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Abstract
Cardinality sketches are popular data structures
that enhance the efficiency of working with large
data sets. The sketches are randomized represen-
tations of sets that are only of logarithmic size
but can support set merges and approximate cardi-
nality (i.e., distinct count) queries. When queries
are not adaptive, that is, they do not depend on
preceding query responses, the design provides
strong guarantees of correctly answering a num-
ber of queries exponential in the sketch size k.
In this work, we investigate the performance of
cardinality sketches in adaptive settings and un-
veil inherent vulnerabilities. We design an attack
against the “standard” estimators that constructs
an adversarial input by post-processing responses
to a set of simple non-adaptive queries of size
linear in the sketch size k. Empirically, our attack
used only 4k queries with the widely used Hyper-
LogLog (HLL++) (Flajolet et al., 2007b; Heule
et al., 2013) sketch. The simple attack technique
suggests it can be effective with post-processed
natural workloads. Finally and importantly, we
demonstrate that the vulnerability is inherent as
any estimator applied to known sketch structures
can be attacked using a number of queries that is
quadratic in k, matching a generic upper bound.

1. Introduction
Composable sketches for cardinality estimation are data
structures that are commonly used in practice (Apache Soft-
ware Foundation, Accessed: 2024; Google Cloud, Accessed:
2024) and had been studied extensively (Flajolet & Martin,
1985; Flajolet et al., 2007a; Cohen, 1997; Bar-Yossef et al.,
2002; Kane et al., 2010; Nelson et al., 2014; Cohen, 2015;
Pettie & Wang, 2021). The sketch of a set is a compact
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representation that supports merge (set union) operations,
adding elements, and retrieval of approximate cardinality.
The sketch size is only logarithmic or double logarithmic in
the cardinality of queries, which allows for a significant effi-
ciency boost over linear size data structures such as Bloom
filters.

Formally, for a universe U of keys, and randomness ρ, a
sketch map U 7→ Sρ(U) is a mapping from sets of keys
U ∈ 2U to their sketch Sρ(U). Sketch maps are designed
so that for each U we can recover with high probability
(over ρ) an estimate of |U | by applying an estimatorM to
Sρ(U). A common guarantee is a bound on the Normalized
Root Mean Squared Error (NRMSE) so that for accuracy
parameter ϵ,

∀U, Eρ

[(
M(Sρ(U))− |U |

|U |

)2
]
≤ ϵ2 . (1)

The maps Sρ are designed to be composable: For a set
U and key u, the sketch Sρ(U ∪ {u}) can be computed
from Sρ(U) and u. For two sets U , V , the sketch Sρ(U ∪
V ) can be computed from their respective sketches Sρ(U),
Sρ(V ). Composability is a crucial property that makes
the sketch representations useful for streaming, distributed,
and parallel applications. Importantly, the use of the same
internal randomness ρ across all queries is necessary for
composability and therefore in typical use cases it is fixed
across a system.

The basic technique in the design of cardinality (distinct
count) sketches is to randomly prioritize the keys in the uni-
verse U through the use of random hash functions (specified
by ρ). The sketch of a set U keeps the lowest priorities of
keys that are in the set U . This provides information on
the cardinality |U |, since a larger cardinality corresponds to
the presence of lower priorities keys in U . This technique
was introduced by Flajolet & Martin (1985) for counting
distinct elements in streaming and as composable sketches
of sets by Cohen (1997). The core idea of sampling keys
based on a random order emerged in reservoir sampling
(Knuth, 1998), and in weighted sampling (Rosén, 1997).
Cardinality sketches are also Locality Sensitive Hashing
(LSH) maps (Indyk & Motwani, 1998) with respect to set
differences.

The specific designs of cardinality sketches vary and in-
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clude MinHash sketches (randomly map keys to priorities)
or domain sampling (randomly map keys to sampling rates).
With these methods, the sketch size dependence on the max-
imum query size |U | ≤ n is log n or log log n. The sketch
size (number of registers) needed for the NRMSE guarantee
of Equation (1) is k = O(ϵ−2). The sketch size needed for
the following (ϵ, δ) guarantee (confidence 1− δ of relative
error of ϵ)

∀U, Prρ

[∣∣∣∣M(Sρ(U))− |U |
|U |

∣∣∣∣ > ϵ

]
≤ δ (2)

is k = O(ϵ−2 log(1/δ)). This guarantee means that for any
U , almost any sampled ρ works well.

We model the use of the sketching map Sρ as an interaction
between a source, that issues queries Ui ⊂ U , and a query
response (QR) algorithm, that receives the sketch Sρ(Ui)
(but not Ui) applies an estimatorM and returns the estimate
M(Sρ(Ui)) on the cardinality |Ui|.

When randomized data structures or algorithms are invoked
interactively, it is important to make a distinction between
non-adaptive queries, that do not depend on ρ, and adap-
tive queries. In non-adaptive settings we can treat queries
as fixed in advance. In this case, we can apply a union
bound with the guarantee of Equation 2 and obtain that the
probability that the responses for all r queries are within a
relative error of ϵ, is at least 1− rδ. Therefore, the sketch
size needed to provide an (ϵ, δ)-guarantee on this ℓ∞ error
is k = O(ϵ−2 log(r/δ). In particular, the query response al-
gorithm can be correct on a number of non-adaptive queries
that is exponential in the sketch size until a set is encoun-
tered for which the estimate is off.

Many settings, however, such as control loops, optimiza-
tion processes, or malicious behavior, give rise to adaptive
inputs. This can happen inadvertently when a platform
such as Apache Software Foundation (Accessed: 2024) or
SQL (Google Cloud, Accessed: 2024) is used. In such cases,
information on the randomness ρ may leak from query re-
sponses, and the union bound argument does not hold. An
important question that arises is thus to understand the ac-
tual vulnerability of our specific algorithms in such settings.
Are they practically robust? How efficiently can they be
attacked? What can be the consequences of finding such an
adversarial input?

Randomized data structures designed for non-adaptive
queries can be applied in generic ways with adaptive queries.
However, the guarantees provided by the resulting (robust)
algorithms tend to be significantly weaker than those of
their non-robust counterparts. The straightforward approach
is to maintain multiple copies of the sketch maps (with in-
dependent randomness) and discard a copy after it is used
once to respond to a query. This results in a linear depen-
dence of the number of queries r in the size of the data

structure. Hassidim et al. (2020) proposed the robustness
wrapper method that allows for r2 adaptive queries using
Õ(r) sketch maps. The method uses differential privacy
to protect the randomness and the analysis uses generaliza-
tion (Dwork et al., 2015b; Bassily et al., 2021) and advanced
composition (Dwork et al., 2006). The quadratic relation is
known to be tight in the worst-case for adaptive statistical
queries with an attack (Hardt & Ullman, 2014; Steinke &
Ullman, 2015) designed using Fingerprinting Codes (Boneh
& Shaw, 1998). But these attacks do not preclude a tailored
design with a better utility guarantee for cardinality sketches
and also do not apply with “natural” workloads.

Contributions and Overview

We consider the known sublinear composable sketch struc-
tures for cardinality estimation, which we review in Sec-
tion 3. Our primary contribution is designing attacks that
construct a set U that is adversarial for the randomness
ρ. We make this precise in the sequel, but for now, an
adversarial set U results in cardinality estimates that are off.

• We consider query response algorithms that use the
“standard” cardinality estimators. These estimators op-
timally use the information in the sketch and report a
value that is a function of a sufficient statistic of the car-
dinality. In Section 4 we present an attack on these esti-
mators. The product of the attack is an adversarial set,
one for which the sketch Sρ(U) is grossly out of distri-
bution. The attack uses linearly many queries O(k) in
the sketch size and importantly, issues all queries in a
single batch. The only adaptive component is the post
processing of the query responses. This single-batch
attack suggests that it is possible to construct an adver-
sarial input by simply observing and post-processing a
normal and non-adaptive workload of the system. The
linear size of the attack matches the straightforward
upper bound of using disjoint components of the sketch
for different queries.

• We conduct an empirical evaluation of our proposed
attack on the HyperLogLog (HLL) sketch (Durand &
Flajolet, 2003; Flajolet et al., 2007a) with the HLL++
estimator (Heule et al., 2013). This is the most widely
utilized sketch for cardinality estimation in practice.
The results reported in Section 5 show that even with
a single-batch attack using 4k queries, we can consis-
tently construct adversarial inputs on which the estima-
tor substantially overestimates or underestimates the
cardinality by 40%.

• In Section 6 and Section 7, we present an attack that
broadly applies against any correct query response al-
gorithm. By that, we establish inherent vulnerability
of the sketch structures themselves. Our attack uses
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Õ(k2) adaptive queries. We show that multiple batches
are necessary against strategic query response algo-
rithms. This quadratic attack size matches the generic
quadratic upper bound construction of Hassidim et al.
(2020). The product of our attack is a small mask
set M that can poison larger sets U in the sense that
S(M ∪U) ≈ S(M), making any estimator ineffective.
The attack applies even when the query response is
for the more specialized soft threshold problem: De-
termine if the cardinality is below or above a range
of the form [A, 2A]. Moreover, it applies even when
the response is tailored to the attack algorithm and its
internal state including the distribution from which the
query sets are selected at each step. Note that this
strengthening of the query response and simplification
of the task only makes the query response algorithm
harder to attack.

Our attacks have the following structure: We fix a ground
set N of keys and issue queries that are subsets Ui ⊂ N . We
maintain scores to keys in N that are adjusted for the keys
in Ui based on the response. The design has the property
that scores are correlated with the priorities of keys and the
score is higher when the cardinality is underestimated. The
adversarial set is then identified as a prefix or a suffix of
keys ordered by their score.

The vulnerabilities we exposed may have practical signifi-
cance in multiple scenarios: In a non-malicious setting, an
adaptive algorithm or an optimization process that is applied
in sketch space can select keys that tend to be in overesti-
mated (or underestimates) sets, essentially emulating an
attack and inadvertently selecting a biased set on which the
estimate is off. In malicious settings, the construction of an
adversarial input set U can be an end goal. For example,
a system that collects statistics on network traffic can be
tricked to report that traffic is much larger or much smaller
than it actually is. A malicious player can poison the dataset
by injecting a small adversarial set M to the data U , for ex-
ample, by issuing respective search queries to a system that
sketches sets of search queries. The sketch Sρ(M ∪U) then
masks Sρ(U), making it impossible to recover an estimate
of the true cardinality of U . Finally, cardinality sketches
have weighted extensions (max-distinct statistics) and are
building blocks of sketches designed for a large class of con-
cave sublinear frequency statistics, that include cap statistics
and frequency moments with p ≤ 1 (Cohen, 2018; Cohen
& Geri, 2019; Jayaram & Woodruff, 2023), and thus these
vulnerabilities apply to these extensions.

