Under review as a conference paper at ICLR 2025

ACTION AS A MODALITY: TURNING MULTI-MODAL
LILMS TO GENERAL ACTION PLANNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated strong reasoning capabilities
and possess extensive common knowledge. This enables them to adapt to a variety
of complex tasks in a zero-shot manner, including functioning as controllers to
manipulate automated systems and produce executable action sequences. However,
a significant challenge in the existing framework is the misalignment between
the general pre-trained LLLM and the action space of specific control tasks. This
misalignment necessitates extensive efforts in designing task-specific prompts,
which are less generalizable and do not ensure consistent output when prompting a
pre-trained LLM to generate the desired action sequences. To address this issue,
we propose a novel solution, ActionVerse, which encodes action candidates into
a series of modality tokens, coupled with an efficient alignment technique to
synchronize the action tokens with the LLM’s language space. By leveraging this
approach, the proposed ActionVerse successfully transforms a chat-based multi-
modal LLM into a general action executor capable of handling tasks requiring
step-by-step execution of various actions. Experiments on several sequential action
tasks demonstrate the effectiveness of the proposed framework.

1 INTRODUCTION

Large Language Models (LLMs) (Radford et al., [2018}; [Touvron et al.,|2023afb; |[Radford et al.,[2019;
Brown et al, 2020) trained on vast amounts of textual data have demonstrated strong reasoning
capabilities for completing complex tasks based on human instructions. These emerging capabilities
can be effectively generalized to a variety of text-based tasks in a zero-shot or few-shot manner,
significantly promoting the application of LLMs in various domains, such as chatbots (OpenAl,
2023)), code copilots (Li et al.,|2022)), and more.

Recently, benefiting from Parameter-Efficient Fine-Tuning (PEFT) techniques (Hu et al., 2022}
Dettmers et al., [2023)), it has become computationally affordable to adapt text-based LLMs to a
multi-modal scenario by tuning the foundational LLM with a few aligning projection layers as well as
rank decomposition matrices. This unlocks the potential for text-based LLMs to perceive and generate
non-textual content with minimal tuning (Liu et al.; 2023} |Ye et al.,2024;|Zhu et al., 2023} |Wu et al.,
2023). The ModaVerse (Wang et al., 2024) is one of the representative examples. Equipped with the
capabilities of reading, seeing, and hearing, these Multi-modal Large Language Models (MLLMs)
can be applied to broader scenarios like controlling smart devices that pure text-based models cannot
handle, such as navigating a robot based on camera inputs (Zhou et al., 2024} |[Zhang et al.,|2024b),
automatically controlling smartphone apps (Zhang et al.| |2023a;|[You et al.| 2024)), and manipulating
robots (Zhang et al.,2023b;|Yang et al.,|2023b; |2024). These methods leverage the extensive common
knowledge embedded within MLLMs to analyze multi-modal inputs, such as a robot’s camera feed,
GPS location signals, and mobile phone screenshots, to comprehend the environment. Based on
this understanding, they generate a set of well-reasoned operational steps that enable the devices
to execute actions and achieve the desired objectives. For instance, NavGPT (Zhou et al.| [2024)
proposes a zero-shot pipeline that employs ChatGPT for explicit reasoning and generating navigation
routes for robots, while AppAgent (Zhang et al.||2023a) introduces a framework that relies on GPT-4v
to operate smartphone applications.

However, the fact that the foundational MLLMs were trained for general purposes results in a
redundant tokenizer, creating an inevitable gap between the text space and the desired action space of

Under review as a conference paper at ICLR 2025

the controlling tasks. Therefore, current frameworks typically design complicated system prompts
with detailed instructions and sample outputs to guide the MLLMs in generating the expected format
of outputs. Despite these efforts, several issues remain with significant room for improvement: (1) The
nature of the tokenization process in MLLMs means that the expected output format may not always
be achieved, especially when complex non-text action indices are involved. For example, producing
an action command that asks the robot to move to a viewpoint indexed by ‘b0a6cf6e9b904324..”
can be problematic sometimes. (2) The extremely long system prompts are difficult to design and
maintain, often requiring expert manual effort, and they significantly increase the number of input
tokens during the inference stage, thereby considerably raising computation costs. (3) Such designs
make it difficult to utilize the history of action sequences to refine decision-making and introduce a
self-correction mechanism.

Recently, some works (Chen et al.,[2023a; |Bai et al., [2023; You et al.,[2023; Ma et al.,|2024) have
explored incorporating object-level visual tokens with MLLMs to enhance visual grounding and
referring capabilities. Specifically, these methods typically follow a spatial-wise sampling process
to extract candidate object areas in the input images. The image features of each candidate region
are encoded as visual tokens, which are then inserted into the input tokenized sequence for MLLMs,
enabling MLLMs to refer to certain areas by providing the coordinates on the images. Inspired by
this, to address the aforementioned issues in current MLLMs in generating action-oriented outputs,
we designed an action encoder to explicitly tokenize the action candidates into a series of action
tokens, which are then extended into the input sequence of the MLLMs. To align this action
feature space with the foundational LLM’s language space, we conduct instruction tuning with a few
projection layers and PEFT techniques, thus enabling efficient adaption to turn chat-based MLLMs
into action executors. Within this design, the proposed framework is no longer limited to using
textual descriptions to represent the action indices but uses a series of unified action tokens such as
<ACTION1>, <ACTIONZ2> to represent the action candidate with rich features. This approach is
easily adaptable to more generalized scenarios requiring MLLMs to produce action operation orders,
avoiding the misalignment between the text space of MLLMs and the action space of controlling tasks.
It also eliminates the need for overly complicated system prompts and benefits from the natural ability
of chat-based LLMs to use context information to refine the decision-making process. Therefore, to
train the proposed method, we introduce a pipeline to build a conversation-like instruction-following
training set, which also incorporates a data augmentation method that introduces disturbances into the
routes to facilitate an implicit self-correction capability. In summary, this paper presents an efficient
paradigm to adapt chat-based MLLMs to generate executable action sequences for controlling smart
agents. Specifically, the contribution of this work is threefold:

* We propose ActionVerse, a general framework designed to adapt MLLMs to produce executable
action sequences for automatic systems. ActionVerse consists of two core components: an action
encoder that tokenizes the action candidates into a series of action tokens, and a projection module
that translates these tokens into the language space interpretable by the foundational LLM. With
proper instructions, ActionVerse can select and produce the appropriate action sequence for specific
controlling tasks.

