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ABSTRACT

Given a pair of partially overlapping source and target images and a keypoint in
the source image, the keypoint’s correspondent in the target image can be either
visible, occluded or outside the field of view. Local feature matching methods are
only able to identify the correspondent’s location when it is visible, while humans
can also hallucinate (i.e. predict) its location when it is occluded or outside the field
of view through geometric reasoning. In this paper, we bridge this gap by training
a network to output a peaked probability distribution over the correspondent’s
location, regardless of this correspondent being visible, occluded, or outside the
field of view. We experimentally demonstrate that this network is indeed able
to hallucinate correspondences on pairs of images captured in scenes that were
not seen at training-time. We also apply this network to an absolute camera pose
estimation problem and find it is significantly more robust than state-of-the-art
local feature matching-based competitors.

1 INTRODUCTION

Establishing correspondences between two partially overlapping images is a fundamental computer
vision problem with many applications. For example, state-of-the-art methods for visual localization
from an input image rely on keypoint matches between the input image and a reference image (Sattler
et al., 2018; Sarlin et al., 2019; 2020; Revaud et al., 2019). However, these local feature matching
methods will still fail when few keypoints are covisible, i.e. when many image locations in one
image are outside the field of view or become occluded in the second image. These failures are
to be expected since these methods are pure pattern recognition approaches that seek to identify
correspondences, i.e. to find correspondences in covisible regions, and consider the non-covisible
regions as noise. By contrast, humans explain the presence of these non-covisible regions through
geometric reasoning and consequently are able to hallucinate (i.e. predict) correspondences at those
locations. Geometric reasoning has already been used in computer vision for image matching, but
usually as an a posteriori processing (Fischler & Bolles, 1981; Luong & Faugeras, 1996; Barath &
Matas, 2018; Chum et al., 2003; 2005; Barath et al., 2019; 2020). These methods seek to remove
outliers from the set of correspondences produced by a local feature matching approach using only
limited geometric models such as epipolar geometry or planar assumptions.

Contributions. In this paper we tackle the problem of correspondence hallucination. In doing so
we seek to answer two questions: (i) can we derive a network architecture able to learn to hallucinate
correspondences? and (ii) is correspondence hallucination beneficial for absolute pose estimation?
The answer to these questions is the main novelty of this paper. More precisely, we consider a network
that takes as input a pair of partially overlapping source/target images and keypoints in the source
image, and outputs for each keypoint a probability distribution over its correspondent’s location in the
target image plane. We propose to train this network to both identify and hallucinate the keypoints’
correspondents. We call the resulting method NeurHal, for Neural Hallucinations. To the best of
our knowledge, learning to hallucinate correspondences is a virgin territory, thus we first provide an
analysis of the specific features of that novel learning task. This analysis guides us towards employing
an appropriate loss function and designing the architecture of the network. After training the network,
we experimentally demonstrate that it is indeed able to hallucinate correspondences on unseen pairs
of images captured in novel scenes. We also apply this network to a camera pose estimation problem
and find it is significantly more robust than state-of-the-art local feature matching-based competitors.
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Figure 1: Visual correspondence hallucination. Our network, called NeurHal, takes as input a
pair of partially overlapping source and target images and a set of keypoints detected in the source
image, and outputs for each keypoint a probability distribution over its correspondent’s location in
the target image. When the correspondent is actually visible, its location can be identified; when
it is not, its location must be hallucinated. Two types of hallucination tasks can be distinguished:
1) if the correspondent is occluded, its location has to be inpainted; 2) if it is outside the field of
view of the target image, its location needs to be outpainted. NeurHal generalizes to scenes not seen
during training: For each of these three pairs of source/target images coming from the test scenes of
ScanNet (Dai et al., 2017) and MegaDepth (Li & Snavely, 2018), we show (top row) the source image
with a small subset of keypoints, and (bottom row) the target image with the probability distributions
predicted by our network and the ground truth correspondents: ◦ for the identified correspondents, +
for the inpainted ones, and × for the outpainted correspondents.

2 RELATED WORK

To the best of our knowledge, aiming at hallucinating visual correspondences has never been done
but the related fields of local feature description and matching are immensely vast, and we focus here
only on recent learning-based approaches.

Learning-based local feature description. Using deep neural networks to learn to compute local
feature descriptors have shown to bring significant improvements in invariance to viewpoint and
illumination changes compared to handcrafted methods (Csurka & Humenberger, 2018; Gauglitz
et al., 2011; Salahat & Qasaimeh, 2017; Balntas et al., 2017). Most methods learn descriptors locally
around pre-computed covisible interest regions in both images (Yi et al., 2016; Detone et al., 2018;
Balntas et al., 2016a; Luo et al., 2019), using convolutional-based siamese architectures trained with
a contrastive loss (Gordo et al., 2016; Schroff et al., 2015; Balntas et al., 2016b; Radenović et al.,
2016; Mishchuk et al., 2017; Simonyan et al., 2014), or using pose (Wang et al., 2020; Zhou et al.,
2021) or self (Yang et al., 2021) supervision. To further improve the performances, (Dusmanu et al.,
2019; Revaud et al., 2019) propose to jointly learn to detect and describe keypoints in both images,
while Germain et al. (2020) only detects in one image and densely matches descriptors in the other.

Learning-based local feature matching. All the methods described in the previous paragraph
establish correspondences by comparing descriptors using a simple operation such as a dot product.
Thus the combination of such a simple matching method with a siamese architecture inevitably
produces outlier correspondences, especially in non-covisible regions. To reduce the amount of
outliers, most approaches employ so-called Mutual Nearest Neighbor (MNN) filtering. However, it
is possible to go beyond a simple MNN and learn to match descriptors. Learning-based matching
methods (Zhang et al., 2019; Brachmann & Rother, 2019; Moo Yi et al., 2018; Sun et al., 2020;
Choy et al., 2020; 2016) take as input local descriptors and/or putative correspondences, and learn to
output correspondences probabilities. However, all these matching methods focus only on predicting
correctly covisible correspondences.
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Jointly learning local feature description and matching. Several methods have recently pro-
posed to jointly learn to compute and match descriptors (Sarlin et al., 2020; Sun et al., 2021; Li et al.,
2020; Rocco et al., 2018; 2020). All these methods use a siamese Convolutional Neural Network
(CNN) to obtain dense local descriptors, but they significantly differ regarding the way they establish
matches. They actually fall into two categories. The first category of methods (Li et al., 2020; Rocco
et al., 2018; 2020) computes a 4D correlation tensor that essentially represents the scores of all the
possible correspondences. This 4D correlation tensor is then used as input to a second network that
learns to modify it using soft-MNN and 4D convolutions. Instead of summarizing all the information
into a 4D correlation tensor, the second category of methods (Sarlin et al., 2020; Sun et al., 2021)
rely on Transformers (Vaswani et al., 2017; Dosovitskiy et al., 2020; Ramachandran et al., 2019;
Caron et al., 2021; Cordonnier et al., 2020; Zhao et al., 2020; Katharopoulos et al., 2020) to let the
descriptors of both images communicate and adapt to each other. All these methods again focus
on identifying correctly covisible correspondences and consider non-covisible correspondences as
noise. While our architecture is closely related to the second category of methods as we also rely
on Transformers, the motivation for using it is quite different since it is our goal of hallucinating
correspondences that calls for a non-siamese architecture (see Sec.3).