2. Related Work
There are prolific lines of research on the effect of adap-
tive inputs that span multiple areas including dynamic

graph algorithms (Shiloach & Even, 1981; Ahn et al.,
2012; Gawrychowski et al., 2020; Gutenberg & Wulff-
Nilsen, 2020; Wajc, 2020; Beimel et al., 2021), sketching
and streaming algorithms (Mironov et al., 2008; Hardt &
Woodruff, 2013; Ben-Eliezer et al., 2021b; Hassidim et al.,
2020; Woodruff & Zhou, 2021; Attias et al., 2021; Ben-
Eliezer et al., 2021a; Cohen et al., 2022a;b), adaptive data
analysis (Freedman, 1983; Ioannidis, 2005; Lukacs et al.,
2009; Hardt & Ullman, 2014; Dwork et al., 2015a) and
machine learning (Szegedy et al., 2013; Goodfellow et al.,
2014; Athalye et al., 2018; Papernot et al., 2017).

Reviriego & Ting (2020) and Paterson & Raynal (2021) pro-
posed attacks on the HLL sketch with standards estimators.
The proposed attacks were in a streaming setting and uti-
lized many dependent queries in order to detect keys whose
insertion results in updates to the cardinality estimate. Our
attacks are more general: We construct single-batch attacks
with standard estimators and also construct attacks on these
cardinality sketches that apply with any estimator. The ques-
tion of robustness of cardinality sketches to adaptive inputs
is related but different than the well studied question of
whether they are differentialy private. Cardinality sketches
were shown to be not privacy preserving when the sketch
randomness or content are public (Desfontaines et al., 2019).
Other works (Smith et al., 2020; Pagh & Stausholm, 2021;
Knop & Steinke, 2023) showed that cardinality sketches are
privacy preserving, but this is under the assumption that the
randomness is used once. Our contribution here is design-
ing attacks and quantifying their efficiency. The common
grounds with privacy is the high sensitivity of the sketch
maps to removal or insertion of low priority key.

Several works constructed attacks on linear sketches, in-
cluding the Johnson Lindenstrauss Transform (Cherapanam-
jeri & Nelson, 2020), the AMS sketch (Ben-Eliezer et al.,
2021b; Cohen et al., 2022b), and CountSketch (Cohen et al.,
2022a;b). The latter showed that the standard estimators for
CountSketch and the AMS sketch can be compromised with
a linear number of queries and the sketches with arbitrary
estimators can be compromised with a quadratic number
of queries. The method was to combine low bias inputs
with disjoint supports and have the bias amplified, since
the bias increases linearly whereas the ℓ2 norms increases
proportionally to

√
r. This approach does not work with car-

dinality sketches, which required a different attack structure.
Combining disjoint sets on which the estimate is slightly
biased up will not amplify the bias. The common ground,
perhaps surprisingly, is that these fundamental and popular
sketches are all vulnerable with adaptive inputs and in a
similar manner: Estimators that optimally use the sketch re-
quire linear size attacks. Arbitrary correct estimators require
quadratic size attacks.
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3. Preliminaries
An attack is an interaction designed to construct a set that
is adversarial to the randomness ρ. An adversarial set can
be identified by trying out a large number of inputs. We
measure the efficiency of the attack by its size (number
of issued queries) and concurrency (number of batches of
concurrent queries).

A set U is adversarial for the randomness ρ if a sufficient
statistics for the cardinality that is computed from Sρ(U) is
very skewed with respect to its distribution under sampling
of ρ. That is, it has proportionally too few or two many low
priority keys.

Definition 3.1 (Sufficient Statistics). A statistic T on the
sketch domain S 7→ R is sufficient for the cardinality |U | if
it includes all information the sketch provides on the cardi-
nality |U |. That is, for each t, the conditional distribution of
the random variable Sρ(U) given T (Sρ(U)) = t, does not
depend on |U |.

3.1. Composable Cardinality Sketches

The underlying technique in all small space cardinality
sketches is to use random hashmaps h that assign “priorities”
to keys in U .1 The sketch of a set is specified by the prior-
ities of a small set of keys with the lowest priorities. This
information is related to the cardinality as smaller lowest
priorities in a subset U are indicative of larger cardinality.
Therefore cardinality estimates can be recovered from the
sketch. We describe several common designs. MinHash
sketches (see surveys (Cohen, 2008; 2023)) are suitable for
insertions only (set unions and insertions of new elements)
and are also suitable for sketch-based sampling. Domain
sampling has priorities that are discretized sampling rates
and has the advantage that the sketch can be represented
as random linear maps (specified by ρ) of the data vector
and therefore have support for deletions (negative entries in
sketched vectors) (Ganguly, 2007).

MinHash sketches Types of MinHash sketches

• k-mins (Flajolet & Martin, 1985; Cohen, 1997) k ran-
dom hash functions h1, . . . , hk that map each key
x ∈ U to i.i.d samples from the domain of the hash
function. The sketch Sρ(U) of a set U is the list
(minx∈U hi(x))i∈[k] of minimum values of each hash
function over the keys in U . The sketch distribution
for a subset U is Exp[|U |]k, a set of k i.i.d. exponen-
tially distributed random variables with parameter |U |.
The sum T (S) := ∥S∥1 is a sufficient statistics for
estimating the parameter |U |. An unbiased cardinality

1(Chakraborty et al., 2022) proposed a method for streaming
cardinality estimates that does not require hashmaps but the sketch
is not composable.

estimator is (k − 1)/T (S).

• Bottom-k (Rosén, 1997; Cohen, 1997; Bar-Yossef
et al., 2002) One random hash function h that maps
x ∈ U to i.i.d samples from a distribution. The
sketch {h(x) | x ∈ U}(1:k) stores the k smallest
hash values of keys x ∈ U . The kth smallest value
T (S) := {h(x) | x ∈ U}(k) is a sufficient statistics
for estimating |U |. When the distribution is U [0, 1],
the unbiased cardinality estimate is (k − 1)/T (S).

• k-partition (Flajolet et al., 2007a) One hash P :
U → [k] randomly partition keys to k parts. One
hash function h : U maps keys to i.i.d Exp[1].
The sketch includes the minimum in each part
(minx∈U |P (x)=i h(x))i∈[k].

Note that the choice of (continuous) distribution does not
affect the information content in the sketch. Variations of
these sketches store rounded/truncated numbers (HLL (Fla-
jolet et al., 2007a) stores a maximum negated exponent).
When studying vulnerabilities of query response algorithms,
the result is stronger when the full precision representation
is available to them.

The cardinality estimates obtained with these sketches have
NRMSE error (1) of 1/

√
k.

Definition 3.2 (bias of the sketch). We say that the sketch
Sρ(U) of a set U is biased up by a factor of 1/α when
T (Sρ(U)) ≤ αk/|U | and we say it is biased down by a
factor of α when T (Sρ(U)) ≥ (1/α)k/|U |.

For our purposes, α ≤ 1/2 would places the sketch at the
δ = e−Ω(k) tail of the distribution under sampling of ρ and
we say that U is adversarial for ρ.

Domain sampling These cardinality sketches can be ex-
pressed as discretized bottom-k sketches. Therefore vul-
nerabilities of bottom-k sketches also apply with domain
sampling sketches. The input is viewed as a vector of dimen-
sion |U| where the set U corresponds to its nonzero entries.
The cardinality |U | is thus the sparsity (number of nonzero
entries). The sketch map Sρ is a dimensionality reduction
via a random linear map (specified by ρ).

We sample the domain U = [n] with different rates p = 2−j .
For each rate, we collect a count cj (capped by k) of the
number of sampled keys from our set X . This can be done
by storing the first k distinct keys we see or (approximately)
by random hashing into a domain of size k and considering
how many cells were hit. A continuous version known
as liquid legions (Kreuter et al., 2020)) is equivalent to
a bottom-k sketch: Each key is assigned a random i.i.d.
priority (lowest sampling rate in which it is counted with
domain sampling) and we seek the sampling rate with which
we have k keys.
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Algorithm 1: Attack ‘‘standard’’ estimators

Input: ρ, n, r, T
Fix a set N of n keys // selected randomly

independently of ρ)
foreach key x ∈ N do // initialize

t[x]← 0
c[x]← 0

foreach i = 1, . . . , r do
U ← include each x ∈ N independently with prob 1

2

foreach key x ∈ U do // score keys
t[x]← t[x] + 1
c[x]← c[x] + T (Sρ(U))

return The keys in N ordered by average score A[x] = c[x]
t[x]

.

Specifying keys for the sketch Note that with all these
sketch maps, the sketch of a set U is specified by a small sub-
set U0 ⊂ U of the “lowest priority” keys in U . With k-mins
and k-partition sketches it is the keys argminx∈U{hi(x)}
for i ∈ [k]. With bottom-k sketches, it is the keys with
k smallest values in {hi(x)}x∈U . With domain sampling,
it is the keys with the highest sampling rate. Note that
|U0| = O(k)≪ |U | but Sρ(U0) = Sρ(U).

4. Attack on the “standard” estimators
The “standard” cardinality estimators optimally use the con-
tent in the sketch. They can be equivalently viewed as
reporting a sufficient statistics. We design a single-batch at-
tack described in Algorithm 1. The algorithm fixes a ground
set N of keys. For r queries, it samples a random subset
U ⊂ N where each u ∈ N is included independently with
probability 1/2. It receives from the estimator the value
of the sufficient statistics T (Sρ(U)) := 1/M(Sρ(U)) (we
use the inverse of the cardinality estimate). For each key
x ∈ N it computes a score A[x] that is the average value of
T (Sρ(U)) over all subsets where x ∈ U .

We show that for α > 0, an attack of size O(r/α2) produces
an adversarial set with sketch that is biased up by a factor α
(see Definition 3.2).