» Controlling tasks typically expect a sequence containing multi-step actions to guide the smart
agents to fulfill specific goals, matching the nature of multi-round conversations in chat-based
LLMs. Therefore, we proposed a conversation-like instruction-following tuning procedure for
training the ActionVerse, which incorporates an implicit self-correction mechanism to rectify
possible wrong movements executed in previous steps.

* To evaluate the effectiveness of ActionVerse, we conduct experiments on two controlling tasks:
robot navigation (Anderson et al.,|2018) and website navigation (Chen et al.,|2024b). Experimental
results demonstrate that within minimal fine-tuning, ActionVerse achieves performance comparable
to state-of-the-art methods.

2 RELATED WORK

Action-oriented LLMs. The strong reasoning abilities of LLMs enable them to perform complex
tasks based on human instructions, making them ideal for embodied tasks (Zeng et al.,[2023])) that
require reasoning and common knowledge (Zhang et al.| |2023aj; [Zhou et al.,|2024; [Lu et al.| 2023}
Mu et al., 2023} |Yang et al., 2023b; [Zhang et al., 2023b). In these tasks, LLMs act as agents,

Under review as a conference paper at ICLR 2025

understanding tasks and environments to plan actions towards a goal, enabling applications like
robotic manipulation and smartphone control. For example, RT-2 (Brohan et al., 2023)) extends LLMs
to robotic control but requires extensive trajectory data, while LaMo (Shi et al.,[2023) handles simpler
scenarios like Atari and MuJoCo using time-series data. AppAgent (Zhang et al.|[2023a) leverages
ChatGPT-4v for smartphone app control, and NavGPT (Zhou et al., 2024) uses ChatGPT to plan
robot navigation routes. LLaRP (Szot et al., [2023)) applies LLMs to online reinforcement learning,
and RoboFlamingo (Li et al.,[2023) frames video observations in a POMDP setting.

Most methods, however, depend on commercial LLM APIs (OpenAl, 2023)), like ChatGPT or GPT-
4v/o, to produce action-oriented text. While avoiding LLM training, this introduces challenges, such
as complex system prompts. For instance, NavGPT (Zhou et al.,[2024) and AppAgent (Zhang et al.,
2023a) use prompts up to three thousand words, which are hard to maintain as APIs evolve and
incur high costs due to expensive API calls. Additionally, requiring internet access limits real-time
applications in robotics. To mitigate these issues, some works (Lu et al., [2023)) train or fine-tune
LLMs for action outputs, like Unified-10O 2 (Lu et al.} 2023)), which manipulates robotic arms using
over a million trajectories. However, these methods demand substantial resources, highlighting the
need for more efficient solutions that balance LLM-based agents and training from scratch.

Multi-modal LLMs. MLLMs (Zhang et al.,2024a) extend text-based LLMs to perceive and generate
non-text content. Mainstream MLLMs can be categorized into two types: native multi-modal
LLMs (Teaml [2024; |Lu et al., 2023 |Reid et al., [2024; [McKinzie et al., 2024) and adapted multi-
modal LLMs (Liu et al., 2023} Zhu et al., 2023; |Wang et al., 2024; |Ye et al.| 2024). Native MLLMs
are inherently designed to handle diverse data modalities, such as original image pixels and audio
signals. This design preserves high-fidelity details of multi-modal inputs, allowing for more natural
and efficient multi-modal understanding and generation. However, it requires extensive training
resources, including massive paired multi-modal data and significant computational power. For
instance, Unified-10 2 (Lu et al.,[2023) pre-trains an auto-regressive MLLM that can interpret and
generate multiple modalities involving vision, language, audio, and action using an extremely large
training set containing over 1 trillion text tokens, 1 billion image-text pairs, and millions of videos,
3D assets, and agent trajectories. This pre-trained foundation model is then further fine-tuned using
an instruction-following set that combines more than 120 datasets covering 220 tasks across vision,
language, audio, and action. Similarly, Chameleon (Team) [2024) also pre-trains on an extensive
training set containing nearly 3 trillion text-only tokens, 1.5 trillion text-image tokens, and 400
billion tokens of interleaved text-image data. On the other hand, instead of training an MLLM
from scratch with a mixture of multi-modal data, adapted MLLMs aim at adapting a text-based
foundational LLM into a multi-modal scenario. For example, Flamingo (Alayrac et al.,[2022) follows
a late-fusion design, where the multi-modal inputs are encoded by a series of separate encoders before
being combined together. Similarly, MiniGPT-4 (Zhu et al.| |2023)) employs a Q-former to encode
images and then translates the visual features to the LLM space through a linear projection layer.
NextGPT (Wu et al.;,|2023)) and ModaVerse (Wang et al.| [2024) further extend this paradigm to the
output space, enabling any-to-any modality transformation. Such designs enable text-based LLMs to
interpret and generate non-text content with minimal fine-tuning on limited datasets, offering a more
efficient solution for MLLMs. More recently, fine-grained comprehension and open-world referring
and grounding have become important for evaluating the reasoning capabilities of visual-focused
MLLMs. These methods (Peng et al., [2023; (Chen et al.,[2023bj [Ma et al., 2024; You et al., 2023} Bai
et al.||2023) are designed to comprehend and answer questions related to specific regions of interest in
images using user input bounding boxes or hybrid region representations, and refer to these areas by
outputting the coordinates of specific regions. For example, Ferret (You et al., [2023) accommodates a
broad range of free-form shapes for referring, including points, bounding boxes, sketches, scribbles,
polygons, and more, facilitating more fine-grained question-and-answer interactions with MLLMs.
However, despite extensive efforts in MLLM research, most work has focused on regular modalities
such as image, video, and audio, while a more efficient way to adapt these MLLMs to the action
space remains underexplored.