Visual content hallucination. (Yang et al., 2019) proposes to hallucinate the content of RGB-D
scans to perform relative pose estimation between two images. More recently (Chen et al., 2021)
regresses distributions over relative camera poses for spherical images using joint processing of both
images. The work of (Yang et al., 2020; Qian et al., 2020; Jin et al., 2021) shows that employing
a hallucinate-then-match paradigm can be a reliable way of recovering 3D geometry or relative
pose from sparsely sampled images. In this work, we focus on the problem of correspondence
hallucination which unlike previously mentioned approaches does not aim at recovering explicit
visual content or directly regressing a camera pose. Perhaps closest to our goal is Cai et al. (2021) that
seeks to estimate a relative rotation between two non-overlapping images by learning to reason about
“hidden” cues such as direction of shadows in outdoor scenes, parallel lines or vanishing points.

3 OUR APPROACH

Our goal is to train a network that takes as input a pair of partially overlapping source/target images
and keypoints in the source image, and outputs for each keypoint a probability distribution over its
correspondent’s location in the target image plane, regardless of this correspondent being visible,
occluded, or outside the field of view. While the problem of learning to find the location of a
visible correspondent received a lot of attention in the past few years (see Sec. 2), to the best of our
knowledge, this paper is the first attempt of learning to find the location of a correspondent regardless
of this correspondent being visible, occluded, or outside the field of view. Since this learning task
is virgin territory, we first analyze its specific features below, before defining a loss function and a
network architecture able to handle these features.

3.1 ANALYSIS OF THE PROBLEM

The task of finding the location of a correspondent regardless of this correspondent being visible,
occluded, or outside the field of view actually leads to three different problems. Before stating those
three problems, let us first recall the notion of correspondent as it is the keystone of our problem.

Correspondent. Given a keypoint pS ∈ R2 in the source image IS, its depth dS ∈ R+, and the
relative camera pose RTS ∈ SO(3), tTS ∈ R3 between the coordinate systems of IS and the target
image IT, the correspondent pT ∈ R2 of pS in the target image plane is obtained by warping pS:
pT := ω (dS,pS, RTS, tTS) := KTπ

(
dSRTSK

−1
S pS + tTS

)
, where KS and KT are the camera calibration

matrices of source and target images and π (u) := [ux/uz,uy/uz, 1]
T is the projection function. In

a slight abuse of notation, we do not distinguish a homogeneous 2D vector from a non-homogeneous
2D vector. Let us highlight that the correspondent pT of pS may not be visible, i.e. it may be occluded
or outside the field of view.

Identifying the correspondent. In the case where a network has to establish a correspondence
between a keypoint pS in IS and its visible correspondent pT in IT, standard approaches, such as
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comparing a local descriptor computed at pS in IS with local descriptors computed at detected
keypoints in IT, are applicable to identify the correspondent pT.

Outpainting the correspondent. When pT is outside the field of view of IT, there is nothing to
identify, i.e. neither can pT be detected as a keypoint nor can a local descriptor be computed at that
location. Here the network first needs to identify correspondences in the region where IT overlaps
with IS and realize that the correspondent pT is outside the field of view to eventually outpaint it (see
Fig. 1). We call this operation "outpainting the correspondent" as the network needs to predict the
location of pT outside the field of view of IT.

Inpainting the correspondent. When pT is occluded in IT, the problem is even more difficult
since local features can be computed at that location but will not match the local descriptor computed
at pS in IS. As in the outpainting case, the network needs to identify correspondences in the region
where IT overlaps with IS and realize that the correspondent pT is occluded to eventually inpaint the
correspondent pT (see Fig. 1). We call this operation "inpainting the correspondent" as the network
needs to predict the location of pT behind the occluding object.

Let us now introduce a loss function and an architecture that are able to unify the identifying,
inpainting and outpainting tasks.

3.2 LOSS FUNCTION

The distinction we made between the identifying, inpainting and outpainting tasks come from the
fact that the source image IS and the target image IT are the projections of the same 3D environment
from two different camera poses. In order to integrate this idea and obtain a unified correspondence
learning task, we rely on the Neural Reprojection Error (NRE) introduced by (Germain et al., 2021).
In order to properly present the NRE, we first recall the notion of correspondence map.

Correspondence map. Given IS, IT and a keypoint pS in the image plane of IS, the correspondence
map CT of pS in the image plane of IT is a 2D tensor of size HC × WC such that CT (pT) :=
p (pT|pS, IS, IT) is the likelihood of pT being the correspondent of pS. The likelihood can only be
evaluated for pT ∈ ΩCT where ΩCT is the set of all the pixel locations in CT. Here, we implicitly defined
that the likelihood of pT falling outside the boundaries of CT is zero. In practice, a correspondence
map CT is implemented as a neural network that takes as input pS, IS and IT, and outputs a softmaxed
2D tensor. A correspondence map CT may not have the same number of lines and columns than IT
especially when the goal is to outpaint a correspondence. Thus, in the general case, to transform a
2D point from the image plane of IT to the correspondence plane of CT, we will need another affine
transformation matrix KC. Let us highlight that this likelihood is obtained using the visual content of
IS and IT only.

Neural Reprojection Error. The NRE (Germain et al., 2021) is a loss function that warps a
keypoint pS into the image plane of IT and evaluates the negative log-likelihood at this location. In
our context, the NRE can be written as:

NRE (pS, CT, RTS, tTS, dS) := − ln CT (xT) where xT = KCω (dS,pS, RTS, tTS) . (1)

In general, xT does not have integer coordinates and the notation ln CT (xT) corresponds to performing
a bilinear interpolation after the logarithm. For more details concerning the derivation of the NRE,
the reader is referred to Germain et al. (2021).

The NRE provides us with a framework to learn to identify, inpaint or outpaint the correspondent
of pS in IT in a unified manner since Eq. (1) is differentiable w.r.t. CT and there is no assumption
regarding covisibility. The main difficulty to overcome is the definition of a network architecture able
to output a consistent CT being given only pS, IS and IT as inputs, i.e. the network must figure out
whether the correspondent of pS in IT can be identified or has to be inpainted or outpainted.

3.3 NETWORK ARCHITECTURE

The analysis from Sec. 3.1 and the use of the NRE as a loss (Sec. 3.2) call for:
• a non-siamese architecture to be able to link the information from IS with the information from IT
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to outpaint or inpaint the correspondent if needed;
• an architecture that outputs a matching score for all the possible locations in IT as well as loca-
tions beyond the field of view of IT as the network could decide to identify, inpaint or outpaint a
correspondent at these locations.

To fulfill these requirements, we propose the following: Our network takes as input IS and IT as well
as a set of keypoints {pS,n}n=1...N in the source image plane of IS. A siamese CNN backbone is
applied to IS and IT to produce compact dense local descriptor maps HS and HT. In order to be able to
outpaint correspondents in the target image plane, we pad HT with a learnable fixed vector λ. This
padding step allows to initialize descriptors at locations outside the field of view of IT. We note γ the
relative output-to-input correspondence map resolution ratio.

The dense descriptor maps HS and HT,pad, and the keypoints {pS,n}n=1...N are then used as inputs
of a cross-attention-based backbone F with positional encoding. This part of the network outputs a
feature vector dS,n for each keypoint pS,n and dense feature vectors DT,pad of the size of HT,pad. This
cross-attention-based backbone allows the local descriptors HS and HT,pad to communicate with each
other. Thus, during training, the network will be able to leverage this ability to communicate, to learn
to hallucinate peaked inpainted and outpainted correspondence maps.