Theorem 4.1 (Utility of Algorithm 1). Consider Algo-
rithm 1 with k-mins or bottom-k sketches and T (S) being
the inverse of the cardinality estimate as specified in Sec-
tion 3.1. For α > 0, set the parameters n = Ω( 1

αk log(kr))

and r = O
(

k
α2

)
. Then with probability at least 0.99, the

sketch Sρ(Uα), where Uα ⊂ N is the of the αn lowest A[u]
scores, is biased up by a factor of Ω(1/α):

E [M(Uα)] = Θ(n) .

Our analysis extends to the case when the estimator reports
T (Sρ(U)) with relative error O(1/

√
k). That is, as long

as the estimates are sufficiently accurate (within the order

of the accuracy guarantees of a size k sketch), then O(k)
attack queries suffice.

Analysis Highlights The proof of Theorem 4.1 is pre-
sented in Appendix A. The high level idea is as follows. We
establish that scores are correlated with the priorities of keys
– the keys with lowest priorities have in expectation lower
scores. Therefore a prefix of the order will contain dispro-
portionately more of them and overestimate the cardinality
and a suffix will contain disproportionately fewer of them
and underestimate the cardinality.

We consider, for each key x ∈ N , the distributions of
T (Sρ(U)) conditioned on x ∈ U . We bound from above
the variance of these distributions and bound from below the
gap in the means of the distributions between the keys that
have the “lowest priority” in N and the bulk of other keys
in N . We then apply Chebyshev’s Inequality to bound the
number of rounds that is needed so that enough of the low
priority keys have lower average scores A[u] than “most”
other keys. A nuance we overcame in the analysis was
to handle the dependence of the sketches of the different
queries that are selected from the same ground set.

5. Experimental Evaluation
In this section, we empirically demonstrate the efficacy
of our proposed attack (Algorithm 1) against the Hyper-
LogLog (HLL) sketch (Durand & Flajolet, 2003; Flajolet
et al., 2007a) with the HLL++ estimator (Heule et al., 2013).
This is the most widely utilized sketch for cardinality es-
timation in practice. Given an accuracy parameter ϵ, the
HLL sketch stores k = 1.04ϵ−2 values that are the negated
exponents of a k-partition MinHash sketch (described in
Section 3.1).

The HLL++ estimator is a hybrid that was introduced in
order to improve accuracy on low cardinality queries. When
the sketch representation is sparse (fewer parts are popu-
lated), which is the case with cardinality lower than the
sketch size, HLL++ uses the sketch as a hash table and esti-
mates cardinality based on the number of populated parts.
This yields essentially precise values. When all parts are
populated, HLL++ uses an estimator based on the MinHash
property. We set the size of our ground set n≫ k to be in
this relevant regime.

We conduct two primary experiments: (i) For a fixed sketch
size, we analyze the efficacy of the attack with a varying
number of queries. (ii) For different sketch sizes, we evalu-
ate the effectiveness of the attack with the number of queries
linearly proportional to the sketch size. In the following
section, we will first provide a detailed explanation of the in-
gredients required for our experimental setup. Subsequently,
we will present the results of each experiment.

5



Cardinality Sketches under Adaptive Inputs

Experiment setup. To generate the data, we ensure that a
ground set with a size of at least 10·k is produced for a given
sketch size k. The size of the ground set must be at least
linearly larger than the sketch size to prevent the sketch from
memorizing the entire dataset. Given the desired size of the
ground set, we generate random strings using the English
alphabet of a fixed length, where the length is appropriately
chosen so that we can generate the desired size set with
different strings.

We utilize the open-source implementation of HLL++ algo-
rithm in github. In this implementation, the sketch is fixed
by giving the error rate ϵ ∈ (0, 1) and the sketch size k
for error rate ϵ is ⌈1.04/ϵ2⌉ (consistent with Flajolet et al.
(2007a)).

5.1. Efficacy with a varying number of queries

In this experiment we examine the impact of introducing
a variable quantity of queries. The attack is executed with
the same ground set for eight distinct query counts, where
each count is a power of 4. At the conclusion, the algorithm
generates scores and returns keys sorted in ascending order
according to their scores. Keys with high score correspond
to low-priority keys which are expected to appear when
the estimate is biased up. By including these keys in the
adversarial set, we basically can trick the estimator to think
that they are seeing a sketch of a large set. Similarly we
can construct adversarial input sets by including keys with
low scores and trick the estimator to think they are seeing a
sketch of a small set.

We present two sets of plots corresponding to how the es-
timator overestimates or underestimates as keys are incre-
mentally added to the adversarial input in the increasing or
decreasing order of their scores. We consider two different
error rates, ϵ = 0.1 with corresponding sketch size k = 104
and ϵ = 0.05, with corresponding sketch size k = 416. We
use the same ground set comprising of 5000 keys for both
sets of experiments. It is worth noting that the plot with one
query, which oscillates around the line y = x (denoted by
a dashed line), is close to a non-adversarial setting and we
can see that the estimates are within the desired specified
error of ϵ.

Figure 1 reports cardinality estimates when keys are added
incrementally in increasing order of their scores. We can see
that as we increase the number of queries, the gap between
estimated value and the y = x line (actual value) widens.
This gap indicate the overestimation error. Our algorithm
is able to construct more effective adversarial input with a
larger number of queries. However the gain in effectiveness
becomes marginal at some point. For example, for k = 104,
we already see good degree of error in estimation with
4096 queries. Figure 2 reports results when keys are added
incrementally in decreasing order of their scores. The gap

Figure 1. Attack on the HLL++ sketch and estimator, for varying
number of queries. Cardinality estimates for the prefix of keys
with lowest average score after r = 4i queries.

here corresponds to an underestimation error. We can see
that the attacks are more effective with more queries.

5.2. Efficacy of the attack with a varying sketch sizes

In this section, our focus is on examining HLL++ with
different sketch sizes, namely we consider six different error
rates corresponding to sketch sizes k = 2i for i ranging
from 6 to 11. For each sketch size k, we generate a ground
set of size n = 10 ∗ 10⌈log10(k)⌉ to ensure that the ground
set is larger than sketch size and the MinHash component
of the HLL++ estimator is used. In Figure 3, we report
the ratio of estimated size to actual size of the set for all
subsets constructed as a prefix of the order on keys, sorted
by increasing average scores A[x] for a fixed number of
queries set to 4k. In this cardinality regime, HLL++ is
nearly unbiased and we expect a ratio that is close to 1 when
the queries are not adversarial. However by running attacks
with enough number of queries (linear in the size of sketch),
we are able to identify keys with low-priority and then trick
the estimator to give an estimate for a set much higher than
the actual size.

6
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Figure 2. Attack on the HLL++ sketch and estimator, for varying
number of queries. Cardinality estimates for the prefix of keys
with largest average score after r = 4i queries.

6. Attack Setup Against Strategic Estimators
We design attacks that apply generally against any query re-
sponse (QR) algorithm. The attacks are effective even when
the specifics of the attack and the full internal state of the
attack algorithm are shared with the QR algorithm, includ-
ing the per-step distribution from which the attacker selects
each query. Moreover, we can even assume that the QR algo-
rithm is provided with an enhanced sketch that includes the
identities of the low priority keys that determined the sketch
and that after the QR algorithm responds to a query, the full
query set U is shared with it. The only requirement from
the QR algorithm is that it selects correct response maps
(with respect to the query distribution). Note that such a
powerful QR algorithm precludes attacks that use queries of
fixed cardinality, since the QR algorithm can simply return
that cardinality value without even considering the actual
input sketch.2

Moreover, the task of the QR algorithm is the following
problem that is more specialized than cardinality estimation:

Problem 6.1 (Soft Threshold A). Return 0 when |U | ≤ A
and 1 when |U | ≥ 2A.

2Our attack in Algorithm 1 is also precluded, since a fixed
response of n/2 satisfies the requirements (the cardinality is
Binom(n, p) and for n≫ k, all queries have size close to n/2).

Figure 3. Attack on HLL++ for varying sketch sizes while utilizing
queries of size 4 times the sketch size.

Remark 6.2. Soft Threshold can be solved via a cardinality
estimate with a multiplicative error of at most

√
2 by report-

ing 1 when the estimate is larger than
√
2A and 0 otherwise.

When estimates are computed from cardinality sketches
with randomness ρ that does not depend on the queries, a
sketch of size k = Θ(log(1/δ)) is necessary and suffices
for providing correct responses with probability ≥ 1− δ.

Attack Framework We describe the attack framework.
We specify attacks in Sections 7 and 8. We model the in-
teraction as a process between three parties: the Attacker,
the QR algorithm, and System. The attacker fixes a ground
set N from which it samples query sets. The product of
the attack is a subset M ⊂ N which we refer to as a mask.
The aim is for the mask to have size that is much smaller
than our query subset sizes and the property that for uni-
formly sampled U ⊂ N (|U | ≫ |M |) the information in
the sketch Sρ(M ∪ U) is insufficient to estimate |U |. The
attack proceeds in steps described in Algorithm 2:

Algorithm 2: Attack Interaction Step
• Attacker specifies a distribution D over the support 2N and
sends it to QR. It then selects a query U ∼ D and sends it to
System.
• QR selects a correct map with δ = O(1/

√
k) (as in

Definition 6.3) of sketches to probabilities
S 7→ π(S) ∈ [0, 1]. The selection may depend on the prior
interaction transcript and on D. If there is no correct map QR
reports failure and halts.
• System computes the sketch Sρ(U) and sends it to QR.
• QR sends Z ∼ Bern[π(Sρ(U))] to Attacker. Attacker
shares U and its internal state with QR.

Definition 6.3 (Correct Map). We say that the map π is
correct for A and δ and query distribution D if for any
cardinality value, over the query distribution for this value,
it returns a correct response to a soft threshold problem with

7
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A with probability at least 1− δ. That is,

for c < A, EU∼D||U |=c(π(Sρ(U))) ≤ δ

for c > 2A, EU∼D||U |=c(π(Sρ(U))) ≥ 1− δ .

Remark 6.4 (Many correct maps). There can be multiple
correct maps and QR may choose any one at any step. Since
the output when |U | ∈ [A, 2A] is not specified, the prob-
ability EU∼Dπ(Sρ(U)) of reporting Z = 1 may vary by
≈ PrU∼D[|U | ∈ [A, 2A]] + δ between correct maps.

Recall that our attack on the standard estimators (Algo-
rithm 1) issued a single batch of queries (all drawn from the
same pre-specified distribution D0). We show that multiple
batches are necessary to attack general QR algorithms:

Lemma 6.5 (Multiple batches are necessary). Any attack of
polynomial size in k on a soft threshold estimator must use
multiple batches.