Efficient LLMs. LLMs, typically comprising tens to hundreds of billions of parameters, require
vast amounts of data and computational resources when trained from scratch. PEFT techniques (Hu
et al.| 2022} Dettmers et al.,|2023) have emerged as a more cost-effective alternative for fine-tuning
these models. Instead of fully fine-tuning the models, PEFT techniques generally freeze most of
the parameters and tune only a small fraction, typically less than 1% of the entire model, thus
significantly reducing training costs. To address the shortage of training data, one practical approach

Under review as a conference paper at ICLR 2025

is to use commercial LLMs like ChatGPT (OpenAll 2023) to generate high-quality instruction-
following data (Zhu et al.| 2023} [Liu et al.| 2023)), facilitating fine-tuning for downstream tasks.
Recently, combining these training efficiency and data efficiency techniques has become a widely-
used strategy for developing new LLM-based methods, allowing for more affordable adaptation
of LLMs to a broader range of tasks and scenarios. Additionally, during the deployment phase,
various post-training compression techniques (Frantar et al.| 2023} |Dettmers et al.| 2022} |Lin et al.}
2024) have been explored to enhance inference speed and optimize performance on resource-limited
devices. Given the sparse nature of LLMs, these techniques typically involve compressing the models
through pruning or quantization using a calibration dataset. This allows LLMs to be deployed on a
significantly smaller scale while maintaining performance comparable to full-precision models, thus
greatly reducing computational overhead.

3 METHOD

History

Output Sequence
Foundation LLM]—> C] C] C] C]

Text Tokens Visual Tokens Action Tokens l Detokenize

Tokenizer Projection Projection Reasoning: To complete the
task, | need to «

)

Observation: In this scenario, |
observed -+

O
O
-0
O

Action: <ACTION1>

|

Figure 1: Pipeline of ActionVerse. The three streams respectively encode the text, visual, and action
tokens, which are then merged together by the foundation LLM to produce the output sequence.
This sequence includes both the reasoning process and the proposed action for the current time
step. The actions are then parsed and sent to the executor for execution. This process operates in a
conversation-like manner, maintaining a context history to refine future decision-making.

Instruction Visual Encoder Action Encoder

I-’I

Image

Action planning tasks. Unlike generic MLLMs that generate general textual responses in natural
language, the action planning task requires the planner 7(-) to produce a sequence S consisting of
operations {s1, 2, 83, ..., St }, where s; € A and A contains actions executable by intelligent agents,
e.g.,MoveForward () or TurnLeft (). To produce such a sequence, the planner typically has
access to observations O = {01,09,03,...,0;} from the environment. At each time step ¢, the
observation o; may consist of various signals, such as images from different angles, GPS signals,
depth information, efc., represented as < o}, 07,03, ...,07 >. Based on the observations O and
specified instruction Z, the planner is able to make a single-step inference to decide which action
should be taken at the next time step, denoted as 7(s¢11 | 0, Z). Furthermore, by incorporating the
history of action trajectories sy.¢, it is also possible for such planners to refine their predictions given
the operation histories, denoted as m(s¢41 | o¢, $1.¢, Z). For MLLM-as-agent-based methods, the
generic MLLM serves as the planner 7(s;11 | 0, $1.¢,Z; ©), where oy is typically the camera feed
or screenshots that show the current environment, s;.; is the chat history, and 7 is the instruction
accompanied by the system prompts. The weights © are trained on a general corpus without specific
fine-tuning on downstream data.

Under review as a conference paper at ICLR 2025

3.1 ACTIONVERSE

ActionVerse is a generic framework designed for action planning tasks, which maps the action
space of specific control tasks to the foundation MLLMs using an action encoder and a series of
projection layers. As shown in Figure [T} ActionVerse consists of three main components: first,
the text instruction is tokenized into a series of text tokens; second, a visual encoder encodes the
visual observations and then maps them into visual tokens via projection layers; and finally, an
action encoder encodes the action candidates at the current time steps and maps them into action
tokens through projection layers. The aim of this work is to adapt MLLMs to the action space
efficiently. We built ActionVerse upon existing chat-based MLLM frameworks 2024),
following the adaptation training of the visual encoder as well as the visual projection layers. The
main difference lies in the newly introduced action encoders that align the action space with the
foundational LLM, which will be introduced in Section[3.1.1} Additionally, to explicitly direct the
model to perform a Chain-of-Thought-like (CoT-like) reasoning process, ActionVerse is capable
of outputting observations based on the given images as well as the reasoning process to fulfill the
given instructions. By incorporating historical outputs, it has learned an implicit capability to correct
incorrect previous movements. We introduce the details of building the multi-round conversation-like
training set in Section[3.1.2}

3.1.1 ACTION ENCODING

Action space. In control scenarios, the action set .4 consists of operations that can be executed
by specific devices, which may vary from task to task. Typically, however, the action types for a
particular device are discrete and limited in number, while each of these actions may further take
discrete or continuous arguments as inputs. For example, for an embodied robot, the action set may
include operations like Move (),Pick (),and Turn (), whereas a virtual assistant on a smartphone
may have actions like Text (), Click (), and Drag (). Additionally, each specific action, such as
Turn (), may further take arguments for fine-grained operations, either discrete directions such as
left and right, or a continuous numeric value representing the degree of rotation.

Action
Special Token

Task-Specific
Action Set

@ (coo|e :

wowmoes | |B OO0 @
0 | :
0

[Dinov2]—>[Projection]

Argument Embedding

Figure 2: Action encoding process in ActionVerse. Using a vision-language navigation (Anderson
task as an example, DINOV2 is used as the action encoder in this case to extract the visual
features of each navigable region as the argument embedding. These embeddings are then inserted
between task-specific special action tokens, such as <Move> and </Move>, forming a candidate
pool that offers all executable operations at the current timeframe, such as Move (ViewPoint1l),
Stop (), efc.