{pS,n}n=1...N

HS

HT

Paddingλ

{dS,n}n=1...N

DT,pad

{CT,,n}n=1...N

*  softmax

HT,pad

F
...

Figure 2: Overview of NeurHal: See text for details.

The correspondence map CT,n of pS,n

in the image plane of IT is computed
by applying a 1×1 convolution to
DT,pad using dS,n as filter, followed by
a 2D softmax.

An overview of our architecture, that
we call NeurHal, is presented in
Fig. 2. In practice, in order to
keep the required amount of memory
and the computational time reason-
ably low, the correspondence maps
{CT,n}n=1...N have a low resolution,
i.e. for a target image of size 640 ×
480, we use a CNN with an effective stride of s = 8 and consequently the resulting correspondence
maps (with γ = 50%) are of size 160×120. Producing low resolution correspondence maps prevents
NeurHal from predicting accurate correspondences. But as we show in the experiments, this low
resolution is sufficient to hallucinate correspondences and have an affirmative answer to both ques-
tions: (i) can we derive a network architecture able to learn to hallucinate correspondences? and (ii)
is correspondence hallucination beneficial for absolute pose estimation? Thus, we leave the question
of the accuracy of hallucinated correspondences for future research. Additional details concerning
the architecture are provided in Sec. C.1 of the appendix.

3.4 TRAINING-TIME

Given a pair of partially overlapping images (IS, IT), a set of keypoints with ground truth depths
{pS,n, dS,n}n=1...N as well as the ground truth relative camera pose (RTS, tTS), the corresponding
sum of NRE terms (Eq. 1) can be minimized w.r.t. the parameters of the network that produces the
correspondence maps. Thus, we train our network using stochastic gradient descent and early stopping
by providing pairs of overlapping images along with the aforementioned ground truth information.
Let us also highlight that there is no distinction in the training process between the identifying,
inpainting and outpainting tasks since the only thing our network outputs are correspondence maps.
Moreover there is no need for labeling keypoints with ground truth labels such as "identify/visible",
"inpaint/occluded" or "outpaint/outside the field of view". Additional information concerning the
training are provided in Sec. C.2 of the appendix.

3.5 TEST-TIME

At test-time, our network only requires a pair of partially overlapping images (IS, IT) as well as
keypoints {pS,n}n=1...N in IS, and outputs a correspondence map CT,n in the image plane of IT for
each keypoint, regardless of its correspondent being visible, occluded or outside the field of view.

5



Published as a conference paper at ICLR 2022

Sc
an

N
et

2 4 6 8 10 12
0  

0.01  

0.02  

0.03  

0.04  

Outpainted Inpainted Identified

0 50 100 150 200 250 300
0.00  

0.05  

0.10  

0.15  

M
eg

ad
ep

th

2 4 6 8 10 12
0  

0.05  

0.1  

NRE Cost
0 200 400 600 800

0.00  

0.10  

0.20  

0.30  

0.40  

Argmax Error (px)

Figure 3: Evaluation of the ability of NeurHal to hallucinate correspondences on the test scenes
of ScanNet and MegaDepth. (left) Histograms of the NRE (see Eq. 1) for each task (identifying,
outpainting, inpainting), computed on correspondence maps produced by NeurHal. The value ln |ΩCT |
is the NRE of a uniform correspondence map. (right) Histograms of the errors between the argmax
(mode) of a correspondence map and the ground truth correspondent’s location, for each task. The
value EU is the average error of a random prediction.

4 EXPERIMENTS

In these experiments, we seek to answer two questions: 1) "Is the proposed NeurHal approach
presented in Sec. 3 capable of hallucinating correspondences?" and 2) "In the context of absolute
camera pose estimation, does the ability to hallucinate correspondences bring further robustness?".

4.1 EVALUATION OF THE ABILITY TO HALLUCINATE CORRESPONDENCES

We evaluate the ability of our network to hallucinate correspondences on four datasets: the indoor
datasets ScanNet (Dai et al., 2017) and NYU (Nathan Silberman & Fergus, 2012), and the outdoor
datasets MegaDepth (Li & Snavely, 2018) and ETH-3D (Schöps et al., 2017). For the indoor setting
(outdoor setting, respectively), we train NeurHal on ScanNet (Megadepth, respectively) on the
training scenes as described in Sec. 3.4, and evaluate it on the disjoint set of validation scenes.
Thus, all the qualitative and quantitative results presented in this section cannot be ascribed to scene
memorization. For each dataset, we run predictions over 2, 500 source and target image pairs sampled
from the test set, with overlaps between 2% and 80%. For every image pair, we also feed as input to
NeurHal keypoints in the source image. These keypoints have known ground truth correspondents
in the target image and labels (visible, occluded, outside the field of view) that we use to evaluate
the ability of our network to hallucinate correspondences. For more details on the settings of our
experiment see Sec. C.2. For this experiment, we use γ = 50%.

We report in Fig. 3 two histograms computed over more than one million keypoints for each task
we seek to validate: identification, inpainting, and outpainting. The first histogram Fig. 3 (left)
is obtained by evaluating for each correspondence map the NRE cost (Eq. 1) at the ground truth
correspondent’s location. In order to draw conclusions, we also report the negative log-likelihood of a
uniform correspondence map (ln |ΩCT |). We find that for each task and for both datasets, the predicted
probability mass lies significantly below ln |ΩCT |, which demonstrates NeurHal’s ability to perform
identification, inpainting and outpainting. On ScanNet, we also observe that identification is a simpler
task than outpainting while inpainting is the hardest task: On average, the NRE cost of inpainted
correspondents is higher than the average NRE cost of outpainted correspondents, which indicates
the predicted correspondence maps are less peaked for inpainting than they are for outpainting. This
corroborates what we empirically observed on qualitative results in Fig. 1, and supports our analysis
in Sec. 3.1. On Megadepth, outpainting and inpainting histograms have a similar shape which does
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Figure 4: Ability to hallucinate - comparison against state-of-the-art local feature matching
methods on ScanNet (S) and Megadepth (M). For each method, we report the percentage of
keypoint’s correspondents whose distance w.r.t. the ground truth location is lower than x pixels, as a
function of x, for (a-c) the inpainting task and (b-d) the outpainting task.

not reflect the previous statement, but we believe this is due to the fact that inpainting labels are noisy
for this dataset, as explained in Sec. C.2.

On the right histogram of Fig. 3, we report the distribution of the distance between the argmax of
a correspondence map and the ground truth correspondent’s location. We also report the average
error of a random prediction. We find the histogram mass lies significantly to the left of the random
prediction average error, indicating our model is able to place modes correctly in the correspondence
maps, regardless of the task at hand. On ScanNet, we observe that the inpainting and outpainting
histograms are very similar, indicating the predicted argmax is equally good for both tasks. As
mentioned above, the correspondence maps produced by NeurHal have a low resolution (see Sec. 3.3)
which explains why the "argmax error" is not closer to zero pixel.

In Fig. 4, we compare the hallucination performances of NeurHal against state-of-the-art local feature
matching methods. Since all these local feature matching methods were designed and trained on
pairs of images with significant overlap to perform only identification, they obtain poor inpainting
results. Concerning the outpainting task, these methods seek to find a correspondent within the image
boundaries, consequently they cannot outpaint correspondences and obtain very poor results.