Proof. When there is a single batch of r queries, we can
apply the standard estimator while accessing only a “compo-
nent” of the sketch that is of size k′ = O(log(r/δ)) and ob-
tain correct responses on all queries. This component is the
same k′ hash functions with k-mins sketches, only k′ parts
in a k-partition sketch, or the bottom-k′ values in a bottom-
k sketch. Since the query response only leaks information
on this component, the attacker is only able to compromise
that component in this single-batch attack. Therefore, an
exponential number of queries in k is needed in order to
construct an adversarial input in a single batch.

7. Single-batch attack on symmetric QR
Algorithm 3 specifies a single-batch attack. We establish
that the attack succeeds when we set the size r = Õ(k2)
and QR is constrained to be symmetric (see Definition 7.2).
In essence symmetry means that the QR algorithm does
not make a significant distinction between components
of the sketch. Symmetry excludes strategies that distin-
guish between components of the sketch as in the proof of
Lemma 6.5 but still allows for flexibility including randomly
selecting components of the sketch. In Section 8 we extend
this attack to an adaptive attack that works against any QR
algorithm.

The attacker initializes the scores C[x] ← 0 of all keys
x ∈ N in the ground set. Each query is formed by sam-
pling a rate q (as described in Algorithm 5) and selecting
a random subset U ⊂ N so that each key in N is included
independently with probability q. The attacker receives Z
and increments by Z the score C[x] of all keys x ∈ U . The
final product is the set M of keys with scores that are higher
by Ω̃(r/k) than the median score.

Theorem 7.1 (Utility of Algorithm 3 with symmetric maps).

Algorithm 3: Single Batch Attacker

Input: ρ, n, r
Select a set N of n keys // Randomly from U
A← n/16
foreach key x ∈ N do C[x]← 0 // initialize
for i = 1, . . . , r do

Sample q as specified in Algorithm 5 // using A,n
U ← includes each u ∈ N independently with prob q
send U // → System
receive Z // ← Symmetric Query Response
foreach key x ∈ U do C[x]← C[x] + Z // score

C ← median{C[N ]} // Compute median score

return M ← {x ∈ N | C[x] > C + Ω̃( r
k
)} // Mask

For α > 0, set n = Ω( 1
αk log(kr)) and r = Ω̃

(
k2

α2

)
. Then

Pr[(Sρ(M) = Sρ(N)) ∧ (|M | < αn)] ≥ 0.99.

7.1. Proof Overview

See Appendix B for details. We work with the rank-domain
representations of the sketches with respect to the ground
set N . This representation simplifies our analysis as it only
depends on the rank order of keys by their hash values
and by that factors out the hash values. The rank-domain
sketches SR(U) have the form (Y1, . . . , Yk) where Yi are
positive integers in [N ]. The sketch distribution over the
sampling of U for fixed q is that of k independent Geom[q]

random variables Yi. The sum T =
∑k

i=1 Yi is a sufficient
statistics for q from the sketch.

Definition 7.2 (symmetric map). A map π is symmetric if it
uses the rank-domain sketch as an unordered set and (ii) is
monotone in that if a sketch S1 ≤ S2 coordinate-wise then
then π(S1) ≥ π(S2).

We denote by N∗
0 the set of k lowest-rank (lowest priority)

keys. It includes the bottom-k keys with bottom-k sketches,
and the minimum hash key with respect to each of the k
hashmaps with k-mins and k-partition sketches. Note that
Sρ(N) = Sρ(N

∗
0 ). We denote by N ′ ⊂ N a set of keys

that are transparent – very unlikely to influence the sketch
if included in the attack subsets of Algorithm 3. We show
that a key in N∗

0 obtains in expectation a higher score than
a key in N ′ and use that to establish the utility claim:
Lemma 7.3 (separation with symmetric maps). Let π be
correct and symmetric (Definition 7.2). Then for any m ∈
N∗

0 and u ∈ N ′,

EU [π(Sρ(U)·1(m ∈ U)]−EU [π(Sρ(U)·1(u ∈ U)] = Ω̃(1/k)

Proof. See Appendix B.5. The gap only holds on average
for general correct maps (Lemma B.6) but holds per-key
when specialized to symmetric maps.

Proof of Theorem 7.1. The distribution of the score C[x] of

8
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Algorithm 4: Adaptive Attacker

Input: ρ, n, r
Select a set N of n keys // Randomly from U
A← n/16; M ← ∅
foreach key x ∈ N do C[x]← 0 // initialize
for i = 1, . . . , r do

Sample U ∼ D0 as in Algorithm 3
send M ∪ U to system
receive Z from QR
if failure then exit
foreach key x ∈ U do // score keys

C[x]← C[x] + Z

if C[x] ≥ median(C[N \M ]) +
√

i log(200nr)/2
then // test if score is high

M ←M ∪ {x}

send M,C,U to QR // share internal state

return M // Mask

all transparent keys u ∈ N ′ is identical and is the sum of r
independent Poisson random variables

∑r
i=1 Zi · Bern[qi].

From Lemma 7.3 E[C[m]] − E[C[u]] = Ω̃(r/k). For
x ∈ N∗

0 , the gap random variables of different steps may
be dependent, but the lower bound on the expected gap in
Lemma 7.3 holds even conditioned on transcript. Addition-
ally, the expected gap in each step is bounded in [−1, 1].
We can apply Chernoff bounds (Chernoff, 1952) to bound
the probability that a sum deviates by more than λ from its
expectation

Pr[|C[x]− E[C[x]]| ≥ λ] ≤ 2e−2λ2/r . (3)

Setting λ = cr/k separates a key in N∗
0 from a key

in N ′ with probability 1 − 2e−2c2r/k2

. Choosing r =
O(k2 log |N |) we get that the order separates out with high
probability all the keys N∗

0 from all the keys N ′. Note that
there are only Ω̃(k) non transparent keys N0 := N \ N ′.
Therefore with high probability N∗

0 ⊂ M ⊂ N0 and (we
can fix constants so that) |M | = Õ(k) ≤ αn. Since
N∗

0 ⊂M , Sρ(M) = Sρ(N).

8. Adaptive Attack on General QR
An attack on general QR algorithms is given in Algorithm 4.
The attacker maintains an initially empty set M ⊂ N of
keys which we refer to as mask. The query sets have the
form M ∪ U , where U ∼ D0 is sampled and scored as in
Algorithm 3. A key is added to M when its score separates
out from the median score. We establish the following:

Theorem 8.1 (Utility of Algorithm 4). For α > 0, set
n = Ω( 1

αk log(kr)) and r = Ω̃
(

k2

α2

)
. Then with proba-

bility at least 0.99, |M | < αn and there is no correct map
for the query distribution M ∪ U where U ∼ D0 is as in
Algorithm 3.

We overview the proof with details deferred to Appendix B.
The condition for adding a key to M is such that with prob-
ability at least 0.99, only N0 keys are placed in M , so
|M | ≤ αn (Claim B.9). If the QR algorithm fails, there is
no correct map for the distribution M ∪ D0.3 It remains to
consider the case where the attack is not halted.

Since the mask M is shared with QR “for free,” QR only
needs to estimate |U | (or q). But the sketch of M ∪ U
partially masks the sketch of U . The set of non-transparent
keys N ′

0 ⊂ N0 decreases as M increases. Additionally,
the effective sketch size k′ ≤ k is lower (that is, QR only
obtains k′ i.i.d Geom[q] random variables). Recall that
when k′ < log(k)/2, there is no correct map.

With general correct maps, we can only establish a weaker
average version of the score gap over N ′

0 keys. This allows
some N ′

0 keys to remain indistinguishable by score from
transparent keys. But what works in Attacker’s favour is
that in this case the score of other N0 keys must increase
faster. Let p(π,M, x) be the probability that key x is scored
with map π and mask M . The probability is the same for
all transparent keys x ̸∈ N ′

0 and we denote it by p′(π,M).
We establish (see Lemma B.8) that for a correct map π for
M ∪ D0 it holds that∑

x∈N ′
0

(p(π,M, x)− p′(π,M)) = Ω̃(1) .

Therefore, in r = Õ(k2) steps, the combined score advan-
tage of N0 keys is (concentrated well around) Õ(k2). But
crucially, any one key can not get too much advantage: once
C(x) − C = Ω̃(k) (where C is the median score), then
key x is placed in the mask M , exits N ′

0, and stops getting
scored. Therefore if QR does not fail, Ω̃(r/k) > |N0| keys
are eventually placed in M , which must include all N0 keys.

9. Conclusion
We demonstrated the inherent vulnerability of the known
composable cardinality sketches to adaptive inputs. We
designed attacks that use a number of queries that asymptot-
ically match the upper bounds: A linear number of queries
with the “standard” estimator and a quadratic number of
queries with any estimator applied to the sketch. Empiri-
cally, our attacks are simple and effective with small con-
stants. An interesting direction for further study is to show
that this vulnerability applies with any composable sketch
structure. On the positive side, we suspect that restrict-
ing the maximum number of queries that any one key can
participate in to sublinear (with standard estimators) or sub-
quadratic (with general estimators) would enhance robust-
ness.

3A situation of no correct maps can be identified by Attacker,
by tracking the error rate of QR, even if not declared by QR.
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A. Analysis of the Attack on the Standard Estimators
This section includes the proof of Theorem 4.1. We first consider k-mins sketches and T (S) = ∥S∥1. The modification
needed for bottom-k sketches are in Section A.4.

A.1. Preliminaries

The following are order statistics properties useful for analysing MinHash sketches. Let Xi ∼ Exp[1] for i ∈ [n] be i.i.d.
random variables. Then the distribution of the minimum value and of the differences between the i+ 1 and the ith order
statistics (smallest values) are independent random variables with distributions

∆1 := min
i∈[n]

Xi ∼ Exp[n]

∆i := {Xi}(i+1) − {Xi}(i) ∼ Exp[n− i] i > 1

Lemma A.1 (Chebyshev’s Inequality).
Pr
[
|Z − E[Z]| ≤ cσ2

]
≤ 1/c2 .

