to check whether their disconnection proof holds; if it holds,
the problem is guaranteed infeasible. The drawback is that the
cost of computing their proofs is prohibitive as complex opti-
mizations are involved. The work [5], [6], [9] also addresses
proving path non-existence by introducing approximation to a
C-space, such as cell decomposition [5], [6] and a finite set
of slices [9].

The stopping strategy aims at detecting infeasibility while
finding a feasible path. Instead of terminating a planner when
exceeding a predetermined time budget, this approach adds
computation to the main pathfinding algorithm to actively
stop when a particular criterion is met. The work [33] studies
optimization-based motion planning, proposing to evaluate the
improvement in the objective value to terminate the planner.
The sparse roadmap [12], [13], [34], [35], which we use
as a baseline in Appendix C, is guaranteed to terminate
for infeasible problems and outputs probabilistic infeasibility
proofs.

Learning-based methods assume access to past experience
to learn feasibility classifiers, owing to machine learning
techniques. The work [4], [36] uses support vector machines
(SVM) to learn a feasibility classifier for multi-step planning,
such as task and motion planning. The work [37] learns a

separating manifold between a start and a goal using radial
basis function kernel SVM. To deal with image inputs, the
work [38]–[41] designs convolutional neural network-based
feasibility classifiers.

Our work can be seen as a mixture of all three approaches in
the sense that cut finding aims at direct infeasibility detection,
that our methods stop earlier than pathfinding only or cut
finding only, and that a prior roadmap is learned from past
experience.

Efficient collision checking: Edge evaluations that require
many collision checks as a subroutine are empirically known
to consume the most computation in motion planning [20]–
[22], [42]. Thus, efficient collision-checking strategies have
been proposed in previous studies.

The work [25], [43] proposes guiding the sampling dis-
tribution at each iteration using information learned from
previous iterations to reduce collision checks. The work [44]
designs collision-detection circuits that can run three orders of
magnitude faster than existing algorithms by exploiting paral-
lelism. The work [45] develops efficient hashing techniques
to predict the collision probability of a query sample using
stored collision results from previous queries. The work [46]–
[48] investigates efficient collision checking in scenarios with
dynamically changing environments.

In motion planning, the notion of laziness [23], [24], [26],
[49] is introduced to defer expensive collision-checking pro-
cedures and apply them only when necessary. There exists a
line of research on lazy planning in the literature, such as Lazy
PRM [23], Lazy PRM* [24], and Lazy SP [49].

Recently, neural approaches for collision detection meth-
ods [50]–[53] or edge evaluation [54] have been proposed
leveraging the rapid advances of deep learning. These methods
require collecting data and training their model, but they have
been shown to perform query problems more efficiently than
methods without learning.

Our work also addresses how to obtain efficient collision
checking but on a specific data structure, a probabilistic prior
roadmap.

Learning framework using a prior roadmap: We are
not the first to explore a probabilistic prior roadmap in
motion planning. Fuzzy PRM [55] first proposes incorporating
edge-existence probability on the edges of a roadmap. The
work [20]–[22] also employs a prior roadmap, whose objective
is to find the shortest path with the minimum possible edge
evaluations. POMP [20] solves a Pareto-optimality problem
that trades-off between path length and collision measure.
AEE* [21] is an anytime algorithm formulated in the Markov
decision process, aiming for optimal path length in expecta-
tion. PSMP [22] formulates a regret minimization problem in
Bayesian reinforcement learning. However, the possibility of
infeasibility is ignored in those studies, which is the main
motivation for this paper.

VI. CONCLUSION

In this work, we address the problem of efficiently determin-
ing whether a query problem on a probabilistic prior roadmap

is feasible. To this end, we propose two complete algorithms
(i.e., IPC and IDPC) that are guaranteed to find either a path
or a cut, outperforming the baseline methods.

We observe that the performance of our methods is upper
limited by the choice of a cut-finding algorithm. Although
Push–relabel is the most efficient existing minimum cut al-
gorithm, it is still expensive for large roadmaps since it
only searches for the minimum cut. Alternatively, instead
of the minimum cut, a suboptimal cut may suffice for our
applications; it may be easier to compute but still perform well
in practice because we deal with a probabilistic prior roadmap.
There are some approximation schemes to cut finding in the
literature [56], [57]. We leave investigating the applicability
of our ideas to those approximation algorithms to improve
efficiency further as future work.

Also, incorporating our methods in multi-step planning,
such as task and motion planning, would be another promising
direction, especially in cases where checking for infeasibility
is a crucial bottleneck.