In Fig. 5 we show several qualitative inpainting/outpainting results on ScanNet and MegaDepth
datasets. In the appendix, we also report qualitative results obtained on the NYU Depth
dataset (Fig. 16) and on the ETH-3D dataset (Fig. 15).

These results allow us to conclude that NeurHal is able to hallucinate correspondences with a strong
generalization capacity. Additional experiments concerning the ability to hallucinate correspondences
are provided in Sec. A as well as technical details regarding the evaluation protocol in Sec. C.3.

4.2 APPLICATION TO ABSOLUTE CAMERA POSE ESTIMATION

In the previous experiment, we showed that our network is able to hallucinate correspondences. We
now evaluate whether this ability helps improving the robustness of an absolute camera pose estimator.
We run this evaluation on the test set of ScanNet over 2,500 source and target image pairs captured in
scenes that were not used at training time. For each source/target image pair, we employ NeurHal
to produce correspondence maps. As in the previous experiment, we use γ = 50%. Given these
correspondence maps and the depth map of the source image, we estimate the absolute camera pose
between the target image and the source image using the method proposed in Germain et al. (2021).

In Fig. 6, we show the results of an ablation study conducted on ScanNet. In this study, we focus on
the robustness of the camera pose estimate for various combinations of training data, i.e. we consider
a pose is "correct" if the rotation error is lower than 20 degrees and the translation error is below 1.5
meters (see Sec. C.3). We find that training our network to perform the three tasks (identification,
inpainting, and outpainting) produces the best results. In particular, we find that adding outpainting
plays a critical role in improving localization of low-overlap image pairs. We also find that learning
to inpaint does not bring much improvement to the absolute camera pose estimation.

In Fig. 7, we compare the results of NeurHal against state-of-the-art local feature matching methods.
In low-overlap settings, very few keypoints’ correspondents can be identified and many keypoints’
correspondents have to be outpainted. In this case, we find that NeurHal is able to estimate the
camera pose correctly significantly more often than any other method, since NeurHal is the only
method able to outpaint correspondences (see Fig. 4). For high-overlap image pairs, the ability to
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Figure 5: Ability to hallucinate - Qualitative inpainting/outpainting results. To illustrate the
ability of NeurHal to hallucinate correspondents, we display correspondence maps predicted by
NeurHal on image pairs (captured in scenes that were not seen at training-time): (top row) outpainting
examples, (bottom row) inpainting examples. In the source image, the red dot is a keypoint. In the
target image and in the (negative-log) correspondence map, the red dot represents the ground truth
keypoint’s correspondent. The dashed rectangles represent the borders of the target images. More
results on the NYU and ETH-3D datasets can be found in the appendix D.1.

hallucinate is not useful since many keypoints’ correspondents can be identified. In this case, we find
that state-of-the-art local feature matching methods to be slightly better than NeurHal. This is likely
due to the fact that NeurHal outputs low resolution correspondences maps while the other methods
output high resolution correspondences. The overall performance shows that NeurHal significantly
outperforms all the competitors, which allows us to conclude that the ability of NeurHal to outpaint
correspondences is beneficial for absolute pose estimation. Technical details concerning the previous
experiment as well as additional experiments concerning the application to absolute camera pose
estimation are provided in Sec. B).

5 LIMITATIONS

We identified the following limitations for our approach: (i) - The previous experiments showed that
NeurHal is able to inpaint correspondences but the inpainted correspondence maps are much less
peaked compared to the outpainted correspondence maps. This is likely due to the fact that inpainting
correspondences is much more difficult than outpainting correspondences (see Sec 3.1). (ii) - The
proposed architecture outputs low resolution correspondence maps (see Sec. 3.3), e.g. 160× 120 for
input images of size 640× 480 and an amount of padding γ = 50%. This is essentially due to the
quadratic complexity of attention layers we use (see Sec. C.1 of the appendix). (iii) - Our approach
is able to outpaint correspondences but our correspondence maps have a finite size. Thus, in the case
where a keypoint’s correspondent falls outside the correspondence map, the resulting correspondence
map would be erroneous. We believe these three limitations are interesting future research directions.
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Figure 6: Ablation study - Impact of learning to hallucinate for absolute camera pose estima-
tion. We compare the influence of adding inpainting and outpainting (γ = 50%) tasks when training
NeurHal. We report the percentage of camera poses being correctly estimated for image pairs having
an overlap between 2% and x%, as a function of x, on ScanNet (Dai et al., 2017), with thresholds for
translation and rotation errors of τt = 1.5m and τr = 20.0◦. Learning to hallucinate correspondences
(especially outpainting) significantly improves the amount of correctly estimated poses.
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Figure 7: Absolute camera pose experiment. We compare the performance of NeurHal against
state-of-the-art local feature matching methods on ScanNet (Dai et al., 2017). The "identity" method
consists in systematically predicting the identity pose. We report the percentage of camera poses
being correctly estimated for pairs of images that have an overlap between 2% and x%, as a function
of x, for two rotation and translation error thresholds. See discussion in Sec. 4.2.

6 CONCLUSION

To the best of our knowledge, this paper is the first attempt to learn to inpaint and outpaint cor-
respondences. We proposed an analysis of this novel learning task, which has guided us towards
employing an appropriate loss function and designing the architecture of our network. We experi-
mentally demonstrated that our network is indeed able to inpaint and outpaint correspondences on
pairs of images captured in scenes that were not seen at training-time, in both indoor (ScanNet) and
outdoor (Megadepth) settings. We also tested our network on other datasets (ETH3D and NYU) and
discovered that our model has strong generalization ability. We then tried to experimentally illustrate
that hallucinating correspondences is not just a fundamental AI problem but is also interesting from
a practical point of view. We applied our network to an absolute camera pose estimation problem
and found that hallucinating correspondences, especially outpainting correspondences, allowed to
significantly outperform the state-of-the-art feature matching methods in terms of robustness of the
resulting pose estimate. Beyond this absolute pose estimation application, this work points to new
research directions such as integrating correspondence hallucination into Structure-from-Motion
pipelines to make them more robust when few images are available.
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7 ETHICS STATEMENT

The method described in this paper has the potential to greatly improve many computer vision-based
industrial applications, especially those involving visual localization in GPS-denied or cluttered
environments. For example robotics or augmented reality applications could benefit from our
algorithm to better relocalize within their surroundings, which could lead to more reliable and overall
safer behaviours. If this was to be applied to autonomous driving or drone-based search and rescue,
one could appreciate the positive societal impact of our method. On the other hand like many
computer vision algorithms, it could be applied to improve robustness of malicious devices such as
weaponized UAVs, or invade citizens privacy through environment re-identification. Thankfully as
AI technology advances, discussions and regulations are brought forward by governments and public
entities.

These ethical debates pave the way for a brighter future and can only make us think NeurHal will
more bring benefits than harms to society.

8 REPRODUCIBILITY

We provide the NeurHal model architecture and weights in the supplementary material. We also
release a simple evaluation script that generates qualitative results, and show in a notebook the results
obtained on an image pair captured indoors using a smartphone.
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Ignacio Rocco, M. Cimpoi, Relja Arandjelović, Akihiko Torii, Tomás Pajdla, and Josef Sivic.
Neighbourhood Consensus Networks. In Advances in Neural Information Processing Systems,
2018.
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APPENDIX

In the following pages, we present additional experiments and technical details about our visual
correspondence hallucination method NeurHal. We present additional experiments on the ability
to hallucinate in Sec. A and on camera pose estimation in Sec. B. We describe technical details in
Sec. C and provide additional qualitative results in Sec. D.
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A ADDITIONAL EXPERIMENTS CONCERNING THE ABILITY TO HALLUCINATE
CORRESPONDENCES

In this section we first present an additional ablation study on the ability to hallucinate, followed by
additional insights on our model internal functioning.