We set some notation: For a fixed ground set N and randomness ρ, for each hash function i ∈ [k], let mi
j ∈ N be the key

with the jth rank in the ith hashmap, that is, hi(m
i
j) is the jth smallest in {hi(u)}u∈N . Let

L := log2(rk) + 10

N i
0 := {mi

j}j≤L

N0 :=
⋃
i∈[k]

N i
0

N ′ := N \N0

be a rank threshold L, for i ∈ [k] the set N i
0 of keys with rank up to L in the ith hashmap, the set N0 that is the union of

these keys across hashmaps, and the set N ′ of the remaining keys in N .

We show that a choice of n = O(kL/α) ensures that certain properties that simplify our analysis hold. Our analysis applies
to the event that these properties are satisfied:

Lemma A.2 (Good draws). For n = Ω( 1
αk log(rk)), the following hold with probability at least 0.99:

p1 (property of ρ and N ) The keys mi
j for i ∈ [k] and j ≤ L are distinct.

p2 In a run of Algorithm 1, all r steps, for all i ∈ [k], U includes a key from N i
0.

p3 n ≥ 3kL/α

Proof. p3 is immediate. For p1, note that if we set n ≥ 2
pkL then the claim follows with probability 1 − p using the

birthday paradox. For p2, the probability that a random U does not include one of the L smallest values of a particular hash
function is 2−L. The probability that this happens for any of the k hash functions in any of the r rounds is at most rk2−L.
Substituting L = log(rk) + 10 we get the claim.

For fixed N and ρ, consider the random variable Z := T (Sρ(U)) over sampling of U and the contributions Zi of hash
function i ∈ [k] to Z.

Zi := min
x∈U

hi(x)

Z :=
∑
i∈[k]

Zi

For a key u ∈ N , we consider the random variables Zi | u ∈ U and Z | u ∈ U that are conditioned on u ∈ U . From
property p1 in Lemma A.2, the Zi are independent and are also independent when conditioned on u ∈ U .
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A.2. Proof outline

We will need the following two Lemmas (the proofs are deferred to Section A.3). Intuitively we expect EU [Z] to be lower
when conditioned on mi

1 ∈ U . We bound this gap from below. For fixed ρ and N , let

G(u, v) := EU |u∈U [Z]− EU |v∈U [Z] .

Lemma A.3 (Expectations gap bound). For each i ∈ [k] and δ > 0,

Prρ,N

[
min
u∈N ′

G(u,mi
1) ≥

δ

3n

]
≥ 1− δ .

We bound from above the maximum over u ∈ N of VarU |u∈U [Z]:
Lemma A.4 (Variance bound). For δ > 0 there is a constant c,

Prρ,N

[
max
u∈N

VarU |u∈U [Z] ≤ c

(
1 +

1√
kδ

)
k

n2

]
≥ 1− δ .

We use the following to bound the number r of attack queries needed so that the sorted order by average score separates the
minimum hash keys from the bulk of the keys in N ′:
Lemma A.5 (Separation). Let α > 0. Assume that

• minu∈N ′ G(u,mi
1) ≥M > 0

• maxu∈N VarU |u∈U [Z] ≤ V 2

• During Algorithm 1, the keys u ∈ N ′ and mi
1 are selected in U in at least r′ ≥ 2V 2

M2
1
α rounds each.

Then
Pr[A[u] > A[mi

1]] ≤ α

Proof. Consider the random variable
Y = A[u]−A[mi

1] .

From our assumptions:

E[Y ] ≥M

Var[Y ] ≤ 2V 2

r′

We get

Pr[Y < 0] ≤ Pr[|Y − E[Y ]| ≥ E[Y ]]

≤ Pr[|Y − E[Y ]| ≥M ]

= Pr[|Y − E[Y ]| ≥ 1√
α
· V√

2r′
] ≤ α

Using Chebyshev’s inequality.

We are now ready to conclude the utility proof of Algorithm 1:
Lemma A.6 (Utility of Algorithm 1). For α, δ > 0. Consider Algorithm 1 with r = O( k

δα ). Then for each i ∈ [r], with
probability 1− δ, for any u ∈ N ′ we have Pr[A[u] < A[mi

1]] ≤ α.

Proof. Consider a key mi
1 and a key u ̸∈ N ′. We bound the probability that A[u] < A[mi

1].

From Lemma A.4, with probability 1− 1/k we have V 2 = O
(

k
n2

)
. From Lemma A.3, for each i, with probability 1− δ,

we have M ≥ δ/(3n). If we choose r = 4r′ in Algorithm 1, then with high probability a key x ∈ N is selected to U at
least r′ times. The claim follows from Lemma A.5 by setting r′ = O( k

δα ) .
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We are now ready to conclude the proof of Theorem 4.1. Recall that a subset U of keys of size M = 2αn has T (S(U))
over random ρ concentrated around k/M with standard error

√
k/M). We now consider the prefix U of M = 2αn keys in

the sorted order by average scores. This selection has E[T (S(U))] ≤ (3α) · k/(2αn). To see this, note that (1− δ) of the
MinHash values are the same as in the sketch of N . Therefore they have expected value 1/n. The remaining δ fraction have
expected value 1/(2αn). Therefore E[Tρ(S(U))] = k((1− δ)/n+ δ/(2αn)) = (k/(2αn))(δ + (1− δ)2α). Therefore T
is a factor of 1/(δ + 2α) too small, which for small α and δ < α is a large constant multiplicative error.

A.3. Proofs of Lemma A.3 and Lemma A.4

For fixed ρ (and N ), for i ∈ [k] and j ∈ [N − 1], denote by

∆i
1 := min

x∈N
hi(x) ≡ hi(m

i
1)

∆i
j := {hi(x) | x ∈ N}(j+1) − {hi(x) | x ∈ N}(j) ≡ hi(m

i
j+1)− hi(m

i
j) for j > 1

the gap between the j and j + 1 smallest values in {hi(x)}x∈N .
Lemma A.7 (Properties of ∆i

j). The random variables ∆i
j i ∈ [k], j ∈ [L] over the sampling of N are independent with

distributions ∆i
j ∼ Exp[N − j]. This holds also when conditioning on properties p1 and p2 of Lemma A.2.

Proof. It follows from properties of the exponential distribution that over the sampling of ρ, ∆i
j ∼ Exp[N − j] are

independent random variables for i, j. Note that p1 and p2 are independent of the actual values of hi(m
i
j) and only depend

on the rank in the order.

We can now express the distribution of the random variable Zi in terms of ∆i
j : We have

For j ≥ 1, the probability that Zi =
∑j

ℓ=1 ∆
i
ℓ is 2−j/(1− 2−L). This corresponds to the event that U does not include the

keys mi
ℓ for ℓ < j and includes the key mi

j . The normalizing factor (1− 2−L) arises from property p2 in Lemma A.2. In
the sequel we omit this normalizing factor for brevity.

Zi =



∆i
1 with probability 2−1/(1− 2−L)

∆i
1 +∆i

2 with probability 2−2/(1− 2−L)

∆i
1 +∆i

2 +∆i
3 with probability 2−3/(1− 2−L)

...
∆i

1 + · · ·+∆i
j with probability 2−j/(1− 2−L)

...

We now consider Zi conditioned on the event mi
j ∈ U . Clearly for j = 1 (conditioning on the event mi

1 ∈ U ) we have
Zi ≡ ∆i

1. For j ≥ 1, we have Zi =
∑h

ℓ=1 ∆
i
ℓ with probability 2−h for h < j and Zi =

∑j
ℓ=1 ∆

i
ℓ with probability 2−j+1.

We bound the expected value of Zi conditioned on presence of a key u ∈ U .
Lemma A.8. (i) (Anti-concentration) For u ̸= mi

1, the random variable over sampling of ρ,N

G = max
u∈N\{mi

1}
EU |u∈U [Zi]− EU |mi

1∈U [Zi]

is such that for all c > 0, Prρ,N
[
G ≥ c

n−1

]
≥ e−2c.

(ii) (Concentration) For u ∈ N , the random variable

G = EU |u∈U [Zi]− EU |mi
j∈U [Zi]

is such that for c ≥ 1

Prρ,N

[
G ≥ c · 3

n2j

]
≤ ce−c .
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Proof. Per Lemma A.2 we are assuming the event (that happens with probability 1− δ that U includes a key u ∈ {mi
j}j∈[L]

for all i ∈ [k]. Therefore, for a key u ∈ N ′ it holds that

EU |u∈U [Zi] = EU [Zi] .

Recall that Zi | mi
1 ∈ U = ∆i

1. Otherwise (when not conditioned on mi
1 ∈ U or conditioned on presence of u ̸= mi

1)
Zi = ∆i

1 with probability 1/2 (when the random U includes mi
1) and Zi ≥ ∆i

1 +∆i
2 otherwise (when U does not include

mi
1). Thus,

EU [Zi]− EU |mi
1∈U [Zi] ≥ ∆i

2/2

EU |mi
j∈U [Zi]− EU |mi

1∈U [Zi] ≥ ∆i
2/2 for 1 < j ≤ L

Therefore for u ̸= mi
1,

G := EU |u∈U [Zi]− EU |mi
1∈U [Zi] ≥ ∆i

2/2 .

Since ∆i
2 ∼ Exp[N − 1], we have for all t > 0, Prρ[G ≥ t] ≥ e−2t/(n−1). This establishes claim (i).

For claim (ii), note that

EU |u∈U [Zi] ≤ E[Zi] ≤
L∑

ℓ=1

1

2ℓ−1
∆i

ℓ

EU |mi
j∈U [Zi] ≥

j−1∑
ℓ=1

1

2j−1
∆i

j

Therefore

G := EU |u∈U [Zi]− EU |mi
j∈U [Zi] ≤

L∑
ℓ=j

1

2ℓ−1
∆i

ℓ .

This is a sum of independent exponential random variables and recall that we assumed L ≤ n/3. Therefore, this is
stochastically smaller that the respective geometrically decreasing weighted sum of independent Exp[3/n] random variables.
It follows that

E [G] ≤ 3

n

L∑
ℓ=j

1

2ℓ−1
=

3

n2j

We apply an upper bound on the tail (Janson, 2017a) that shows that this concentrates almost as well as a single exponential
random variable: Pr[G ≥ tµ] ≤ te−t and obtain claim (ii)

Pr
[
G ≥ t

3

n2j

]
≤ te−t .

Lemma A.3 is a corollary of the first claim of Lemma A.8.

We now express a bound on the variance of Zi, also when conditioned on the presence of any key u ∈ U , for fixed ρ, N .

Lemma A.9. For fixed N , ρ, and any u ∈ N

VarU |u∈U [Zi],Var[Zi] = Θ(
∑
j

(3/2)−j(∆i
j)

2) .
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Proof.