ACKNOWLEDGMENTS

This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. LARG research is supported
in part by NSF (FAIN-2019844), ONR (N00014-18-2243),
ARO (W911NF-19-2-0333), DARPA, Bosch, and UT Austin’s
Good Systems grand challenge. Peter Stone serves as the
Executive Director of Sony AI America and receives financial
compensation for this work. The terms of this arrangement
have been reviewed and approved by the University of Texas at
Austin in accordance with its policy on objectivity in research.

REFERENCES

[1] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[2] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection proofs
for motion planning,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 2,
pp. 1765–1772, IEEE, 2001.

[3] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-step motion plan-
ning for free-climbing robots,” in Algorithmic Foundations of Robotics
VI, pp. 59–74, Springer, 2004.

[4] K. Hauser, T. Bretl, and J.-C. Latombe, “Learning-assisted multi-step
planning,” in Proceedings of the 2005 IEEE international conference on
robotics and automation, pp. 4575–4580, IEEE, 2005.

[5] L. Zhang, Y. J. Kim, and D. Manocha, “Efficient cell labelling and path
non-existence computation using c-obstacle query,” The International
Journal of Robotics Research, vol. 27, no. 11-12, pp. 1246–1257, 2008.

[6] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence
using sampling and alpha shapes,” in 2012 IEEE international confer-
ence on robotics and automation, pp. 2563–2569, IEEE, 2012.

[7] I. Rodrıguez, K. Nottensteiner, D. Leidner, M. Kaßecker, F. Stulp,
and A. Albu-Schäffer, “Iteratively refined feasibility checks in robotic
assembly sequence planning,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1416–1423, 2019.

[8] S. Li and N. T. Dantam, “Towards general infeasibility proofs in motion
planning,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6704–6710, IEEE, 2020.

[9] A. Varava, J. F. Carvalho, D. Kragic, and F. T. Pokorny, “Free space of
rigid objects: Caging, path non-existence, and narrow passage detection,”
The international journal of robotics research, vol. 40, no. 10-11,
pp. 1049–1067, 2021.

[10] K. Hauser and J.-C. Latombe, “Integrating task and prm motion
planning: Dealing with many infeasible motion planning queries,” in
ICAPS09 Workshop on Bridging the Gap between Task and Motion
Planning, Citeseer, 2009.

[11] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” Annual
review of control, robotics, and autonomous systems, vol. 4, pp. 265–
293, 2021.

[12] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymp-
totically near-optimal motion planning,” The International Journal of
Robotics Research, vol. 33, no. 1, pp. 18–47, 2014.

[13] D. Coleman, I. A. Şucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
pp. 900–905, IEEE, 2015.

[14] T. Lozano-Perez, Spatial planning: A configuration space approach.
Springer, 1990.

[15] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of robot motion: theory, algorithms, and implementations.
MIT press, 2005.

[16] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[17] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:

A review,” Ieee access, vol. 2, pp. 56–77, 2014.
[18] T. McMahon, A. Sivaramakrishnan, E. Granados, K. E. Bekris, et al.,

“A survey on the integration of machine learning with sampling-based
motion planning,” Foundations and Trends® in Robotics, vol. 9, no. 4,
pp. 266–327, 2022.

[19] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning
for manipulation with motion primitives,” in 2010 IEEE international
conference on robotics and automation, pp. 2902–2908, IEEE, 2010.

[20] S. Choudhury, C. M. Dellin, and S. S. Srinivasa, “Pareto-optimal search
over configuration space beliefs for anytime motion planning,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3742–3749, IEEE, 2016.

[21] V. Narayanan and M. Likhachev, “Heuristic search on graphs with
existence priors for expensive-to-evaluate edges,” in Twenty-Seventh
International Conference on Automated Planning and Scheduling, 2017.

[22] B. Hou, S. Choudhury, G. Lee, A. Mandalika, and S. S. Srinivasa, “Pos-
terior sampling for anytime motion planning on graphs with expensive-
to-evaluate edges,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4266–4272, IEEE, 2020.

[23] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (Cat. No.
00CH37065), vol. 1, pp. 521–528, IEEE, 2000.

[24] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in 2015 IEEE international conference on robotics and
automation (ICRA), pp. 2951–2957, IEEE, 2015.

[25] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient collision
checking in sampling-based motion planning via safety certificates,” The
International Journal of Robotics Research, vol. 35, no. 7, pp. 767–796,
2016.