Existing action encoding. In existing MLLM-based control methods (Zhou et al.} 2024} [Chen et al.},
[20244), a typical solution for encoding these actions and arguments relies solely on text descriptions.
The actions and arguments are usually defined with examples in the system prompts, then tokenized
and treated like plain English words. However, such frameworks may lead to several issues. (1)
It necessitates extensive work to design and maintain the system prompts; (2) Due to the context
window length capacity, an overly long system prompt will reduce the number of tokens available
for other inputs; (3) Without adding special tokens for actions in the vocabulary, it is necessary
to maintain the system prompts of definitions of the actions in multi-round interactions, which

Under review as a conference paper at ICLR 2025

wastes considerable resources on processing repeated lengthy prompts; (4) Due to tokenization, text
descriptions of actions or arguments tend to be separated into pieces. For example, in some previous
works (Zhou et al.,2024) that directly ask ChatGPT to encode or generate long action IDs such as
‘68aafa779b9c41ecal 6156cfddcedd2b’, the result may be a token sequence like [‘6°, *8°, ‘a’, ‘af”,
....]”, which can break the original semantics and result in potential distortion during the next token
generation process in MLLMs, and increases the computational burden of processing more tokens.
Another approach that partially alleviates the above issues involves introducing visual prompts within
the inputs. This approach leverages the emerging grounding capability of MLLMs when explicit
marks are given (Yang et al., 2023a). It involves adding specific visual labels to indicate regions
that may contain executable elements (Zhang et al., [2023a), thus avoiding the need for complex
text descriptions of actions. This simple yet effective strategy bridges the gap between actions and
visual observations. However, it presents challenges for the visual recognition abilities of MLLMs,
such as OCR, to accurately identify the provided marks, especially when they are densely packed.
Furthermore, although this approach seems promising for actions that do not require complicated
arguments, like C1ick () buttons on smartphones, it remains difficult to incorporate arguments by
embedding visual marks into the images, thus limiting its applicability in more generalized scenarios.

ActionVerse. To address the above challenges in action encoding for MLLMs, it is necessary to
solve two problems: first, to design a more efficient way to represent the action space, and second, to
embed the argument for each action. While the most straightforward approach is to design new action
tokenizers and train an action-based foundational MLLM (Lu et al., 2023)), this consumes too many
training resources. Inspired by recent success (Wang et al.,[2024) in efficiently adapting text-based
LLMs into multi-modal scenarios by tuning only a few projection layers to align non-textual features
with the text space of LLMs, we have designed a similar pipeline. Specifically, as shown in Figure
instead of using text descriptions or tagging the executable regions on images with numeric marks,
we encode the features of operable areas and incorporate task-specific special action tokens to form a
candidate pool of the current executable actions. By doing this, it simultaneously encodes the action
and corresponding arguments, which are further mapped into the original MLLM space by some
linear projection layers. Therefore, it becomes capable of embedding action candidates into the input
sequence, serving as a guidebook for producing expected action sequences without specifying lengthy
system prompts.

Taking a typical action-oriented task Vision Language Navigation (VLN) (Anderson et al., 2018)
as an example, we formally introduce the action encoding process. In VLN, an embodied robot
is asked to fulfill an instruction Z described in natural language in a simulated environment. The
robot itself can perceive the environment through equipped sensors, such as an RGB camera and
a depth camera. Based on these observations, the robot is able to make two actions, Move () and
Stop (), which constitute the action space A = {Move (), Stop () } of this task. Specifically, the
Move () action further takes a ViewpointID as input to teleport to a specific location in the simulator,
which is a simplified version of movement compared to the real world. The other action, Stop (),
should be taken when the agent decides it has navigated to the target position to finish the task, which
does not need any input arguments. We first build the task-specific action set D, which is a set of
special tokens that need to be added to the vocabulary of the foundational MLLM tokenizer. Each
special token matches a specific action in .A. There are two types of special tokens in D: the first
represents the actions that take arguments as input, e.g., Move (), which is represented by paired
tokens like <Move> and </Move>, while others represent actions that do not need inputs, such as
Stop (), which is represented by a single token like <Stop>. To encapsulate the Move () action’s
argument, which includes direction information in the VLN task, we use DINOv2 (Oquab et al.
2024) to extract visual features of navigable regions (see Figure [2). Each navigable viewpoint in the
panorama image of the current location is cropped into patches and sent into vision transformers to
extract vision features. These features are then translated into argument embeddings through linear
projection layers, inserted between the <Move> and </Move> tokens. Since the Stop () action
does not require any arguments in this task, there is no argument embedding for this special token.

Although we use the VLN task as an example here to explain the action encoding framework in
ActionVerse due to its simplicity, it is important to note that the proposed framework can be seamlessly
extended to more generalized scenarios. For example, the visual observations can be extended to
broader modalities such as depth and thermal graphs; the viewpoint regions can be transferred to
buttons on smartphones, robotic arms, etc.

Under review as a conference paper at ICLR 2025

System Prompt
; :
= Please go to the kitchen and wait next to the cupboard.

Observer

Planner

Move() Stop()

= To complete this
task, | need to -+

Take ACTION1.

Figure 3: Conversation-like interaction between the observer and the planner: at each time step, the
observer inputs observations along with the candidate actions, while the planner responds with a
reasoning process based on the observations and system prompts, proposing the actions to be taken.

3.1.2 CONVERSATION-LIKE ACTION INSTRUCTION-FOLLOWING TUNING

In control scenarios, the planner is typically expected to produce a sequence of actions in continuous
time steps until the goal is achieved. At each time step, the planner receives new observations
as inputs and is expected to propose the movement for the next time step. This is analogous to a
conversation between the observer and the planners, mirroring the nature of chat-based MLLMs.
Therefore, to efficiently train ActionVerse, particularly the projection layers and adaptors of the
foundational MLLMs, and to align with the newly introduced action space, we propose a pipeline to
build a conversation-like instruction dataset for action-based MLLMs, following recent practices in
the efficient training of MLLMs (Liu et al., 2023; |Wang et al., 2024; Zhu et al., [2023)).

Specifically, as shown in Figure 3] we break down the operation flow into a multi-round conversation.
At the beginning of each conversation, the instruction is set as the system prompt, which states the
target objective to be achieved by the agent. Then, a multi-round conversation follows between the
observer and planner. At each time step, the observer inputs the current observations as well as the
action candidates, while the planner responds to the observer with a reasoning process and proposes
the action to be taken. The conversation will continue until the planner terminates the interaction upon
achieving the goal. Following this pipeline, we build task-specific conversation-like action instruction
training sets, which are used to fine-tune the MLLMs and projection layers. To generate the detailed
reasoning processes of the planners and textual descriptions of observations in the conversations, we
employ the ChatGPT APIs, as detailed in the Appendix [A]

Moreover, to enhance the robustness of action sequence generation, we introduce disturbances in the
routes within the conversation datasets as a data augmentation strategy. For example, for a ground-
truth action sequence A->B->C, we might add an incorrect step from B to D, then self-correct back to
B and proceed to the target C: A->B->D->B->C. This method introduces an implicit self-reflection
capability that rectifies erroneous movements.