VarU |u∈U [Zi],Var[Zi] ≤ E[Z2
i ] ≤

∑
j≥1

2−j

(
j∑

ℓ=1

∆i
j

)2

≤
∑
j≥1

2−jj

j∑
ℓ=1

(∆i
j)

2

=
∑
j≥1

∑
ℓ≥j

ℓ

2ℓ

 (∆i
j)

2 = Θ(
∑
j

(3/2)−j(∆i
j)

2)

Proof of Lemma A.4. Since the Zi, also when conditioned on u ∈ U , are independent (modulu our simplifying assumption
in Lemma A.2), it follows from Lemma A.9 that

VarU |u∈U [Z] = Θ

∑
i∈[k]

∑
j≥1

(3/2)−j(∆i
j)

2

 .

Therefore,

max
u∈N

VarU |u∈U [Z] = Θ

∑
i∈[k]

∑
j≥1

(3/2)−j(∆i
j)

2

 .

The right hand side
Y := max

u∈N
VarU |u∈U [Z]

is a random variable over ρ,N that is a a weighted sum of the squares of independent exponential random variables ∆i
j .

The PDF of a squared exponential random variable Exp[w]2 is w
2
√
t
e−w

√
t. The mean is 2

w2 and the variance is at most
E[t2] = 24/w4. Applying this, we obtain that E[Y ] = Θ(k/n2) and Var[Y ] = O(k/n4).

From Chebyshev’s inequality, Pr[Y − E[Y ] ≥ c ·
√
k/n2] = O(1/c2) and we obtain for any δ > 0 and a fixed constant c

Prρ,N

[
max
u∈N

VarU |u∈U [Z] ≥ c

(
1 +

1√
kδ

)
k

n2
]

]
≤ δ .

A.4. Attack on the Bottom-k standard estimator

The argument is similar to that of k-mins sketches. We highlight the differences. Recall that a bottom-k sketch uses a single
hash function h with the sketch storing the k smallest values S(U) := {h(x) | x ∈ U}(1:k). We use the kth order statistics
(kth smallest value) T (S) := {h(x) | x ∈ U}(k).

For fixed ρ and N , let mj ∈ N (j ∈ [n]) be the key with the jth smallest hashmap h(mj) = {h(x) | x ∈ U}(k). Define
∆1 := h(m1) and for j > 1, ∆j := h(mj)− h(mj−1).

Let R be the random variable that is the rank in N of the key with the kth smallest hashmap in U . The distribution of R is
the sum of k i.i.d. Geometric random variables Geom[q = 1/2]. We have E[R] = k/q and the concentration bound (Janson,
2017a) that for any c ≥ 1, Pr[R > cE[R]] ≤ ce−c.

Let L = 10 + 2 log r, N0 = {mj}j≤kL/q be the keys with the L(k/q) smallest hashmaps. Let N ′ = N \ N0 be the
remaining keys. We show that the attack separates with probability α a key with one of the bottom-k ranks and a key in N ′.

Assume n > 3|N0|. Assume that we declare failure when a set U selected by the algorithm does not contain k keys from
N0. The probability of such selection is at most Le−L < 0.01/r and at most 0.01 in all r steps.

For fixed ρ and N , consider the random variable Z := T (S(U)). The following parallels Lemma A.3 and Lemma A.9:

Lemma A.10. Fixing ρ,N ,
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(i) let
G(u, v) := EU |u∈U [Z]− EU |v∈U [Z]

For each i ≤ [k] and δ > 0,

Pr
[
min
u∈N ′

G(u,mi) ≥
δ

3n

]
≥ 1− δ .

(ii) for δ > 0 and some constant c,

Prρ,N

[
max
u∈N

VarU |u∈U [Z] ≤ c

(
1 +

1√
kδ

)
k

n2

]
≥ 1− δ .

Proof. (i) Note that Z = mR. When i ≤ [k], Z = mR+1. The gap is a weighted average of ∆j for j ∈ [R, |N0|]. These are
independent Exp[n− i] random variables with i ≤ n/3. The expected value is Θ(1/n) and the tail bounds are at least as
tight as for a single Exp[n/3] random variable.

(ii) We use the concentration bound on R to express the variance for fixed ρ,N as a weighted sum with total weight
Θ(k) and each of weight O(1) of independent squared exponential random variables. The argument is as in the proof of
Lemma A.9.

Using the same analysis, a subset U ⊂ N of size αn has T (S(U)) that in expectation has the k/α smallest rank in N with
standard error

√
k/α and normalized standard error 1/

√
k. The subset U selected as a prefix of the order generating in the

attack includes the (1− δ)k of the bottom-k in N and δk of the bottom in U . This means that in expectation T (S(U)) has
the kδ/α rank in N . That is, error that is (1/δ) factor off.

B. Analysis of Attack on General Query Response Algorithms
We include details for Sections 7 and 8.

B.1. Rank-domain representation of sketches

We use the rank domain representation SR
ρ (U) of the input sketch Sρ(U). This representation is defined for subsets of a

fixed ground set N . Instead of hash values, it includes the ranks in N of the keys that are represented in the sketch Sρ(U)
with respect to the relevant hashmaps.

Definition B.1. (Rank domain representation) For a fixed ground set N , and a subset U ⊂ N , the rank domain representation
SR
ρ (U) of a respective MinHash sketch has the form (Y1, . . . , Yk), where Yi ∈ N.

• k-mins sketch: For i ∈ [k] and j ≥ 1, let mi
j be the key x ∈ N with the jth smallest hi(x). For i ∈ [k], let

Yi := argminj m
i
j ∈ U . That is, Yi is the smallest j such that mi

j ∈ U .

• k-partition sketch: For i ∈ [k] and j ≥ 1, let mi
j be the key x ∈ N that is in part i with the jth smallest h(x). For

i ∈ [k], let Yi := argminj m
i
j ∈ U be the smallest rank in the ith part.

• Bottom-k sketch: For j ≥ 1, let mj be the key x ∈ N with the jth smallest h(x) value. Let the bottom-k keys in U be
mi1 ,mi2 , . . . ,mik where i1 < i2 < · · · < ik. We then define Y1 := ii and Yj := ij − ij−1 for 1 < j ≤ k.

Note that when the ground set N is available to the query response algorithm the rank domain and MinHash representations
are equivalent (we can compute one from the other).

The following properties of the rank domain facilitate a simpler analysis: (i) It only depends on the order induced by the
hashmaps and not on actual values and thus allows us to factor out dependence on ρ, (ii) It subsumes the information on q
(and |U |) available from Sρ(U) and (iii) It has a unified form and facilitates a unified treatment across the MinHash sketch
types.

The subsets U ∼ D0 generated by our attack algorithm selects a rate q and then sample U by including each x ∈ N
independently with probability q. We consider the distribution, which we denote by SR[q] of the rank domain sketch under
this sampling of U with rate q. We show that for a sufficiently large |N | = n, the rank domain representation is as follows:
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Lemma B.2 (distribution of rank-domain sketches). For δ > 0, q ∈ (0, 1), and an upper bound r on the attack size, let
L = log2(rk/δ)/q + 10, and assume n > 3kL/δ. Then for all the three MinHash sketch types, the distribution SR[q] is
within total variation distance δ from (Y1, . . . , Yk) that are k independent geometric random variables with parameter q:
Yi ∼ Geom[q].

Proof. As in Lemma A.2. Applying the birthday paradox with n > 3kL/δ, with probability at least 1 − δ: For k-mins
sketches, the keys mi

j for i ∈ [k] and j ∈ [L] are distinct. For k partition sketches, there are at least L keys assigned to each
part so the keys mi

j for i ∈ [k] and j ∈ [L] are well specified.

A sketch from SR[q] can be equivalently sampled using the following process:

• k-mins and k-partition sketch: For each i ∈ [k], process keys mi
j by increasing j ≥ 1 until Bern[q] and then set Yi = j.

• Bottom-k sketch: Process keys mj in increasing j ≥ 1 until we get Bern[q] k times.

We next establish that with our choice of n, with probability at least 1 − δ, in all of r sampling of U , the sketch SR(U)
is determined by the Lk smallest rank keys. Therefore there are sufficiently many keys for the sketch to agree with the
sampling k i.i.d. Geom[k] random variables.

For k-mins and k-partition sketches, the probability that for a single hashmap i ∈ [k] none of the L smallest rank is included
is at most (1− q)L. Taking a union bounds over k maps and r sampling and using that log(1/(1− q) ≈ q gives the claim.
With bottom-k sketches the requirement is that in all r selections, the kth smallest rank is O(kL).

Remark B.3. Estimating q from a sketch from SR[q] is a standard parameter estimation problem. A sufficient statistic T for
estimating q is T (SR) :=

∑k
i=1 Yi. Note the following properties:

• The distribution SR[q] does not provide additional information on the cardinality |U | beyond an estimate of q.

• The distribution of SR[q] conditioned on T (S) = τ is the same for all q (this follows from the definition of sufficient
statistic).

• The statistic T has expected value k/q, variance k(1− q)/q2, and single-exponential concentration (Janson, 2017b).

B.1.1. CONTINUOUS RANK DOMAIN REPRESENTATION

We now cast the distribution of SR[q] using a continuous representation SC . This is simply a tool we use in the analysis.

We can sample a sketch from SR[q] as follows

• Set the rate q′ := − ln(1− q)

• Sample a sketch SC(U) = (Y ′
1 , . . . , Y

′
k) where Y ′

i ∼ Exp[q′] are i.i.d

• Compute SR(U) from SC(U) using Yi ← 1 + ⌊Y ′
i ⌋+ 1 for i ∈ [k].

The correctness of this transformation is from the relation between a geometric Geom[q] and exponential Exp[q′] distribu-
tions:

Pr[Yi = t] = Pr[t− 1 ≤ Y ′
i < t] = e−q′(t−1) − e−q′t = (1− e−q′) · e−q′t = q · (1− q)t .

Note that we can always recover SR from SC but we need to know q in order to compute SC from SR:

Y ′
i ∼ Exp[− ln(1− q)] | Y ′

i ∈ [Yi − 1, Yi) .

Therefore being provided with the continuous representation only makes the query response algorithm more informed and
potentially more powerful. Also note that |q − q′| < q2/2.