A.1 IMPACT OF LEARNING TO INPAINT AND OUTPAINT

To supplement the study made in Sec. 4.1, we now aim at evaluating the impact of learning to inpaint
and outpaint specifically. To do so, we isolate keypoints with the identified, inpainted and outpainted
labels in our ScanNet (Dai et al., 2017) evaluation set.

In Fig. 8, we show the results of an ablation study on NeurHal’s training setup. We report for the
identification, inpainting and outpainting tasks two sets of cumulative histograms: 1) the NRE costs
at ground truth keypoint correspondents’ locations, and 2) distances between the argmax of the
correspondence map and the ground truth location. On NRE cost cumulative histograms, we also
report the results from the uniform distribution, for models trained both with and without outpainting
(γ = 0% and γ = 50% respectively).

For the identification task (Fig. 8 (a)) we find that all methods yield a consistent performance. The
left figure reveals that NeurHal predictions are significantly above the uniform distribution, indicating
peaky maps and thus confident predictions. The right figure shows that the distance of the argmax
location w.r.t. the ground truth is also robust (NeurHal predicts at 1/8th of the original resolution but
the histogram is computed at full resolution).
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For the inpainting task (Fig. 8 (b)) we can draw similar conclusions. We find however that correspon-
dence maps are overall less peaky and closer to their respective uniform distribution, which indicates
that predictions are less confident. We also find that even though it was not trained to inpaint, the
identification baseline is surprisingly able to inpaint correspondences as its performance is not far
from the identification+inpainting model.

Lastly for the outpainting task (Fig. 8(c)), we find that learning to outpaint gives a significant boost in
performance on both the NRE distribution and correspondents locations. We also find that jointly
learning to inpaint and outpaint is beneficial to the quality of the outpainted cost maps, which implies
that both objectives are complementary.

A.2 ABILITY TO HALLUCINATE: NEURHAL HALLUCINATION VS. HOMOGRAPHY-BASED
WARPING

To compare the ability to hallucinate of NeurHal against a non learning-based approach, we report in
Fig. 9 the performance of homography-based warping approaches that do no rely on correspondence
hallucination.

We compare the performance of a) NeurHal trained to both identify and hallucinate correspon-
dences against b) a version of NeurHal trained without correspondence hallucination followed by
a homography-based warping stage to hallucinate correspondences. We derive several baselines
of b). We report the performance obtained using a simple least-squares solver from all predicted
correspondences, and a RANSAC alternative. We also report the performance of using an oracle
prior to the homography estimation stage to filter out outlier correspondence predictions. We lastly
report the performance of estimating the homography using ground-truth identifiable correspondences
inside a RANSAC loop. For completeness we show the performance of RANSAC-based homogra-
phy estimation for several inlier thresholds. In all cases, we find that performing correspondence
hallucination using NeurHal significantly outperforms all homography-based alternatives that do not
resort to ground-truth information.

This can be attributed to the lack of sufficient visual overlap between image pairs that prevent from
obtaining an accurate homography estimate, as well as the planar-assumption of this model.

Interestingly, it can be seen that with perfect correspondences inpainted correspondences can be
accurately recovered. On the other hand, outpainted correspondences do not seem to be robustly
retrievable through a simple homography estimation.

A.3 ADDITIONAL INSIGHTS ON CORRESPONDENCE HALLUCINATION

While it is tempting to draw hypotheses regarding the internal functioning of NeurHal, we would like
to highlight that this should be done with great care. Indeed, the sheer complexity of the operations
run in the many attention layers of NeurHal prevents from interpreting the reasoning that leads to the
outputted correspondence maps. From a higher level however, we can reasonably speculate that our
model implicitly learns to jointly predict the depth of the source image and the relative camera pose
to warp the source keypoints and hallucinate their correspondents in the target image.

A.4 INPAINTED VS. OUTPAINTED CORRESPONDENCE MAPS

We can observe that the inpainted correspondence maps are less peaked than the outpainted corre-
spondence maps (see Fig. 3). We believe this is because outpainting a correspondent essentially
consists in transferring the features from location ps,i in the source features to location pt,i in the
target features to obtain ds,i = DT,pad(pt,i). In the inpainting case, ps,i is occluded by an object in
the target image, and this object is (often) also visible in the source image at location ps,occ. Thus, to
produce peaked correspondence maps for both ps and ps,occ , the network has to output features such
that ds,i = DT,pad(pt,i) = ds,occ which is more difficult than just ds,i = DT,pad(pt,i)

A.5 ABILITY TO HALLUCINATE: NEURHAL VS. (GERMAIN ET AL., 2021)

The architecture proposed by Germain et al. (2021) is not able to predict outpainted correspondences.
They do consider an extra category for un-matched keypoints but the probability for that category is
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Figure 8: Ability to hallucinate - Ablation study on ScanNet. We compare the influence of adding
inpainting and outpainting when training NeurHal. (left column) We report the percentage of
keypoint’s correspondents whose NRE cost is lower than x, as a function of x, for (a) identified
(b) inpainted and (c) outpainted keypoints. (right column) We report the percentage of keypoint’s
correspondents whose distance w.r.t. the ground truth is lower than x pixels, as a function of x, for
the same categories.
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Figure 9: Ability to hallucinate - Homography-based warping: We compare the performance
of 1) NeurHal trained to both identify and hallucinate correspondences against 2) a version of
NeurHal trained without correspondence hallucination followed by a homography-based warping
stage to hallucinate correspondences and 3) a homography estimated from the ground truth (GT)
identified correspondences. We report the performance to predict (a) inpainted and (b) outpainted
correspondents locations. For each method we report the percentage of keypoint’s correspondents
whose distance w.r.t. the ground truth location is lower than x pixels, as a function of x. We show in
(c) and (d) the performance of RANSAC-based homography estimation for various inlier thresholds.
We show in (e) and (f) similar curves when using ground-truth correspondences to estimate the
homography. See text for more details.
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set to zero, ie. the network does not output any score for that category. Setting this probability to
zero is due to the fact that (Germain et al., 2021) considers a classical siamese CNN architecture
that does not allow the features of both images to communicate. (Germain et al., 2021) is what
we called, in the introduction, a "pure pattern recognition approach". Moreover, even if (Germain
et al., 2021) were using a non-siamese architecture, their method would output a single score for the
category "un-matched keypoint" which would allow the network to detect when the correspondent is
not visible but would not be sufficient to outpaint the location of the correspondent.

B ADDITIONAL EXPERIMENTS CONCERNING THE APPLICATION TO CAMERA
POSE ESTIMATION

In this section, we present additional experiments on correspondence hallucination for camera pose
estimation. We begin with a study on the impact of the pose estimator in Sec. B.1, followed by a
study on the impact of the padding value γ in Sec. B.2. Lastly, we present in Sec. B.4 additional
results on indoor camera pose estimation.