[26] N. Haghtalab, S. Mackenzie, A. Procaccia, O. Salzman, and S. Srinivasa,
“The provable virtue of laziness in motion planning,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
vol. 28, pp. 106–113, 2018.

[27] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[28] B. V. Cherkassky and A. V. Goldberg, “On implementing the
push—relabel method for the maximum flow problem,” Algorithmica,
vol. 19, no. 4, pp. 390–410, 1997.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[30] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM (JACM),
vol. 19, no. 2, pp. 248–264, 1972.

[31] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dy-
namics, and function using networkx,” tech. rep., Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[32] C. K. Yap, “Soft subdivision search in motion planning,” in Proceedings,
1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013.

[33] D. Hadfield-Menell, C. Lin, R. Chitnis, S. Russell, and P. Abbeel,
“Sequential quadratic programming for task plan optimization,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 5040–5047, IEEE, 2016.

[34] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilis-
tic roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6,
pp. 477–493, 2000.

[35] A. Orthey and M. Toussaint, “Sparse multilevel roadmaps for high-
dimensional robotic motion planning,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7851–7857, IEEE,
2021.

[36] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
robotics and automation letters, vol. 4, no. 2, pp. 1255–1262, 2019.

[37] S. Li and N. T. Dantam, “A sampling and learning framework to prove
motion planning infeasibility,” The International Journal of Robotics
Research, p. 02783649231154674, 2023.

[38] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuris-
tics: Learning feasibility of mixed-integer programs for manipulation
planning,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 9563–9569, IEEE, 2020.

[39] S. A. Bouhsain, R. Alami, and T. Simeon, “Learning to predict action
feasibility for task and motion planning in 3d environments,” in 2023
IEEE International Conference on Robotics and Automation (ICRA),
2023.

[40] L. Xu, T. Ren, G. Chalvatzaki, and J. Peters, “Accelerating integrated
task and motion planning with neural feasibility checking,” arXiv
preprint arXiv:2203.10568, 2022.

[41] S. Park, H. C. Kim, J. Baek, and J. Park, “Scalable learned geometric
feasibility for cooperative grasp and motion planning,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 11545–11552, 2022.

[42] M. Bhardwaj, S. Choudhury, B. Boots, and S. Srinivasa, “Leveraging
experience in lazy search,” Autonomous Robots, vol. 45, no. 7, pp. 979–
996, 2021.

[43] J. Bialkowski, M. Otte, and E. Frazzoli, “Free-configuration biased sam-
pling for motion planning,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1272–1279, IEEE, 2013.

[44] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris,
“Robot motion planning on a chip.,” in Robotics: Science and Systems,
vol. 6, 2016.

[45] J. Pan and D. Manocha, “Fast probabilistic collision checking for
sampling-based motion planning using locality-sensitive hashing,” The
International Journal of Robotics Research, vol. 35, no. 12, pp. 1477–
1496, 2016.

[46] P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” The International Journal of Robotics Re-
search, vol. 21, no. 12, pp. 999–1030, 2002.

[47] K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, pp. 704–710, IEEE, 2007.

[48] M. Otte and E. Frazzoli, “Rrtx: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” The Interna-
tional Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.

[49] C. Dellin and S. Srinivasa, “A unifying formalism for shortest path
problems with expensive edge evaluations via lazy best-first search
over paths with edge selectors,” in Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 26, pp. 459–
467, 2016.

[50] N. Das and M. Yip, “Learning-based proxy collision detection for robot
motion planning applications,” IEEE Transactions on Robotics, vol. 36,
no. 4, pp. 1096–1114, 2020.

[51] M. Danielczuk, A. Mousavian, C. Eppner, and D. Fox, “Object rear-
rangement using learned implicit collision functions,” in 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 6010–
6017, IEEE, 2021.

[52] J. C. Kew, B. Ichter, M. Bandari, T.-W. E. Lee, and A. Faust, “Neural col-
lision clearance estimator for batched motion planning,” in Algorithmic
Foundations of Robotics XIV: Proceedings of the Fourteenth Workshop
on the Algorithmic Foundations of Robotics 14, pp. 73–89, Springer,
2021.

[53] Y. Zhi, N. Das, and M. Yip, “Diffco: Autodifferentiable proxy collision
detection with multiclass labels for safety-aware trajectory optimization,”
IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2668–2685, 2022.

[54] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” Advances in Neural
Information Processing Systems, vol. 34, pp. 4274–4289, 2021.