A sufficient statistic for estimating q′ from SC [q′] is T ′ :=
∑k

i=1 Y
′
i . In the sequel we will work with SC and omit the

prime from q and T .
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Now note that the distribution of T := ∥SC [q]∥1 for a given k and q is the sum of k i.i.d. Exp[q] random variables. This is
the Erlang distribution that has density function for x ∈ [0,∞]:

fT (k, q;x) =
qk

(k − 1)!
xk−1e−qx (4)

The distribution has mean E[T ] = k/q, variance Var[T ] = k/q2 and exponential tail bounds (Janson, 2017a):

For c > 1: Pr[T ≥ c · k/q] ≤ 1

c
e−k(c−1−ln c) (5)

For c < 1: Pr[T ≤ c · k/q] ≤ e−k(c−1−ln c) (6)

Consider the random variable
Z = (T − E[T ])/

√
Var[T ] (7)

that is the number of standard deviations of T from its mean. We have T = k
q + Z ·

√
k
q and Z = qT√

k
−
√
k.

The domain of Z is [−
√
k,∞) and the density function of Z is

fZ(k; z) =

√
k

q

qk

(k − 1)!
(
k

q
+ z

√
k

q
)k−1e−q( k

q +z
√

k
q )

=

√
k

(k − 1)!
(k + z

√
k)k−1e−(k+z

√
k) (8)

This density satisfies ∫ ∞

−
√
k

fZ(k;x)xdx = 0 (9)∫ ∞

−
√
k

fZ(k;x)x
2dx = 1 (10)∫ √

k/4

−
√
k/4

fZ(k;x)x
2dx = Θ(1) (11)

for c ∈ (0, 1],
∫ 0

−c

fZ(k;x)dx,

∫ c

0

fZ(k;x)dx = Ω(c) (12)

for c ≥ 0, Pr[T ≥ c ·
√
k] ≤ 1

c+ 1
e−k·(c−ln(c+1)) (13)

for c ∈ (0, 1), Pr[T ≤ −c ·
√
k] ≤ e−k·(1−c−ln(1−c)) (14)

Note that T is available to the query response algorithm but q, and thus the value of Z are not available.

B.2. Correct maps

A map S 7→ π(S) ∈ [0, 1] maps sketches to the probability of returning 1. We require that the maps selected by QR are
correct as in Definition 6.3 with δ = O(1/

√
k).

For a map π and τ we denote by π(τ) the mean value of π(S) over sketches with statistic value T (S) = τ . This is well
defined since for the query distribution in our attacks D0 | q = q∗, even when conditioned on a fixed rate q∗, the distribution
of the sketch conditioned on T (S) = τ does not depend on q∗ (See Remark B.3).

We now specify conditions on the map π(τ) that must be satisfied by a correct π. A correct map may return an incorrect
output, when conditioned on cardinality, with probability δ. This means that there are correct maps with large error on
certain τ (since each cardinality has a distribution on τ ). We therefore can not make a sharp claim on π(τ) that must hold
for any τ in an applicable range. Instead, we make an average claim: For any interval of τ values that is wide enough to
include Ω(1) of the values for some cardinality value c ̸∈ [A, 2A], the average error of the mapping must be O(δ).
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Claim B.4. For any ξ > 0, there is c0 > 0 such that for any correct map π for A and δ ≤ c0/
√
k and τb > (1 + 0.1/

√
k)τa

it holds that {
1

τb−τa

∫ τb
τa

π(x)dx < ξ if τa > kn
A (1− 1/

√
k)

1
τb−τa

∫ τ

τ(1−a/
√
k)
π(x)dx > 1− ξ if τb < kn

2A (1 + 1/
√
k)

(15)

Proof. For a cardinality value c, the distribution of the statistic T conditioned on a cardinality value c is fT (k, c/n;x) (4).
With cardinality value c, it holds that Pr[T < kn/c] ≥ 1/e and Pr[T > kn/c] ≥ 1/e. Moreover, the density in the interval
kn
c [1− 0.1/

√
k, 1 + 0.1/

√
k] is Θ(1). It follows from the correctness requirement for cardinality value c = k/τ that there

exists c1 > 0 such that: {∫ τ(1+0.1/
√
k)

τ
π(x)dx < c1δ if τ > kn

A (1− 1/
√
k)∫ τ

τ(1−0.1/
√
k)
π(x)dx > 1− c1δ if τ < kn

2A (1 + 1/
√
k)

(16)

Therefore for τa > kn
A (1− 1/

√
k) ∫ τb

τa

π(x)dx ≤ 10
√
k(τb − τa)c1δ

and for τb < kn
2A (1 + 1/

√
k) ∫ τb

τa

π(x)dx ≥ (τb − τa) · (1− 10
√
kc1δ) .

Choosing c0 ≤ 10c1 establishes the claim.

For fixed q, the cardinality |U | of the selected U has distribution Binom(q, n). The n chosen for the attack is large enough
so that for all our r queries ||U | − qn|/(qn)≪ 1/

√
k. That is, the variation in |U | for fixed q is small compared with the

error of the sketch and |U | ≈ qn.

B.3. Relating Z and sampling probability of low rank keys

The sketch is determined by k keys that are lowest rank in U . We can view the sampling of U to the point that the sketch is
determined in terms of a process, as in the proof of Lemma B.2, that examines keys from the ground set N in a certain order
until the k that determine the sketch are selected. The process selects each examined key with probability q. For a bottom-k
sketch, keys are examined in order of increasing rank until k are selected. With k-mins and k-partition, keys in each part
(or hash map) are examined sequentially by increasing rank until there is selection for the part. For all sketch types, the
statistic value T corresponds to the number of keys from N that are examined until k are selected. This applies also with the
continuous representation SC .

We denote by N0 the set of keys that are examined with probability at least δc ≤ 1/(rk) when the rate is at least qa. We
refer to these keys as low rank keys. It holds that |N0| ≤ k ln(1/δc)/qa. For δc = 1/O(rk) we have |N0| = O(k log(rk)).
The remaining keys N ′ := N \N0 are unlikely to impact the sketch content and we refer to them as transparent.

With rate q, the probability that a certain key is included in U is q. We now consider a rate q and the inclusion probability
conditioned on the normalized deviation from the mean Z. Transparent keys have inclusion probability q. The low rank keys
N0 however have average inclusion probability that depends on Z. Qualitatively, we expect that when Z < 0, the inclusion
probability is larger than q and this increases with magnitude |Z|. When Z > 0, the inclusion is lower and decreases with
the magnitude. This is quantified in the following claim:
Claim B.5. Fix a rate q and ∆. Consider the distribution of U conditioned on Z = ∆. The average probability over N0

keys to be in U is q −∆
√
k

|N0| .

Proof. Equivalently, consider the distribution conditioned on T = 1
q (k +∆

√
k). The sampling process selects k keys after

examining T keys. The average effective sampling rate for the examined keys is qe = k/T . There are T keys out of N0 that
are processed with effective rate qe and the remaining keys in N0 have effective rate q.
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Averaging the effective rate over the T = 1
q (k + Z

√
k) processed keys and the remaining N0 keys we obtain

T · qe + (|N0| − T ) · q
|N0|

=
T · k

T + (|N0| − T ) · q
|N0|

=
k + (|N0| − (k+∆

√
k

q )) · q
|N0|

= q −∆

√
k

|N0|

B.4. Scoring probability gap

For a map π, let p′(π) be the score probability, over the distribution of q and Z, of a key in N ′. Let p0(π) be the average
over N0 of the score probability of keys in N0.

Let fλ(x) be the density function of the selected rate, described by Algorithm 5. Note that the selected rate is in the interval

Algorithm 5: Sample rate

Input: A, n
ω ← n

2A

ωa ← 1
2
ω; ωb ← 5

2
ω // range of inverse rates

D ∼ U [0, ω/4]

ω∗
a ← ωa +D; ω∗

b ← ω∗
a + 7

4
ω // range of sampled inverse rate

return q ∼ 1
U [ω∗

a,ω∗
b
]

q ∈ [ 1
ωb
, 1
ωa

] = 1
ω · [

2
5 , 2] =

A
n · [

4
5 , 4].

For each transparent key, the score probability is:

p′(π) =

∫ qb

qa

∫ ∞

−
√
k

π(
k

q
(1 + z/

√
k))fZ(k; z) · dz · q · fλ(q)dq (17)

On average over the low-rank keys N0 using Claim B.5 it is

p0(π) =

∫ qb

qa

∫ ∞

−
√
k

π(
k

q
(1 + z/

√
k))fZ(k; z) ·

(
q − z

√
k

|N0|

)
· dz · fλ(q)dq (18)

For a correct map π (as in Definition 6.3), we express the gap between p′(π) and p0(π). Note that we bound the gap without
assuming much on the actual values, as they can highly vary for different correct π.

Lemma B.6 (Score probability gap). Consider a step of the algorithm and a correct map π (see Remark 6.4). Then

p0(π)− p′(π) = Ω

(
1

|N0|

)
= Ω

(
1

k log(kr)

)
In the remaining part of this section we present the proof of Lemma B.6. We will need the following claim, that relates ∆
and scoring probability.
Claim B.7. For |∆| <

√
k/4∫ qb

qa

π(
k

q
(1 +

∆√
k
)) · fλ(q)dq =

∫ qb

qa

π(
k

q
) · fλ(q)dq +Θ(

∆√
k
)

Proof. Using the distribution specified in Algorithm 5, for any g():∫ qb

qa

g(q)fλ(q)dq = − 4

ω

∫ ω/4

0

dD
4

7ω

∫ ωa+D+ 7
4ω

ωa+D

g(1/x)dx (19)
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We use w∗
a = ωa +D and w∗

b = ωa +D + 7
4ω and get

∫ ω∗
b

ω∗
a

π(kx(1 +
∆√
k
)) · dx =

1

1 + ∆√
k

∫ ω∗
b ·(1+∆/

√
k)

ω∗
a·(1+∆/

√
k)

π(ky)dy (change variable x to y = x(1 + ∆/
√
k))

=
1

1 + ∆√
k

(∫ ω∗
b

ω∗
a

π(kx)dx−
∫ ω∗

a(1+∆/
√
k)

ω∗
a

π(kx)dx+

∫ ω∗
b (1+∆/

√
k)

ω∗
b

π(kx)dx

)

Therefore,4 ∫ ω∗
b

ω∗
a

(
π(kx(1 +

∆√
k
))− π(kx)

)
· dx = (20)

= −Θ(
∆√
k
) ·
∫ ω∗

b

ω∗
a

π(kx)dx−Θ(1) ·
∫ ω∗

a(1+∆/
√
k)

ω∗
a

π(kx)dx+Θ(1) ·
∫ ω∗

b (1+∆/
√
k)

ω∗
b

π(kx)dx

= −O(
∆√
k
ω)−Θ(1) ·

∫ ω∗
a(1+∆/

√
k)

ω∗
a

π(kx)dx+Θ(1) ·
∫ ω∗

b (1+∆/
√
k)

ω∗
b

π(kx)dx .