4 EXPERIMENTS

4.1 TASK SETTING

To evaluate the effectiveness of the proposed ActionVerse, we conducted experiments on two action-
based tasks: Room-to-Room Vision Language Navigation (R2R-VLN) (Anderson et al.,|[2018) and
Web Vision Language Navigation (Web-VLN) (Chen et al.| [2024b)). Implementation details including
the model structure, training hyperparameters, and training procedures, are provided in Appendix [B]

R2R-VLN is a classic action-based task where an embodied robot in a simulator is instructed to
navigate from the initial point to a specific location. At each position, the robot can observe the

Under review as a conference paper at ICLR 2025

environment through both an RGB camera and a depth camera. The action space of this task is
greatly simplified: the robot is allowed to teleport to any reachable viewpoint within a certain distance
without needing to consider obstacles or specific routes. When the robot observes that it has reached
the target location, it is expected to execute a stop action.

Web-VLN is a web-based version of the VLN task, simulating web browsing activities. Specifically,
given a language instruction, the agent’s goal is to navigate across different websites to find specific
elements. For example, it may need to search for a certain commodity on a shopping website.
Web-VLN shares a similar setting and evaluation metrics with R2ZR-VLN, though the action space
varies from moving to specific viewpoints among rooms to clicking specific buttons on websites.

Metrics. R2R-VLN and Web-VLN utilize similar metrics, including Trajectory Length (TL), which
measures the average distance the agent travels; Navigation Error (NE), indicating the average
distance from the agent’s final position to the target; Success Rate (SR), representing the percentage
of navigation attempts where the agent successfully reaches the target location within a 3-meter
margin of error; Oracle Success Rate (OSR), which tracks the agent’s success rate when stopping at
the closest point to the goal along its path; and Success rate weighted by Path Length (SPL), which
evaluates the balance between navigation accuracy and efficiency by adjusting the success rate based
on the ratio of the optimal path length to the agent’s actual path length.

4.2 QUANTITATIVE RESULTS

We compare our method with state-of-the-art techniques on both the R2R-VLN and Web-VLN
datasets. This includes both VLN expert models (Anderson et al., [2018; [Fried et al., 2018} |Tan et al.,
2019} Hao et al.} 2020; Hong et al., [2021}; [Chen et al.| 2021 2022) specifically designed for the tasks
and MLLM-as-agent methods (Zhou et al., [2024} Tan et al.,|[2019).

Table 1: Comparison with state-of-the-art methods on R2R-VLN task.

Method Category ~Method TL] NE| OSRtT SRt SPLt
Seq2Seq (Anderson et al.|[2018) 839 781 28 21 -
Speaker Follower (Fried et al.|[2018) - 6.62 45 35 -
EnvDrop (Tan et al.[[2019) 10.70 5.22 - 52 48

Expert Model PREVALENT (Hao et al.[[2020) 10.19 4.71 - 58 53
VLN-BERT (Hong et al.[[2021) 12.01 393 69 63 59
HAMT (Chen et al.[|2021) 1146 2.29 73 66 61
DuET (Chen et al.[[2022) 13.94 331 81 72 60

LLM-as-agent DuET (Init. LXMERT (Tan & Bansal|2019)) 22.03 9.74 7 1 0

NavGPT (Zhou et al.|[2024) 1145 6.46 42 34 29
MapGPT (GPT-4) (Chen et al.|[2024a) - 6.29 58 39 26
MapGPT (GPT-4v) (Chen et al.|[2024a) - 5.63 58 44 35
ActionVerse (ours) 1193 4.12 66 60 55

TableE]presents the quantitative results for the R2R-VLN task. Our method, ActionVerse, demon-
strates competitive performance compared to other LLM-as-agent methods, achieving superior results
in NE, OSR, SR, and SPL metrics. However, there remains a performance gap between our approach
and the expert models specifically tailored for this task. This gap highlights that significant improve-
ments are needed for LLM-as-agent methods to reach the proficiency of specialized expert models,
indicating potential issues and future research directions in this domain.

The expert models outperform LLM-based methods largely due to their meticulous design and
reliance on fine-grained information such as GPS signals, object-level annotations, and topological
mappings of rooms. These models are finely tuned to handle the specific challenges of VLN tasks,
enabling them to achieve higher accuracy. In contrast, ActionVerse follows a generic design for
action-based tasks without additional enhancements, relying solely on general visual observations
and the reasoning capabilities of MLLMs.

When compared with other LLM-as-agent methods, ActionVerse achieves better performance. This
improvement can be attributed to our alignment pipeline, which simultaneously encodes system
prompts, visual observation tokens, and action tokens within the input sequence. This design allows
for more fluent and coherent prediction of action sequences. Other agent-based methods, such as
NavGPT and MapGPT, convert visual observations into text descriptions before feeding them into

Under review as a conference paper at ICLR 2025

the LLM along with system prompts. This process inevitably loses rich visual information, resulting
in relatively lower performance.

Table 2: Comparison with state-of-the-art methods on Web-VLN task.

Method Category Method TL| OSRtT SRt SPLt
VLN-BERT (Hong et al.|{[2021) 696 18.62 18.62 18.14
Expert Model WebGUM (Chen et al.|[2021) 344 3178 3122 31.22
WebVLN-Net (Chen et al.|[2024b) 371 3954 3946 39.46
NavGPT (Zhou et al.|2024) (GPT-3.5-turbo) 4.98 1294 746 453
LLM-as-agent NavGPT (Zhou et al.|[2024) (GPT4) 543 21.89 1692 11.61
ActionVerse (ours) 5.62 41.18 40.02 39.78

Table 2] shows the results on the Web-VLN task. As this is a relatively new benchmark, existing meth-
ods are mostly adaptations of R2R-VLN-based models. Our method achieves the best performance
among the compared methods, indicating its effectiveness in this domain. The superior performance
of ActionVerse suggests that it can better handle the visual and navigational complexities of web
environments.