[55] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy prm for manipulation
planning,” in Proceedings. 2000 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113),
vol. 3, pp. 1716–1721, IEEE, 2000.

[56] T. Leighton and S. Rao, “An approximate max-flow min-cut theorem for
uniform multicommodity flow problems with applications to approxi-
mation algorithms,” tech. rep., Massachusetts Inst Of Tech Cambridge
Microsystems Research Center, 1989.

[57] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms,” Journal of the
ACM (JACM), vol. 46, no. 6, pp. 787–832, 1999.

APPENDIX

A. Proof of Theorem 2

We first present the following lemma, which will be used
subsequently.

Lemma 1: Abstract edges in G̃ consider all possible con-
nectivity in G.

Proof: Three types of abstract edges in G̃ consider all
possible paths in each subgraph, thereby, all possible connec-
tivity in G. The first type (i.e., green edges in Figure 6) covers
all possible paths between different neighboring subgraphs.
The second type (i.e., orange edges in Figure 6) covers all
collision-free edges connected to neighboring subgraphs. The
third type (i.e., blue edges in Figure 6) covers all possible paths
from and to the same neighboring subgraph. Since G consists
of a collection of subgraphs, Ẽ of G̃ completely covers all
possible connectivity in G.

For IDPC to be complete, it must output a path if a given
problem is feasible or a cut otherwise. As IDPC searches
for a path from the entire roadmap graph G, completeness
for path existence follows IPC. Thus, we must show that
introducing an abstract graph G̃ and subgraphs {Gk}gk=1

does not violate completeness for cut existence. Since IDPC
determines infeasibility by checking disconnectivity from the
start to the goal in G̃, the following lemma proves the cut
existence part for Theorem 2.

Lemma 2: A cut exists in G if and only if G̃ is disconnected
from the start to the goal.

Proof: (⇐) Let’s assume that a path exists in G if G̃
is disconnected from the start to the goal. This statement
with Lemma 1 implies that edge evaluations from cut find-
ings identify some edges as non-existing, although they are
collision-free. Since the output of the edge-evaluation process
is always correct, this statement leads to a contradiction. Thus,
the sufficient statement (i.e., ⇐) holds.

(⇒) The necessary statement involves more because we
must show that G̃ allows to evaluate all possible cuts in G
before termination if a cut exists. To show this, we present the
correctness of IDPC (i.e., not precluding any possible cuts).
Three subgraph manipulations are related to cut finding in
IDPC, so we show their correctness individually.

First, a subgraph whose substarts and subgoals are dis-
connected from neighboring subgraphs is not considered for
further cut finding. This does not affect the correctness because
a path going through this subgraph cannot exist; we can safely
remove this type of subgraphs from consideration.

Second, IDPC chooses a particular subgraph out of candi-
date subgraphs for cut finding if the number of consecutive
collision edges is the largest. This choice covers all candidate
subgraphs in the worst case because pathfinding precludes
each candidate sequentially.

Third, our clustering strategy for cut finding precludes a
pair of substart and subgoal whose c value is TRUE (i.e., a
collision-free path between substart and subgoal is found) from
dummy vertices. Once a pair of substart and subgoal is found
to have a collision-free path, further cut-finding executions

cannot split this pair into different subgraphs. This invariance
allows the removal of those connected pairs safely. Further
pathfinding executions will identify paths in a subgraph, and
the corresponding pairs will not be considered. Thus, while
respecting Lemma 1, the clustering method always considers
all possible valid cuts in a subgraph.

B. Analysis on IDPC

In Appendices B, C, and D, we use the setting of 5000
vertices with 30000 edges and the same calibration level used
in the leftmost figure in Figure 9 as a prior roadmap. We also
generate the same number of feasible and infeasible problems.

As additional components are introduced in IDPC, we mea-
sure the time each takes for a single iteration of Algorithm 2
and empirically evaluate the complexities shown in Table II.

Fig. 14. A time comparison among major components in Table II.

Figure 14 presents the single iteration execution time ob-
tained by running ten instances when increasing a graph size.
It can be seen that all the computations but cut finding are
relatively marginal and scale well with the graph size. The
result empirically validates the complexity analysis in Table II
and supports the use of |Ṽ | and |Ẽ|.

C. Effect of graph topologies

Different motion planners generally generate fundamentally
different topologies of a roadmap. In this evaluation, we study
how a roadmap’s topology affects our methods’ performance.
Besides PRM, we additionally implement a grid map used
in search-based planning and SPARS [12], a sparse roadmap
with a provable suboptimality guarantee, used in sampling-
based motion planning. We omit the subroutine of the SPARS
implementation aimed for suboptimality because this computa-
tion is highly costly and does not affect our analysis critically.
Examples of roadmaps generated can be seen in Figure 15.