The last equality follows using ∫ ω∗
b

ω∗
a

π(kx)dx ∈ [0, ω∗
b − ω∗

a] = [0,
7

4
ω]

∫ qb

qa

π(
k

q
(1 +

∆√
k
)) · fλ(q)dq −

∫ qb

qa

π(
k

q
) · fλ(q)dq = (21)

=

∫ qb

qa

(
π(

k

q
(1 +

∆√
k
))− π(

k

q
)

)
· fλ(q)dq =

=
4

ω

∫ ω/4

0

dD
4

7ω

∫ ωa+D+ 7
4ω

ωa+D

(
π(kx(1 +

∆√
k
))− π(kx)

)
dx (Using (19))

= −O(
∆√
k
)−Θ(

1

ω2
) ·
∫ ω/4

0

dD

∫ ω∗
a(1+∆/

√
k)

ω∗
a

π(kx)dx+Θ(
1

ω2
) ·
∫ ω/4

0

dD ·
∫ ω∗

b (1+∆/
√
k)

ω∗
b

π(kx)dx (Apply (20))

We now separately bound terms5:∫ ω/4

0

dD

∫ ω∗
a(1+∆/

√
k)

ω∗
a

π(kx)dx ≥
∫ ω/4

0

dD

∫ ωa+D+ ∆√
k
ωa

ωa+D

π(kx)dx

=

∫ ∆√
k
(ω/4)

0

dW

∫ ωa+ω/4+W

ωa+W

π(kx)dx

≥ ∆√
k

ω

4
· ω
4
(1− ξ) = Θ(ω2 ∆√

k
) (Using Claim B.4) (22)∫ ω/4

0

dD

∫ ω∗
a(1+∆/

√
k)

ω∗
a

π(kx)dx ≤
∫ ω/4

0

dD

∫ ωa+D+ ∆√
k
(ωa+ω/4)

ωa+D

π(kx)dx

=

∫ ∆√
k
(ωa+ω/4)

0

dW

∫ ωa+ω/4+W

ωa+W

π(kx)dx = O(ω2 ∆√
k
) (23)

4Note that ∆ can be negative. In which case in order to streamline expressions we interpret the asymptotic notation O(c∆) as
−O(c|∆|).

5Argument for negative ∆ is similar
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Combining (22) and (23) we obtain that∫ ω/4

0

dD

∫ ω∗
a(1+∆/

√
k)

ω∗
a

π(kx)dx = Θ(ω2 ∆√
k
) (24)

We next bound the last term:∫ ω/4

0

dD

∫ ω∗
b (1+∆/

√
k)

ω∗
b

π(kx)dx =

∫ ω/4

0

dD

∫ ( 9
4ω+D)·(1+∆/

√
k)

9
4ω+D

π(kx)dx

≤
∫ ω/4

0

dD

∫ ( 9
4ω+D)+ 5

2ω· ∆√
k

9
4ω+D

π(kx)dx

=

∫ 5
2ω· ∆√

k

0

dW

∫ 9
4ω+W+ω/4

9
4ω+W

π(kx)dx

≤ 5

2
ω

∆√
k
· ω
4
ξ =

5

8

∆√
k
ω2ξ (Apply Claim B.4) (25)

We substitute (24) and (25) in (21) to conclude the proof, choosing a small enough constant ξ.

Proof of Lemma B.6. We express the difference between the average score probability of a key in N0 (18) and the score
probability of a key in N ′ (17):

p0(π)− p′(π) =

√
k

|N0|
·
∫ qb

qa

∫ ∞

−
√
k

π(
k +
√
kz

q
)fZ(k; z) · zdz · fλ(q)dq

=

√
k

|N0|
·
∫ ∞

−
√
k

(∫ qb

qa

π(
k +
√
kz

q
) · fλ(q)dq

)
· fZ(k; z) · zdz (26)

We separately consider Z in the range Iin := [−
√
k/4,
√
k/4] and Z outside this range in Iout = [−

√
k,
√
k/4]∪ [

√
k/4,∞]

For outside the range we use that
∫ qb
qa

π(k+
√
kz

q ) · fλ(q)dq ∈ [0, 1] and tail bounds on fZ(k; z) (13) (14) and get:

√
k

|N0|

∫
Iout

(∫ qb

qa

π(
k +
√
kz

q
) · fλ(q)dq

)
· fZ(k; z) · zdz =

1

N0
e−Ω(k) Apply (14) and (13) (27)

For inside the range we apply Claim B.7:
√
k

|N0|
·
∫
Iin

(∫ qb

qa

π(
k +
√
kz

q
) · fλ(q)dq

)
· fZ(k; z) · zdz

=

√
k

|N0|
·
(∫

Iin

(∫ qb

qa

π(
k

q
) · fλ(q)dq

)
· fZ(k; z) · zdz +

∫
Iin

Θ(
z√
k
) · fZ(k; z) · zdz

)
Claim B.7

=

√
k

|N0|
·
(∫ qb

qa

π(
k

q
) · fλ(q)dq ·

∫
Iin

fZ(k; z) · zdz +
1√
k
·Θ
(∫

Iin

fZ(k; z) · z2dz
))

=

√
k

|N0|
·
(∫ qb

qa

π(
k

q
) · fλ(q)dq · 0 +

1√
k
·Θ(1)

)
Using (9) and (11)

=

√
k

|N0|
· 1√

k
·Θ(1) = Θ(

1

|N0|
) (28)

The statement of the Lemma follows by combining (27) and (28) in (26).
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B.5. The case of symmetric estimators

The proof of Lemma 7.3 (gap for symmetric estimators) follows as a corollary of the proof of Lemma B.6.

Proof of Lemma 7.3. For symmetric maps (Definition 7.2) keys in N0 that have lower rank can only have higher scoring
probabilities. That is, when j < j′, the score probability of mi

j is no lower than that of mi
j′ . With bottom-k sketches, the

score probability of mj is no lower than that of mj′ . In particular, the keys in N∗
0 have the highest average score among

keys in their components. Additionally, there is symmetry between components. Therefore, the average score of each of the
k lowest rank keys in N∗

0 is no lower than the average over all N0 keys:

EU [π(Sρ(U) · 1(m ∈ U)] ≥ p0(π) .

Therefore using Lemma B.6:

EU [π(Sρ(U) · 1(m ∈ U)]− p′(π) ≥ p0(π)− p′(π)− EU [π(Sρ(U) · 1(u ∈ U)] = Ω(
1

k log(kr)
) .

B.6. Analysis details of the Adaptive Algorithm

We consider the information available to the query response algorithm. The mask M is shared with the query response and
hence it only needs to estimate the cardinality of (the much larger) set U . The mask keys M hide information in Sρ(U)
and make additional keys trasparent. For k-partition and k-mins sketches, keys mi

h where h > argminj m
i
j ∈ M are

transparent. For bottom-k sketches, we see only k′ ≤ k bottom ranks in U if k − k′ keys from M have lower ranks.

We describe the sampling of S(U ∪M) (for given mask M ) as an equivalent process that examines keys in U in order,
selecting each examined key with probability q, until the sketch is determined. This process generalizes the process we
described for the case without a mask in the proof of Lemma B.2:

• Bottom-k sketch: Set counter c← k. t ∼ Geom[q]. Process keys mj in increasing j:

1. If mj ∈M decrease c and output mj . If c = 0 halt.
2. If mj ̸∈M then decrease t.

(a) If t = 0 output mj , decrease c, and sample a new t ∼ Geom[q]. If c = 0 halt.

• k-mins and k-partition sketches: For i ∈ [k] let hi ← argminℓ m
i
ℓ ∈ M . Sample t ∼ Geom[q]. Process i ∈ [k] in

order:

1. If h is defined and h ≤ t then t← t− h+ 1 and continue with next i.
2. If h is undefined or h > t then output mi

t, sample new t ∼ Geom[q]. Continue to next i.

The QR algorithm has the results of the process which yields k′ ≤ k i.i.d. Geom[q] random variables. As keys are added to
the mask M the information we can glean on q from the sketch, that corresponds to the number k′ of Geom[q] samples we
obtain, decreases. As the mask gets augmented, the number of keys, additional keys in N0 become transparent in the sense
that they have probability smaller than δ/r to impact the sketch if included in U . With k-mins and k-partition sketches keys
where mi

j > hi become transparent. With bottom-k sketches keys mj where j > mini(k− |M ∩ (mℓ)ℓ<j |) ·Ω(log(r)) are
transparent. These keys are no longer candidates to be examined by the process above. We denote by N ′

0 ⊂ N0 the set of
keys that remain non-transparent. It holds that |N ′

0| = O(k′ log(kr), where k′ is the mean k′ with our current mask. When
k′ = O(log(kr)) becomes too small (see Remark 6.2), there are no correct maps and the algorithm halts and returns M .

Let p(π,M, x) be the probability that key x is scored with map π and mask M . The probability is the same for all transparent
keys x ̸∈ N ′

0 and we denote it by p′(π,M).

Lemma B.8 (Score probability gap with mask). Let π be a correct map for M ∪ D0. Then∑
x∈N ′

0

(p(π,M, x)− p′(π,M)) = Ω

(
1

log(kr)

)
.
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Proof. The proof is similar to that of Lemma B.6 applies with respect to k′ and using that |N ′
0| = O(k′ log(kr).

Claim B.9. With probability at least 0.99, no transparent keys are placed in M .

Proof. First note that all transparent keys have the same score distribution (see proof of Theorem 7.1). Keys get placed
in M when their score separates from the median score in N \M . Note that since nearly all keys (except α fraction) are
transparent, the median score is the score of a transparent key. From Chernoff bounds (3) the probability that a transparent
key at a given step is placed in M (and deviates by more than λ from its expectation) is < 1/(100nr). Taking a union bound
over all steps and transparent keys we obtain the claim.
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