It is noteworthy that NavGPT, which utilizes ChatGPT APIs, obtains a relatively low score on this
task. This could be due to its approach of transferring images into text descriptions, which may
not fully capture the nuances of website layouts. This observation underscores the importance of
preserving rich visual information in VLN tasks and suggests that methods relying solely on text
descriptions may face limitations.

In summary, our proposed ActionVerse shows that with proper alignment and integration of visual
and action information, MLLMs can achieve competitive performance on VLN tasks. While there is
still room for improvement to match the specialized expert models, our findings encourage further
exploration into refining LLM-based methods to bridge this gap. Future work could focus on
incorporating domain-specific knowledge and fine-tuning strategies to enhance the capabilities of
LLM-as-agent methods in vision-and-language navigation tasks.

4.3 ABLATION STUDY

Table 3: Ablation study on R2R-VLN task.
Without Conversation-like Data

Method TL] NE| OSRT SRt SPL?T

Plain 11.03 4.71 57 52 50

+Depth 11.05 4.62 58 54 51
With Conversation-like Data

Method TLl NEJ OSRT SRt SPL?T

Plain 11.20 4.52 60 55 52

+Depth 11.21 4.46 62 57 53

+Disturbances 11.93 4.12 66 60 55

We conducted an ablation study on the R2R-VLN task to evaluate the impact of various components
in ActionVerse, including conversation-like data and different context lengths (Tables [3|and [).

Impact of Conversation-like Data. In Table |3] we compare the performance of the model with
and without conversation-like data. Without conversation-like data, the baseline model (Plain)
processes single-step decisions using only RGB images and action candidates as input. Adding depth
information (+Depth) improves the model’s performance slightly.

When conversation-like data is introduced, the model maintains a history of observations and actions,
which enables better multi-step decision-making. This improvement is reflected in enhanced perfor-
mance metrics across the board (Plain with conversation-like data). Adding depth tokens (+Depth)
further strengthens the model’s performance. Additionally, incorporating data augmentation through
disturbed routes (+Disturbances) enhances the model’s ability to self-correct navigation errors,
achieving the best results in NE, OSR, SR, and SPL metrics. However, this comes with a modest

Under review as a conference paper at ICLR 2025

increase in the average travel length (TL) as the agent backtracks to correct wrong movements,
leading to longer paths.

Table 4: Ablation study on R2R-VLN task.
Context Size TL] NEJ OSRf SRt SPL?T
512 11.23 4.60 64 54 53
1024 11.52 434 64 56 54
2048 (original) 11.93 4.12 66 60 55

Impact of Context Length. The model’s performance is also affected by the maximum context
length, as it directly impacts how much history information can be retained during task execution.
Our model operates with a context window of up to 2048 tokens, sufficient for most VLN tasks,
where the typical conversation round involves about 10 turns. To evaluate the effect of different
context lengths, we tested the model with shorter windows of 512 and 1024 tokens.

As shown in Table] performance declines with shorter context lengths, as vital information gets cut
off, leading to reduced success rates (SR) and navigation accuracy (NE). The 2048-token context
window retains the most historical information and achieves the best results across all metrics. This
demonstrates the importance of maintaining sufficient context, particularly for tasks requiring rich
historical reasoning, such as multi-turn navigation.

4.4 EFFICIENCY ANALYSIS

To demonstrate the efficiency of the proposed ActionVerse, we analyze the computational costs for
both training and inference, highlighting the advantages in terms of implementation, deployment, and
resource usage.

Training Efficiency. Our method leverages Vicuna (Chiang et al.l 2023) as the base LLM and
fine-tunes it using LoRA (Hu et al.| [2022)), a low-rank adaptation technique. This approach drastically
reduces the computational requirements compared to training action models from scratch, which
often demand large-scale resources. With our framework, the training can be completed on a setup of
4 Nvidia A100 GPUs in approximately one day, making it significantly more efficient than fine-tuning
or training large, general-purpose multi-modal models. Furthermore, techniques like mixed precision
training contribute to faster and more resource-effective training.

Inference Efficiency. For inference, we compare our method with NavGPT, an LLM-as-agent
approach that uses ChatGPT APIs in a zero-shot manner. NavGPT requires elaborate system prompts
of approximately 15,000 tokens per instruction, incurring a cost of around $0.75 per 10-round
navigation request. Additionally, it depends on continuous network access to external API servers,
which can be limiting in real-time applications. In contrast, ActionVerse eliminates the need for
complex, manually designed prompts by aligning action tokens directly with the model’s multi-modal
space. This allows the system to be deployed locally on a single Nvidia AS000 GPU after quantization,
significantly lowering the cost and making the model more accessible for real-time and on-device
applications.

5 CONCLUSION

In this paper, we introduced ActionVerse, a framework that efficiently adapts chat-based MLLMs into
action planners. Specifically, we designed a novel action encoding process alongside an alignment
technique capable of simultaneously encoding both action types and action arguments into the
foundational LLMs. By constructing a conversation-like instruction training set, we treated the action
planning task as a dialogue between observers and planners, thus enabling an implicit self-reflection
mechanism based on historical movements. We experimented with the proposed framework on two
action-oriented tasks, demonstrating promising results with minimal instruction tuning. We anticipate
that this work can serve as a baseline unified framework for a broader range of action-based tasks.
Future work involves extending the proposed framework to more action-oriented tasks, such as
smartphone app control, robotic system manipulation, and beyond.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. In NeurIPS, volume 35, pp. 23716-23736, 2022.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In CVPR, pp. 3674-3683, 2018.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gon-
zalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Herzog, Jasmine
Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski,
Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent
Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 2020.

Jiaqgi Chen, Binggian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K. Wong. Mapgpt:
Map-guided prompting with adaptive path planning for vision-and-language navigation, 2024a.

Jun Chen, Deyao Zhu, Xiaogian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023a.

Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang, Feng Zhu, and Rui Zhao. Shikra: Unleashing
multimodal Ilm’s referential dialogue magic. arXiv preprint arXiv:2306.15195, 2023b.