B.1 INFLUENCE OF THE POSE ESTIMATOR: (GERMAIN ET AL., 2021) VS. (CHUM ET AL.,
2003)

(Germain et al., 2021) provides a pose estimation framework which leverages dense keypoint matching
uncertainties to predict more accurate and robust camera poses. Compared to the standard pose
estimator presented in (Chum et al., 2003) which relies on sparse 2D-to-3D correspondences, the
method from (Germain et al., 2021) preserves rich information in the form of dense loss maps that
is particularly suited for ambiguous matches. For the problem of correspondence hallucination we
find the loss maps of both outpainted and inpainted correspondences are usually unimodal but quite
diffuse, and are thus particularly suited for this pose estimator.

To study the influence of the pose estimator, we report in Fig. 10 the performance of NeurHal + (Ger-
main et al., 2021) vs. NeurHal + (Chum et al., 2003). To estimate the camera pose using the method
presented in (Chum et al., 2003), we simply take the argmax of each correspondence map and treat it
as a sparse 2D correspondent in the query image. We also include the performance of NeurHal when
trained without visual correspondence hallucination (i.e. trained using only identified ground truth
correspondences.)

We find that the two methods trained without hallucination have poor performances for very low-
overlap image pairs which underlines the importance of correspondence hallucination in such cases.

Concerning NeurHal trained with hallucination and using the pose estimator (Chum et al., 2003),
taking the argmax of a very coarse correspondence map prevents the pose estimator from achieving
good results.

NeurHal trained with hallucination and coupled with the pose estimator of Germain et al. (2021)
achieves the best results which shows that to obtain robust absolute camera estimates it is important to
combine the ability to hallucinate correspondences of NeurHal with the pose estimator from (Germain
et al., 2021).

B.2 IMPACT OF THE VALUE OF γ

We report in Fig. 11 the absolute camera pose estimation performance for varying values of γ. We
compute the percentage of camera poses being correctly estimated for ScanNet (Dai et al., 2017) test
images pairs that have an overlap between 2% and x% (as a function of x) for a translation threshold
of 1.5m and a rotation threshold of 20.0◦.

We find that using only a small percentage of outpainting such as γ = 10% does not improve the
performance which is most likely due to the small amount of added training keypoints. For higher
γ values however significant gains are visible, especially at small visual overlaps. This experiment
demonstrates the benefit of learning to outpaint correspondences beyond image borders, and broaden
the extent of usable source keypoints to perform camera pose estimation.
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Figure 10: Influence of the pose estimator: (Germain et al., 2021) vs. (Chum et al., 2003): To
study the influence of using the pose estimator proposed in (Germain et al., 2021) compared to
using the pose estimator from (Chum et al., 2003), we report the performance of NeurHal with both
estimators. We also include, for both estimators, the performance of NeurHal trained with identified
correspondences only (i.e. without hallucination). We report the percentage of camera poses being
correctly estimated for pairs of ScanNet (Dai et al., 2017) images that have an overlap between 2%
and x% (as a function of x).
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Figure 11: Impact of the value of γ: For increasing values of γ, we report the percentage of camera
poses being correctly estimated for pairs of ScanNet images that have an overlap between 2% and x%
(as a function of x), for τt = 1.5m and τr = 20.0◦. We find that a small value of γ = 10% yields
no benefit and even damages performance, while values of γ = 25% and γ = 50% bring significant
improvements, especially at small visual overlaps.

We report in Fig. 12 the camera field-of-view as a function of the padding parameter. We find that
γ = 50% provides 130◦ and 71◦ of field-of-view on average on ScanNet and Megadepth respectively,
which is significantly wider than γ = 0%.

B.3 ANALYSIS OF THE IMPACT OF INPAINTING AND OUTPAINTING

In Fig. 11 we reported the percentage of camera poses being correctly estimated for several values
of γ, which demonstrates the benefits of outpainting with a large γ for camera pose estimation. In
Fig. 6 we also showed that learning to inpaint does not bring any significant improvement. We believe
that outpainting improves the camera pose because outpainted correspondences are outside the field
of view and thus complement the identified correspondences, and thus better constrain the camera
pose estimate. On the contrary, inpainted correspondences are usually surrounded by identified
correspondences, thus the information they provide is redundant and does not allow to better constrain
the camera pose estimate.
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(a) Field-of-view w.r.t. γ

Dataset |∆rx| |∆ry| |∆rz| |∆θ| |∆f |

ScanNet 29.21◦ 38.72◦ 25.68◦ 55.20◦ 0.00mm
Megadepth 4.73◦ 6.91◦ 1.64◦ 20.25◦ 376.69mm
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Figure 12: Field-of-view as a function of γ and relative viewpoint statistics: We report in (a) the
average camera field-of-view as a function of γ on ScanNet (Dai et al., 2017) and Megadepth (Li
& Snavely, 2018) images. We find that γ = 50% enables a significant amount of additional visual
content to reproject within the image boundaries. We report in (b) the median absolute difference in
rotation along the x, y and z axis, norm of the relative rotation, along with the difference in focal
length on low-overlap image pairs for ScanNet (Dai et al., 2017) and Megadepth (Li & Snavely,
2018). We report in (c) the histogram of absolute relative angle norm on both datasets. We find
ScanNet image pairs exhibit strong relative angular motion while Megadepth image pairs display
predominantly zoom-ins and zoom-outs.
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Figure 13: Camera pose estimation experiment - Worst cases: We report the performance of
NeurHal and state-of-the-art feature matching methods on ScanNet (Dai et al., 2017) image pairs with
visual overlaps between 2% and 5%. For every column, we subselect the 25% of images pairs with
the worst predictions for a given method. We find that in all cases, NeurHal strongly outperforms
its competitors. On the contrary, on the worst NeurHal predictions state-of-the-art methods achieve
a much lower performance, which is either on par or lower than the predictions obtained using the
Identity.
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Figure 14: Camera pose estimation experiment - varying the threshold values: We report the
performance of NeurHal and state-of-the-art feature matching methods on ScanNet (Dai et al., 2017)
image pairs with visual overlaps between 2% and 5%. For various angular and translation thresholds
we report the percentage of correctly localized images. We find that in all cases, NeurHal strongly
outperforms its competitors.

B.4 ADDITIONAL INDOOR POSE ESTIMATION RESULTS

In addition to the results presented in Fig. 7, we report in Fig. 13 the performance of NeurHal and
state-of-the-art feature matching methods on ScanNet (Dai et al., 2017) image pairs with visual
overlaps between 2% and 5%. For every method, we subselect the 25% of images pairs with the
worst predictions, and compare it with the performance of its competitors. We find that in all cases,
NeurHal strongly outperforms its competitors. On the worst NeurHal predictions, state-of-the-art
methods achieve a much lower performance. For this category we can observe that all NeurHal
competitors are either on par or achieve a lower performance than the Identity predictions.

This figure highlights the fact that when NeurHal fails to correctly estimate the camera pose, all the
competitors also fail since all the methods perform similarly to the "identity" method, i.e. the method
that consists in systematically predicting the identity pose.

Fig. 14 shows that NeurHal is much more robust than state-of-the-art local feature matching methods
for pairs of images with a low overlap.
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C TECHNICAL DETAILS

C.1 ARCHITECTURE DETAILS

NeurHal’s architecture can be separated in two building blocks: the convolutional backbone and the
multi-head attention block.

Convolutional backbone. The convolutional backbone consists of a truncated Incep-
tionv3 (Szegedy et al., 2016) model (up to Mixed-6a, 768-dimensional descriptors), modified as
per Germain et al. (2021) to provide, in the case of ScanNet (Dai et al., 2017), a 1/8 output-to-input
resolution ratio. To help with memory consumption we apply a simple 2D convolutional layer to
compress the descriptor size to 384. In the case where γ > 0, we subsequently pad HT with the
learned vector λ, producing HT,pad.