Overall, a similar trend of the previous evaluations can
also be seen in Figure 16. The pathfinding-only baseline per-
forms relatively well on a grid map and the SPARS roadmap
compared to the PRM roadmap. This is caused by a lesser

Fig. 15. Depiction of the graph topologies when using different roadmap
types. The detailed explanation of the figures can be found in Figure 9. The
left figure shows a grid map example used for search-based planning, and
the right figure shows a roadmap example generated by SPARS used for
sampling-based motion planning.

Fig. 16. Plots comparing the results when using different roadmap types.
A grid map and SPARS in Figure 15 and PRM in Figure 9 are used for
comparison. For all roadmap types, we generate roadmaps of 5000 vertices
with a different number of edges due to their different topologies. We observe
that a lesser number of edges that exist in a grid map (i.e., 9660 edges) and
the SPARS roadmap (i.e., 7203 edges) The detailed explanation of the figures
can be found in Figure 11.

number of edges that exist in the grid map and the SPARS
roadmap. Nevertheless, IDPC still performs the best except
for the completion time of the BFS-based baseline. With this
result and the previous evaluations in Figure 10, we conjecture
that the graph size affects the performance more significantly
than the roadmap topology.

D. Effect of more pathfinding executions

Since pathfinding is computationally less expensive than cut
finding, we analyze the effect of increasing the number of
pathfinding executions at each iteration on performance. To
perform this analysis, we use IPC.

Fig. 17. Plots for the performance change as a function of the number of
pathfinding executions. All results are obtained by solving twenty problem
instances for each feasible and infeasible case.

Figure 17 presents the performance change as the number
of pathfinding executions increases. From the plots, three
executions of pathfinding at each iteration perform approx-
imately the best on average. It is, however, not statistically
significantly better than other cases, as its confidence interval
overlaps with others. Still, there is a trend on average that
the completion time decreases at first and increases later
as the number of pathfindings increases. One may consider
the number of pathfinding executions at each iteration as a
hyperparameter and benefit from learning the optimal number
for their applications.

E. Additional pseudo-codes for Algorithm 2

Algorithm 3: ReflectPathEvaluation

Input : {Gk}gk=1, G̃, P

Output: {Gk}gk=1, G̃
1 subgraph_ids← ∅
2 for (v, v′) ∈ P do
3 is_in_abstract_graph←FALSE

4 for ṽ ∈ Ṽ do
5 if δ(ṽ) = v then
6 subgraph_ids←subgraph_ids∪{∆(ṽ)}
7 k ← ∆(ṽ)
8 is_in_abstract_graph←TRUE
9 break

10 end
11 end
12 if not is_in_abstract_graph then
13 subgraph_ids←subgraph_ids∪{k}
14 end
15 end
16 path← ∅
17 for (v, v′) ∈ P do
18 if subgraph_ids[v] 6=subgraph_ids[v′] then

// subgraph_ids[v] implies an
element in subgraph_ids
corresponding to v.

19 if path is collision-free then
20 c(ẽ)←TRUE // Endpoint abstract

vertices of ẽ in G̃
correspond to v and v′.

21 end
22 path← ∅
23 end
24 else
25 k ←subgraph_ids[v]
26 Gk ←UpdateEdgeValue (Gk, e

k = (v, v′))
// Set pw and pc to either 0
or ∞ based on the collision
result.

27 path←path∪{(v, v′)}
28 end
29 end
30 return {Gk}gk=1, G̃, subgraph_ids

Algorithm 4: ChooseSubgraph
Input : {Gk}gk=1, P , subgraph_ids
Output: k∗

1 count_collision_edges← 0
2 max_count← 0
3 for (v, v′) ∈ P do
4 k ←subgraph_ids[v]
5 if ek.pc = 0 then

// ek = (v, v′).
6 count_collision_edges

←count_collision_edges+1
7 end
8 else
9 if count_collision_edges

>max_count then
10 max_count←count_collision_edges
11 k∗ ← k
12 count_collision_edges← 0
13 end
14 end
15 end
16 return k∗

Algorithm 5: ClusterSubstartsAndSubgoals

Input : Gk∗ , G̃
Output: substarts, subgoals

1 substarts← ∅, subgoals← ∅
2 for ṽ ∈ Ṽ do
3 if ∆(ṽ) = k∗ then
4 if τ(ṽ) =SUBSTART then
5 substarts←substarts∪{ṽ}
6 end
7 else if τ(ṽ) =SUBGOAL then
8 subgoals←subgoals∪{ṽ}
9 end