Qi Chen, Dileepa Pitawela, Chongyang Zhao, Gengze Zhou, Hsiang-Ting Chen, and Qi Wu. Webvln:
Vision-and-language navigation on websites. In AAAI, volume 38, pp. 1165-1173, 2024b.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan Laptev. History aware multimodal
transformer for vision-and-language navigation. NeurIPS, 34:5834-5847, 2021.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Think
global, act local: Dual-scale graph transformer for vision-and-language navigation. In CVPR, pp.
16537-16547, 2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. In NeurIPS, volume 35, pp. 30318-30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. In NeurIPS, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. In /CLR, 2023.

11

Under review as a conference paper at ICLR 2025

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower models
for vision-and-language navigation. NeurIPS, 31, 2018.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and Jianfeng Gao. Towards learning a generic
agent for vision-and-language navigation via pre-training. In CVPR, pp. 13137-13146, 2020.

Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. VIn bert: A
recurrent vision-and-language bert for navigation. In CVPR, pp. 1643-1653, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han.
Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv preprint
arXiv:2405.04532, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In CVPR, 2024.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,
and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with vision,
language, audio, and action. arXiv preprint arXiv:2312.17172, 2023.

Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, and Xiaojuan Qi. Groma: Localized visual
tokenization for grounding multimodal large language models. arXiv preprint arXiv:2404.13013,
2024.

Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter,
Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, et al. Mm1: Methods, analysis & insights
from multimodal 1lm pre-training. arXiv preprint arXiv:2403.09611, 2024.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
thought. In NeurIPS, volume 36, 2023.

OpenAl Chatgpt. https://openai.com/blog/chatgpt, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rab-
bat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Armand
Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision. TMLR,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=a68SUt6zFt.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
Wei. Kosmos-2: Grounding multimodal large language models to the world. arXiv preprint
arXiv:2306.14824, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018.

12

https://openai.com/blog/chatgpt
https://openreview.net/forum?id=a68SUt6zFt

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 2019.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-trained
language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587, 2023.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Natalie
Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In /CLR, 2023.

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. EMNLP, 2019.

Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate unseen environments: Back translation
with environmental dropout. NAACL, 2019.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Xinyu Wang, Bohan Zhuang, and Qi Wu. Modaverse: Efficiently transforming modalities with Ilms.
In CVPR, 2024.

Shengqgiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal
llm. arXiv preprint arXiv:2309.05519, 2023.

Jiange Yang, Wenhui Tan, Chuhao Jin, Keling Yao, Bei Liu, Jianlong Fu, Ruihua Song, Gangshan
Wu, and Limin Wang. Transferring foundation models for generalizable robotic manipulation,
2024.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

Jingkang Yang, Yuhao Dong, Shuai Liu, Bo Li, Ziyue Wang, Chencheng Jiang, Haoran Tan, Jiamu
Kang, Yuanhan Zhang, Kaiyang Zhou, et al. Octopus: Embodied vision-language programmer
from environmental feedback. arXiv preprint arXiv:2310.08588, 2023b.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian, Ji Zhang, Fei
Huang, and Jingren Zhou. mplug-owl2: Revolutionizing multi-modal large language model with
modality collaboration. In CVPR, 2024.

Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
arXiv preprint arXiv:2310.07704, 2023.

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers, Amanda Swearngin, Jeffrey Nichols, Yinfei
Yang, and Zhe Gan. Ferret-ui: Grounded mobile ui understanding with multimodal llms. arXiv
preprint arXiv:2404.05719, 2024.

Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning Liu, and Philip S Yu. Large language models
for robotics: A survey. arXiv preprint arXiv:2311.07226, 2023.

13

Under review as a conference paper at ICLR 2025

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users, 2023a.

Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu. Mm-1lms:
Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601, 2024a.

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, and
Joseph J Lim. Bootstrap your own skills: Learning to solve new tasks with large language model
guidance. In CoRL, 2023b. URL https://openreview.net/forum?id=a0mFRgadGO.

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
Zhizheng Zhang, and Wang He. Navid: Video-based vim plans the next step for vision-and-
language navigation. arXiv preprint arXiv:2402.15852, 2024b.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
navigation with large language models. In AAAI volume 38, pp. 7641-7649, 2024.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-

hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Appendix

A GENERATION OF CONVERSATION-LIKE INSTRUCTION DATA

In Section[3.1.2] we briefly introduced the conversation-like instruction-following dataset. Here, we
provide more details.

Listing 1: Conversation-like Action Instructions

I

2|

3 "system": {

4 "content": "You are ActionVerse, a multi-modal planner. Based
on the observer's input, first summarize the observations
with keywords. Then, describe the reasoning process to
achieve the target instruction: {instruction}. Finally,
propose an action from the candidate pool."

5 }

6 "conversations": [

7

8 "role": "observer",

9 "content": [

10 "observation": "path/to/observation",

11 "action_candidates": ["Move (viewpointl)™",

"Move (viewpoint2)", "Stop()"]

12]

13 1,

14 {

15 "role": "planner",

16 "content": ["Observation: 1. Mudroom entrance with a window

and light. 2. Spacious kitchen with stainless steel
appliances. 3. Dining area with pendant lights. 4.
pantry area with closed doors. \n Reasoning: To complete
the task, I would seek out the entryway that likely
leads to other rooms.\n Action: Move (viewpointl)"]

17 },

18

19]

20| }

21 |]

14

https://openreview.net/forum?id=a0mFRgadGO

Under review as a conference paper at ICLR 2025

Listing [T] provides an example of a generated conversation sample used for training the ActionVerse.
Specifically, there are two sections: the first part is the system content, which specifies the general
setting and the instruction. The conversations key stores the interaction between the observer and the
planner. The observer’s part contains the path to observations (in the navigation task, this refers to the
RPG panorama of the room) and the possible actions that can be taken at the position. For example,
there are two reachable points here, resulting in two Move () candidates and the Stop () action.
The planner’s part mainly includes three sections:

* Observation: Summarizes the main observations based on the observer’s input.
* Reasoning: Describes the reasoning process based on the instruction and observations.

» Proposed Action: Suggests the appropriate action.

The main challenge in generating such conversations lies in the planner’s part, particularly the detailed
descriptions of the scene and the reasoning process. To obtain these descriptions, we rely on the
ChatGPT-4v API. Specifically, we input a panorama image of the scene and ask GPT-4v to generate
detailed descriptions of the scenario.