Positional encoding. After computing HS and HT,pad with the convolutional backbone, positional
encoding is applied to both dense feature maps. Similarly to SuperGlue (Sarlin et al., 2020), we
use a 6-layer MLP of size (32, 64, 128, 256, 384), mapping a positional meshgrid between (−1, 1)
(centered around the image center) to higher dimensionalities. BatchNorm and ReLU layers are
placed between every module. In our experiments, we tried adding more positional encoding layers
but found it did not make a difference in performance. After applying the positional encoding, sparse
descriptors {dS,n}n=1...N are bilinearly interpolated at {pS,n}n=1...N in HS.

Self-attention. Following the positional encoding, a single multi-head attention layer is applied on
HT,pad, with 4 heads. It consists of a standard dot-product attention (Vaswani et al., 2017), coupled
with a gating mechanism. For a given query Q, key K and value V , we compute the attention as
Attention(Q,K, V ) = softmax(g ∗ QKT )V where g = σ(max(QK)). To mitigate the quadratic
cost of the dot-product attention, we also apply a max-pooling operator on keys and values with a
stride of 2, as we empirically found it had very little impact on performance. We also tried using a
Linear Transformer (e.g. LinFormer (Katharopoulos et al., 2020)) architecture, but despite trying
numerous variants we found it consistently damaged the convergence of the model.

Cross-attention. Using the same attention-layer design, we subsequently apply it once between
{dS,n}n=1...N and HS. This layer allows for communication between the interpolated source descrip-
tors which will be used to produce the final correspondence maps, and the original dense source image
content. Then, we apply k cross-attention layers between {dS,n}n=1...N and HT,pad. We empirically
found these layers to be most important, as they allow for direct communication between the sparse
source descriptors and the dense target feature maps, prior to the correspondence maps computation.
After trying different values for k and with memory consumption in mind, we settled for k = 4 in all
our experiments.

Affine transformation. The affine transformation matrix KC for the correspondence map CT of
resolution (WT, HT) is computed from the target image calibration matrix KT and downscaling factors
s using:

KC =

s 0 s−1
2

0 s s−1
2

0 0 1

 KT +

[
0 0 γWT

0 0 γHT

0 0 0

]
(2)

We can determine if a point lies within the boundaries of CT if its (x, y) coordinates are between
(−γWT,−γHT) and ((1 + γ)WT, (1 + γ)HT).

Implementation. The model is implemented in PyTorch (Paszke et al., 2017). For an indoor sample
with 2000 keypoints it has an average throughput of 8.84 image/s on an NVIDIA RTX 3070 GPU.
We report the number of parameters in our model in Table 1.
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Layer # of parameters

CNN 2.4 M
Positional Encoding 142 K
Self-Attention 1.9 M
Cross-Attention 7.2 M

Total 11.7 M

Table 1: Number of parameters in NeurHal

C.2 DATASETS AND TRAINING DETAILS

ScanNet. The ScanNet (Dai et al., 2017) dataset is a large-scale indoor dataset containing monoc-
ular RGB videos and dense depth images, along with ground truth absolute camera poses. As
SuperGlue (Sarlin et al., 2020) and LoFTR (Sun et al., 2021), we pre-compute the visual overlaps
between all image pairs for both training and test scenes. For the training set we sample images with
a visual overlap between 2% and 50% from the ScanNet training scenes, which provides us with
challenging images to handle. We assemble 6M image pairs and randomly subsample 200k pairs
at every training epoch. For testing images, we sample 2, 500 image pairs with overlaps between
2% and 80% from the ScanNet testing scenes, using several bins to ensure the sampling is close to
being uniform. For both training and testing images, we sample keypoints in the source image along
a regular grid with cell sizes of 16 pixels. We remove keypoints with invalid depth, as well as those
where the local depth gradient is too high, as the depth information might not be reliable. We mark
keypoints falling outside the target image plane as being outpainted, and we automatically detect the
keypoints to inpaint through a cyclic projection of the source keypoints to the target image and back.
The remaining keypoints are labeled as identifiable. For all ScanNet experiments, NeurHal uses a
1/8 output-to-input resolution ratio, with a target correspondence map maximum edge size of 80
pixels (when γ = 0%).

Megadepth. We use Megadepth (Li & Snavely, 2018) to train and evaluate NeurHal on outdoor
images. This dataset contains over one million images captured in touristic places, and split in
196 scenes. To train NeurHal and following Germain et al. (2021) guidelines, we use the provided
SIFT (Lowe, 2004)-based 3D reconstruction which was made with COLMAP (Schönberger & Frahm,
2016). Because the sparse 3D point cloud comes from SfM, we find however that very little keypoints
can be marked as inpainted. Indeed, no 3D reconstruction is applied to objects or people occluding
the scene. To allow for a wide variety of image pairs we use the sparse reconstruction to estimate
the visual overlap and sample pairs with an overlap between 20% and 100%. We however find this
overlap estimation to be quite unreliable, as only part of the scene is usually reconstructed. Since
Megadepth (Li & Snavely, 2018) images are of much higher resolution than ScanNet (Dai et al.,
2017), we configure NeurHal to use a 1/16 output-to-input resolution (with a simple max-pooling
layer in the CNN). We set the target correspondence map maximum edge size of 60 pixels (when
γ = 0%), to allow for space in memory when γ = 50%.

Overlap estimation. For a given pair of images, we approximate the visual overlap by computing
the covisibility ratio of keypoints for every image pair. For a given source and target image pair, we
first compute the source-to-target and target-to-source covisibility ratios using ground truth depth
data and camera poses. We then define the visual overlap as the minimum between both ratios. On
Megadepth we find this overlap estimation to be fairly noisy, as depth is only partially known.

Optimizers and scheduling. On both datasets NeurHal is trained for a maximum of 40 epochs.
We use an initial learning rate of 10−3, with a linear learning rate warm-up in 3 epochs from 0.1
of the initial learning rate. As Sun et al. (2021), we decay the learning rate by 0.5 every 8 epochs
starting from the 8th epoch. We apply the linear scaling rule and use a batch size of 8 over 8 NVIDIA
V100 GPUs. We use the AdamW (Loshchilov & Hutter, 2019) optimizer, with a weight decay of 0.1.
In all training procedures, we randomly initialize the model weights.
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C.3 EVALUATION DETAILS

Evaluation protocol. All baselines follow the same standard protocol in which we: 1) Compute
2D-2D correspondences between the reference image and the query image, 2) Lift these 2D-2D cor-
respondences to 2D-3D correspondences using the available 3D information for the reference image,
3) Estimate the camera pose given these 2D-3D correspondences by minimizing the Reprojection
Error (RE), i.e. applying LO-RANSAC+PnP (Chum et al., 2003) followed by a non-linear iterative
refinement. This approach is widely used and leads to state-of-the-art results in visual localization
benchmarks. We also include results for Germain et al. (2021) which we call S2D. For the evaluation
of Fig. 4, we find the inpainted and outpainted correspondents for LoFTR (Sun et al., 2021) and
DRCNet (Li et al., 2020) by fetching the argmax 2D coordinates in the 4D matching confidence
volume. For S2D and NeurHal, we simply take the argmax in correspondence maps for the same set
of keypoints.