10 end
11 end
12 for ṽ ∈substarts do
13 for ṽ′ ∈subgoals do
14 if c((ṽ, ṽ′)) =TRUE then
15 substarts←substartsr{ṽ}
16 subgoals←subgoalsr{ṽ′}
17 end
18 end
19 end
20 return substarts, subgoals

Algorithm 6: SubgraphPartition

Input : {Gk∗ , Gk=g+1}, Ck∗ , G̃

Output: {Gk∗ , Gk=g+1}, G̃
1 substarts← ∅, substarts′ ← ∅,

subgoals← ∅, subgoals′ ← ∅
// Assign substarts and subgoals to

corresponding partitions.
2 for v ∈ V k∗ do
3 for ṽ ∈ Ṽ do
4 if δ(ṽ) = v then
5 if τ(ṽ) =SUBSTART then
6 substarts

←substarts∪{ṽ}
7 end
8 else
9 subgoals

←subgoals∪{ṽ}
10 end
11 break
12 end
13 end
14 end
15 for v ∈ V k=g+1 do
16 for ṽ ∈ Ṽ do
17 if δ(ṽ) = v then
18 if τ(ṽ) =SUBSTART then
19 substarts′

←substarts′ ∪ {ṽ}
20 end
21 else
22 subgoals′

←subgoals′ ∪ {ṽ}
23 end
24 break
25 end
26 end
27 end
// Remove first-type edges from G̃.

28 for ṽ ∈substarts do
29 for ṽ′ ∈subgoals′ do
30 G̃←RemoveEdge (G̃, (ṽ, ṽ′))
31 end

32 end
33 for ṽ ∈substarts′ do
34 for ṽ′ ∈subgoals do
35 G̃←RemoveEdge (G̃, (ṽ, ṽ′))
36 end
37 end
// Remove third-type edges from G̃.

38 for ṽ ∈substarts do
39 for ṽ′ ∈substarts′ do
40 G̃←RemoveEdge (G̃, (ṽ, ṽ′))
41 end
42 end
43 for ṽ ∈subgoals do
44 for ṽ′ ∈subgoals′ do
45 G̃←RemoveEdge (G̃, (ṽ, ṽ′))
46 end
47 end
// Add new vertices and edges

(second type) to G̃.
48 for (v, v′) ∈ Ck∗ do
49 if not IsContain (G̃, v) then

// IsContain (G̃, v) =TRUE if G̃
contains v.

50 Ṽ ← Ṽ ∪ {v}
51 δ(v)← v, ∆(v)← k∗, τ(v)←SUBGOAL
52 for ṽ ∈{substarts, subgoals} do
53 Ẽ ← Ẽ ∪ {(ṽ, v)}
54 c((ṽ, v))←FALSE
55 end
56 end
57 if not IsContain (G̃, v′) then
58 Ṽ ← Ṽ ∪ {v′}
59 δ(v′)← v′, ∆(v′)← k = g + 1,

τ(v′)←SUBSTART
60 for ṽ ∈{substarts′, subgoals′} do
61 Ẽ ← Ẽ ∪ {(ṽ, v′)}
62 c((ṽ, v′))←FALSE
63 end
64 end
65 end

F. IDPC example

Fig. 18. Example of the IDPC procedure applied to a feasible problem on a prior roadmap consisting of 800 vertices with 5000 edges. Different colored
graphs represent distinct subgraphs. The blue line and a set of red lines in each figure are a candidate path and a candidate cut found by pathfinding and
cut-finding algorithms. A path is found at the 12th iteration.

Fig. 19. Example of the IDPC procedure applied to an infeasible problem on a prior roadmap, with the same setting as shown in Figure 18. A cut is found
at the 8th iteration.

	I Introduction
	II Problem Description
	III Algorithms
	III-A Iterative path and cut finding (IPC)
	III-B Iterative decomposition and path and cut finding (IDPC)
	III-C Analysis

	IV Evaluation
	IV-A Comparison with baselines
	IV-B Performance on higher-dimensional C-space

	V Related Work
	VI Conclusion
	References
	Appendix
	A Proof of Theorem 2
	B Analysis on IDPC
	C Effect of graph topologies
	D Effect of more pathfinding executions
	E Additional pseudo-codes for Algorithm 2
	F IDPC example