Figure 4: Panorama image of the scene.

The GPT-4v API demonstrates a strong capability to generate accurate descriptions of the scenes,
which also contain directional information. Here is a sample output of Figure 4 from GPT-4v (we use
green to annotate the correct concepts that appear in the image, blue for directional information, and
red to highlight the incorrect output):

The image you’ve shared is a panoramic view of a vintage-style room, possibly from a historical
home or museum, designed to replicate the interior from a past era, likely the late 19th or early 20th
century. Here are the details:

* The room is spacious with high ceilings and features large, curtained windows that allow
plenty of natural light to enter, contributing to a welcoming ambiance.

* The walls are adorned with striped wallpaper, and the woodwork, including the door frames,
wainscoting, and crown molding, is dark-stained and highly detailed, indicative of the
craftsmanship from the period.

* Traditional furniture pieces, such as a patterned sofa, armchairs, a round center table with
a decorative vase, and a smaller side table with a vintage lamp, are arranged to create a
comfortable seating area.

* A mannequin dressed in a period-appropriate dress stands near a pump organ, suggesting
this room may be set up to reflect daily life from the era or for historical interpretation.

* To the left, there’s a display cabinet filled with various antique dishes and glassware.

* The central area of the room features a large, ornate chandelier that matches the room’s
vintage aesthetic.

* In the middle of the room, there’s a dining table set with a fine china tea set, as if prepared
for a midday tea.

* The right side of the room houses a fireplace with a mantelpiece decorated with period
items, including a small clock, a framed photograph, and other trinkets, further adding to
the authenticity of the setting.

* A gramophone sits in the corner, and various framed pictures and paintings are hung
throughout the room, completing the historical scene.

15

Under review as a conference paper at ICLR 2025

Overall, the room appears to be a meticulously curated space designed to give visitors a sense of
stepping back in time.

We found that the GPT-4v model can accurately describe most of the concepts present in a scene.
Based on these detailed descriptions, we used the GPT-4 API to summarize the observations into
short sentences. Following instructions, we generated the reasoning process to achieve the goal. This
method allowed us to create a complete conversation-like instruction training set for specific datasets
and tasks.

B IMPLEMENTATION DETAILS

In this section, we provide a comprehensive explanation of our training process, hyperparameters,
and model structures. The training of the proposed model follows a two-stage process:

* Single-Step Instruction Tuning: In this stage, we extracted approximately 28k single-step
instructions from the R2R navigation training set. Each sample corresponds to a panorama photo
of a specific location and a text instruction guiding the agent’s intended direction. We generated
observations and reasoning processes by providing the ground truth to ChatGPT, as detailed in
Appendix A.1 of the original paper. The ground truth action served as the expected output.

* Conversation-like Tuning: The second stage fine-tunes the model with conversation-like data to
enhance its chat capabilities and context understanding.

The entire training was conducted on a 4xA100 server over approximately one day. The detailed
training parameters are presented in the following table:

Configuration Single-Step Instruction Tuning Conversation-like Tuning
optimizer AdamW AdamW

epochs 1 1

effective batch size 32 32

learning rate 2e-5 le-5

weight decay le-4 0

resolution 448p 448p

training samples (#instructions) 28k 31k

trainable param. MLP, LLM(LoRA) MLP, LLM(LoRA)

Table 5: Training details.

Additionally, the LoRA configurations used for training are as follows:

Configuration Values

r 32
lora_alpha 1
lora_dropout 0.1

Table 6: LoRA Configurations.

The network components are detailed in the following table:

Vision Encoder ~ Text Encoder Action Encoder Projection Layer LLM
DINOv2 LLM Tokenizer DINOv2 MLP Vicuna-7b
Specifically:

* Vision Encoder: We use DINOV2 to encode the panorama scene image due to its capability with
higher resolution images.

* Text Encoder: We utilize the pretrained tokenizer from the foundation large language model to
encode the text instructions, following existing practices.

16

Under review as a conference paper at ICLR 2025

Action Encoder: For action tokens, we added task-specific special tokens into the LLM vocabulary,
such as <move> and <stop>. These tokens are encoded by the text encoder similar to other
words. For the image region features inserted in special action tokens like <move></move>, we
crop the regions from hierarchical feature pyramids of the last three layers from the image encoder.

Projection Layer: Following LLaVA, we use a multi-layer perceptron to project the vision
features into the foundation language model, initializing this projection layer using the LLaVA-1.5
pretrained model.

LLM We employ Vicuna-7b as our foundation language model.

The proposed ActionVerse framework consists of four main stages:

Encoding: Multi-modal information is encoded into tokens. This includes a DINOvV2 vision
encoder for image tokens, a pretrained LLM tokenizer for text tokens, and action tokens cropped
from DINOv2’s feature map based on action candidates.

LLM reasoning: Non-textual tokens are aligned with the LLM space using MLP-based projection
layers. All tokens, along with any historical information, are concatenated as input into the LLM.

Output detokenization: The output tokens from the LLM are detokenized into natural language,
containing observation, reasoning, and action, following training formats.

Execution: The action token is extracted and sent to the navigation task simulator to move the
agent or terminate.

Algorithm 1 ActionVerse Process

1: Input: Status S, Text Instruction 7, Action Candidates A, History H
2: Output: Status S’

3. Initialization Stage:

4: I < simulator.get_image(.S)

5: Encoding Stage:

6: Iioken, Atoken < DINOV2(I, A)

7: Tioken < tokenizer.tokenize(T")

8: LLM Reasoning Stage:

9: projr < MLP(Iioken)

10: proja < MLP(Aoken)

11: input < concat(H, Tioken, Projr, proja)
12: output + LLM(input)

13: Output Detokenization Stage:

14: response < tokenizer.detokenize(output)
15: Execution Stage:

16: A’ < extract_action(response)

17: S’ < simulator.make_effect(A’)

17

	Introduction
	Related Work
	Method
	ActionVerse
	Action Encoding
	Conversation-like Action Instruction-following Tuning

	Experiments
	Task Setting
	Quantitative Results
	Ablation Study
	Efficiency Analysis

	Conclusion
	Generation of Conversation-like Instruction Data
	Implementation Details