Choice of threshold. We reported in Fig. 14 the performance of NeurHal, state-of-the-art feature
matching methods and the identity pose, on ScanNet for several rotation and translation thresholds.
We can see that arbitrarily choosing a threshold of τt = 1.5m and τr = 20.0◦ sets a hard objective as
the identity pose is particularly poor.

(Chum et al., 2003)-based pose estimator. For all (Chum et al., 2003)-based methods, we estimate
the camera pose using the pycolmap python binding. We tune the RANSAC threshold for optimal
performance, and mark all cases where less than 3 valid correspondences (i.e. with a valid depth
value) as failure cases (infinite pose error). The remaining parameters are left as default. We follow
the evaluation instructions provided by each method, and use indoor weights for SP+SG (Sarlin et al.,
2020) and the dual-softmax indoor weights for LoFTR (Sun et al., 2021). In the case of NeurHal
+ (Chum et al., 2003), we simply read the argmax of the predicted correspondence maps to obtain
explicit 2D-to-3D correspondences.

(Germain et al., 2021)-based pose estimator. For both S2D (Germain et al., 2021) and NeurHal
we only use coarse models, which operate at either 1/8th or 1/16th of the original input resolution.
We first retrain the S2D coarse model (fully-convolutional Inceptionv3 (Szegedy et al., 2016), up to
Mixed-6e) on the same training set as our method, with the same target resolution of 80 pixels. We
refer to this model as S2D. Given correspondence maps and the depth map of the source image, we
estimate the camera pose between the target image and the source image using the method proposed
in Germain et al. (2021). For both S2D and NeurHal we use the same set of regularly sampled
source keypoints (see Sec. C.1), and we perform camera pose estimation first using P3P inside an
MSAC (Torr & Zisserman, 2000) loop. We run P3P for a maximum of 5, 000 iterations over the
top-20% correspondences. We then apply a coarse GNC (Blake & Zisserman, 1987) over all source
keypoints with σmax = 2.0 and σmin = 0.6. Let us highlight that in all the camera pose experiments,
the performances of NeurHal are obtained by predicting only low resolution correspondence maps
(see Sec. C.1).

D ADDITIONAL QUALITATIVE RESULTS

D.1 GENERALIZATION TO NEW DATASETS

So far we have demonstrated the ability of NeurHal to hallucinate correspondences on unseen
validation scenes from both ScanNet (Dai et al., 2017) and Megadepth (Li & Snavely, 2018). In
order to further demonstrate the generalization capacity of NeurHal, we report qualitative results
obtained on the NYU Depth Dataset (Nathan Silberman & Fergus, 2012) in Fig. 16 and on the
ETH-3D (Schöps et al., 2017) dataset in Fig. 15. We use the set of indoor weights for NYU (i.e.
NeurHal trained on ScanNet) and outdoor weights for ETH-3D (i.e. NeurHal trained on MegaDepth).
We report the overlayed and upsampled coarse truncated loss map computed following Germain et al.
(2021) on low-overlap image pairs. We find that NeurHal is able to robustly outpaint correspondences
despite little visual overlaps and strong relative camera motions. These visuals demonstrate the strong
generalization ability of NeurHal.
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D.2 QUALITATIVE CORRESPONDENCE HALLUCINATION RESULTS AND FAILURE CASES

To further demonstrate the ability of NeurHal to perform visual correspondence hallucination, we
report in Fig. 17 and Fig. 18 qualitative results on ScanNet (Dai et al., 2017) and Megadepth (Li
& Snavely, 2018) respectively on scenes that were not seen at training-time. In the target image
and in the (negative log) correspondence map, the red dot represents the ground truth keypoint’s
correspondent. The dashed rectangles represent the borders of the target images.

Let us recall that NeurHal outputs probability distributions (a.k.a. correspondence maps) assuming
the two input images are partially overlapping. It is essential to keep this assumption in mind when
looking at these qualitative results. For instance, concerning the example Fig. 17 (b) (middle), it is
very difficult for our human visual system to be sure that the two images are actually overlapping, and
consequently the network prediction seems to good to be true. However, if we assume that there is an
overlap, we realize that it is actually possible to perform correspondence hallucination, by drawing
out the two skirting boards, to correctly outpaint the correspondent.

In fact, this overlapping assumption has a regularization effect in cases where the covisible image
areas show no distinctive regions, and one image could be at an infinite translation of the other, e.g.
Fig. 17 (b) (second to last).

In Fig. 17 (d) and Fig. 18 (d) we show failure cases where the correspondence maps modes predicted
by NeurHal are either partially or completely off. We find that failure cases often correlate with
strongly ambiguous image pairs, or images that have extremely limited visual overlap.

D.3 QUALITATIVE CAMERA POSE ESTIMATION RESULTS

We show in Fig. 19 qualitative results in camera pose estimation on low-overlap images from
ScanNet (Dai et al., 2017), for NeurHal and its three best-performing competitors. For every method
we display the keypoints used as input to the camera pose estimator in the source image, along with
their reprojection at the estimated camera pose in the target image. For methods using the pose
estimator from (Chum et al., 2003), the keypoints are those that have been successfully matched.
When using the pose estimator of Germain et al. (2021), the keypoints are those involved in the
prediction of the dense NRE maps. We color in keypoints based on their spatial 2D position in the
source image. We find that NeurHal strongly benefits from its outpainting ability, in comparison
with all other competitors which struggle to find both sufficient and reliable correspondences. We
also report in Fig. 20 failure cases for NeurHal. We find that such cases correspond to image pairs
exhibiting extremely limited visual overlap, strong camera pose rotations and overall significant
ambiguities.
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Source Target Source Target

Figure 15: Qualitative results on the ETH3D dataset: We evaluate NeurHal on outdoor image
pairs from the ETH-3D (Schöps et al., 2017) dataset and find it is able to outpaint correspondences
despite low visual overlaps. We report pairs of source and target images and overlay the upsampled
coarse loss map corresponding to the source detection (in red) on the target image.
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Source Target Source Target

Figure 16: Qualitative results on the NYU dataset: We evaluate NeurHal on indoor images from
the NYU (Nathan Silberman & Fergus, 2012) dataset and find it is able to outpaint correspondences
despite low visual overlaps. We report pairs of source and target images and overlay the upsampled
coarse loss map corresponding to the source detection (in red) on the target image.
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Figure 17: Additional qualitative ScanNet (Dai et al., 2017) examples. See text for details.
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Figure 18: Additional qualitative Megadepth (Li & Snavely, 2018) examples. See text for details.
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SP+SG LoFTR DRCNet NeurHal

Figure 19: Qualitative camera pose estimation results on low-overlap images from Scan-
Net (Dai et al., 2017): We show for every method keypoints used as input for the camera pose
estimator in the source image (left image), along with their predicted reprojection in the target image
(right image). We color-code keypoints based 2D spatial position in the source image. We also report
for every pair and every method the camera pose estimation error in translation and rotation, colored
in green when the pose is less than τt = 0.5m and τr = 10.0◦, and in red otherwise.
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SP+SG LoFTR DRCNet NeurHal

Figure 20: NeurHal failure cases on low-overlap images from ScanNet (Dai et al., 2017): We
report cases where NeurHal fails to estimate a camera pose with an error less than τt = 0.5m and
τr = 10.0◦. We find these cases often correlate with extremely low covisibility coupled with strong
camera rotations.
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